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Abstract

Bilinear pairings on elliptic curves are an active research field in cryp-
tography. First cryptographic protocols based on bilinear pairings were
proposed by the year 2000 and they are promising solutions to security
concerns in different domains, as in Pervasive Computing and Cloud Com-
puting. The computation of bilinear pairings that relies on arithmetic over
finite fields is the most time-consuming in Pairing-based cryptosystems.
That has motivated the research on efficient hardware architectures that
improve the performance of security protocols. In the literature, several
works have focused in the design of custom hardware architectures for
pairings, however, flexible designs provide advantages due to the fact that
there are several types of pairings and algorithms to compute them. This
work presents the design and implementation of a novel programmable
cryptoprocessor for computing bilinear pairings over binary fields in FP-
GAs, which is able to support different pairing algorithms and parameters
as the elliptic curve, the tower field and the distortion map. The results
show that high flexibility is achieved by the proposed cryptoprocessor at a
competitive timing and area usage when it is compared to custom designs
for pairings defined over singular/supersingular elliptic curves at a 128-bit
security level.

1 Introduction

Bilinear pairings appeared in cryptography in the 90s as an attack against
cryptosystems based on the discrete-logarithm problem defined over elliptic
curves [1,2]. However in the decade of 2000’s, pairings were used in several con-
structive cryptographic schemes, leading to a new kind of cryptography named
Pairing-based Cryptography [11,15].

3Corresponding author. E-mail address: miguel.morales@cinvestav.mx.
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Computing bilinear pairings requires several finite field arithmetic opera-
tions, about 75% of the processing time of a bilinear pairing involves finite
field arithmetic operations. Moreover, algorithms and parameters for comput-
ing bilinear pairings continue under development. Improvements are constantly
reported, sometimes based on different parameters as the kind of elliptic curve,
the tower field definition, and the distortion map. Such processing power re-
quirements and changing environment motivate the development of strategies
for optimal implementation of bilinear pairings computation.

Although general propose multiprocessors are very powerful, they do not
bring support for finite field arithmetic, which follows different rules that con-
ventional arithmetic. Therefore, the emulation of finite field arithmetic leads
to low performance software implementations that could not be appropriate for
high speed applications like real-time communications. However, software im-
plementations have total flexibility for supporting any pairing algorithm as well
as its associated parameters.

The processing time of software implementations can overcome by specialized
hardware implementations. However, custom hardware architectures are not
able to support changes, so a flexible solution able to manage several parameters
like the elliptic curve, the tower field, the distortion map, or the version of the
pairing algorithm is better preferred. Flexible hardware architectures can be
more suitable for different applications.

This work presents the design and evaluation in FPGA of a programmable
cryptoprocessor for bilinear pairings on elliptic curves over binary fields. This is
an extended and improved version of the work reported in [3]. Different to other
architectures previously reported in the literature, the proposed cryptoproces-
sor has a key characteristic the property of programmability. The proposed
cryptoprocessor is able to execute different versions of the pairing algorithm as
well as different parameters in the pairing computation as the elliptic curve,
tower field and distortion map. The cryptoprocessor design outperforms soft-
ware implementations [4,5], including GPU implementations [6], requires fewer
area resources than custom architectures [7–9], and achieves competitive perfor-
mance. The methodology followed to construct the proposed cryptogprocessor
can be extended to support pairings defined over other fields as F3m .

The rest of this paper is organized as follows: Section 2 introduces some
cryptographic schemes for Pairing-based Cryptography. Also, it presents the
mathematical background of bilinear pairings over elliptic curves as well as the
theory related to binary field arithmetic. Section 3 presents a review of the
state-of-art regarding bilinear pairing implementations. Section 4 describes the
proposed flexible architecture for pairing computation, standing out the require-
ments considered for its design. The strategy for validating the functionality of
the proposed architecture is described in Section 5. This section also presents
the synthesis results and a comparison against related works. Finally, Section
6 summarizes this work and the achieved contributions. The conclusions and
future work are finally presented at the end of this section.
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2 Pairing-based Cryptography

The set of cryptographic schemes that make use of bilinear pairings to work
defines what is known as Pairing-based Cryptography (PBC). Let G1 be an
additive group of order r and identity element ∞, let GT be a multiplicative
group of order r and identity element 1, a (symmetric) bilinear pairing is a
function e : G1 × G1 → GT that maps two elements in G1 to one element in
GT . Commonly in cryptographic applications, the group G1 is a set of points in
an elliptic curve E(Fq) defined over the finite field Fq, and the group GT is the
group of elements in the extended finite field Fqk . The mapping e must satisfy
the condition of bilinearity, non-degeneracy, and computability [10].

The first key agreement scheme based on bilinear pairing was proposed by
Joux in [11]. That scheme called three-party one-round key agreement is based
on the Diffie-Hellman problem [12]. This scheme considers that three parties
A, B, C, with secrete keys a, b, c ∈ Zr respectively require to agree a common
shared key while minimizing the amount of messages being sent. In this sense,
A broadcasts aP , B broadcasts bP , and C broadcasts cP . Then, A computes
KA = e(bP, cP )a, B computes KB = e(aP, cP )b and C computes KBe(aP, bP )c.
The shared key is KABC = KA = KB = KC = e(P, P )abc. This key agreement
scheme is based on the Diffie-Hellman problem for bilinear pairings [13]. This
key agreement scheme can be extended to multiple parties by Barua et. al.
in [14].

Boneh and Franklin introduced the first practical encryption scheme for
PBC [15]. The Boneh and Franklin scheme, denoted as BF-IBE, works under
the paradigm of identity-based encryption, which is an asymmetric key scheme
where the encryption key is derived from the identity of the receiver, for example
the receiver’s e-mail. The decryption key is computed by a trusted third party
or Private Key Generator (PKG) using also the receiver’s identity (i.e., e-mail).
The BF-IBE bases its security on the problem known as bilinear Diffie-Hellman
problem, which is a reduction of the discrete logarithm problem over elliptic
curves.

In BF-IBE, PKG chooses an random element s ∈ Z∗
r , and sets Ppub =

sP . Two hash functions H1 : {0, 1}∗ → G1 and H2 : G2 → {0, 1}n are chosen
and made public. The public key of PKG is Ppub, private key of PKG is s.
Next, given an receiver’s identifier ID ∈ {0, 1}∗, the receiver’s public key is
computed as QID = H1(ID) ∈ G1. The receiver’s private key is computed by
PKG as SID = sQID. For encrypting a message M ∈ {0, 1}n, the transmit-
ter chooses a random integer t and computes the encrypted message as the
tuple C = 〈tP,M ⊕H2(gtID)〉, where gID = e(QID, Ppub). For decryption, the
receiver computes the original message M as M = V ⊕H2(e(SID, U)), where
C = 〈U, V 〉 is the encrypted message. The BF-IBE scheme holds because
e(QID, sP )t = e(QID, P )ts = e(sQID, tP ).

Boneh, et. al. propose the first PBC-based short-signature scheme in [16].
For example, this scheme produces a signature of length 160 bits, which has the
same security level as a 320-bit signature in DSA or 1024-bit length in RSA. The
short signature scheme serves as the basis of other signature schemes as [17],
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where a scheme for blind and ring signature is proposed. Boldyreva introduced
the threshold signatures, multi-signature and blind signature schemes in [18], all
them based on pairing computations. Sakai and Kasahara proposed a signature
scheme that reduces the number of pairing computations in [19]. An scheme for
aggregate signature is reported in [20].

The short signature scheme in [16] consists in three steps: KeyGen, Sing,
and Validation.

• KeyGen: Choose and publish a hash function H : {0, 1}∗ → G1. Signer
chooses a secret key x ∈ Z∗

r , and publish a validation key Ppub = xP .

• Sign: The electronic signature for a message M ∈ {0, 1}∗ is σ = xH(M).

• Validation: Given the public key Ppub, the message M and the signature σ,
the signature is verified by e(P, σ) = e(Ppub, H(M)). The short signature
scheme holds because e(P, xH(M)) = e(P,H(M))x = e(xP,H(M)).

2.1 Bilinear pairings over elliptic curves

An elliptic curve is defined as a set of points (x, y) that satisfy the Weierstrass
equation over a finite field Fq:

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (1)

The number of points in the curve is given by #E(Fq) = q + 1 − t where
|t| ≤ 2

√
q. When the field characteristic p divides t, denoted by p|t, the curve

is called supersingular, other way it is called ordinary. E(Fq) and a rule for
adding two elements in E(Fq) construct an algebraic structure called cyclic
additive group. The identity element in this additive group is named the point
at infinity denoted by ∞ [10].

The scalar multiplication is the operation denoted as rP , where r ∈ N, and
P ∈ E(Fq). rP is defined as:

rP = P + P + P + ...+ P︸ ︷︷ ︸
r times P

(2)

A bilinear pairing on an elliptic curve E(Fq) is a function ê:E(Fq)×E(Fq)→
F∗
qk that takes two elements from E(Fq), and maps them to an element in a

subset of the extended finite field F∗
qk = Fqk − {0}. Bilinear pairings must

satisfy the following conditions, ∀P,Q,R ∈ E(Fq) [10]:

Bilinearity: ê(P +R,Q)=ê(P,Q)× ê(R,Q) and

ê(P,Q+R)=ê(P,Q)× ê(P,R)

Non-degeneracy: ê(P, P )6=1

Computability: ê is efficiently computed

Under certain circumstances, bilinear pairings are defined over two different
curves ê:E(Fq)×E(Fqk)→ F∗

qk . This kind of pairing is called asymmetric pairing

[10].
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Algorithm 1 Computation of ηT (P,Q) over F2m .

Require: P = (x1, y1), Q = (x2, y2) ∈ E(F2m).
Ensure: ηT (P,Q) ∈ F2km .
1: s← x1 + α
2: F ← s · (x1 + x2 + 1) + y1 + y2 + 1−β

2 + (y2 + s) · u+ v
3: for i = 1 to (m+ 1)/2 do
4: s← x1 + γ, x1 ←

√
x1,y1 ←

√
y1

5: G← s · (x1 + x2 + γ) + y1 + y2 + (1 + γ) · x1 + δ + (s+ x2) · u+ v
6: x2 ← x22,y2 ← y22
7: F ← F ·G
8: end for
9: return F (22m−1)·(2m+1−ε2(m+1)/2)

2.1.1 The Tate and eta pairings

The smallest possible value of r that makes rP = ∞ is called the order of
P . The subset of points in E(Fq) of order r is named the r-Torsion subgroup,
denoted by E[r]. Given an elliptic curve E(Fq) and a point P ∈ E(Fq) of order
r such that GDC(r, q) = 1, the embedding degree of the curve is the smallest
integer k that satisfies r|qk − 1. For binary fields and supersingular curves the
maximum embedding degree achievable is k = 4 [21].

The Tate pairing is an asymmetric bilinear pairing on elliptic curves de-
fined in equation 3, where DQ is a divisor of point Q and fP is a function that
maps DQ to a finite field field element. Readers are referred to [22] and [10]
for more detailed definitions. The computation of equation 3 is divided in two
stages: first fP (DQ) is computed by the Miller’s Algorithm [22], second the ex-
ponentiation to the (qk−1)/r-th power of Miller’s Algorithm result, called final
exponentiation, is required [21]. The Miller’s Algorithm is a numeric method to
construct the function fP satisfying the conditions of a bilinear pairing [22].

τ : E(Fq)[r]×E(Fqk)[r]→ F∗
qk (3)

τ(P,Q)= fP (DQ)(q
k−1)/r

Several works have been done to optimize the Tate pairing at an algorithmic
level [23–25]. A special case of the original Tate pairing for supersingular curves
is the eta pairing (ηT ) presented in [23]. ηT reduces the Miller’s Algorithm to
the half, becoming the most popular algorithm for bilinear pairings over binary
fields. ηT requires a distortion map ψ : E(Fq)→ E(Fkq ) for the point Q in order
to satisfy E(Fq) being a cyclic group. Additionally, it can be shown that the
groups E(Fq) and E(Fqk) are isomorphic, becoming ηT a symmetric pairing.

In algorithm 1 is depicted the algorithm for computing the ηT over F2m .
Several parameters depend on the elliptic curve and finite field [23]. Consider
the supersingular curve E : y2 + y = x3 + x+ b over F2m , where b = {1, 0} and
m is odd, embedded degree k = 4, tower field defined as [23], and the distortion
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map ψ(x, y) = (x+u+1, y+xu+v). Lets define β = −1 when m ≡ 1, 7 mod 8
and b = 1 or m ≡ 3, 5 mod 8 and b = 0, or β = 1 in all other cases. α = 0, γ = 1
when m ≡ 1, 5 mod 8 otherwise α = 1, γ = 0. δ = 1 if m ≡ 5, 7 mod 8,
otherwise δ = 0. And finally, ε = (−1)b if m ≡ 1, 7 mod 8 or ε = (−1)(1−b) if
m ≡ 3, 5 mod 8.

In algorithm 1, lines 1 throw 8 are the Miller’s Algorithm stage. Lines 2 and
5 set F,G ∈ F24m . Line 7 is a multiplication over the extended field, thanks to
the structure of G, this multiplication can be simplified. Finally, line 9 is the
final exponentiation that can be computed using several techniques [21,26,27].

Nevertheless, an alternative algorithm for computing the ηT using different
parameters for basis is presented in [28]. Both works [23] and [28] are able
to compute bilinear pairings in a very different way. The necessity of a flexi-
ble solution able to manage this variety of parameters and algorithms emerges
because development of algorithms and improvements are still in process and
further, the lack of an standard for computing bilinear pairings in cryptographic
applications.

2.2 Finite field arithmetic

A finite field, represented by Fq where q = pm, is an algebraic structure defined
as a finite set of elements, two basic operations for those elements, and a set of
properties to be satisfied. p is called the characteristic of the finite field and m
is called the field extension [29]. For cryptographic applications p is typically 2,
3 or a prime number [30]. The number of elements on the set is determined by
pm. In polynomial basis, an element in Fq could be represented as a polynomial
of degree at most m − 1, where each coefficient of the polynomial can take its
value only from the set {0, ..., p− 1}. Fq is defined by a m-grade irreducible
polynomial f(x). This irreducible polynomial is used to satisfy the closure
property by an operation called modular reduction. Finite field arithmetic refers
to the operations that can be performed with elements in Fq. When p = 2, the
finite field is called binary field. Usually a binary field element is implemented
with a m-length bit vector. This paper assumes the binary field case unless it
is specified.

2.2.1 Arithmetic operations

Let F2m be the binary field generated by the irreducible polynomial f(x). Con-
sider A,B ∈ F2m each represented by a polynomial and implemented as a bit
vector of length m. An addition operation, A ⊕ B, is defined as a polynomial
addition simply performed by a bitwise XOR among each coefficient with no
carry propagation. The result is a polynomial with degree less than m which
already belongs to F2m .

A multiplication operation, A⊗B, can be seen as a two steps operation, see
equation 4. First, a polynomial multiplication is performed resulting a polyno-
mial of degree 2m− 1. Second, a modular reduction mod f(x) is performed in
order to A⊗B belongs to the F2m . Multiplication is a very expensive operation,
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several works have been presented aiming to reduce its computational cost. Al-
gorithms like Karatsuba-Ofman and Montogomery are two examples [30]. For
some special types of f(x) like trinomials or pentanomials, modular reduction
can be computed using only a couple of additions [30].

C=A⊗B mod f(x)=

m−1∑
i=0

m−1∑
j=0

aibjx
i+j mod f(x) (4)

Squaring, •2, is a special case of the multiplication A⊗B, when A = B that
also requires modular reduction [30].

C=A2=A⊗A mod f(x)=

m−1∑
i=0

aix
2i mod f(x) (5)

Square root,
√
• , is the inverse operation of squaring. Given an element

A, it consists in computing the unique element C, such that A=C2 mod f(x)
holds. Squaring can be seen as a matrix multiplication A2 = MA, so square
root is also a matrix multiplication

√
A = M−1A. In both cases, M depends

exclusively on f(x). Being f(x) a trinomial or a pentanomial, squaring and
square root can be computed by reordering the input operands and performing
a couple of additions [30].

An interesting identity for any two elements A,B ∈ F2m is depicted in
equation 6, which states that squaring is distributive over addition. It can be
shown that this identity also holds for squaring root.

A2 +B2=

m−1∑
i=0

(ai + bi)x
2i mod f(x) = (A+B)2 (6)

Multiplicative Inverse, (•)−1, of A is defined as the unique element C, such
that 1=A⊗C mod f(x) holds. There exist several algorithms to compute this
element, some of them are based on the Euclidean algorithm for computing
the GCD, others use the Fermat’s Little Theorem. Multiplicative Inverse is
considered the most expensive operation in F2m [30].

2.2.2 Extended field arithmetic

As mentioned in the introduction, the result of a bilinear pairing function is an
element in an extended finite field represented by Fqk . A field K2 containing a
field K1 is called extension field of K1, for example F2m is an extended field of
F2. An irreducible polynomial g(x) of degree k is necessary to define Fqk over
Fq [31]. A sequence of field extensions is called tower field [31].

With a tower field, a basis can be constructed to represent elements in Fqk
with elements of Fq [31]. For example, using the tower field defined in [23], the
basis {1, u, v, uv} over Fq is constructed for representing elements in Fq4 . Using
this basis, an elementG ∈ Fq4 is defined as a polynomialG = g0+g1u+g2v+g3uv
where gn ∈ Fq.
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The basis constructed from the tower field allows to perform the arithmetic
over Fqk as operations over Fq. Addition is straightforward as a polynomial
addition. A multiplication also follows the polynomial multiplication rules, but
when some coefficients are either 0 or 1, then multiplication is simplified.

Using the tower field defined in [23] and equation 6, squaring in Fq4 require
4 additions and 4 squaring over Fq:

G2=(g0 + g1 + g3)2 + (g1 + g2)2u+ (g2 + g3)2v+g23uv (7)

Raising an element to the q-th power is an operation easily computed using
the tower field. For tower field defined in [23] this computation requires only 5
additions over Fq:

Gq=(g0 + g1 + g2) + (g1 + g2 + g3)u+ (g2 + g3)v+g3uv (8)

3 Related works

Computation of bilinear pairings is not an easy task. It involves a lot of fi-
nite field arithmetic operations. Several implementations trying to optimize
the computation of bilinear pairings have been proposed. In this section it is
presented a brief review of those works.

3.1 Software implementations

The work reported in [32] reaches the fastest implementation of pairing algo-
rithms in software. Authors of that work modify the original algorithms in order
to have a better utilization of multithreaded architectures of the new general
purpose microprocessors. The Optimal ate pairing over prime fields is the main
algorithm studied in that work. The best result was achieved with a 64 bit Intel
Core i7 microprocessor with a clock frequency of 2.0 GHz. When 8 threads are
used for the pairing algorithm computation, a total of 1,034,000 clock cycles are
required, resulting in a latency of 0.517 ms. Notice that when only one thread
is used, the latency is about 3.23 ms.

Authors of [6] make use of a Graphic Processor Unit (GPU) in order to ac-
celerate the pairing computation. That work implemented the ηT pairing over
supersingular curves for ternary fields, reaching a security level of 128 bits. Pro-
gramming on GPUs generally follows the paradigm of Single Program Multiple
Data, therefore authors of that work focused in compute several pairings at the
same time. The best results reported a throughput of 332 pairing operations
per second, which is equivalent to 3.01 ms per operation.

A different approach for software implementations are specialized software
libraries for pairing computations. Specialized software libraries exploit certain
features of general propose microprocessors to accelerate pairing computations;
for example, special data structures may be defined to reduce the number of
memory accesses as well as the memory consumption, or optimized arithmetic
primitives may be implemented. The work reported in [5] is a library designed
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for small devices like wireless sensor networks. The library proposed in that
work was designed for ternary fields and supersingular elliptic curves. Besides
the ability for computing pairing algorithms, that library also includes support
for hash functions and elliptic curve arithmetic. That design was focused to
optimize the memory consumption. For a security level of 66 bits, the library
is able to compute the ηT pairing in 5.32 ms.

Software implementations like [32] use very powerful general propose micro-
processors, but even with the latest technology they cannot achieve the perfor-
mance reached with optimized architectures. According with [6], using GPUs
to accelerate the pairing computation does not improve the processing time. [5]
presented a library suitable for very constrained environments but it does not
reach a high level of security.

3.2 No-flexible hardware implementations

Ghosh et. al. presented an architecture able to compute the eta pairing in
binary fields for a security level of 128 bits in [7]. The architecture presented
in that work is based on a Karatsuba-Ofman multiplier which uses a serial-
parallel approach. A tradeoff between the serialization and the parallelization
in the Karatsuba-Ofman multiplier was performed in order to find the best
results. Operations scheduling were optimized mainly during Miller’s algorithm
stage, and parallelism was used during the final exponentiation step. The area
reported in that work is 15,167 slices with a processing time of 0.190 ms, the
target device was a Xilinx Virtex 6 FPGA device.

The authors of [8] proposed an custom architecture for computing the eta
pairing for a security level of 128 bits, being this architecture the fastest one
reported in the literature. That architecture implements field multiplication
through an hybrid sequential/parallel approach based on the Toeplitz matrix
vector products. The authors of that work use an approach based on the
Karatsuba-Ofman algorithm in order to reduce the cost of the extended field
multiplication. For the final exponentiation, authors optimize the computation
by a thoughtful implementation, proposing specific improvements in the com-
putation of inversion over F24m . The architecture reported in that work was
implemented in a Virtex 6 FPGA, resulting in an area of 16,403 slices and a
processing time of 0.102 ms. That work is the fastest implementation reported
of the ηT pairing for a 128-bit security level.

Beuchat et. al. have reported several works improving the implementation
of the ηT pairing computation culminating with [9]. That work presented an
architecture for binary fields and another for ternary fields. The central mod-
ule of both architectures is a full-parallel Karatsuba-Ofman Multiplier. Both
cases use a pipelined approach for improving the processing time. A valuable
contribution was the introduction of a family of irreducible polynomials which
facilitates the computation of square roots. Both architectures were split in two,
one architecture for computing the Miller’s algorithm and another for comput-
ing the final exponentiation, integrating both under a pipeline fashion which
also improves the processing time. Although that work only achieves a security
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level of 105 bits in binary field with an area of 78,874 slices and a processing
time of 18.8µs, the A ·T product of 1.41 slices × ms is so far the smallest in the
literature, targeting a Virtex 4 FPGA.

In [33], Cheung et. al. presented an implementation of the Optimal ate pair-
ing considering prime fields. In that work a combination of the Reside Number
System and the lazy reduction technique is used for reducing the complexity of
the arithmetic operations in prime fields. Additionally, an optimization at both
architectural and algorithmical level was performed. The target security level
was 126 bits. Authors used an FPGA as technology for implementing the ar-
chitecture achieving a resource consumption of 7032 slices, 32 DSPs and 101KB
of memory, and a processing time of 0.573 ms. The target device was a Xilinx
Virtex 6.

In [34], the author explores the viability of implementing bilinear pairings
over composite-extended fields. The main idea is to represent the field Fq=pm as
a composite field where m = n·l for some n and some l. The arithmetic over Fpm
is implemented using operands over Fpn which are smaller. In the same way, the
arithmetic in the extended field Fpkm is implemented using operands over Fpn .
The author analyzed the impact of using this kind of fields over the security
level in order to do not compromise the security of the system. As a result,
that work developed a very compact hardware architecture for ternary fields, at
a security level of 128 bits. In order to manage the arithmetic operations over
Fpn , the author proposed a codification scheme. This codification could lead to
some flexibility, but it was not explicitly intended in that way. For a 128 bits
security level using a ternary field, that work require an area of 4,755 slices and
a time of 2.23 ms for a Xilinx Virtex 4.

Even [7–9, 33] are very specialized architectures reaching very compact and
fast implementation results, their biggest drawback is that only a couple of
parameters are configurable. Due to bilinear pairings are no yet standardized,
a rigid design could not be the better answer for a changing environment. From
[34] it can be inferred some flexibility but the design is not really intended in
that way. Moreover, parameters like the elliptic curve, tower field, and distortion
map only affect the implementation not the security of the system, so a rigid
implementation cannot be adapted to different schemes when these parameters
change.

3.3 Flexible hardware implementations

The work reported in [35] presented a programmable architecture for the Tate,
ate, and R-ate pairing over prime fields. The architecture centers its programma-
bility in configurable arithmetic units. Each unit is able to generate its own con-
trol sequence according to the desire functionality. Each unit is formed by three
independent arithmetic operators. Each arithmetic operator has two inputs of
256 bits, and is able to compute an addition/subtraction/multiplication in Fq.
The multiplication is implemented using the Blakley algorithm [36] combined
with the Montgomery Ladder technique [37]. The Karatsuba technique is used
for reducing the size of the operands. The configurable arithmetic units and
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the registers are interconnected by a data access unit which is able to access all
registers in parallel. Neither the instruction format nor the instruction set are
reported in that work. The security level scoped for that work was 128 bits.
That architecture was synthesized on a Xilinx Virtex 4 resulting in an area of
52,000 slices and a processing time of 16.4 ms in the best case.

In [38] it is proposed a coprocessor for computing the ηT pairing in ternary
fields. Their design consists in an unified operator for multiplication, addition
and cubing over the field F3m . Multiplication is computed in a digit-serial way,
where D coefficients of the multiplication are computed in parallel, after m/D
clock cycles the result is completed. Adding and Cubing are easily computed
by XOR gates. The three operations are merged into a single operator sharing
as much components as possible. A total of 64 working registers implemented
by a dual-port RAM are used by that coprocessor to store partial results. The
architecture is controlled by a 32 bits instruction. That work was implemented
for a security level of 66 bits in a Xilinx Virtex 4, achieving a resource consump-
tion of 1,851 slices and a latency of 0.137 ms. A total of 900 instructions were
necessary for computing the pairing algorithm.

Later in [39], Aranha et. al. reported a novel algorithm for computing
the Optimal eta pairing in supersingular hyper-elliptic curves over prime fields
for a security level of 128 bits. The coprocessor proposed in [38] was adapted
to support that new algorithm, a total of 4,518 slices and a latency of 5.52 ms
were required for that architecture when targeting a Xilinx Virtex 4. A software
implementations was performed in that work reaching a best time of 1.1 ms with
a 64 bit Intel Core i5 540 whit a clock frequency of 2.53 GHz.

In the work [40], authors report an Application Specific Instruction-set Pro-
cessor (ASIP). An ASIP consists in a set of instructions and an optimized hard-
ware design to support those instructions. The ASIP reported in [40] focused
in the ordinary curves named Barreto-Naehrig, the underlying finite field is the
prime field, reaching a security level of 128 bits. The two main parts of that
work are the multiplication module and the data access module. Regarding to
field multiplication, authors chose a Montgomery multiplier implemented in a
multi-cycle approach. The proposed data access module consists in an interface
with a dual port RAM memory of 32 bits, able to load and store the pairing
operands, which are 256 bits each. That work computes the Optimal ate pairing
in 15.8 ms, and the ηT pairing in 28.8 ms. The hardware designed in that work
was implemented in an ASIC, requiring a total of 97 kGates.

Works introduced in this section show more flexibility in their functionality,
but there are some drawbacks that can be outperformed. Despite [38], [35]
and [40] are flexible enough to support different algorithms, they only support
prime and ternary fields. Arithmetic over binary fields is carry-free, therefore,
it usually reports smaller and faster implementations compared to prime and
ternary fields. Aranha et al in [39] show how a flexible architecture can be
used for implementing new algorithms, nevertheless the processing time can be
improved.
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4 Cryptoprocessor architecture

The aim of the proposed pairing cryptoprocessor is to bring flexibility to the
computation of bilinear pairings. Several algorithms have been proposed and
still coninue being proposed for computing pairings. A flexible cryptoprocessor
for pairings can allow to manage several parameters in algorithm for comput-
ing pairings such as the elliptic curve, the tower field and the distortion map.
The programmable cryptoprocessor presented in this work consist of a micro-
architectural datapath with its corresponding instruction set.

4.1 Design specifications

The design process was ruled by three general specifications explained in this
section. Each specification in the design process is explained and the conse-
quences of that specification in the coprocessor architecture is also detailed.

The first specification is that the architecture support arithmetic in F2m . All
operations required by Miller’s algorithm and the final exponentiation can be
translated into arithmetic in F2m . As consequence, the schedule of the instruc-
tions should be enough to implement any pairing algorithm for any parameter
like the elliptic curve, distortion map or tower field. It is necessary to provide
enough memory for storing partial results during the pairing computation. Fur-
ther, the instructions set to be considered has to cover all the operations in F2m

used in the pairing algorithms for binary fields, both for the algorithms reviewed
in the literature and future algorithms.

The second specification is that only operations among registers is supported.
Pairing algorithms do not require operations with constant values rather than 0
or 1, but those constant values can be easily computed. In the case of the value
0, for any element A ∈ F2m , A ⊕ A=0. For the value 1, it can be computed
by the equation A ⊕ (A⊕ 1)=1. Assuming that element A has a bit vector
representation, the operation A⊕ 1 is easily computed by the negation of the
least significant bit of A. As consequences, the design requires hardware to
support the operation A⊕ 1, which indeed is just a single NOT gate. Second,
only one instruction format is necessary for the arithmetic operation instructions
allowing a simpler decoding and a more compact instruction format.

The third specification was defined after analyzing different pairing algo-
rithms. It was noted that, during the Miller’s algorithm, multiplication inputs
are usually additions among the coordinates of points P and Q. Also, it was
noted that for computing extended field arithmetic, input operands are usually
additions. So, because additions are widely used during pairing computations,
the multiplication, squaring and square root are always preceded by an addi-
tion. As consequence of this specification is a tradeoff to define the number
of inputs in the addition that precedes the multiplication, squaring and square
root. Choosing a two input addition requires less hardware in the implementa-
tion, but the pairing algorithm programming requires executing more instruc-
tions, that would lead to a longer latency in the pairing computation. On the
other hand, considering more inputs in the addition increases the amount of
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resources and increases the time delay. However, less instructions are necessary
when programing the pairing algorithm so a shorter latency could be obtained.
Moreover, the number of addition operands prior a multiplication, squaring or
square root is not the same during the pairing computation; after defining a
fixed number of inputs in the addition, there are cases when the addition prior
a multiplication, squaring or square root requires less operands, so a mechanism
to control the number of valid operands in the addition is required.

4.2 Instruction Set Architecture

Based on the design specifications presented in the previous section, an In-
struction Set Architecture (ISA) was defined. The ISA has to support all the
arithmetic operations reported in the pairing algorithms for binary fields. These
operations are addition, multiplication, squaring and square root, which were
explained theoretically in section 2.2.1. The second design specification forces
the instruction set to include an instruction for the operation A ⊕ 1. Addi-
tionally, other instructions are required for program control in order to support
loops, especially the FOR loop, as well as conditional and unconditional jumps.

Prior to define the instruction format, the organization of the working reg-
isters was defined. For this, the pairings algorithms reported in [9, 23, 26, 28]
were analyzed. A natural way to organize the working registers is by grouping
them such that each group stores a single element of the extended field. Each
group of registers is called Bank. The size of each bank is defined by the size
of the extension of F2m , which is in fact the embedded degree. So far, the liter-
ature only report pairings over binary fields using supersingular elliptic curves.
The embedded degree k of supersingular curves over binary fields is bounded
by k ≤ 4 [21]. Therefore, each bank comprises until four registers each of size
m bits. Each bank is intended to store an element in F2km .

This algorithm analysis was used also to define the number of inputs in the
addition of third design specification. It was decided to consider four input
operands for the additions prior to multiplication, squaring and square root.
In this sense, the addition is always computed among the four registers of a
specific bank. Each register within a bank is designed with a read enable signal
for those cases when the addition requires less inputs.

The complete instruction set is shown in table 1 where S indicates the name
of the source bank where the input operands are stored. Inside brackets indicate
which registers of bank S are read, for example: F [0] indicates the register 0 of
the bank F , and G[0, 2, 3] indicates the registers 0, 2, 3 of bank G. D indicates
the destination bank where the result is stored. Inside brackets indicate which
registers of bank D are written. Notice that more than one register of bank D
can be written at the same time with the same result.

The instruction format is coded into a 16-bit word. Figure 1 illustrates the
instruction format. For all instructions: CMD is a 4-bit field indicating the
functionality, OP2 is a 6-bit field used to indicate the destination bank, OP1
is a 6-bit field used to indicate the source bank. The subfields S1 and S0 are
used to select the bank register. Subfields R3 to R0 are used to select the
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Table 1: Instruction set for the proposed architecture.

Name Description

Addition(D[], S[]) Addition up to four elements in F2m stored in a bank

Squaring(D[], S[])
Squaring of the addition up to four elements in F2m

stored in a bank.

Square
Root(D[], S[])

Square root of the addition up to four elements in
F2m stored in a bank.

LoadMult(S2[], S1[])
Load and start a new multiplication. Each operand
is the addition up to four elements in F2m stored in
a bank.

Inc(D[], S[])
Increment in 1 the addition up to four elements in
F2m stored in a bank.

MoveBank(D[], S[]) Copy values from the bank S to the bank D.

StoreMult(D[])
Store the result of a multiplication operation in the
bank D.

SquareGs(D[]) Squaring the content for register Gs

Wait(n) Freeze the IP register for n clock cycles.

Jmp(n) Unconditional jump to the instruction at address n.

For(n) Hardware support to FOR-Loop n.

Jz(n) Conditional jump to the instruction at address n.

specific registers with in the bank, notice that more than one register within
the bank can be read at the same time. The same format is used for the control
instructions Jmp, For, Wait and Jz. For these instructions OP2 and OP1 act
like a 12-bit constant. This coding allows a total of four banks used as source
banks and other four banks used as destination banks. If needed, more banks
could be addressed by incrementing the number of bits in the fields OP1 and
OP2.

Different to the work previously reported in [3], the proposed instruction set
modifies the instruction IncG0() to become in the new instruction Inc(D[], S[]).
In the previous work, the hardware for bring support to the operation A⊕ 1 was
attached to the register G0; in this new version, the hardware is integrated to the
datapath allowing more flexibility to the instruction set. In other hand, the the
instruction SquareGs(D[]) is introduced in this new version. This instructions
computes the square root of the value stored in register Gs.
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4.3 F2m arithmetic modules

4.3.1 Addition

In polynomial basis, an element A in the field F2m can be represented as a
(m− 1)-degree polynomial as follows:

A = αm−1x
m−1 + αm−2x

m−2 + · · ·+ α1x+ α0 =

m−1∑
i=0

αix
i (9)

where A is normally represented as a m-bit vector containing all coefficients
defining its corresponding polynomial, that is, A = (αm−1, αm−2, · · · , α1, α0).
Due to the polynomial representation, addition in F2m is computed using a
single bit-wise XOR operation. Notice that there is no carry propagation in
field addition.

4.3.2 Square root

Square root is also a cheap operation when using trinomials as irreducible poly-
nomial. Following the algorithm described in section 2.2.1, matrix M−1 can be
computed off-line because the irreducible polynomial is the same when comput-
ing the pairing. The matrix multiplication M−1A is very sparse, so just a couple
of additions are needed. For the irreducible trinomial f(x) = xm + xa + 1, the

equation 10 performs the computation of D =
∑
dix

im−1
i=0 , such that D2 = A

mod f(x) [30].

di =



a2i i < (a+ 1)/2

a2i + a2i−a (a+ 1)/2 ≤ i < (m+ 1)/2

a2i−a + a2i−m (m+ 1)/2 ≤ i < (m+ a)/2

a2i−m (m+ n)/2 ≤ i < m

(10)

For the square root module, hardware cost is deduced from equation 10, it
can be verified that an addition if required for (a+ 1)/2 ≥ i < (m+ a)/2. This
results in a total of (m− 1)/2 additions, namely XOR gates.

4.3.3 Squaring

As it is shown in equation 5, squaring consists in an expansion of the input vector
interleaving a ‘0’ between each bit, followed by a modular reduction. PLFSR are
used for this purpose. Figure 2 illustrate the design. For the squaring module,
the cost in area is indeed only the cost of the modular reduction.

3 2 1 0 S1 S0 R0R1R2R3 S1 S0 R0R1R2R3

CMD OP1OP2

015

Figure 1: Proposed Instruction Format.
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m bits

2m-1 bits

0 ...am-1 am-2 am-3 a0

0 0 0

MOD_RED(PLFSR)
m bits

a1

0
a2

Figure 2: Squaring operation over F2m .

4.3.4 Modular reduction

Modular reduction is required within both multiplication and squaring modules.
Representing f(x) as a bit-vector notice that fm = f0 = 1. Thus, xA(x)
becomes a shift to the left operation on A(x) leading to a (m + 1)-bit vector,
xA(x) = (am−1, am−2, · · · . , a1, a0, 0). The resulting bit vector is the same
with an extra 0 at the least significant position. If am−1 = 0, a reduction is not
necessary. However, if am−1 = 1, the resulting polynomial is reduced mod f(x),
following equation 11, which defines xA(x) mod f(x) considering fm = f0 = 1,
where ⊕ represents a bitwise XOR operation and � represents a bitwise AND
operation. This expression is well modeled by the Linear Feedback Shift Register
(LFSR) shown in figure 3. The combinatorial logic, CL-LFSR performs the
required arithmetic to compute xA(x) mod f(x). Therefore, d CL-LFSR blocks
could be connected in a cascade fashion to implement a parallel LFSR (PLFSR)
and to obtain xdA(x) mod f(x) in just one iteration. More details on the LFSR
and the PLFSR are described in [41].

xA(x) mod f(x) = (11)

(am−2 ⊕ [fm−1 � am−1],am−3 ⊕ [fm−2 � am−1], ..., a0 ⊕ [f1 � am−1], am−1)

For computing a modular reduction using PLFSR, consider a polynomial
g(x) of degree 2m−1, The polynomial g(x) can be written as g(x) = g2(x)xm+
g1(x). The polynomial g1(x) does not require modular reduction, but g2(x)xm

does. The complete modular reductiond is computed following the equation
g(x) mod f(x) = g2(x)xm mod f(x)+g1(x). The PLFSR cost is m XOR gates
as stated above but only computes the first part of the modular reduction;
additionally, m XOR gates are necessary to complete the operation. A total of
2m XOR gates are required for computing a modular reduction using PLFSR.

4.3.5 Multiplication

Multiplication was implemented using a serial-parallel approach of the field
multiplication Karatsuba-Ofman Algorithm (KOA) [7]. Inputs of sizem are split
twice using the KOA resulting in 9 partial operands of size m/4. These 9 partial
multiplications are computed serially by a fully-parallel KOA (fp-KOA) of m/4
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x·A(x) mod f(x)
Combinatorial logic for LFSR
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m-1+am-2x
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mA(x) ...m mm m
(CL-LFSR)2 (CL-LFSR)d
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Figure 3: Modular Reduction using Linear Feedback Shifts Registers.

A (m-bits)

B (m-bits)

Fully-
Parallel
Hybrid
KOA

m/4-bits

<< << <<

A    B (m-bits)

PLFSR
-bitsm

2

PLFSR
m-bits

Figure 4: Serial-parallel multiplier based on Karatsuba-Ofman algorithm with
modular reduction by Parallel Linear Feedback Registers.

bits. Finally, the 9 partial results are merged according to KOA to complete
the multiplication. Figure 4 shows the architecture for the F2m multiplication
used in this work. This multiplier requires 9 clock cycles for computing a field
multiplication. The output of the serial multiplier was designed to be registered,
so after the field multiplication is computed, the result remains available at the
module’s output.

Further improvements over the original Karatsuba-Ofman algorithm were
considered into the design of the serial multiplier. Firstly, the modular reduction
was incorporated into the KOA using the technique KOA-LFSR introduced
in [42]. The KOA-LFSR only affects the first recursive call of the original KOA,
for the successive calls it was implemented the improvement proposed by Fan et.
al. in [43] called overlap-free. The overlap-free technique split the inputs bits in
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odd indexes and even indexes instead of splitting in the most significant part and
less significant part, saving one level of logic in each recursive call consuming
the same hardware. Additionally, Zhou et. al. shown in [44] that for small
inputs size the schoolbook algorithm present better results in resources and
time than KOA. Based on that report, the recursive KOA calls were truncated
after s recursions and then the schoolbook algorithm was used for the smaller
multipliers. In this case, the truncation was implemented in the fully-parallel
KOA of m/4 bits.

Different to the serial multiplier proposed in [3], the integrates the modular
reduction computation inside the field multiplier as is explained in [42]. The
resource consumption and time processing of the multiplier module is improved.

The theoretical cost of the serial multiplier is divided into three parts: the
cost of the fully-parallel KOA (fp-KOA) module, the cost before the fp-KOA
module, and the cost after the fp-KOA module, see figure 4. To simplify this
analysis, only the special case of m being an even number is considered, that is
dm/2 e = m/2 .

Each input of the serial multiplier is first split using the KOA-LFSR strategy;
at this level inputs size is m bits and m/2 XOR gates are required by each input,
so first level needs m XOR gates. In the second split the overlap-free strategy
is used for three partial multiplications, at this level inputs size is m/2, so m/4
XOR gates are required by each input of each partial multiplication, then second
level needs 3m/2 XOR gates. Prior the fp-KOA module, the serial multiplier
requires 5m/2 XOR gates.

The output of the fp-KOA module is of size m/2 bits, those outputs are
merged to get 3 partial results of size m using the overlap-free technique. Each
merge require 3 additions with operands pfm/2 bits, requiring 9m/2 XOR gates.
The final merge has to be done using the KOA-LFSR technique. Two PLFSR
are required, one for m shifts and other for m/2 with a cost of 3m/2 XORs gates
for both PLFSR. Four more additions are required in the final merge, that is 4m
XOR gates are additionally require. The serial multiplier requires 10m XOR
gates after fp-KOA module. No extra hardware is necessary for the modular
reduction as this operation was integrated using PLFSRs.

Regarding the number of registers, each input requires nine register of size
m/4 to store the partial inputs. Partial results are momentarily stored in eight
registers of size m/2, the ninth partial result is taken directly form the output of
the fp-KOA module. Nine more register of size m/2 are used to store finally the
partial results keeping the result available at any time. A total of 13m registers
are needed for the serial multiplier.

Now lets analyze the hardware cost of the fp-KOA module which truncates
the recursion of KOA after s levels of recursion. A single recursion level of KOA
adds 4n− 3 XOR gates where n is the inputs size; for the next recursion level,
inputs are halved but three calls are invoked. The equation 12 expresses the
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amount of XOR gates required for s recursive calls of KOA.

S = (4n− 3)︸ ︷︷ ︸
1st level

+ 3
(

4
n

2
− 3
)

︸ ︷︷ ︸
2nd level

+ 9
(

4
n

4
− 3
)

︸ ︷︷ ︸
3th level

+ · · ·+ 3s−1
(

4
n

2s−1
− 3
)

︸ ︷︷ ︸
s-th level

=

s∑
i=1

3i−1
(

4
n

2i−1
− 3
)

(12)

After s recursive calls, the KOA algorithm is truncated and the schoolbook
algorithm is used. The schoolbook algorithm cost is quadratic, that is w2 AND
gates and (w − 1)2 XOR gates are required, where w is the input size of the
schoolbook algorithm [44]. After s recursive calls of KOA, w = n/2(s+1). Then,
considering that the actual input of the fph-KOA module is size m/4, the hard-
ware cost of the fp-KOA module is then expressed by equation 13.

S =

[
s∑
i=1

3i−1
( m

2i−1
− 3
)

+ 3
(m

4
− 1
)2]
·XOR+

3m2

8
·AND (13)

For the entire serial multiplier, the total amount of resources required is
given in table 2. Cost is divided in the number of XOR gates, AND gates and
registers.

Table 2: Theoretical cost of the serial KOA multiplier.

XORs ANDs REGs

Area

∑s
i=1 3i−1

(
m

2i−1 − 3
)

+

3
(
m
4 − 1

)2
+ 23m

2

(3m2)/8 13m

4.4 Cryptoprocessor datapath

Figure 5 shows the proposed datapath. It contains six bank registers F , G, H,
I, V , W . Only banks F , G, H and I can be used as source banks for arithmetic
operations. For the multiplication, one operand comes from bank F or H and
the other comes from bank G or I. Only banks V , W and G can be used as
destination banks for arithmetic operations. The MoveBank instruction is used
to copy the values from one bank to another but just certain movements are
supported: from V to F or H, and from W to G or I. There are two extra
registers, Fs and Gs, used as alternative inputs for multiplication. Additionally,
the register Gs is connected to the squaring module.

An 4-input addition is performed at the output of banks F and H, and
other one is placed at the output of banks G and I using a 4-input XOR each.
A 3-input multiplexer at the input of each addition input is used in order to
indicate which registers are being added and which not. Notice that banks F
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Figure 5: Proposed architecture for computing bilinear pairings over binary
fields.

and G also have two inputs, which means that there is a multiplexer at the
input for selecting which of the two inputs will be written. Some OR gates are
used to drive the right input to the arithmetic module. All arithmetic modules
compute their respective operation at the same time, a 4-input multiplexer is
used for selecting the right result. The extra hardware for computing A⊕ 1 is
placed in the path of the addition.

Different to the datapath presented in [3], in this new version the bank H
and I are configured to be source banks for arithmetic operations. With this
modification, the datapath reaches more flexibility in their operation.

4.4.1 Program control

Program control module is used to implement the instructions Jmp, For, Wait
and Jz. These instructions make use of a 12-bit constant contained in the
instruction itself. Inside this module there is the 12-bit Instruction Pointer
register (IP ) used to indicate the next instruction to be executed. A total of
4K instructions can be addressed. The “START” signal resets the IP register
to ‘0’. Normally the IP register increments its value every clock cycle. When a
control instructions is loaded, the next value of the IP register depends on the
instruction.

A generic implementation of the Miller’s algorithm requires a test over r,
the binary representation of the order of the points P and Q, see algorithm
1 of [23]. But so far the proposed pairing algorithms for binary fields do not
require it, the instruction Jz() is intended to cover that requirement if needed
by a pairing algorithm for binary fields. A register named R inside the program
control module is used for loading the input r with the “START” signal.
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4.5 Theoretical cost analysis

The theoretical cost in hardware of the complete cryptoprocessor is the addi-
tion of each arithmetical module cost, plus the extra hardware required for the
interconnection. In the following cost analysis, only is considered the usage of
trinomial as irreducible polynomial for defining F2m .

The addition at the output of banks F and G is performed by a 4-input XOR,
which in fact can be computed by three XOR gates of 2-inputs. Each addition
is of size m bits. In total 6m XOR gates are required for those additions. As
depicted in figure 5, four OR gates of m bits are used to drive correctly the
data. 4m OR gates are required in the cryptoprocessor datapath.

Without counting the cost of arithmetic modules, the most hardware usage
relays on a series of multiplexers. One multiplexer of 4 inputs is used to select
the output of the arithmetic modules. A single multiplexer of 4-inputs can be
implemented with three multiplexers of 2 inputs. Prior the additions, there are
eight multiplexers of 3 inputs, each one implemented with two multiplexers of 2
inputs. At the input of banks F and G there are eight multiplexers of 2 bits per
bank. Each multiplexer is of size m bits. The multiplexer for selecting. In total
there are 27m multiplexers of 2 bits. The amount of registers is very straight
forward. There 6 banks of 4 registers each, plus 2 extra registers (Fs and Gs),
each one of m bits. 26m registers are required in the cryptoprocessor datapath.

The hardware support for control instructions is performed using 12-bits
comparators, 12-bits multiplexers and 12-bits registers. The hardware cost and
time delay of this module is very small compared with the cost of the arithmetic
modules and the rest of the architecture. For these reasons the cost analysis
has been depreciated as do not represent a significant cost.

In table 3, it is summarized the total cost of the proposed cryptoprocessor.
Notice that most of the area computed theoretically is due to the multiplication
module. The other modules with more area consumption are the multiplex-
ers used in the datapath. Also notice that despite the datapath uses several
registers, the serial multiplication consumes a third part of the total registers.

4.6 Programmability

The instructions set along with the datapath allow a lot of flexibility for pairing
computing because of its programmability. Consider the algorithm depicted in
figure 1 and assume that registers F0 to F3 contain the values x1, y1, x2, y2 as
shown in figure 5. The addition G0 = F0 + F2 is computed by the instruction
Addition(G[0], F [0, 2]), whileW2 = G0+G1+G2+G3 is computed by the instruc-
tion Addition(W [0], F [0, 2, 3, 4]). Notice that when only one register is accessed
at the source bank and destination bank, the instruction Addition(D[], S[]) is
equivalent to just move one register to other.

Consider y1 + y2 + 1−β
2 of the line 2 in algorithm 1 where the result depends

on the value of β. When β = 1 the instruction Addition(G[0], F [1, 3]) is enough
for computing G0 = y1 + y2. When β = −1 the instruction Inc(G[0], F [1, 3]) is
required for computing G0 = y1 + y2 + 1.
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Table 3: Theoretical cost of the proposed cryptoprocessor.

Module XORs ANDs ORs MUXs REGs
Addition 6m - - - -

Multiplication

∑s
i=1 3i−1

(
m

2i−1 − 3
)

+ 3
(
m
4 − 1

)2
+ 23m

2

(3m2)/8 - - 13m

Squaring 2m - - - -
Square Root (m− 1)/2 - - - -

Datapath - - 4m 27m 26m

Total

∑s
i=1 3i−1

(
m

2i−1 − 3
)

+ 3
(
m
4 − 1

)2
+

(40m−1)
2

(3m2)/8 4m 27m 39m

Now consider the multiplication s · (x1 + x2 + γ) in line 5 of algorithm 1.
Both operands depend on γ and previous multiplication is required to compute
x1 =

√
x1.

1) Inc (G[0], F [0]): compute s = x1 + 1 and store it in G0

2) Addition(Fs, G[0]): move s to Fs
3) SquareRoot(G[0], F [0]): compute G0 =

√
x1

4) Inc(G[0], G[0]): compute G0 =
√
x1 + 1

5) Addition(G[1], F [2]): move x2 to G1
6) LoadMult(Fs,G[0, 1]): begin s · (√x1 + x2 + 1)

when γ = 0, consider the next sequence instead:

1) SquareRoot(G[0], F [0]): compute G0 =
√
x1

2) Addition(G[1], F [2]): move x2 to G1

3) LoadMult(F [0], G[0, 1]): begin s · (√x1 + x2)

Notice here that the program complexity is closely related with the amount
of operations and the data dependency. Also notice that other operations can
be computed while the multiplication is being executed. For this example in
line 5 of algorithm 1, y1 + y2 + (1 + γ) · x1 + δ can be computed in parallel with
the multiplication s · (√x1 + x2 + γ).

The programmability of the proposed architecture also brings support to
compute the multiplicative inverse operation. This operation is very expensive
for hardware implementation because it requires several operations in an itera-
tive loop. Algorithms like the Binary Euclidean Algorithm require comparators
and shifters. However, the Itoh-Tsujii Algorithm computes a multiplicative in-
verse operation using squarings and multiplications [30], so no extra hardware
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is required for computing this algorithm in the proposed architecture.
Arithmetic in the extended field is easily supported by the proposed crypto-

processor independently of the tower field. Consider raising an element to the
q-th power. Equation 8 computes this operation for the tower field presented
in [23]. Nevertheless, in [28] a different tower field is used, so raising an element
to the q-th power is computed by equation 14. Both equations, 8 and 14 consist
in computing four coefficients over F2m . Implementing this operation with the
proposed architecture consists in four instructions Additions(D[], S[]), the only
consideration is that all coefficients of the element G be in the same bank.

Gq = (g0 + g2) + (g2)x+ (g1 + g3)x2 + g3x
4 (14)

5 Experimental results

5.1 Validation estrategy

The proposed architecture was implemented using VHDL as a description lan-
guage. For design validation of arithmetical modules, C/C++ routines based
on the library Miracl1 were used to generate 1000 random test data vectors
for each module. A test bench was written to read the test vector from a file,
to instantiate a particular module and to simulate its behavior for all the test
vector generated. Xilinx ISim 13.2 was used as simulation environment. For
all experiments, the underlying finite field was F21223 defined by the trinomial
f(x) = x1223 + x255 + 1, in order to reach a security level of 128-bits [27].

The full cryptoprocessor was validated using a similar strategy. Two versions
of the ηT pairing were used for testing the correct functionality of the datap-
ath. First version named Barreto-Beuchat uses the Miller’s algorithm presented
in [23] and the final exponentiation introduced in [26]. Second version named
Ronan uses the version of the ηT algorithm introduced in [28]. Finally, in order
to validate the cryptoprocessor under some Pairing-based Cryptography appli-
cation, the Identity-based Key Encapsulation Mechanism (ID-KEM) introduced
in [45] was implemented in software using the C/C++ Miracl library. ID-KEM
scheme consists in four algorithms which in conjunction have the purpose to es-
tablish a shared key among two parties, starting from the receiver’s public key.
In this case, the receiver’s public key is an identifier related to the receiver’s
identity. ID-KEM requires the computation of two bilinear pairings, one extra
pairing can be computed in order to ensures that the receiver’s private key is
well generated. A total of 35 different identifiers were tested, resulting in a total
of 105 bilinear pairing computations. This validation was performed for the two
versions of the ηT pairing algorithm presented previously.

1Copyright 2012 CertiVox IOM Ltd. Online available:
https://certivox.com/solutions/miracl-crypto-sdk/
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5.2 Implementation results

The design was implemented in FPGA devices, targeting both Xilinx Virtex-6
(xc6vlx130t) and Xilinx Virtex-4 (xc4vlx200) devices. FPGAs was chosen with
comparative purposes, the design is not specific for FPGA devices. Even the
Virtex-4 is old device, it was chosen for comparative purposes.

Program memory was implemented with Xilinx’s Block Memory Generator
LogiCORE. Xilinx ISE 13.2 was used as synthesis tool using flags by default
except for flags -iobuf FALSE and -register balancing YES. The -iobuf states
if the synthesis tool attempts to match the inputs and outputs of the design
with real pins on the target devices. The flag -register balancing moves regis-
ters through combinatorial logic to evenly distribute the paths delay between
registers, increasing the maximum clock frequency.

5.2.1 Serial multiplier

As mentioned in section 4.3, for implementing the fully-parallel hybrid KOA
module inside the serial multiplier module, the KOA algorithm was truncated
after s recursive calls. In [44] it was shown experimentally that the optimal
value of s depends on the implementation technology. In this sense, the serial
multiplier was synthesized using several values of s.

Table 4: Implementation results for serial multiplier using different values of s.

s LUTs FFs Minimum period Latency A · T
1 40,969 18,244 2.817 ns 25.353 ns 1.04
2 34,734 17,306 2.647 ns 23.823 ns 0.83
3 31,262 17,344 2.882 ns 25.938 ns 0.81
4 28,518 17,507 3.144 ns 28.296 ns 0.80
5 28,990 15,904 7.902 ns 35.559 ns 1.03
6 31,720 15,904 9.325 ns 83.925 ns 2.66

Since the proposed design is based on the serial multiplier reported by Ghosh
et. al. in [7], a results comparison against that work is performed. In table 5
the best implementation achieved for the serial multiplier is compared against
[7]. Notice that the proposed serial multiplier includes the modular reduction
inside the multiplier, different to the multiplier reported in [7] which additionally
requires a modular reduction module.

Table 5: Comparative of F2m serial multipliers.

Design LUTs
Minimum Clock

Latency A · T Requires
period cycles reduction?

This 28,518 3.144 ns 9 28.296 ns 0.80 NO
[7] 30,148 4 ns 10 40ns 1.21 YES
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5.2.2 Cryptoprocessor

Table 6 shows the implementation results of the synthesis process. The required
area is 13,967 slices for a Virtex 6 device. From this area, about 51.04% is used
by the field multiplier; being this, as expected, the biggest individual module
from all arithmetic modules. Nevertheless, the multiplexers inside each bank
register consume a great amount of resources, a total of 35.02%. The remaining
13.94% of the area is used for the rest of the arithmetic modules and the program
control unit. Notice how the area is closely related with the technology, for a
Virtex 4 a total of 45,917 slices were used. This is due to one Virtex 6 slice
contains 4 Look-Up Table (LUT) of 6 bits input, in contrast one Virtex 4 slice
contains only 2 LUTs of 4 bits inputs.

The maximum clock frequency depends on the longest path delay among two
registers, for the proposed architecture this path is inside the multiplier with
11 levels of logic. The maximum frequency that the architecture can operate
with is 183.8 MHz for a Virtex 6. In the same way, time is closely related with
the technology, Virtex 6 is a 40 nm device able to work with a clock frequency
up to 1,600 MHz, while Virtex 4 is 90nm technology able to work with a clock
frequency up to 72.31 MHz.

Results reported in this work outperforms the results previously reported
in [3]. With the improvements done, the amount of hardware resources in about
15% in the case of a Virtex 6. While for a Virtex 4, resource consumption is
reduced in about 10%. The reason of this reduction relies mainly in the new
organization of the working registers, which allows the synthesis tool to find a
more compact implementation. Maximum frequency in any case remains almost
the same.

The amount of memory required by experiment Ronan is almost the double
than the required by Barreto-Beuchat, this is because the operations in Ronan
in general are more dependents so more instructions MoveBank(D[], S[]) were
required. Additionally, the final exponentiation in Ronan requires a total of five
multiplications over Fqk , while final exponentiation in Barreto-Beuchat only
performs one multiplication over Fqk , so less code was needed.

Table 6: Implementation results of the proposed architecture for two different
version of ηT algorithm.

ηT Device
Area Program Clock Maximum

Latency
version

(Slices) memory cycles frequency
(us)

(kbits) (×103) (MHz)
Barreto- Virtex 6 13,967 5.3 51.5 183.8 280
Beuchat Virtex 4 45,917 5.3 51.5 72.31 712

Ronan
Virtex 6 13,967 10.3 57.6 183.7 313
Virtex 4 45,917 10.3 57.6 72.31 797

A comparative with state-of-art in software implementations for computing
bilinear pairings is presented in table 7. Software implementations are in fact
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flexible implementations that uses general purposes microprocessors. This com-
parative includes the fastest implementation of pairing algorithms in GPUs, and
a specialized software library for pairing computations. This comparison only
considers the processing time. In all cases the proposed cryptoprocessor com-
putes the pairing algorithm faster. Although general purposes microprocessors
or GPUs are very powerful technologies, they are limited to their own general
purpose instruction set and fixed size operands. In this way, the proposed cryp-
toprocessor may be used as a specialized co-processor for pairing computations,
leaving the rest computations of any Pairing-based protocol to be executed by
the general purpose microprocessor.

Table 7: Comparative of the proposed architecture with software implementa-
tions.

Ref. Device Field
Maximum

Latency
frequency

(us)
(MHz)

Barreto-Beuchat Virtex 6 F2m 183.8 280
Ronan Virtex 6 F2m 183.8 313

[32] Intel Core i7 F2m 2,000 517
[32] Intel Core i7 F2m 2,000 3,228
[6] NVidia GTX 480 F3m 1,401 3,010
[5] MICAz F3m 7.383 2.45×106

A comparison against state-of-art custom implementations of the ηT pairing
for binary fields is presented in table 8. All works reported in this table reach a
security level of 128 bits except for [9], which achieve a security level of 105 bits.
For this comparison, only the implementation results of the Barreto-Beuchat
version of the ηT pairing is considered. It is noticed that custom implementa-
tions are faster than the proposed architecture, which is expected because cus-
tom implementations make use of parallelization and other techniques in order
to achieve faster results. A comparison with [9] make this statement more evi-
dent, but the cost of faster architectures is the use of more hardware resources,
which is also evident in this comparison. It can be observed that the area con-
sumed by the proposed cryptoprocessor is very similar to works [7] and [8]. The
A · T product reached in this work is 3.91, which is just 1.35x bigger than [7]
and 2.3x bigger than [8]. Compared to [9] the A ·T product is 2.77x bigger, but
notice that [9] only reaches a security level of 105 bits. These results show that
custom architectures are slightly faster/smaller than the proposed design, but
with all the flexibility achieved with the proposed architecture it is a fair cost.

Table 9 compares the proposed cryptoprocessor against works in the litera-
ture that exhibit some degree of flexibility. Notice that in the literature it is no
reported a flexible solution for binary fields. In table 9, the results compared
are from the Virtex 4 as works [35, 38] used the same device. For the case of
work [40], authors implement their architecture in ASIC using a 30 nm standard
cell library. Even the work reported in [38] reports a smaller area and faster
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Table 8: Comparative of the proposed architecture against custom architectures
for binary fields.

Ref. Device
Area

Maximum Clock
Latency

A · T

(Slices)
frequency cycles

(us)
(Slices

(MHz) (×103) ×Seg.)
Barreto- Virtex 6 13,967 183.8 51.5 280 3.91
Beuchat Virtex 4 45,917 72.31 51.5 712 32.69

[7] Virtex 6 15,167 250 47.6 190 2.88
[8] Virtex 6 16,403 267 27.3 102 1.7
[9]* Virtex 4 78,874 130 2.4 18.8 1.41

*That work targeted a security level of 105 bits.

computation time, that work only achieve a security level of 66 bits whereas
the proposed architecture achieves a security level of 128 bits. Comparing area
consumption and processing time with the work reported in [35], the proposed
cryptoprocessor outperforms that work in both parameters. Comparison with
the ASIP reported in [40] is harder because the target devices of this thesis is a
FPGA, not an ASIC; anyway it can be notice that the proposed architecture is
able to execute a pairing algorithm 20x faster.

Table 9: Comparative of the proposed architecture against works in the litera-
ture with some degree of flexibility.

Ref. Field
Area

Maximum Clock
Latency

A · T

(Slices)
frequency cycles

(us)
(Slices

(MHz) (×103) ×Seg.)
Barreto- F2m 45,917 72.31 51.5 712 32.69
Beuchat
Ronan F2m 45,917 72.31 57.6 797 36.59
[38]* F3m 1,851 203 27.8 137 0.25
[35] Fp 52,000 50 1,729 34,600 1,799

[40]** Fp 97kGates 338 N/R 15,800 N/A

*That work targeted a security level of 66 bits.
**That work targeted an ASIC using a 30 nm standard cell library.

From the results obtained, the proposed cryptoprocessor is a very feasible
solution for bilinear pairing computation over binary fields. The design of a
programmable hardware architecture allows to compute bilinear pairings inde-
pendently of the elliptic curve, tower field, distortion map and the version of
the pairing algorithm required by the application.
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6 Conclusion and future work

This work discussed the design and evaluation of a flexible cryptoprocessor able
to manage several parameters for computing bilinear pairings, as the elliptic
curve, the tower field, the distortion map, or the version of the pairing algo-
rithm. These parammeters do not interferer with the security of cryptographic
applications but affect the performance.

The design follows a modular approach so it can be constructed to support
bilinear pairings defined on other fields as F3m . The results show that the pro-
posed design requires a similar amount of resources compared to related works.
In addition, the processing time is shorter than other flexible architectures, in-
clusive the proposed architecture is faster that software implementations. Also,
the proposed architecture is very competitive in area and processing time against
custom architectures of the state-of-art. In conclusion, the proposed design pre-
serves the flexibility of the software while conserves the acceleration in pairing
computations of custom architectures. The compact instruction format allows
smaller programs than related works, therefore using less program memory.

A thorough optimization process can be done to improve the maximum clock
frequency, being the pipelining technique a first approach. As this pairing cryp-
toprocessor was originally conceived within a whole system, the control unit
can be replaced by a general soft-processor like a PicoBlaze and a communica-
tion interface to send/receive the operands will be implemented in a HW/SW
codesing; for this last purpose an initial idea is to use a shared memory approach
so that a master processor uses this memory to transmit data and also to load
the desired program.
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