BISON
Instantiating the Whitened

Swap-Or-Not Construction
(Full Version)

Anne Canteaut!, Virginie Lallemand?, Gregor Leander?,
Patrick Neumann? and Friedrich Wiemer?

! Inria, Paris, France
anne.canteaut@inria.fr
2 Horst Gortz Institute for IT-Security, Ruhr University Bochum, Germany
firstname.lastname@rub.de

Abstract. We give the first practical instance — B1soN — of the Whitened Swap-Or-Not
construction. After clarifying inherent limitations of the construction, we point out
that this way of building block ciphers allows easy and very strong arguments against
differential attacks.

Keywords: Whitened Swap-Or-Not - Instantiating Provable Security - Block Cipher Design
- Differential Cryptanalysis

1 Introduction

Block ciphers are among the most important cryptographic primitives as they are at the
core responsible for a large fraction of all our data that is encrypted. Depending on the
mode of operation (or used construction), a block cipher can be turned into an encryption
function, a hash-function, a message authentication code or an authenticated encryption
function.

Due to their importance, it is not surprising that block ciphers are also among the best
understood primitives. In particular the Advanced Encryption Standard (AES) [Fip] has
been scrutinized by cryptanalysts ever since its development in 1998 [DR98] without any
significant security threat discovered for the full cipher (see e. g. [BK09; Bir+09; Der+13;
Dun+10; Fer+01; GMO0O; Gra+16; Gra+17; Rgn+17]).

The overall structure of AES, being built on several (round)-permutations interleaved
with a (binary) addition of round keys is often referred to as key-alternating cipher and is
depicted in Figure 1.

ko ky

kr—l kr
M ¥ ¥ ¥

Figure 1: Key-alternating construction for r rounds, using unkeyed round permutations R,
to R,. In practical instantiations, the round keys k; are typically derived from a master key
by some key schedule.

© International Association for Cryptologic Research (IACR) 2019. This article is the full version of the final
version [Can+19] submitted by the authors to the IACR and to Springer-Verlag on February 28, 2019. The version
published by Springer-Verlag is available at DOI: 10.1007/978-3-030-17659-4_20.

mailto:anne.canteaut@inria.fr,virginie.lallemand@rub.de,gregor.leander@rub.de,friedrich.wiemer@rub.de
mailto:anne.canteaut@inria.fr,virginie.lallemand@rub.de,gregor.leander@rub.de,friedrich.wiemer@rub.de
https://doi.org/10.1007/978-3-030-17659-4_20

2 BISON - Instantiating the Whitened Swap-Or-Not Construction

The first cipher following this approach was, to the best of our knowledge, the cipher
MMB [Dae+93], while the name key-alternating cipher first appears in [DRO1] and in the
book describing the design of the AES [DR02]. Nowadays many secure ciphers follow this
construction.

Interestingly, besides its overwhelming use in practice and the intense cryptanalytic
efforts spent to understand its practical security, the generic (or idealized) security of key-
alternating ciphers has not been investigated until 2012. Here, generic or idealized security
refers to the setting where the round functions R; are modeled as random permutations.
An (computational unbounded) attacker is given access to those round functions via oracle
queries and additional oracle access to either the block cipher or a random permutation. The
goal of the attacker is to tell apart those two cases. As any attack in this setting is obviously
independent of any particular structure of the round function, those attacks are generic
for all key-alternating ciphers. In this setting, the construction behind key-alternating
ciphers is referred to as the iterated Even-Mansour construction. Indeed, the Even-Mansour
cipher [EM97] can be seen as a one-round version of the key-alternating cipher where the
round function is a random permutation.

The first result on the iterated Even-Mansour construction (basically focusing on the
two-round version) was given in [Bog+12]. Since then, quite a lot of follow-up papers,
e.g. [And+13; GL15; HT16; L.S15], managed to improve and generalize this initial result
significantly. In particular, [CS14] managed to give a tight security bound for any number
of rounds. Informally, for breaking the r-round Even-Mansour construction, any attacker
needs to make roughly 27" oracle queries.

While this bound can be proven tight for the iterated Even-Mansour construction, it is
unsatisfactory for two reasons. First, one might hope to get better security bounds with
different constructions and second one might hope to lower the requirement of relying on r
random permutations.

Motivated by this theoretical defect and the importance of encrypting small domains
with full security (see e. g. [MY17]), researchers started to investigate alternative ways to
construct block ciphers with the highest possible security level under minimal assumptions
in ideal models. The most interesting result along those lines is the construction by Tes-
saro [Tes15b]. His construction is based on the Swap-or-Not construction by [Hoa+12],
which was designed for the setting where the component functions are secret. Instead
of being based on random permutations, this construction requires only a set of random
(Boolean) functions. Tessaro’s construction, coined Whitened Swap-Or-Not (WSN for short),
requires only two public random (Boolean) functions f; with n-bit input, and can be proven
to achieve full security, see Section 2 for more details.

However, and this is the main motivation for our work, no instance of this construction
is known. This situation is in sharp contrast to the case of the iterated Even-Mansour
construction, where many secure instances are known for a long time already, as discussed
above.

Without such a concrete instance, the framework of [Tes15b] remains of no avail. As
soon as one wants to use the framework in any way, one fundamentally has to instantiate
the Boolean functions modeled as ideal functionalities by efficiently computable functions.
Clearly, the above mentioned bound in the ideal model does not say anything about any
concrete instance. Tessaro phrases this situation as follows:

Heuristically, however, one hopes for even more: Namely, that under a careful
implementation of the underlying component, the construction retains the
promised security level. [Tes15b]

There has actually been one instance of the previous construction [Hoa+ 12], but this
has been broken almost instantaneously and completely, as parts of the encryption function
were actually linear, see [Vaul2]. This failure to securely instantiate the construction points
to an important hurdle. Namely, proving the generic bounds and analyzing the security of

A. Canteaut, V. Lallemand, G. Leander, P. Neumann, and F. Wiemer 3

an instance are technically very different tasks. The security of any block cipher is, with the
current state of knowledge, always the security against known attacks. In particular, when
designing any concrete block cipher, one has to argue why linear and differential attacks
do not threaten the construction.

Our Contribution

Consequently, in this paper we investigate the important, but so far overlooked, aspect
of instantiating the WSN construction with a practical secure instance. Practical secure
meaning, just like in the case of AES, that the block cipher resists all known attacks. We
denote this instance as BisoN (for Bent whitened Swap Or Not). Our insights presented
here are twofold.

First, we derive some inherent restrictions on the choice of the round function f;. In
a nutshell, we show that f; has to be rather strong, in the sense that its output bit has to
basically depend on all input bits. Moreover, we show that using less than n rounds will
always result in an insecure construction. Those, from a cryptanalytic perspective rather
obvious, results are presented in Section 3. Again, but from a different angle, this situation
is in sharp contrast to key-alternating ciphers. In the case of key-alternating ciphers, even
with a rather small number of rounds (e. g. ten in the case of AES-128) and rather weak
round functions (in case of the AES round function any output bit depends on 32 input
bits only and the whole round function decomposes into four parallel functions on 32 bits
each) we get ciphers that provide, to the best of our knowledge today and after a significant
amount of cryptanalysis, full security.

Second, despite those restrictions of the WSN construction, that have significant impact
on the performance of any instance, there are very positive aspects of the WSN construction
as well. In Section 4, we first define a family of WSN instances which fulfill our initial
restrictions.

As we will show in detail, this allows to argue very convincingly that our instance is
secure against differential attacks. Indeed, under standard assumptions, we can show that
the probability of any (non-trivial) differential is upper bounded by 27! where n is the block
size, a value that is close to the ideal case. This significantly improves upon what is the state
of the art for key-alternating ciphers. Deriving useful bounds on differentials is notoriously
hard and normally one therefore has to restrict to bounding the probability of differential
characteristics only. Our results for differential cryptanalysis can be of independent interest in
the analysis of maximally unbalanced Feistel networks or nonlinear feedback shift registers.

We specify our concrete instance as a family of block ciphers for varying input length in
Section 5. In our instance, we attach importance to simplicity and mathematical clarity. It is
making use of bent functions, i. e. maximally non-linear Boolean functions, for instantiating
f and linear feedback shift registers (LFsrs) for generating the round keys. Another
advantage of BIsoN is that it defines a whole family of block ciphers, one for any odd block
size. In particular it allows the straightforward definition of small scale variants to be used
for experiments.

Finally we discuss various other attacks and argue why they do not pose a threat for
BISON in Section 6. Particularly the discussion on algebraic attacks might be of independent
interest. For this we analyse the growth of the algebraic degree over the rounds. In contrast
to what we intuitively expect — an exponential growth (until a certain threshold) as in
the case for SPNs [Bou+11] — the degree of the WSN construction grows linearly in the
degree of the round function f;. This result can also be applied in the analysis of maximally
unbalanced Feistel networks or nonlinear feedback shift registers.

From an implementation point of view BisoNs odd block length is a major drawback. We
thus propose an alternative instance, called wiseNT, that solves this problem by supporting
any even block length (= 6 bit). It inherits almost the same security properties.

4 BISON — Instantiating the Whitened Swap-Or-Not Construction

Related Work

The first cipher, a Feistel structure, that allowed similarly strong arguments against differ-
ential attacks was presented by Nyberg and Knudsen [NK95], see also [Nyb12] for a nice
survey on the topic. This cipher was named CRADIC, as Cipher Resistant Against DIfferential
Cryptanalysis but is often simply referenced as the KN cipher. However, the cipher has been
broken quickly afterwards, with the invention of interpolation attacks [JK97]. Another,
technically very different approach to get strong results on resistance against attacks we
would like to mention is the decorrelation theory [Vau98]. Interestingly, both previous
approaches rely rather on one strong component, i. e. round function, to ensure security,
while the WSN approach, and in particular Bi1soN, gains its resistance against differential
attacks step by step.

Regarding the analysis of differentials, extensive efforts have been expended to evaluate
the MEDP/MELP of SPN ciphers, and in particular of the AES. Some remarkable results were
published by [Par+03] and then subsequently improved by [KS07] with a sophisticated
pruning algorithm. Interestingly, further work by [DR06] and later by [CR15] revealed
that such bounds are not invariant under affine transformations — an equivalence notion
often exploited for classification of S-boxes when studying their strength against differential
cryptanalysis. All these works stress out how difficult it is to evaluate the MEDP/MELP of
SPNs, even for a small number of rounds. On the contrary, and as we are going to elaborate
in the remaining of this paper, computing the MEDP of BisoN is rather straightforward and
independent of the exact details of the components. This can be compared to the wide
trail strategy that, making use of the branch number and the superbox argument, allows
bounding the probability of any differential characteristic for a large class of SPNs. Our
arguments allow to bound the differential probability for a large class of WSN instances.

2 Preliminaries

We briefly recall the Whitened Swap-or-Not construction, recapitulate properties of Boolean
functions and shortly cover differential and linear cryptanalysis. We denote by F, the finite
field with two elements and by F/; the n-dimensional vector space over I, i. e. the set of all
n-bit vectors with a bitwise xor as the addition.

2.1 Whitened Swap-or-Not
The WSN is defined as follows. Given two round keys k;, w;, the ith round R, ,, computes
Ry w, : Fy > T
Ry, w,(x) = x + fyiiy(w; + max {x, x + k;}) - k;

where fq; : F;, — F, are modeled as two ideal random functions, the max function returns
the lexicographic biggest value in the input set, and + denotes the addition in F, (the
bitwise xor). The index b(i) equals zero for the first half of the rounds and one for the
second half (see Figure 2 for a graphical overview of the encryption process).

In the remainder of the paper, we denote by E; (x) the application of r rounds of the
construction to the input x with round keys k; and w; derived from the master key (k, w).
Every round is involutory, thus for decryption one only has to reverse the order of the round
keys.

Note that the usage of the maximum function is not decisive but that it can be replaced
by any function &, that returns a unique representative of the set {x, x + k}, see [Tes15b].
In other words it can be replaced by any function such that &, (x) = ®,(y) if and only if
y € {x,x+k}.

The main result given by Tessaro on the security of the WSN is the following:

A. Canteaut, V. Lallemand, G. Leander, P. Neumann, and F. Wiemer 5

Figure 2: Schematic view of the WSN construction.

Proposition 1 (Security of the WSN (Informal) [Tes15b]). The WSN construction with O(n)
rounds is (2"~CUogm om0 secyre.

Thus, any adversary trying to distinguish the WSN construction from a random per-
mutation and making at most 2"~°0°8™ queries to the block cipher and 2"~ queries to
the underlying function has negligible advantage. Here, the round keys are modeled as
independent and uniformly distributed random variables.

2.2 Boolean Functions
A Boolean function is defined as a function f mapping n bits to one bit. Any Boolean function
f:F, > T,

can be uniquely expressed by its algebraic normal form (ANF), i.e. as a (reduced) multi-
variate polynomial with n variables x, ..., x,_;. For u € F} we denote

n—1
x"= |x"
i=0
The ANF of f can be expressed as
Fa)= D7 A
u€ry;

for suitable choices of A, € F,. The degree of f, denoted by deg(f) is defined as the maximal
weight of a monomial present in the ANF of f. That is

deg(f) = max {wt(u) ‘ u € Fy such that A, # O}.

In the context of symmetric cryptography, the differential and linear behavior of a
Boolean function play an important role.

The derivative of a function f in direction a is defined as A,(f)(x) := f(x) + f (x + a).
Informally, studying the behavior of this derivative is at the core of differential cryptanalysis.
If we generalize to the derivative of a vectorial Boolean function F : F;, — F;, we can
additionally specify an output difference . The differential distribution table (DDT) captures

the distribution of all possible derivatives; its entries are

A (F)(x) =B}

where we leave out the subscript, if it is clear from the context. Note that a is usually
referred to as the input difference and f as the output difference.

In a similar way, we can approach the linear behavior of a Boolean function, that is its
similarity to any linear function. The Fourier coefficient of a function f : F; — F,, which is

defined as R
flay= 3, (=) ®,

n
x€F,

po1s[a, B]:=|{x € F}

>

6 BISON - Instantiating the Whitened Swap-Or-Not Construction

is a very useful way to measure this similarity. Here, the notation {a, b) denotes the inner
product, defined as (a,b) := >, a;b;. Recall that any affine Boolean function can be
written as x — (a,x) + ¢ for some fixed a € F, and a constant ¢ € F,. In particular,
it follows that any such affine function has one Fourier coefficient equal to £2". More
generally, the nonlinearity of f, defined as NL(f) := 2" —max,, |f (a)|, measures the minimal
Hamming-distance of f to the set of all affine functions.

Analogously to the ppr, for a vectorial Boolean function F : F, — F7, we define

Fla,p)= D (~1)l*x+PFe)

x€F)
and the linear approximation table (LAT) contains the Fourier coefficients

LATg[a, B] = F(a, B).

Again we leave out the subscript, if it is clear from the context. Here « is usually referred
to as the input mask and 8 as the output mask. Another representation that is sometimes
preferred is the correlation matrix that in a similar way contains the correlation values for
all possible linear approximations, see [Dae+95]. The correlation values are simply scaled
versions of the Fourier coefficients, i. e.

COI'F((X,/:}) _ 1+f(a:ﬁ)
2) on+l

The advantage of the correlation matrix notation is that the correlation matrix of a compo-
sition of functions is nothing but the product of the corresponding matrices. For the linear
approximation table, additional scaling is required.

Finally, the autocorrelation of a Boolean function f plays a role in the analysis of BISON.
The autocorrelation in point a is defined as

Af(a) = A/a\(f)(o) = Z (_1)f(X)+f(x+a))

n
x€F;

Pr[{a,x) + (B, F(x)) = 0] = % +

It can be seen as a measure of the balancedness of f’s derivatives. The maximum over all
non-zero absolute autocorrelation points is called absolute indicator:

M(f) = max {.Af(a)|.

acF\{0}

2.2.1 Bent Functions.

As they will play an important role in our design of Bison, we recall the basic facts of bent
functions. Boolean functions on an even number n of input bits that achieve the highest
possible nonlinearity of 2" — 22 are called bent. Bent functions have been introduced by
Rothaus [Rot76] and studied ever since, see also [Car07, Section 8.6]. Even so bent functions
achieve the highest possible nonlinearity, their direct use in symmetric cryptography is so
far very limited. This is mainly due to the fact that bent functions are not balanced, i. e. the
distribution of zeros and ones is (slightly) biased.

Using Parseval’s equality, it is easy to see that a function is bent if and only if all its Fourier
coefficients are £27. Moreover, an alternative classification that will be of importance for
BISON, is that a function is bent if and only if all (non-trivial) derivatives A, (f) are balanced
Boolean functions [MS90].

While there are many different primary and secondary constructions’ of bent functions
known, for simplicity and for the sake of ease of implementation, we decided to focus on
the simplest known bent functions which we recall next, see also [Car07, Section 6.2].

Iprimary constructions give bent functions from scratch, while secondary constructions build new bent functions
from previously defined ones.

A. Canteaut, V. Lallemand, G. Leander, P. Neumann, and F. Wiemer 7

Lemma 1 ([Dil72]). Let n = 2m be an even integer. The function
fiFy xF) > T,
fle,y)={x,y)

is a quadratic bent function. Moreover, any quadratic bent function is affine equivalent to f.

2.3 Differential and Linear Cryptanalysis

The two most important attacks on symmetric primitives are differential and linear crypt-
analysis, respectively developed by Biham and Shamir [BS91] and by Matsui [Mat95]
for the analysis of the Data Encryption Standard. The general idea for both is to find a
non-random characteristic in the differential, resp. linear, behavior of the scheme under
inspection. Such a property can then be used as a distinguisher between the cipher and a
random permutation and in many cases leads to key-recovery attacks.

It is inherently hard to compute these properties for the whole function, thus one
typically exploits the special structure of the cipher. For round-based block ciphers one
usually makes use of linear and differential characteristics that specify not only the input
and output masks (resp. differences) but also all intermediate masks after the single rounds.

In the case of differential cryptanalysis, an r-round characteristic § is defined by (r + 1)
differences

5 =(80,...,5,) €FYI",
For so-called Markov ciphers and assuming the independence of round keys, we can compute
the probability of a characteristic averaged over all round-key sequences:

r—1 r—1

EP(8) =] [PrlF(x)+F(x+8)=6.11=] |

i=0 i=0

DDTE[6;,8;41]
2n

>

where the encryption iterates the round function F for r rounds. Moreover we usually
assume the hypothesis of stochastic equivalence introduced by Lai et al. [Lai+91], stating
that the actual probability for any fixed round key equals the average.

In contrast to the normal characteristic that defines the exact differences before and after
each round, a differential takes every possible intermediate differences into account and
fixes only the overall input and output differences (which are the two values an attacker
can typically control).

However, while bounding the average probability of a differential characteristic is
easily possible for many ciphers (using in particular the wide-trail strategy introduced
in [Dae95]), bounding the average probability of a differential, which is denoted as the
expected differential probability (EDP), is not. Nevertheless, some effort was spent to prove
bounds on the maximum EDP (MEDP) for two rounds of some key-alternating ciphers [CR15;
DRO2; Hon+01; Par+03].

Similarly, for linear cryptanalysis, an r-round characteristic (also called trail or path)
for a round function F is defined by (r + 1) masks

6 = (6p,...,6,) eFY D"

and its correlation is defined as

r—1 r—1 &
F(6;,0:41)
corp(0) == | |C0rF(9i;6i+l) = | | TH
i=0 i=0

and it can be shown that the correlation of a composition can be computed as the sum over
the trail correlations. More precisely,

corg (0,)=, cors(6), e

0
fo=a,6r=P

8 BISON - Instantiating the Whitened Swap-Or-Not Construction

where the encryption E| iterates the round function F for r rounds.

This is referred to as the linear hull (see [Nyb95]). While not visible in order to simplify
notation, the terms in Eq. (1) are actually key dependent and thus for some keys they
either could cancel out or amplify the overall correlation. For more background, we refer
to e.g. [BN16] and [Kra+17]. For a key-alternating cipher with independent round keys,
the average over all round-key sequences of the correlation cory (a, 8) is zero for any pair
of nonzero masks (a,) (see e.g. [DR0O2, Section 7.9]). Then, the most relevant parameter
of the distribution is its variance, which corresponds to the average square correlation, and
is called the expected linear potential. Again, bounding the ELP is out of reach for virtually
any practical cipher, while for bounding the correlation of a single trail, one can again use
the wide-trail strategy mentioned above. Upper bounds for the MELP of two rounds of AES
are also given in [CR15; Hon+01; Par+03].

Finally we would like to note that the round keys in an actual block cipher instance
are basically never independent and identically distributed over the full key space, but
instead derived from a key schedule, rendering the above assumption plain wrong. While
the influence of key schedules is a crucially understudied topic and for specific instances
strange effects can occur, see [Abd+12; Kra+17], the above assumption are seen as valid
heuristics for most block ciphers.

3 Inherent Restrictions

In this section we point out two inherent restrictions on any practical secure instance, i. e.
generic for the WSN construction. Those restrictions result in general conditions on both
the minimal number of rounds to be used and general properties of the round functions
f()- In particular, those insights are taken into account for BisoN. While these restrictions
are rather obvious from a cryptanalytic point of view, they have a severe impact on the
performance of any concrete instance. We discuss performance in more detail in Section 7.

3.1 Number of Rounds

As in every round of the cipher, we simply add (or not) the current round key k;, the cipher-
text can always be expressed as the addition of the plaintext and a (message dependent)
linear combination of all round keys k;. The simple but important observation to be made
here is that, as long as the round keys do not span the full space, the block cipher is easily
attackable.

Phrased in terms of linear cryptanalysis we start with the following lemma.

Lemma 2. For any number of rounds r < n there exists an element u € F; \ {0} such that
E] (uu)=2",
that is the equation
(u,x) = (u, B, (x))
holds for all x € F.
Proof. Let kq,...,k, be the round keys derived from k and denote by
U = span {ky,. ..,kr}l
the dual space of the space spanned by the round keys, i. e.

YueU,V1<i<ritholds that (u,k;) =0.

A. Canteaut, V. Lallemand, G. Leander, P. Neumann, and F. Wiemer 9

As r < n by assumption, the dimension of span {k;, ..., k,} is smaller than n and thus U # {0}.
Therefore, U contains a non-zero element

uespanik,,...,k}*

and it holds that
(B, (0)) = (u,x + Y Aky) = (,x) + {u, > Aky) = (u,x). 2
i=1 i=1

€.

Even more importantly, this observation leads directly to a known plaintext attack with
very low data-complexity. Given a set of t plaintext/ciphertext (p;,c;) pairs, an attacker
simply computes

V:span{pi+ci|1<i<t}§span{kj|1<j<r}.

Given t > r slightly more pairs than rounds, and assuming that p; +c; is uniformly distributed
in span {kj} (otherwise the attack only gets even stronger)? implies that

V =span {kj}

with high probability and V can be efficiently computed. Furthermore, as above dim(span {k : })

is at most r, we have V* # {0}. Given any u # 0 in V* allows to compute one bit of infor-
mation on the plaintext given only the ciphertext and particularly distinguish the cipher
from a random permutation in a chosen-plaintext setting efficiently.

A similar argument shows the following:

Lemma 3. For any number of rounds r smaller than 2n— 3 there exist nonzero a and f3, such
that

E[(a,)=0

Proof. We restrict to the case r = n as otherwise the statement follows directly from the
lemma above. Indeed, from Parseval equality, the fact that E; (a,a) = 2" implies that

Ekr’\w(a, p) =0 for all B # a. Let k;,...,k, be the round keys derived from k and choose
non-zero elements a # B such that

aespan{ky,... k)" and B espanik, ,...,k}*.

Note that, as r < 2n — 3 by assumption such elements always exist. Next, we split the
encryption function in two parts, the first n —2 rounds E; and the remaining r —(n—2) <n
rounds E,, i.e.

E], =E,0F,.

We can compute the Fourier coefficient of E; as

B p)= 3 28D BLD),

YEF,

Now, the above lemma and the choices of a and imply that E;(a,y) =0 for y # a and
E,(y,B) =0 for y # f3. Recalling that a # f8 by construction concludes the proof. (8

2E. g. if, with high probability, the p; + ¢; do not depend on one or more k;’s, the described attack can be
extended to one or more rounds with high probability.

10 BISON - Instantiating the Whitened Swap-Or-Not Construction

However, as the masks a and 8 depend on the key, and unlike above there does not seem
to be an efficient way to compute those, we do not see a direct way to use this observation
for an attack.

Summarizing the observations above, we get the following conclusion:

Rationale 1. Any practical instance must iterate at least n rounds. Furthermore, it is beneficial
if any set of n consecutive round keys are linearly independent.’

After having derived basic bounds on the number of rounds for any secure instance, we
move on to criteria on the round function itself.

3.2 Round Function

Here, we investigate a very basic criterion on the round function, namely dependency on
all input bits, when the round function of E} is defined by

Ry, (x)=x +fb(l~)(wi + max {x,x +k;})-k; .

Given the Boolean functions f;) : F; — FF,, the question we would like to discuss is, if it
is necessary that the output bit of f;; has to depend on all input bits. The function f;
depends on an input bit j if there are two inputs x, x” differing only in the jth bit such that
Fo(x) # fr(x”). Otherwise the function is independent of the jth bit and we get

Foy(X) = foy(x +e5)

for all x where e; is the jth canonical basis vector, i. e. e; has a single one at position j.

We denote by N(x) := {i | x[i] = 1} the index set of 1-bits in x, and by v(x) := maxN(x)
the index of the highest 1-bit in x, in other words v(x) = |_log2(x)J, when interpreting
x € F} as an integer. For the main observation on this criterion, we first need the following
lemma.

Lemma 4. Let x,6 € F}, and k uniformly randomly drawn from F;. Then
Pr[max{x + 6,x + 6 + k} = max{x,x + k} + 5] = 1—2"®™",

Proof. The equality depends on the highest bit of & where x and x + k differ, which is
basically v(k). We have

Pr[max{x + 6,x + 6 + k} = max{x,x +k}+ 6] =Pr[6[»(k)] = 0],
which can also be written as

Pr[6[v(k)]=0]=1—Pr[v(k) e N(5§)]=1— Z Pr[v(k) = i].

ieEN(6)

Further we have Pr[v(k) =i]=2"""! and thus

1- > Prlv(k)=i]=1— Y 2771 > 1270

ieN(6) ieN(5)

which concludes the proof. (S

As we will see next, the functions f;) have to depend virtually on all linear combinations
of bits. In other words, it is required that the functions f;) have no (non-trivial) derivative
equal to the all-zero function.

3If (some) round keys are linearly dependent, Lemma 3 can easily be extended to more rounds.

A. Canteaut, V. Lallemand, G. Leander, P. Neumann, and F. Wiemer 11

Lemma 5. If there exists a 6 € F;, such that

Foy(x) = fpiy(x +6)

for all x and i € {0,1} then

Pr[E] () +E],(x+6)=5]> (1-2"@™)
where the probability is over the input x and the keys k and w.
Proof. From Lemma 4 we have that

Pr[max{x + &,x + 6 + k} = max{x,x + k} + 5] > 1—2"®™",
Now, we get for one round
R w.(X) = x + fyiy(w; + max {x, x + k;}) - k;
by the assumption that f,;)(x) = fu;)(x + 6) for all x
Ry w,(x +8) =Ry, (x)+6

with the same probability. Thus, for r rounds and uniformly chosen keys, we get

Pr[E () +E],(x+6)=5]> (1-2"@™)
by induction. (8

As an example, considering the case n = 128, r rounds, and both f; and f; that do not
depend on the most significant byte. Thus, we can choose &§ as a unit vector with »(6) = 121
and get a differential probability of

Pr[E],(x)+E],(x+6)=5]> (1-21271%8)" » (0.36)"/"

which would completely compromise the scheme for a reasonable number of rounds. In
general this shows that as long as both f,;) do not depend on almost all bits, the scheme
is immediately broken by differential cryptanalysis. Now, one might hope that one could
craft functions f, and f; where, e. g. f, depends only on the first 5 bits and f; on the last
5 bits to overcome this restriction. However, while such a construction might be secure
against basic differential cryptanalysis, it would still be completely broken by boomerang
attacks [Wag99]. The main idea of boomerang attacks is to split the whole block cipher in
two parts such that one has a high probable differential for the first part and a second high
probable differential for the second part, which is exactly the situation one would end up
here.

Thus, both functions independently have to virtually depend on all input bits, and we
deduce the following.

Rationale 2. For a practical instance, the functions fy; has to depend on all bits. Even more,
for any 6 € F the probability of

Foiy(x) = fpi)(x +6)

should be close to %

12 BISON - Instantiating the Whitened Swap-Or-Not Construction

It is worth noticing that the analysis leading to this rationale applies to the original
round function. However, as pointed out in [Tes15a, Section 3.1], in the definition of the
round function, we can replace the function

x — max {x,x + k}

by any function &, such that &, (x) = &, (x + k) for all x. While the following sections will
focus on the case when &, is linear, we proved that Rationale 2 is also valid in this other
setting.

Again, this should be compared to key-alternating ciphers, where usually not all output
bits of a single round function depend on all input bits. For example for AES any output
bit after one round depends only on 32 input bits and for PRESENT any output bit only
depends on 4 input bits. However, while for key-alternating ciphers this does not seem to
be problematic, and indeed allows rather weak round functions to result in a secure scheme,
for the WSN construction the situation is very different.

Before specifying our exact instance, we want to discuss differential cryptanalysis of a
broader family of instances.

4 Differential Cryptanalysis of BiIsON-like instances

We coin an instance of the WSN construction “BisoN-like”, if it iterates at least n rounds
with linearly independent round keys k;,...,k, and applies Boolean functions f;, that
depend on all bits, i. e. fulfill Rationale 2. As explained in [Tes15a, Section 3.1], in order to
enable decryption it is required that the Boolean functions f,;) return the same result for
both x and x + k. In the original proposition by Tessaro, this is achieved by using the max
function in the definition of the round function. Using this technique reduces the number
of possible inputs for the f;;) to 2"!. To simplify the analysis and to ease notation, we
replace the max function with a linear function & : Fi — F3~! with ker(®;) = {0,k}. From
now on, we assume that any Bison-like instance uses such a &, instead of the max function.
The corresponding round function has then the following form

Ry, (x) = x + Foy(wi + P, (x))k;. 3)

With the above conditions, any Bison-like instance of the WSN construction is resistant
to differential cryptanalysis, as we show in the remainder of this section.

For our analysis, we make two standard assumptions in symmetric cryptanalysis as
mentioned above: the independence of whitening round keys w; and the hypothesis of stochastic
equivalence with respect to these round keys. That is, we assume round keys w; to be
independently uniformly drawn and the resulting EDP to equal the differential probabilities
averaged over all w. In the following sections, we will argue why these assumptions
do fit to our design and back up the results by practical experiments (see Section 6.3.7
and Appendix B). For the round keys k; we do not have to make such assumptions.

We first discuss the simple case of differential behaviour for one round only and then
move up to an arbitrary number of rounds and devise the number of possible output
differences and their probabilities.

4.1 From One-Round Differential Characteristics

Looking only at one round, we can compute the ppT explicitly:

A. Canteaut, V. Lallemand, G. Leander, P. Neumann, and F. Wiemer 13

Proposition 2. Let Ry ,, : F; — F7 be the WSN round function as in Eq. (3). Then its ppr
consists of the entries

2"+ Ap(@(@) iff=a
pprR[a, fl1=14 2" = Ap(@(@)) fP=a+k. @

0 otherwise.

Most notably, if f is bent, we have

2" ifa=f=kora=p=0
pprp[a,Bl=42"" ifpe{a,a+k}and a & {0,k}.
0 otherwise.

Proof. We have to count the number of solutions of R(x) +R(x + a) = f3:

poTRla, B] = |{x € F} | R(x) +R(x + a) = B}
= [{x €T} | a+[f(w+ &, () + f(w+ & (x +)] - k = B}

Since f takes its values in IF,, the only output differences 8 such that ppTg[,] may differ
from 0 are § = a and § = a + k. When 8 = a, we have

DDTR[a, a] = |{x €T, | fw+,0))+f(w+d(x+a))= O}\
= [{x €Fy | £ (w+ () + F(w + &, (x) + &) = 0}
=2-[{x' eF | F(x) + f(x" + & () = 0}

- 2(2n—2 + %Af@k(a))) :

Similarly,
ppTRla, o+ k] = [{x €F} | f(w+ & (x)) + f (W + B (x +a)) = 1}
= Z(Zn_z - %Af(q)k(a))) .

Most notably, when a € {0,k}, As(®(a)) = 2"~1, Moreover for all other values of a, when
f is bent, Af (<I>k(a)) =0. ﬁ»

4.2 To Differentials over more Rounds

As previously explained, it is possible to estimate the probability of a differential charac-
teristic over several rounds, averaged over the round keys, when the cipher is a Markov
cipher. We now show that this assumption holds for any Bison-like instance of the WSN
construction.

Lemma 6. Let Ry, : F, — I be the WSN round function as in Eq. (3). For any fixed k € F},

and any differential (a,) € F;, x F, we have that
Prw [Rk,w(x + a) + Rk,w(x) = /5]
is independent of x. More precisely

Prw I:Rk,w(x + a) +Rk,w(x) = [5] = Prx [Rk,w(x + (X) +Rk,w(x) = ﬂ] .

14 BISON — Instantiating the Whitened Swap-Or-Not Construction

Proof. We have

{weF ™ | AuRy)(x) = B}
= {weF | (Mg,)W+ &(x)) - k=a+p}
1] if B &{a,a+k}
®;(x) + Supp (A<1>k(a)(f)) iff=a+k ,
@ () + (F21\ Supp (A<I>k(a)(f))) iff=a

where Supp(g) denotes the support of a Boolean function g, i. e., the values x for which
g(x) = 1. Clearly, the cardinality of this set does not depend on x. Moreover, this cardinality,
divided by 2"!, corresponds to the value of

Prx [Rk,w(x + a) +Rk,w(x) = /5]
computed in the previous proposition. (S

By induction on the number of rounds, we then directly deduce that any Bison-like
instance of the WSN construction is a Markov cipher in the sense of the following corollary.

Corollary 1. Let E; denote i rounds of a Bison-like instance of the WSN construction with
round function Ry_,,. For any number of rounds r and any round keys (ky,...,k.), the
probability of an r-round characteristic § satisfies

Pr, [EL, () +EL (x+60) =6, ¥1<i<r]|=

l_[Prx [Rki,wi (x) + Ry, (x +6;1) = 51']-

i=1

For many ciphers several differential characteristics can cluster in a differential over
more rounds. This is the main reason why bounding the probability of differentials is
usually very difficult if possible at all. For BisoN-like instances the situation is much nicer;
we can actually compute the EDP, i. e., the probabilities of the differentials averaged over
all whitening key sequences (w,...,w,). This comes from the fact that any differential for
less than n rounds contains at most one differential characteristic with non-zero probability.
To understand this behavior, let us start by analyzing the EDP (averaged over the w;) and
by determining the number of possible output differences.

In the following, we assume that the input difference a is fixed, and we calculate the
number of possible output differences. We show that this quantity depends on the relation
between a and the k;.

Lemma 7. Let us consider r rounds of a Bison-like instance of the WSN construction with round
function involving Boolean functions f,;y having no (non-trivial) constant derivative. Assume
that the first n round keys ky, ..., k, are linearly independent, and that k,; =k, + >, 7ik;
for v; € F,. For any non-gero input difference a, the number of possible output differences f3
such that

Pr,,. [Ep,(x+a)+E] (x)=B]#0

2" if a ¢ span{k;} and r <n,
27 =2t ifa=k + X A% and r <n,
2"—1 ifr>n.

A. Canteaut, V. Lallemand, G. Leander, P. Neumann, and F. Wiemer 15

Proof. By combining Corollary 1 and Proposition 2, we obtain that the average probability
of a characteristic (6,4, 61,...,0,_1,0,) can be non-zero only if §; € {6;_;,5,_1 + k;} for all
1 <i < r. Therefore, the output difference 5, must be of the form 5, = &, + >.;_; Aik;
with A; € F,. Moreover, for those characteristics, the average probability is non-zero unless
there exists 1 < i < r such that |A<I>ki(5i)(fb(i))(0)| =21 ji.e. A<I>ki(6.-)(fb(i)) is constant. By
hypothesis, this only occurs when §; € {0, k;}, and the impossible characteristics correspond
to the case when either 6; = 0 or §;,; = 0. It follows that the valid characteristics are
exactly the characteristics of the form

j=1
where none of the §; vanishes.

* When the input difference a ¢ span{k;}, for any given output difference f = a +
>_, Aik;, the r-round characteristic

(@, o+ Arky, @+ Arky + Aoks, ..o+ D Ak
i=1

is valid since none of the intermediate differences vanishes.

'Wheannandazke+Zf

B=a+,_, Ak satisfies

3 Al'k;, the only possible characteristic from a to

5 A+ Ak + 3, A%k, i j <€
DL e A+ S ke > L

i=t+1
Since the involved round keys are linearly independent, we deduce that 5; = 0 only
when j =(and A; = A{ for all 1 <i < (. It then follows that there exists a valid
characteristic from a to unless A; = A for all 1 <i < {. The number of possible
outputs f is then

(2€ _ 1)2r—€ =9or_ zr—f.

* If we increase the number of rounds to more than n, we have a =k, + Zf;i Alk; for

some £ <n. If p=a+Y, | Ak with Zle Aik; # a, then we can obviously extend
the previous n-round characteristic to

n—1
(@a+Aky,...,a+ > AkuB,B..... B).

i=1

If Zle Aik; = a, B cannot be the output difference of an n-round characteristic.
However, the following (n + 1)-round characteristic starting from 6, = a is valid:

j ¢ o e
k1+2{:2)/iki+zi:j+lliki 1f]<€
Si =\ ki + 2, viki+ 20, Ak ife<j<n

B ifj=n+1

Indeed, &6,, = 8 +k, implying that the last transition is valid. Moreover, it can be easily
checked that none of these §; vanishes, unless = 0. This implies that all non-zero
output differences f are valid. %

16 BISON - Instantiating the Whitened Swap-Or-Not Construction

Catkyt+kyt ks
. a+k +ky

Ca+k+ky Eq. (5)
a+k;
) ~ a+k; +k;
> ! (1+k1/ Eq. (6)
\a+k1 4
a
a+ky+ ks
\ a+k2/\
2\ / a+k, Eq. (7)
a
\ /a+k3
a
\a

Figure 3: Probabilities of output differences for three rounds and the cases of the input
difference a = k; + k,, thus £ = 2. Dotted transitions are impossible.

The last case in the above lemma is remarkable, as it states any output difference is
possible after n + 1 rounds. To highlight this, we restate it as the following corollary.

Corollary 2. For Bison-like instances with more than n rounds whose round keys k, ..., k, 1
satisfy the hypothesis of Lemma 7, and for any non-zero input difference, every non-gero output
difference is possible.

We now focus on a reduced version of the cipher limited to exactly n rounds and look
at the probabilities for every possible output difference. Most notably, we exhibit in the
following lemma an upper-bound on the MEDP which is minimized when n is odd and
the involved Boolean functions f,;) are bent. In other words, Rationale 2 which was
initially motivated by the analysis in Section 3 for the original round function based on
x — max(x, x + k) [Tes15b] is also valid when a linear function &, is used.

Lemma 8. Let us consider n rounds of a Bison-like instance of the WSN construction with
round function involving Boolean functions fy,;y. Let ky,...,k, be any linearly independent
round keys. Then, for any input difference a # 0 and any f3, we have

EDP((X, /j) = Prw,x [Ek,w(x + a) + Ek,w(x) = /5]

n—1
< (%4‘2_,1 max./\/l(fb(i))) .

1<isn

More precisely, if all f,, are bent,

0 ifp= D Ak)
i=0+1
EDP(a, = I
([5) 2—n+1 lfﬁ =k[+ Z)Liki; (6)
i=(+1
| 27" otherwise, 7

where { denotes as previously the latest round key that appears in the decomposition of a into

the basis (kq,...,k,), thatis a =k, + Zf;; Aik;.

The case of bent functions is visualized in Figure 3, where we give an example of the
three possibilities for three rounds.

A. Canteaut, V. Lallemand, G. Leander, P. Neumann, and F. Wiemer 17

Proof. As proved in Lemma 7, (a,f) is an impossible differential if and only if § =
Do si1 Aik;. For all other values of p = a+Y,_, A;k;, we have

i=(+1
n

Bp(a, 8) = [[(5 + (02 Ay, (2,60

i=1

where §; = a+ Z;zl Ajk;. The i-th term in the product is upper-bounded by
1 —n
3 T2 max M(fi)

except if &, (5;) =0, i.e., 6; €{0,k;}. As seen in Lemma 7, the case 6; = 0 cannot occur in
a valid characteristic. The case §; = k; occurs if and only if i =¢ and =k, + Z;'l:g Ak
In this situation, the ¢-th term in the product equals 1. In the tree of differences this is
visible as the collapsing of the two branches from two possible succeeding differences into
only one, which then of course occurs with probability one, see upper branch of Figure 3.
Most notably, all f;, are bent if and only if
max M (fb(i)) =0,

1<i<n

leading to the result.

This can be seen on Figure 3: the 2"~ possible differences coming from the collapsed
branch have a transition of probability one in that round, resulting in an overall probability
of 271 see Eq. (6). For the lower part of Figure 3, all the other differences are not affected
by this effect and have a probability of 27", see Eq. (7). (3

Because they allow us to minimize the MEDP, we now concentrate on the case of bent
functions for the sake of simplicity, which implies that the block size is odd. However, if
an even block size is more appropriate for implementation reasons, we could also define
BIsON-like instances based on maximally nonlinear functions.

It would be convenient to assume in differential cryptanalysis that the EDP of a differ-
ential does not increase when adding more rounds, while this does not hold in general.
However, this argument can easily be justified for Bison-like instances using bent functions,
when averaging over the whitening keys w.

Proposition 3. Let us consider r 2 n rounds of a Bison-like instance of the WSN construction
with bent functions fy). Let kq,...,k, be any linearly independent round keys. Then the
probability of any non-trivial differential, averaged over all whitening key sequences w is upper
bounded by 271,

In other words, the MEDP of Bison-like instances with bent fy;y for r > n rounds is 27™*1.

Proof. By induction over r. The base case for r = n rounds comes from Lemma 8. In the
induction step, we first consider the case when the output difference 8 after r rounds
differs from k,. Then the output difference &, = f can be reached if and only if the output
difference after (r — 1) rounds &,_; belongs to {#, 8 + k.}. Then,

EDP'(a, B) = Pr,, [Ry ., (x.)+Ry ,, (x, +B) =B JEDP" " (a, B)
+Pr, [Re w () +Ry , (x,+B+k)=pJEDP"*(a, B +k,)

= %(EDPr_l(a, B)+EDP " !(a, B +k,)) <27,

When the output difference f after r rounds equals k,, it results from 6,_; = k, with
probability 1. In this case

EDP'(a,3) = EDP" !(a,B) < 271,

18 BISON - Instantiating the Whitened Swap-Or-Not Construction

This bound is close to the ideal case, in which each differential has probability 1/(2"—1).
We now give a detailed description of our instance BISON.

5 Specification of BISON

As BIson-like instances should obviously generalise BisoN, this concrete instance inherits
the already specified parts. Thus BIsoN uses two bent functions f;), replaces the max
function by ®,, and uses a key schedule that generates round keys, where all n consecutive
round keys are linearly independent. The resulting instance for n bits iterates the WSN
round function as defined below over 3 - n rounds. The chosen number of rounds mainly
stems from the analysis of the algebraic degree that we discuss in Section 6.

Security Claim 1. We claim n-bit security for Bison in the single-key model. We emphasize
that we do not claim any security in the related-key, chosen-key or known-key model.

5.1 Round function

For any nonzero round key k, we define & : F} — Fj ! as
CDk(X) = (xi(k) -k +X)[1, .. ,l(k) - 1,l(k) +1,..., n], (8)

where i(k) denotes the index of the lowest bit set to 1 in k, and the notation x[1,...,j—
1,j+1,...,n] returns the (n — 1)-bit vector, consisting of the bits of x except the jth bit.

Lemma 9. The function &, : Fj — Fy ! is linear and satisfies
ker(®;) = {0, k}.

The proof can be done by simply computing both outputs for x and x + k.
For the preimage of y € Fi " and j = i(k) we have

(y[l:j—l],O,y[j:n—1])+k[1:n],}

(y[1:j—11,0,y[j:n—1]) 9

o '()e {

Due to the requirement for the f,;) being bent, we are limited to functions taking an

even number of bits as input. The simplest example of a bent function is the inner product.
Eventually we end up with the following instance of the WSN round.

BISON’s Round Function
(N\
For round keys k; € F} and w; € Fi~! the round function computes

Ry, (%) := x + fo (w; + &, (). (10)
where
* &, is defined as in Eq. (8),

* fpq) is defined as

foy By =Ty
Fo(x) = (x[1:(n—1)/2],x[(n+1)/2: n]) + b(i),

* and b(i) is 0 if i < 5 and 1 otherwise.

A. Canteaut, V. Lallemand, G. Leander, P. Neumann, and F. Wiemer 19

5.2 Key schedule

In the ith round, the key schedule has to compute two round keys: k; € F} and w; € Fj .
We compute those round keys as the states of LFsRs after i clocks, where the initial states
are given by a master key K. The master key consists of two parts of n and n—1 bits, i.e.

K =(k,w) €F2 xFI 1,

As the all-zero state is a fixed point for any LFsSR, we exclude the zero key for both k and w.
In particular k = 0 is obviously a weak key that would result in a ciphertext equal to the
plaintext p = Eg (p) for all p, independently of w or of the number of rounds r.

It is well-known that choosing a feedback polynomial of an LFsR to be primitive results
in an LFSR of maximal period. Clocking the LFsR then corresponds to multiplication of its
state with the companion matrix of this polynomial. Interpreted as elements from the finite
field, this is the same as multiplying with a primitive element.

In order to avoid structural attacks, e. g. invariant attacks [Gra+16; Lea+11; Tod+16],
as well as the propagation of low-weight inputs, we add round constants c; to the round
key w;.

These round constants are also derived from the state of an LFsr with the same feedback
polynomial as the w; LFsR, initialized to the unit vector with the least significant bit set. To
avoid synchronization with the w; LFsR, the ¢; LFsSR clocks backwards.

BISON’s Key Schedule

(N\
For two primitive polynomials p,,(x), px(x) € F,[x] with degrees deg(p,,)=n—1
and deg(p;) = n and the master key K = (k,w) € F} x Fi', k,w # 0 the key
schedule computes the ith round keys as

KS; :Fi x Fi ' > Fj xFy !
KS;(k,w) := (C(pr)'k, C(p,,) e + C(p,)'w) = (ki ¢; +w;)

where C(-) is the companion matrix of the corresponding polynomial, and 0 <i < r.

In Appendix A we give concrete polynomials for 5 < n < 129-bit block sizes.
(. J

As discussed above, this key schedule has the following property, see also Rationale 1.

Lemma 10. For BisoN’s key schedule, the following property holds: Any set of n consecutive
round keys k; are linearly independent. Moreover there exist coefficients A; such that

n+i—1

ki =ki+ > A5k;.

j=i+1

Proof. To prove this, we start by showing that the above holds for the first n round keys,
the general case then follows from a similar argumentation. We need to show that there
exists no non-trivial ¢; € F, so that D._ ¢;C(p;)'k = 0, which is equivalent to showing that
there exists no non-trivial ¢; € F, so that Z;:; ¢;C(px)'k = 0. In this regard, we recall the
notion of minimal polynomial of k with respect to C(p;), defined as the monic polynomial
of smallest degree Q; (k)(x) = Zidzo q;x" € F,[x] such that Z?:o q;C(p)'k = 0. Referring
to a discussion that has been done for instance in [Bei+17], we know that the minimal
polynomial of k is a divisor of the minimal polynomial of C(p,). Since in our case our
construction has been made so that this later is equal to p, which is a primitive polynomial,
we deduce that the minimal polynomial of k # 0 is p,, itself. Since the degree of p; is equal
to n, this prove that the first n keys are linearly independent.

The equation holds, since p,(0) = 1. @

20 BISON - Instantiating the Whitened Swap-Or-Not Construction

6 Security Analysis

As we have already seen, BISON is resistant to differential cryptanalysis. In this section, we
argue why BISON is also resistant to other known attacks.

6.1 Linear Cryptanalysis

For linear cryptanalysis, given the fact that Bison is based on a bent function, i.e. a
maximally non-linear function, arguing that no linear characteristic with high correlation
exist is rather easy. Again, we start by looking at the Fourier coefficients for one round.

6.1.1 From one Round.

Using the properties of f being bent, we get the following.

Proposition 4. Let Ry, : F5 — 3 be the round function as defined in Eq. (10). Then, its LaT
consists of the entries

2" ifa=pand (B,k)=0
Riw(a,B) =1 2% if (a,k)=1and (B,k) =1 : an
0 if (a+B,ky=1or(a#p and (B,k) =0)
Proof. First, we show the upper part, that is the values of the diagonal. Then

}Tk,\w(ch B)= Z (_1)<a+ﬁ>x>+<ﬁ:k>'f(WJF(I)k(X))

XEFY
= Z (—1) @HBxol+(BR)-f (wy) | (1 y{atBa)+(Bk):f (w+y)

yEF371
o 0e{xo.x1}

As we look at the diagonal elements, a = 5, we have

Ek;(a,a)=2-Z(—1)<ﬂ’k>'f(w+y) =2. Z (—1)BRFON
y

y/e]Fg_l

Two possibilities remain: If (§,k) = 0, the exponent is always zero and thus E(;(a, a)=2"
In the other case, (f,k) =1 and

R (a,a)=2- > (-1Y0)==x2.27, (12)
y/E]F;_l

since Parseval’s relation implies that all Fourier coefficients of an (n — 1)-variable bent
function have the same magnitude, namely 27,
Now for the second part we have a # 8.

Rew(a,B)
Z (—1)(@tBxo)+(Bk):F(wty) | (_qy(atBox)H{BR)f (wty)

yefg’l
4’;1 (ne{xg.x1}

By definition of ®;, we saw in Eq. (9) that the preimages x,, and x; are equal to y’ and
vy’ +k, where y’ is the same as y with an additional bit set to zero injected at position i(k).
Thus, using the bilinearity of the scalar product,

R () = (14 (~1)*rPR) 3 (-ferbr)rp o)
y

A. Canteaut, V. Lallemand, G. Leander, P. Neumann, and F. Wiemer 21

and this is equal to zero, if {(a + ,k) =1 or {f, k) = 0. In the other case, (e« + 3,k) =0 and
(B,k) =1, we have

R (a,) =2 D (1P i) = 9. 5 gyt
y X

=9. (_1)(a+[5,w') i Z (_1)(a+/5,x’>+f(x)
=2 ()P fla” + ") (13)
(14)

where we denote by -” the corresponding value, where the bit in position i(k) has been
removed. Finally, again because f is bent, we get

Rew(a,) =2 (~DP) - (22°7) = 422

Note that the sign of the LAT entries is uniformly distributed and thus, when averaging
over the w’s, the non-diagonal entries cancel out. (8

6.1.2 To more Rounds.

When we look at more than one round, we try to approximate the linear hull by looking at
the strongest linear trail. As already discussed in Lemma 2, for r < n there are trails with
probability one. We now show that any trail’s correlation for r = n rounds is actually upper

n+l

bounded by 27 = :

Proposition 5. For r = n rounds, the correlation of any non-trivial linear trail for BISON is
n+1

upper bounded by 2 = .

Proof. It is enough to show the above for any n-round trail. By contradiction, assume there
exists a non-trivial trail 8 = (6,,..., 8,) with correlation one. Following Proposition 4, for
every round i the intermediate mask 6; has to fulfill (6;,k;) = 0. Further 6; = 6, for
0 <i < n. Because all n round keys are linearly independent, this implies that 6; = 0, which
contradicts our assumption. Thus, in at least one round the second or third case of Eq. (11

has to apply. @

It would be nice to be able to say more about the linear hull, analogously to the differential
case. However, for the linear cryptanalysis this looks much harder, due to the denser LAT.
In our opinion developing a framework where bounding linear hulls is similarly easy as it is
for B1son with respect to differentials is a fruitful future research topic.

6.2 Higher-Order Differentials and Algebraic Attacks.

High-order differential attacks, cube attacks, algebraic attacks and integral attacks all make
use of non-random behaviour of the ANF of parts of the encryption function. In all these
attacks the algebraic degree of (parts of) the encryption function is of particular interest. In
this section, we argue that those attacks do not pose a threat to BISON.

We next elaborate in more detail on the algebraic degree of the WSN construction. In
particular, we are going to show that the algebraic degree increases at most linearly with
the number of rounds. More precisely, if the round function is of degree d, the algebraic
degree after r rounds is upper bounded by r(d —1) + 1.

Actually, we are going to consider a slight generalization of the WSN construction and
prove the above statement for this generalization.

22 BISON - Instantiating the Whitened Swap-Or-Not Construction

6.2.1 General Setting

Consider an initial state of n bits given as x = (x,,...,X,_;) and a sequence of Boolean
functions
fi B3 > T,

for 0 < i < r. We define a sequence of values y; by setting y, = f,(x) and
Yi Zfi(xov'"xn—lr.yor""yi—l)r

for 1 <i < r. Independently of the exact choice of f; the degree of any y,, as a function of
x can be upper bounded as stated in the next proposition.

Proposition 6. Let f; be a sequence of functions as defined above, such that deg(f;) < d. The
degree of y, at step { seen as a function of the bits of the initial state x, ..., x,_, satisfies

deg(y,)<(d—1)(£+1)+1.

Moreover, for any I € {0,...,¢},
deg(] [yo<@-De+1)+111.
i€l

Proof. The first assertion is of course a special case of the second one, but we add it for the
sake of clarity. We prove the second, more general, statement by induction on /.
Starting with £ = 0, we have to prove that deg(y,) < d, which is obvious, as

Yo = fol(xps -+ Xn—1)

and deg(f,) < d.
Now, we consider some I € {0,...,{} and show that

deg(] [y) <(d-1)+1)+11.
i€l

We assume that £ € I, otherwise the result directly follows the induction hypothesis.
Since f, depends both on y,,...,y,_; and x, we decompose it as follows:

Ye=filyos- - Ve, X) = >, (]_[yj) gs(x)
(-1}

J<A{o,..., jeJ
0 < |J| <min(d,¢)

with deg(g;) < d —|J| for all J since deg(f,) < d.
Then, for I = {£}UI’, we look at

([T

i€r

ZH} (]_[yj) 8 (x).

Jcio,..., jesur
0 <|J| <min(d, ()

From the induction hypothesis, the term of index J in the sum has degree at most
d=1Dt+Jul'|+deg(g))=d—1+|JUul'| +d—|J]|
SA@-DUL+D+|Jul’|—=J]+1
SA-DE+D)+J|+||=J+1
<d-1+1)+]1].

A. Canteaut, V. Lallemand, G. Leander, P. Neumann, and F. Wiemer 23

2,500 —
—— n=5
— n=7
2,000 n=9 |l
n=11
. 1,500 n=13 ||
> ——n=15
[——n=17
* 1,000 g

500

0

no+1 42 43 +4 +5 46 +7 +8 49
Rounds

Figure 4: Number of rounds more than n needed to achieve full degree. Solid lines for
random round keys, dashed lines for round keys derived from BisoN’s key schedule.

6.2.2 Special case of BISON.

In the case of BISON, we make use of quadratic functions, and thus Proposition 6 implies
that after r rounds the degree is upper bounded by r + 1 only. Thus, it will take at least
n— 2 rounds before the degree reaches the maximal possible degree of n — 1. Moreover,
due to the construction of WSN, if all component functions of E; , are of degree at most d,
there will be at least one component function of El:j;v”‘*l of degree at most d. That is, there
exist a vector 3 € F} such that

(BLE[()

has degree at most d. Namely, for
B espanik,,... .k, }*
it holds that

r+s

deg ({8, E}(x)) = deg(w,E;,W(x» - Zxxﬁ,ki)) = deg (B, Ef,(x))).

i=r

We conclude there exists a component function of E,:J;j of non-maximal degree, as long
as0<r<n—2andO0 <s <n—1. Thus for BisoN there will be at least one component
function of degree less than n — 1 for any number of rounds 0 < r < 2n — 3. However,
similarly to the case of zero-correlation properties as described in Lemma 3, the vector f is
key dependent and thus this property does not directly lead to an attack.

Finally, so far we only discussed upper bounds on the degree, while for arguing security,
lower bounds on the degree are more relevant. As it seems very hard (just like for any cipher)
to prove such lower bounds, we investigated experimentally how the degree increases in
concrete cases. As can be seen in Figure 4 the maximum degree is reached for almost any
instance for n+ 5 rounds. Most importantly, the fraction of instances where it takes more
than n + 2 rounds decreases with increasing block length n. Moreover, the round function
in BIsoN experimentally behaves with this respect as a random function, as can be seen on
Figure 5. Thus, as the number of rounds is 3n, we are confident that attacks exploiting the
algebraic degree do not pose a threat for BISON.

24 BISON — Instantiating the Whitened Swap-Or-Not Construction

2,500

2,000

1,500

Keys

1,000

500

O | | | | | |
n +1 42 +3 +4 45 +6 +7 +8 +9

Rounds

Figure 5: Behaviour of Bison’s f function (red thick solid) versus random f (gray solid)
with algebraic degree 2 for n =17.

Besides the WSN construction, a special case of the above proposition worth mentioning
is a non linear feedback generator (NLFSR).

6.2.3 Degree of NLFSR.

One well-known special case of the above general setting is an NLFSR or, equivalently a
maximally unbalanced Feistel cipher, depicted below.

N

Proposition 6 implies that the degree of any NLFSR increases linearly with the number of
rounds. To the best of our knowledge, this is the first time this have been observed in this
generality. We like to add that this is in sharp contrast to how the degree increases for
SPN ciphers. For SPN ciphers the degree usually increases exponentially until a certain
threshold is reached [Bou+11].

6.3 Other attacks

We briefly discuss other cryptanalytic attacks.

6.3.1 Impossible Differentials.

In Lemma 7 and Corollary 2, we discuss that every output difference is possible after more
than n rounds. Consequently, there are no impossible differentials for Bison.

6.3.2 Truncated Differentials.

Due to our strong bounds on differentials it seems very unlikely that any strong truncated
differential exists.

A. Canteaut, V. Lallemand, G. Leander, P. Neumann, and F. Wiemer 25

6.3.3 Zero Correlation Linear Cryptanalysis.

In Lemma 3 we already discussed generic zero correlation linear hulls for the WSN construc-
tion. Depending on the actual key used, this technique may be used to construct a one-round-
longer zero-correlation trail. For this, we need two distinct elements a € (kq,..., kn_l)L,
B e (k... k)", and construct the trail analogously to Lemma 3 (which may not exist,
due to the key dependency).

6.3.4 Invariant Attacks.

For an invariant attack, we need a Boolean function g, s.t. g(x)+ g(E,:’W(x)) is constant for
all x and some weak keys (k,w). As the encryption of any message is basically this message
with some of the round keys added, key addition is the only operation which is performed.
It has been shown in [Bei+ 17, Proposition 1] that any g which is invariant for a linear
layer followed by the addition of the round key k; as well as for the same up to addition of
a different k;, has a linear space containing k; + k;. In the case of the linear layer being the
identity, the linear space actually contains also the k; and k; (by definition).

Thus, the linear space of any invariant for our construction has to contain span {k, ..., ks, }
which is obviously the full space ;. Following the results of [Bei+17], there are thus no
invariant subspace or nonlinear invariant attack on BISON.

6.3.5 Related-Key Attacks.

In generic related-key attacks, the attacker is also allowed to exploit encryptions under a
related, that is k' = f (k), key — in the following, we restrict our analysis to the case where
f is the addition with a constant. That is, the attacker cannot only request E; ,(x), and
Epw(x + a), but also Ey,pg ,.p/(x) Or Exyp 1 (x + a), for a (difference in the input x), 3
(difference in the key k) and ' (difference in the key w) of her choice. As f = ' =0
would result in the standard differential scenario, we exclude it for the remainder of this
discussion. Similar, = k results in &;, 5 = ®,, which we did not define, thus we also skip
this case and refer to the fact that if an attacker chooses 8 = k, she basically already has
guessed the secret key correctly.

First note that, for any input difference (a, 8, '), the possible output differences after
one round are

a if (u,v) =1(0,0),
a+p+k if (u,v) =(0,1),
a +k if (u,v)=(1,0), and
a+p if (u,v) =(1,1),
where
u=f(w+&.(x)), (15)
v=Ff(w+p + P p5(x+a)). (16)

Our aim is to bound both the probability that u + v =0 and that u + v = 1 by 3/4. This
implies that the probability for any related-key differential characteristic for one round is
at most 3/4. Thus the probability for any r-round related-key differential characteristic is
bounded by (3/4)". For this, we need the following lemma.

Lemma 11. Let us consider the linear function &, defined by Eq. (8). Given k and f ¢ {0, k}.
Then the dimension of the image of the linear function x — ®;(x) + @, (x) is either one or
two.

26 BISON - Instantiating the Whitened Swap-Or-Not Construction

Proof. For the sake of simplicity, we instead consider &, (x)+®; 5 (x), where &’ is the same

as ® but does not truncate its output. Basically the same argumentation then holds for ¢ as
well. This function can also be written as

&, () + @, 5 (X) = x + x50k + X + X py (K + B)
= (X + Xigesp))k + Xigerpy B-

Thus
P (x) + @;(Jrﬂ(x) espan{k, 5}

for all x, which upper bounds the dimension of the image by two. As e. g. x = e;(p) is not
mapped to zero, the dimension of the image is at least one, completing the proof. (8

By the rank-nullity theorem, this implies that
dim (ker (@, + ®;,5)) € {n—1,n—2}.
We can now show the following proposition.

Proposition 7. For r rounds, the probability of any related-key differential characteristic for
BISON, averaged over all whitening key sequences (w1, ...,w,), is upper bounded by (%)r.

Proof. First, let us introduce the set A‘;’Q’ﬁ defined as:

AP = {w e P3| f(w+ 8, (x0)) + f(w+ B’ + Bp(x +) =0},

that is the set of all round keys w, for which x, k, a, 8, and B’ result in u +v = 0 (where u
and v are as at the beginning of this section). In case that

Pp(x) =B’ + & yp(x +),

the size of A‘;’[z’ﬁ "is 271, while if the equality does not hold the set is of size 2"2 since f is
bent.

For k, a, B and B’ fixed, the number of x s.t. the size of Af‘(’f’ﬁ "is 21 s just the size of
the preimage of ®;,4(a) + 8’ under the linear mapping x — ®,(x) + ;. (x). The size of
this preimage is either 0 or |ker (fbk + <I>k+,5)|. Denote by

B= |ker ((I)k + q)k+[5)

>

which, by Lemma 11, is bounded by 2" 1.
Then, the probability over x and w for having an output difference of a or a + § is:

Pr, [u+v=0forfixed k, a, B, B’]
B 272 2"_B B 1 B 1 B
<=+-|1

<=+ : <= —=)<+
n on—1 on on 2 on 2 on+l

<243
2 4 4
The other case, u+v = 1, follows with the same argument. Thus, the probability for each

of the four possible cases (u,v) € F, x F, can be upper bounded by (3/4), which concludes
the proof. [

A. Canteaut, V. Lallemand, G. Leander, P. Neumann, and F. Wiemer 27

6.3.6 Further Observations.

During the design process, we observed the following interesting point: For sparse master
keys k and w and message m, e.g. k =w = m = 1, in the first few rounds, nothing happens.
This is mainly due to the choice of sparse key schedule polynomials p,, and p, and the fact
that f, outputs 0 if only one bit in its input is set (as {0, x) = 0 for any x).

To the best of our knowledge, this observation cannot be exploited in an attack.

6.3.7 Experimental Results.

We conducted experiments on small-scale versions of BisoN with n = 5. The pDTs and LATS,
depicted using the ‘Jackson Pollock representation” [BP15], for one to ten rounds are listed
in Appendix B. In Appendix B.1 one can see that the two cases of averaging over all possible
w; and choosing a fixed w; results in very similar differential behaviors. Additionally, after
5 = n rounds, the plots do not change much.

The results in the linear case, see Appendix B.2, are quite similar. The major difference
here, is the comparable bigger entries for a fixed w;. Nonetheless, most important is that
there are no high entries in the average AT which would imply a strong linear approximation
for many keys. Additionally one also expects for a random permutation not too small LAT
entries. Note that one can well observe the probability-one approximation for 4 =n—1
rounds (lower right corner of the corresponding plot).

7 Implementation

As the round function is involutory, we do not need to implement a separate decryption,
but instead can just use the encryption implementation with reversed round keys.

To implement the two LFsRs for the key schedule, we need two primitive polynomials
of degree n and n— 1. Clocking an LFsrR with feedback polynomial p(x) corresponds to
multiplying the state by x € F,[x]/p(x). This can be implemented by a simple left shift
and a conditional addition of the polynomial, if a modulo reduction is necessary. To keep
this addition as efficient as possible it is advantageous to have all non-leading monomials
of the polynomial of degree less then the word size of the implementation’s underlying
CPU, since in this case, we only need to add a term to the least significant word of the state.
Appropriate polynomials can easily be found by enumerating possible candidates and test if
the candidate is primitive. See Appendix A for possible, good-to-implement, choices for
pw(x) and p(x).

For comparison and test reasons we also provide testvectors in Appendix C and a
SAGE implementation, see Appendix E. We implemented the 129-bit instance in c on a
64-bit INTEL CoRE 17-8700 cpu (COFFEE LAKE architecture) running at 3.7 GHz. The
corresponding source code can be found in Appendix G.

Utilizing the cPU’s popcount instruction, this implementation consumes a size of
701 bytes when compiled with -0s. The same implementation needs more then 25000
cycles per byte for the encryption of one 129-bit block.* Table 1 summarizes these results.
While this might be obvious, we nevertheless want to note that it is important for reliable
benchmarks to turn off advanced performance capabilities of modern crus.

Regarding cycles per byte, this is five orders of magnitude slower than optimized
implementations of AES. Even if the reference implementation is not optimized, we do
not believe to come close to a competitive speed. Another point which can be seen in

“#For comparison: exploiting AES-NT instructions on modern cpus results in 4.375 cycles per byte for encrypting
one AES-128 block, excluding the key-schedule. When parallelism can be exploited, the speed can be even
further increased, eventually tending to one cycle per byte. Implementing a full AES-128 encryption with AES-NI
instructions including the key schedule uses 394 bytes.

28 BISON - Instantiating the Whitened Swap-Or-Not Construction

Table 1: Performance of our 129-bit implementation on an INTEL CorE 17-8700 cpu,
running at 3.7 GHz. Cycles per byte are measured for 1 000 000 runs, HYPER-THREADING
and TurBO-BoosT were disabled.

Block size Code size Cycles per byte
(bit) (byte) median mean o
129 701 25124 25044.51 1392.39

Table 1 is the deviating runtime of our implementation. The reference implementation
is clearly not constant time, see e. g. Lines 65 to 116 or Line 130 in Appendix G. For any
secure implementation this and other side channels have of course to be taken into account.
Nevertheless, a side channel-resistant implementation is out of scope of this work but is
certainly an interesting research direction. We expect the simplicity of our design to support
side-channel countermeasures.

While the preformance figures make BisoN quite unattractive for practical uses another
big problem is its odd block length. We thus turn our focus now on an alternative instance
that covers the case of even block lengths.

8 WISENT

In order to exploit our analysis of Bison-like instances, especially Lemma 8, in a helpfull
way, we need to find f,, f; with a low absolute indicator. Then we can use these to give
good bounds on the EDP. Due to the &, function, the f; have to operate on n— 1 bits, with
n—1 odd and thus we cannot use bent functions.

Finding Boolean functions with good absolute indicator is an interesting problem. It
is actually not even clear, what a meaningful lower bound on the absolute indicator is,
when bent functions are not considered. In 1996 Zhang and Zheng [ZZ96] conjectured
that the absolute indicator of f is lower bounded by 2(**1/2 if f is balanced and has
degree at least three. This conjecture was later disproven. In particular, for the case n
odd, see Kavut et al. [Kav+07] for n € {9,11}, Maitra and Sarkar [MS02] for n = 15, and
Gangopadhyay et al. [Gan+06] and Kavut [Kav16] for n = 21, for the case n even Tang and
Maitra [TM18] give a construction for Boolean functions with absolute indicator strictly less
than 27. However, we are not aware of a generic construction for odd input lengths (that is,
for any n — 1 odd) with such a low absolute indicator. Additionally, the currently known
constructions (for n —1 even) are highly non trivial and thus quite complex to implement.

Thus, and because as long as we do not know a lower bound for n odd and a construction
reaching this lower bound, we cannot give an optimal instance for WISENT anyway, we take
a different approach. Instead, to get a family of Boolean functions f; that we can use for
WISENT with any even block length, we use the direct sum construction, as this provides
some nice properties, see below.

That is, our fy, f; are of the form f;(x, y) = g;(x)+h(y) with g; : F; > F, and h : IFZ*E’ —
FF,.> For the even length part h of f, we utilise the same bent function as for BISON:

h:Fi®—>TF,
h(x) = (x[1:(n—6)/2],x[(n—6)/2+1:n—6]).

5The reason why we choose this splitting of n —1 = 5+ n — 6 bits is that it is still feasible for 5 bit to search for
functions with very good absolute indicator.

A. Canteaut, V. Lallemand, G. Leander, P. Neumann, and F. Wiemer 29

For the odd length part, we use g, : F; — F, with

2o(X1, .0, X5) 1= X X9X3X4 + X1 X9 X3 X5 + X1 X5X4X5 + X X3X4X5 + X9 X3X4Xs5
+ X1 XoX5 + X1X3X4 + X1X4X5 + XoX3X4 + X9 X3 X5
+ 1% + X1 X5 + XoX3 + X X5 + X3Xy4
+ X7+ Xy + X3+ X4+ X5,

in truth table/hexadecimal form 00071356, and we choose g; as the complement of g,.

8.1 Specification of WISENT

We define wisENT’s round function as follows.

wiIsSeENT’S Round Function

(N\
Let n > 6 be even. For round keys k; € F and w; € F} ' the round function
computes

Ry, () := x + fiyy (w; + & (). a7
where

* By is defined as in Eq. (8),
* fp@ is defined as

fotiy Tyt = Fy
fb(i)(xl, .o .,xn_l) = gb(i)(xl, oo .,XS) + h(x6, .o .,xn_l)

* g, is defined by its truth table in hexadecimal form: 00071356, and g; as
8o + 1’
* his defined as
h:Fi®—TF,
h(x1,...,x,—¢) == {(x[1:n/2—3],x[n/2—2:n—6]).

* and b(i) is 0 if i < 5 and 1 otherwise.
. J

The n-bit instance of WISENT iterates 3n rounds of the above specified round function,
using the same key schedule as Bison.

Security Claim 2 (WisENT). We claim n-bit security for wisenT in the single-key model. We
emphasise that we do not claim any security in the related-key, chosen-key or known-key
model.

Several of the cryptanalysis results of Bison directly translate to WISENT, as we discuss
in the following section.

8.2 Security Analysis of WISENT

We first look at the bound for differential cryptanalysis, derived from Lemma 8, before
discussing other attacks. The only difference for these other attacks occur for linear
cryptanalysis, which we thus discuss at the end of this section.

30 BISON - Instantiating the Whitened Swap-Or-Not Construction

8.2.1 Differential Cryptanalysis

For Lemma 8 we need to bound the absolute indicator of f;. A helpful observation on the
direct sum construction is the following.

Lemma 12 (Properties of direct sums). Let f : F} x F)' — F, be of the form f(x,y) =
g(x) +h(y). Then the following properties hold:

1. f(a,B)=g(a) h(p),
2' Af(a:ﬁ) = Ag(a) : Ah([j)l
3. M(f)=max{2™ - M (g),2" - M (h)}.

Proof. We can simply compute f’s Fourier coefficient as

f(a, B)= Z (_1)<a’x>+(/5,J’)+f(XJ) — Z (_1)(a,x>+g(x)+</3’)’>+h(J’) =3(a) ,ﬁ(ﬂ))

X€F},y€EFY x,y

The second statement follows analogously to the first.
For the third statement recall the definition of the absolute indicator

M(f)= max | A ()] -
Thus for a direct sum, we have

M= max |A(ap)

because of the first property and the fact that A,(0) > M (g) for any function g, it further
holds that

= max{r;;%(!Af(O,/a’) ,rg%(}Af(a, O)|}

= max {1’(11172())(!Ag(a) - A,(0) ,I/Ijl;lg(}Ag(o) . Ah(ﬁ){}

which is why the second statement is true. %
Thus for the above f;, we get
M (fl) = 2n76 . M (gl) — 2“*6 . 23 — 2n73 .

From Lemma 8 the EDP of wWisENT with r = n rounds is bound by
EDP(a, 8) < (1 +27" max M (fy))nl
P2 1<i<n @
which is in the case of WISENT

1 . s n—1 1 1 n—1
=(=+27.2 =l=+=] .
2 2 8

Experimental results show the expected behaviour for wisENT’s DDT, see Figure 6.

8.2.2 Higher-Order Differentials and Algebraic Attacks

Our analysis of the algebraic degree of BisoN does not exploit any details of the Boolean
functions f;, but is independent of the exact choice for them. Thus, our results also apply to
WISENT, which is why we also choose 3n rounds for this instance.

A. Canteaut, V. Lallemand, G. Leander, P. Neumann, and F. Wiemer 31

0 10 20 30 40 50 60 0 10 20 30 40 50 60
0 lw‘uH\HH\\Hl\HhHH\H\HMHHMHHMHHMHHhw\muhwhmj 0 _h‘m\\HH\\Hl\Hhm\\\HHMHHMHHMHHhHHhw\umhw\wj
", - 8 5 - 8 | 60
E " . g ; -| 50
E e d d
2] : . S0
30 | e s s
a E - .. d ", E !7 30
w0 3 ; - ¢
E T E “a E 5120
50 5 E50 = E
= E 3 E - 10
60 | 60 e
R SIS —o— 0

Figure 6: WISENT’s DDT for n = 6, k = 13 averaged over w (left) resp. fixed w = k (right).

8.2.3 Impossible Differentials and Zero Correlation Attacks

Analogously, the generic analysis of the WSN construction and Bison-like instances show
that there are no impossible differentials for more than n rounds, and no zero correlation
attacks for 2n or more rounds.

8.2.4 Invariant Attacks

Here, too, our argument does not depent on the exact choice of the Boolean functions f;,
and thus the argument by Beierle et al. [Bei+17] holds again.

8.2.5 Linear Cryptanalysis

While we can follow the same strategy as for Bison (bounding the Fourier coefficient of a
single trail by first computing the one round coefficients and then using Proposition 5 for
more rounds), we need to slightly adjust the proof for the new Boolean functions.

Proposition 8. Let Ry, : F;, — F7, be wisent’s round function as defined in Eq. (17). Then its
LAT entries are bounded by

on ifa=pand (f,k) =0
Rin(a, p) < { £25+2 y}gaéﬁf’(”dm %2% d(B,k)=1

0 otherwise

Proof. The proof is analogous to Proposition 4, with two small changes in Egs. (12) and (13).
First, for the case a = and (8, k) = 1, we have

Ron(a,a)=2- > (1Y) =2.f(0)

y’E]Fg_l
due to Lemma 12 this is
=2.42"7 . 5(0) = £2872.12 < £25%2 |

Second, for the case a # 3, (a+ f,k) =0, and (8,k) =1, it is

Ren(@,B)=2- (1)) . F(@(a+ B))

32 BISON - Instantiating the Whitened Swap-Or-Not Construction

Table 2: Performance of our 128-bit wisENT implementation on an INTEL CORE 17-8700 cPU,
running at 3.7 GHz. Cycles per byte are measured for 1 000 000 runs, HYPER-THREADING
and TurBo-BoosT were disabled.

Block size Code size Cycles per byte
(bit) (byte) median mean o
128 683 23920 24392.32 1482.97

which can be bounded, with y = &,(a+)[1:5], by

Rew(a, p) =2+ (D)) F(@,(a + B))
= 42372, 5(y) S £2372.12 < £2572

The other cases are as in Proposition 4. @

To use this for an upper bound for the absolute correlation of any non-linear trail
over more rounds, we can simply adjust Proposition 5 with the new bound for one round,
resulting in 27272 as the maximal absolute correlation.

8.3 Implementation Aspects of WISENT

Basically the same points as for BIsoN’s implementation also apply to wisENT. Its round
function is involutory, the key schedule is the same as for Bison (thus, the same polynomials
can be used), and the same high number of rounds lead to a very slow implementation, see
also Table 2. Again, for comparison and test reasons, we provide testvectors, see Appendix D.
We implemented WISENT in SAGEMATH (Appendix F) and c (Appendix H).

9 Conclusion

Efficiency of symmetric ciphers have been significantly improved further and further, in
particular within the trend of lightweight cryptography. However, when it comes to arguing
about the security of ciphers, the progress is rather limited and the arguments basically
did not get easier nor stronger since the development of the AES. In our opinion it might
be worth shifting the focus to improving security arguments for new designs rather than
(incrementally) improving efficiency. We see BIsoN as a first step in this direction.

With our instance for the WSN construction and its strong resistance to differential
cryptanalysis, this framework emerges as an interesting possibility to design block ciphers.
Unfortunately, we are not able to give better then normal arguments for the resistance to
linear cryptanalysis. It is thus an interesting question, if one can find a similar instance
of the WSN construction for which comparable strong arguments for the later type of
cryptanalysis exist.

Alternative designs might also be worth looking at. For example many constructions for
bent functions are known and could thus be examined as alternatives for the scalar product
used in BISoN. One might also look for a less algebraic design — but we do not yet see how
this would improve or ease the analysis or implementation of an instance.

Another line of future work is the in-depth analysis of implementation optimizations
and side channel-resistance of BISON.

A. Canteaut, V. Lallemand, G. Leander, P. Neumann, and F. Wiemer 33

Acknowledgments

We would like to thank Christof Beierle for helpful comments, Peter Schwabe for helping
with the benchmarks, and Lucas Hartmann for the artistic design of BIsoN.

References

[Abd+12]

[And+13]

[BKO9]

[BN16]

[BP15]

[BS91]

[Bei+17]

[Bir+09]

[Bog+12]

Mohamed Ahmed Abdelraheem, Martin f\gren, Peter Beelen, and Gregor
Leander. “On the Distribution of Linear Biases: Three Instructive Examples.”
In: CRYPTO 2012. Ed. by Reihaneh Safavi-Naini and Ran Canetti. Vol. 7417.
LNCS. Springer, Heidelberg, Aug. 2012, pp. 50-67. po1: 10.1007/978-3-642-
32009-5_4.

Elena Andreeva, Andrey Bogdanov, Yevgeniy Dodis, Bart Mennink, and John
P. Steinberger. “On the Indifferentiability of Key-Alternating Ciphers.” In:
CRYPTO 2013, Part 1. Ed. by Ran Canetti and Juan A. Garay. Vol. 8042. LNCS.
Springer, Heidelberg, Aug. 2013, pp. 531-550. po1: 10.1007/978-3-642-
40041-4_29.

Alex Biryukov and Dmitry Khovratovich. “Related-Key Cryptanalysis of the Full
AES-192 and AES-256.” In: ASIACRYPT 2009. Ed. by Mitsuru Matsui. Vol. 5912.
LNCS. Springer, Heidelberg, Dec. 2009, pp. 1-18. por1: 10.1007/978-3-642-
10366-7_1.

Céline Blondeau and Kaisa Nyberg. “Improved Parameter Estimates for Corre-
lation and Capacity Deviates in Linear Cryptanalysis.” In: IACR Trans. Symm.
Cryptol. 2016.2 (2016). http://tosc.iacr.org/index.php/ToSC/article/
view/570, pp. 162-191. 1ssN: 2519-173X. por: 10.13154/tosc.v2016.i2.
162-191.

Alex Biryukov and Léo Perrin. “On Reverse-Engineering S-Boxes with Hidden
Design Criteria or Structure.” In: CRYPTO 2015, Part I. Ed. by Rosario Gennaro
and Matthew J. B. Robshaw. Vol. 9215. LNCS. Springer, Heidelberg, Aug. 2015,
pp.- 116-140. po1: 10.1007/978-3-662-47989-6_6.

Eli Biham and Adi Shamir. “Differential Cryptanalysis of DES-like Cryptosys-
tems.” In: CRYPTO’90. Ed. by Alfred J. Menezes and Scott A. Vanstone. Vol. 537.
LNCS. Springer, Heidelberg, Aug. 1991, pp. 2-21. por1: 10.1007/3-540-
38424-3 1.

Christof Beierle, Anne Canteaut, Gregor Leander, and Yann Rotella. “Proving
Resistance Against Invariant Attacks: How to Choose the Round Constants.” In:
CRYPTO 2017, Part II. Ed. by Jonathan Katz and Hovav Shacham. Vol. 10402.
LNCS. Springer, Heidelberg, Aug. 2017, pp. 647-678. poi1: 10.1007/978-3-
319-63715-0_22.

Alex Biryukov, Dmitry Khovratovich, and Ivica Nikolic. “Distinguisher and
Related-Key Attack on the Full AES-256.” In: CRYPTO 2009. Ed. by Shai
Halevi. Vol. 5677. LNCS. Springer, Heidelberg, Aug. 2009, pp. 231-249. por:
10.1007/978-3-642-03356-8_14.

Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Francois-Xavier Standaert,
John P. Steinberger, and Elmar Tischhauser. “Key-Alternating Ciphers in a
Provable Setting: Encryption Using a Small Number of Public Permutations
- (Extended Abstract).” In: EUROCRYPT 2012. Ed. by David Pointcheval and
Thomas Johansson. Vol. 7237. LNCS. Springer, Heidelberg, Apr. 2012, pp. 45—
62. por: 10.1007/978-3-642-29011-4_5.

http://dx.doi.org/10.1007/978-3-642-32009-5_4
http://dx.doi.org/10.1007/978-3-642-32009-5_4
http://dx.doi.org/10.1007/978-3-642-40041-4_29
http://dx.doi.org/10.1007/978-3-642-40041-4_29
http://dx.doi.org/10.1007/978-3-642-10366-7_1
http://dx.doi.org/10.1007/978-3-642-10366-7_1
http://tosc.iacr.org/index.php/ToSC/article/view/570
http://tosc.iacr.org/index.php/ToSC/article/view/570
http://dx.doi.org/10.13154/tosc.v2016.i2.162-191
http://dx.doi.org/10.13154/tosc.v2016.i2.162-191
http://dx.doi.org/10.1007/978-3-662-47989-6_6
http://dx.doi.org/10.1007/3-540-38424-3_1
http://dx.doi.org/10.1007/3-540-38424-3_1
http://dx.doi.org/10.1007/978-3-319-63715-0_22
http://dx.doi.org/10.1007/978-3-319-63715-0_22
http://dx.doi.org/10.1007/978-3-642-03356-8_14
http://dx.doi.org/10.1007/978-3-642-29011-4_5

34

BISON - Instantiating the Whitened Swap-Or-Not Construction

[Bou+11]

[CR15]

[CS14]

[Can+19]

[Car07]

[DRO1]

[DRO2]

[DRO6]

[DR98]

[Dae+93]

[Dae+95]

[Dae95]

[Der+13]

[Dil72]

Christina Boura, Anne Canteaut, and Christophe De Canniére. “Higher-order
differential properties of Keccak and Luffa.” In: FSE 2011. Ed. by Antoine Joux.
Vol. 6733. LNCS. Springer, Heidelberg, Feb. 2011.

Anne Canteaut and Joélle Roué. “On the Behaviors of Affine Equivalent Sboxes
Regarding Differential and Linear Attacks.” In: EUROCRYPT 2015, Part I. Ed. by
Elisabeth Oswald and Marc Fischlin. Vol. 9056. LNCS. Springer, Heidelberg,
Apr. 2015, pp. 45-74. por: 10.1007/978-3-662-46800-5_3.

Shan Chen and John P. Steinberger. “Tight Security Bounds for Key-Alternating
Ciphers.” In: EUROCRYPT 2014. Ed. by Phong Q. Nguyen and Elisabeth Oswald.
Vol. 8441. LNCS. Springer, Heidelberg, May 2014, pp. 327-350. por: 10.1007/
978-3-642-55220-5_19.

Anne Canteaut, Virginie Lallemand, Gregor Leander, Patrick Neumann, and
Friedrich Wiemer. “bison Instantiating the Whitened Swap-Or-Not Construc-
tion.” In: EUROCRYPT 2019, Part III. Ed. by Yuval Ishai and Vincent Rijmen.
Vol. 11478. LNCS. Springer, Heidelberg, May 2019, pp. 585-616. por1: 10.
1007/978-3-030-17659-4_20.

Claude Carlet. “Boolean Functions for Cryptography and Error Correcting
Codes.” In: Boolean Methods and Models. Ed. by Yves Crama and Peter Hammer.
Cambridge University Press, 2007.

Joan Daemen and Vincent Rijmen. “The Wide Trail Design Strategy.” In: 8th
IMA International Conference on Cryptography and Coding. Ed. by Bahram
Honary. Vol. 2260. LNCS. Springer, Heidelberg, Dec. 2001, pp. 222-238.

Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The Advanced
Encryption Standard. Information Security and Cryptography. Springer, 2002.
ISBN: 3-540-42580-2. po1: 10.1007/978-3-662-04722-4.

Joan Daemen and Vincent Rijmen. “Understanding Two-Round Differentials
in AES.” In: SCN 06. Ed. by Roberto De Prisco and Moti Yung. Vol. 4116. LNCS.
Springer, Heidelberg, Sept. 2006, pp. 78-94. po1: 10.1007/11832072_6.

Joan Daemen and Vincent Rijmen. “The Block Cipher Rijndael.” In: CARDIS’98.
Vol. 1820. LNCS. Springer, 1998, pp. 277-284. pot: 10.1007/10721064_26.

Joan Daemen, René Govaerts, and Joos Vandewalle. “Block ciphers based on
Modular Arithmetic.” In: State and Progress in the Research of Cryptography.
Ed. by W. Wolfowicz. Fondazione Ugo Bordoni, 1993, pp. 80-89.

Joan Daemen, René Govaerts, and Joos Vandewalle. “Correlation Matrices.”
In: FSE’94. Ed. by Bart Preneel. Vol. 1008. LNCS. Springer, Heidelberg, Dec.
1995, pp. 275-285. po1: 10.1007/3-540-60590-8_21.

Joan Daemen. Cipher and hash function design, strategies based on linear and
differential cryptanalysis, PhD Thesis. http://jda.noekeon.org/. K.U.Leuven,
1995.

Patrick Derbez, Pierre-Alain Fouque, and Jérémy Jean. “Improved Key Re-
covery Attacks on Reduced-Round AES in the Single-Key Setting.” In: EU-
ROCRYPT 2013. Ed. by Thomas Johansson and Phong Q. Nguyen. Vol. 7881.
LNCS. Springer, Heidelberg, May 2013, pp. 371-387. por1: 10.1007/978-3-
642-38348-9_23.

John F Dillon. “A survey of bent functions.” In: The NSA technical journal 191
(1972), p. 215.

http://dx.doi.org/10.1007/978-3-662-46800-5_3
http://dx.doi.org/10.1007/978-3-642-55220-5_19
http://dx.doi.org/10.1007/978-3-642-55220-5_19
http://dx.doi.org/10.1007/978-3-030-17659-4_20
http://dx.doi.org/10.1007/978-3-030-17659-4_20
http://dx.doi.org/10.1007/978-3-662-04722-4
http://dx.doi.org/10.1007/11832072_6
http://dx.doi.org/10.1007/10721064_26
http://dx.doi.org/10.1007/3-540-60590-8_21
http://jda.noekeon.org/
http://dx.doi.org/10.1007/978-3-642-38348-9_23
http://dx.doi.org/10.1007/978-3-642-38348-9_23

A. Canteaut, V. Lallemand, G. Leander, P. Neumann, and F. Wiemer 35

[Dun+10] Orr Dunkelman, Nathan Keller, and Adi Shamir. “Improved Single-Key Attacks
on 8-Round AES-192 and AES-256.” In: ASIACRYPT 2010. Ed. by Masayuki
Abe. Vol. 6477. LNCS. Springer, Heidelberg, Dec. 2010, pp. 158-176. por:
10.1007/978-3-642-17373-8_10.

[EM97] Shimon Even and Yishay Mansour. “A Construction of a Cipher from a Single
Pseudorandom Permutation.” In: Journal of Cryptology 10.3 (June 1997),
pp.- 151-162. por1: 10.1007/s001459900025.

[Fer+01] Niels Ferguson, John Kelsey, Stefan Lucks, Bruce Schneier, Michael Stay,
David Wagner, and Doug Whiting. “Improved Cryptanalysis of Rijndael.” In:
FSE 2000. Ed. by Bruce Schneier. Vol. 1978. LNCS. Springer, Heidelberg, Apr.
2001, pp. 213-230. po1: 10.1007/3-540-44706-7_15.

[Fip] Advanced Encryption Standard (AES). National Institute of Standards and
Technology (NIST), FIPS PUB 197, U.S. Department of Commerce, Nov. 2001.

[GL15] Chun Guo and Dongdai Lin. “On the Indifferentiability of Key-Alternating
Feistel Ciphers with No Key Derivation.” In: TCC 2015, Part I. Ed. by Yevgeniy
Dodis and Jesper Buus Nielsen. Vol. 9014. LNCS. Springer, Heidelberg, Mar.
2015, pp. 110-133. por1: 10.1007/978-3-662-46494-6_6.

[GMO0] Henri Gilbert and Marine Minier. “A Collision Attack on 7 Rounds of Rijndael.”
In: AES Candidate Conference. Vol. 230. 2000, p. 241.

[Gan+06] Sugata Gangopadhyay, Pradipkumar H. Keskar, and Subhamoy Maitra. “Patterson-
Wiedemann construction revisited.” In: Discrete Mathematics 306.14 (2006),
pp. 1540-1556. por: 10.1016/3.disc.2005.06.033.

[Gra+16] Lorenzo Grassi, Christian Rechberger, and Sondre Rgnjom. “Subspace Trail
Cryptanalysis and its Applications to AES.” In: IACR Trans. Symm. Cryptol.
2016.2 (2016). http://tosc.iacr.org/index.php/ToSC/article/view/
571, pp. 192-225. 1ssN: 2519-173X. por1: 10.13154/tosc.v2016.12.192-
225.

[Gra+17] Lorenzo Grassi, Christian Rechberger, and Sondre Rgnjom. “A New Structural-
Differential Property of 5-Round AES.” In: EUROCRYPT 2017, Part II. Ed. by
Jean-Sébastien Coron and Jesper Buus Nielsen. Vol. 10211. LNCS. Springer,
Heidelberg, 2017, pp. 289-317. pot: 10.1007/978-3-319-56614-6_10.

[HT16] Viet Tung Hoang and Stefano Tessaro. “Key-Alternating Ciphers and Key-
Length Extension: Exact Bounds and Multi-user Security.” In: CRYPTO 2016,
Part 1. Ed. by Matthew Robshaw and Jonathan Katz. Vol. 9814. LNCS. Springer,
Heidelberg, Aug. 2016, pp. 3-32. por1: 10.1007/978-3-662-53018-4_1.

[Hoa+12] Viet Tung Hoang, Ben Morris, and Phillip Rogaway. “An Enciphering Scheme
Based on a Card Shuffle.” In: CRYPTO 2012. Ed. by Reihaneh Safavi-Naini and
Ran Canetti. Vol. 7417. LNCS. Springer, Heidelberg, Aug. 2012, pp. 1-13. por:
10.1007/978-3-642-32009-5_1.

[Hon+01] Seokhie Hong, Sangjin Lee, Jongin Lim, Jaechul Sung, Dong Hyeon Cheon,
and Inho Cho. “Provable Security against Differential and Linear Cryptanalysis
for the SPN Structure.” In: FSE 2000. Ed. by Bruce Schneier. Vol. 1978. LNCS.
Springer, Heidelberg, Apr. 2001, pp. 273-283. pot: 10.1007/3-540-44706-
7_19.

[JK97] Thomas Jakobsen and Lars R. Knudsen. “The Interpolation Attack on Block
Ciphers.” In: FSE’97. Ed. by Eli Biham. Vol. 1267. LNCS. Springer, Heidelberg,
Jan. 1997, pp. 28-40. por1: 10.1007/BFb0052332.

http://dx.doi.org/10.1007/978-3-642-17373-8_10
http://dx.doi.org/10.1007/s001459900025
http://dx.doi.org/10.1007/3-540-44706-7_15
http://dx.doi.org/10.1007/978-3-662-46494-6_6
http://dx.doi.org/10.1016/j.disc.2005.06.033
http://tosc.iacr.org/index.php/ToSC/article/view/571
http://tosc.iacr.org/index.php/ToSC/article/view/571
http://dx.doi.org/10.13154/tosc.v2016.i2.192-225
http://dx.doi.org/10.13154/tosc.v2016.i2.192-225
http://dx.doi.org/10.1007/978-3-319-56614-6_10
http://dx.doi.org/10.1007/978-3-662-53018-4_1
http://dx.doi.org/10.1007/978-3-642-32009-5_1
http://dx.doi.org/10.1007/3-540-44706-7_19
http://dx.doi.org/10.1007/3-540-44706-7_19
http://dx.doi.org/10.1007/BFb0052332

36

BISON - Instantiating the Whitened Swap-Or-Not Construction

[KS07]

[Kav+07]

[Kav16]

[Kra+17]

[LS15]

[Lai+91]

[Lea+11]

[MS02]

[MS90]

[MY17]

[Mat95]

[NK95]

[Nyb12]

[Nyb95]

Liam Keliher and Jiayuan Sui. “Exact maximum expected differential and linear
probability for two-round Advanced Encryption Standard.” In: IET Information
Security 1.2 (2007), pp. 53-57. po1: 10.1049/iet-ifs:20060161.

Selguk Kavut, Subhamoy Maitra, and Melek D. Yiicel. “Search for Boolean
Functions With Excellent Profiles in the Rotation Symmetric Class.” In: IEEE
Trans. Information Theory 53.5 (2007), pp. 1743-1751. po1: 10.1109/TIT.
2007.894696.

Selcuk Kavut. “Correction to the paper: Patterson-Wiedemann construction
revisited.” In: Discrete Applied Mathematics 202 (2016), pp. 185-187. 1ssN:
0166-218X. po1: 10.1016/j.dam.2015.07.044.

Thorsten Kranz, Gregor Leander, and Friedrich Wiemer. “Linear Cryptanalysis:
Key Schedules and Tweakable Block Ciphers.” In: IACR Trans. Symm. Cryptol.
2017.1 (2017), pp. 474-505. 1ssN: 2519-173X. por: 10.13154/tosc.v2017.
i1.474-505.

Rodolphe Lampe and Yannick Seurin. “Security Analysis of Key-Alternating
Feistel Ciphers.” In: FSE 2014. Ed. by Carlos Cid and Christian Rechberger.
Vol. 8540. LNCS. Springer, Heidelberg, Mar. 2015, pp. 243-264. po1: 10.1007/
978-3-662-46706-0_13.

Xuejia Lai, James L. Massey, and Sean Murphy. “Markov Ciphers and Differ-
ential Cryptanalysis.” In: EUROCRYPT’91. Ed. by Donald W. Davies. Vol. 547.
LNCS. Springer, Heidelberg, Apr. 1991, pp. 17-38. por1: 10.1007/3-540~
46416-6_2.

Gregor Leander, Mohamed Ahmed Abdelraheem, Hoda AlKhzaimi, and Erik
Zenner. “A Cryptanalysis of PRINTcipher: The Invariant Subspace Attack.” In:
CRYPTO 2011. Ed. by Phillip Rogaway. Vol. 6841. LNCS. Springer, Heidelberg,
Aug. 2011, pp. 206-221. poI: 10.1007/978-3-642-22792-9_12.

Subhamoy Maitra and Palash Sarkar. “Modifications of Patterson-Wiedemann
functions for cryptographic applications.” In: IEEE Trans. Information Theory
48.1 (2002), pp. 278-284. po1: 10.1109/18.971756

Willi Meier and Othmar Staffelbach. “Nonlinearity Criteria for Cryptographic
Functions.” In: EUROCRYPT’89. Ed. by Jean-Jacques Quisquater and Joos
Vandewalle. Vol. 434. LNCS. Springer, Heidelberg, Apr. 1990, pp. 549-562.
DOI: 10.1007/3-540-46885-4_53.

Sarah Miracle and Scott Yilek. Cycle Slicer: An Algorithm for Building Per-
mutations on Special Domains. Cryptology ePrint Archive, Report 2017/873.
http://eprint.iacr.org/2017/873. 2017.

Mitsuru Matsui. “On Correlation Between the Order of S-boxes and the
Strength of DES.” In: EUROCRYPT’94. Ed. by Alfredo De Santis. Vol. 950. LNCS.
Springer, Heidelberg, May 1995, pp. 366-375. po1: 10.1007/BFb0053451.

Kaisa Nyberg and Lars R. Knudsen. “Provable Security Against a Differential
Attack.” In: Journal of Cryptology 8.1 (Dec. 1995), pp. 27-37. por: 10.1007/
BF00204800.

Kaisa Nyberg. ““Provable” Security against Differential and Linear Cryptanal-
ysis (Invited Talk).” In: FSE 2012. Ed. by Anne Canteaut. Vol. 7549. LNCS.
Springer, Heidelberg, Mar. 2012, pp. 1-8. poi1: 10.1007/978-3-642-34047~
5 1.

Kaisa Nyberg. “Linear Approximation of Block Ciphers (Rump Session).” In:
EUROCRYPT’94. Ed. by Alfredo De Santis. Vol. 950. LNCS. Springer, Heidelberg,
May 1995, pp. 439-444. por: 10.1007/BFb0053460.

http://dx.doi.org/10.1049/iet-ifs:20060161
http://dx.doi.org/10.1109/TIT.2007.894696
http://dx.doi.org/10.1109/TIT.2007.894696
http://dx.doi.org/10.1016/j.dam.2015.07.044
http://dx.doi.org/10.13154/tosc.v2017.i1.474-505
http://dx.doi.org/10.13154/tosc.v2017.i1.474-505
http://dx.doi.org/10.1007/978-3-662-46706-0_13
http://dx.doi.org/10.1007/978-3-662-46706-0_13
http://dx.doi.org/10.1007/3-540-46416-6_2
http://dx.doi.org/10.1007/3-540-46416-6_2
http://dx.doi.org/10.1007/978-3-642-22792-9_12
http://dx.doi.org/10.1109/18.971756
http://dx.doi.org/10.1007/3-540-46885-4_53
http://eprint.iacr.org/2017/873
http://dx.doi.org/10.1007/BFb0053451
http://dx.doi.org/10.1007/BF00204800
http://dx.doi.org/10.1007/BF00204800
http://dx.doi.org/10.1007/978-3-642-34047-5_1
http://dx.doi.org/10.1007/978-3-642-34047-5_1
http://dx.doi.org/10.1007/BFb0053460

A. Canteaut, V. Lallemand, G. Leander, P. Neumann, and F. Wiemer 37

[Par+03]

[Rot76]

[Ron+17]

[TM18]

[Tes15a]

[Tes15b]

[Tod+16]

[Vaul2]

[Vau9s8]

[Wag99]

[ZZ96]

Sangwoo Park, Soo Hak Sung, Sangjin Lee, and Jongin Lim. “Improving the
Upper Bound on the Maximum Differential and the Maximum Linear Hull
Probability for SPN Structures and AES.” In: FSE 2003. Ed. by Thomas Jo-
hansson. Vol. 2887. LNCS. Springer, Heidelberg, Feb. 2003, pp. 247-260. por:
10.1007/978-3-540-39887-5_19.

Oscar S Rothaus. “On ‘bent’ functions.” In: Journal of Combinatorial Theory,
Series A 20.3 (1976), pp. 300-305.

Sondre Rgnjom, Navid Ghaedi Bardeh, and Tor Helleseth. “Yoyo Tricks with
AES.” In: ASIACRYPT 2017, Part I. Ed. by Tsuyoshi Takagi and Thomas Peyrin.
Vol. 10624. LNCS. Springer, Heidelberg, Dec. 2017, pp. 217-243. por: 10.
1007/978-3-319-70694-8_8.

Deng Tang and Subhamoy Maitra. “Construction of n-Variable (n = 2 mod 4)
Balanced Boolean Functions With Maximum Absolute Value in Autocorrelation
Spectra < 202 » In: [EEE Trans. Information Theory 64.1 (2018), pp. 393-402.
DOI: 10.1109/TIT.2017.2769092.

Stefano Tessaro. Optimally Secure Block Ciphers from Ideal Primitives. Cryptol-
ogy ePrint Archive, Report 2015/868. http://eprint.iacr.org/2015/868.
2015.

Stefano Tessaro. “Optimally Secure Block Ciphers from Ideal Primitives.” In:
ASIACRYPT 2015, Part II. Ed. by Tetsu Iwata and Jung Hee Cheon. Vol. 9453.
LNCS. Springer, Heidelberg, 2015, pp. 437-462. po1: 10.1007/978-3-662-
48800-3_18.

Yosuke Todo, Gregor Leander, and Yu Sasaki. “Nonlinear Invariant Attack - Prac-
tical Attack on Full SCREAM, iSCREAM, and Midori64.” In: ASIACRYPT 2016,
Part II. Ed. by Jung Hee Cheon and Tsuyoshi Takagi. Vol. 10032. LNCS. Springer,
Heidelberg, Dec. 2016, pp. 3-33. por: 10.1007/978-3-662-53890-6_1.

Serge Vaudenay. The End of Encryption based on Card Shuffling. CRYPTO 2012
Rump Session. crypto.2012.rump.cr.yp.to PDF Link. 2012.

Serge Vaudenay. “Provable Security for Block Ciphers by Decorrelation.” In:
STACS’98. Vol. 1373. LNCS. Springer, 1998, pp. 249-275. por: 10. 1007/
BFb0028566.

David Wagner. “The Boomerang Attack.” In: FSE’99. Ed. by Lars R. Knudsen.
Vol. 1636. LNCS. Springer, Heidelberg, Mar. 1999, pp. 156-170. po1: 10.1007/
3-540-48519-8_12.

Xian-Mo Zhang and Yuliang Zheng. “GAC — the Criterion for Global Avalanche
Characteristics of Cryptographic Functions.” In: (1996). Ed. by Hermann
Maurer, Cristian Calude, and Arto Salomaa, pp. 320-337. por: 10.1007/978-
3-642-80350-5_30.

http://dx.doi.org/10.1007/978-3-540-39887-5_19
http://dx.doi.org/10.1007/978-3-319-70694-8_8
http://dx.doi.org/10.1007/978-3-319-70694-8_8
http://dx.doi.org/10.1109/TIT.2017.2769092
http://eprint.iacr.org/2015/868
http://dx.doi.org/10.1007/978-3-662-48800-3_18
http://dx.doi.org/10.1007/978-3-662-48800-3_18
http://dx.doi.org/10.1007/978-3-662-53890-6_1
https://crypto.2012.rump.cr.yp.to/9f3046f7f8235f99aabca5d4ad7946b2.pdf
http://dx.doi.org/10.1007/BFb0028566
http://dx.doi.org/10.1007/BFb0028566
http://dx.doi.org/10.1007/3-540-48519-8_12
http://dx.doi.org/10.1007/3-540-48519-8_12
http://dx.doi.org/10.1007/978-3-642-80350-5_30
http://dx.doi.org/10.1007/978-3-642-80350-5_30

38

BISON - Instantiating the Whitened Swap-Or-Not Construction

A Polynomials for the key schedule

n pr(x) n pw(x)
129 X2+ x5 +1 128 X124 x7+x2+x+1
127 x4+ x+1 126 x120 4+ 57 + x* +x% + 1
125 X 4x7+x5+x3+x2+x+1 | 124 X244 x7 + x84 x5 +1
123 x84+ x%+1 122 X124 x0+x?+x+1
121 X121 4 x18 41 120 X120 4 x7 +x® +x® +x%+x+1
119 X109 4 x4 x1% 4+ x7 41 118 x84 xb+ x> +x%+1
117 M7 4+ x2+x+1 116 XM+ xC+ x> +x%+1
115 x4 x7+x5+x3+x2+x+1 | 114 x4 4 x19 4 x17 4 x16 41
113 X +xd+x2+1 112 xM2 452 20 4 x18 4 x17 4 x4 1
111 XM x7 +x*+x2+1 110 X104 X0yt +x+1
109 X194 x5 +xt+x2+1 108 X108 4 x22 4 x20 4 x19 41
107 x4 x7+x5+x3+x%+x+1 | 106 x106 4 x6 4 x5 +x+1
105 x4 axf 4 +xt+x?+x+1 | 104 x4 xB 4 x2 4 x84 x17 +x10 41
103 x4 x7+x>+xt+x3+x2+1 | 102 x102 4 x6 45 4 x3 41
101 x4 X7 x4 x+1 100 X100 4 x22 4 x20 4 x17 41
99 xP +x7 + x5+ x*+1 98 xB+x” +x*+x3+x%+x+1
97 x%7 +x%+1 96 x%® +x7 +xC+xt+ %+ x%+1
95 xP+x0+x+xt+xt+x+1 94 X+ xb+ xS +x+1

93 x4+ x2+1 92 X2+ x8+x° +x%+1

91 XM +x" +xb+x°+x+x%+1 90 X0+ x5 +x® +x2+1

89 X8 +x0+ x5 +x3+1 88 xB+ x4 xP x4 x84 x7+1
87 X7 +x7+x% +x+1 86 x84 x®+ x5 +x%+1

85 x84+ x20 4+ x4 x18 +1 84 x84 x4+ 1 +x10 +1
83 x8 +x7 +xt+x?+1 82 x5+ 51 + x® +x17 +1
81 x4 xt 41 80 X+ x7+ x5+ P+ x%+x+1
79 X +xt+x3+x2+1 78 X +x7+xt+x+1

77 X7+ x84+ x°+x2+1 76 X7+ +xt+x%+1

75 x4 x®+xrx+1 74 X+ x” +xt+x®+1

73 X+ xt+x3+x2+1 72 X4 x®+xt x4 x+1
71 X +x5+x3+x+1 70 X0+ x5 +x3 +x+1

69 x4+ x0+ x5 +x2+1 68 X+ x7 +x5+x+1

67 x7 + x5 +x2+x+1 66 x%® +x2+x20+x +x8+x17 +1
65 XS+ xt+xd +x+1 64 X+ xt+ P +x+1

63 X rx+1 62 X2 4 x® x5+ x3+1

61 X+ x4+ x+1 60 x4+ x+1

59 X +x0+xS+xt+xPHx+1 58 x84+ xb + x5+ x+1

57 X7+ x5+ x3+x2+1 56 X+ x7 +xt+x%+1

55 X +x®+x?+x+1 54 X+t +xt+ P +x2+1
53 P +xC+x?+x+1 52 X2 +x3+1

51 M +xb+x3 +x+1 50 0+ xt+ 3 +x2+1
49 X +x0+ x5+ x*+1 48 X®+x7+ x5+ xt+ % +x+1
47 x¥ +x5+1 46 x4+ x20 +x1 +x18 +x17 +x16 41
45 P +xt+xd+x+1 44 XM x®+ xS+ x%+1
43 x®+xb+xt+x®+1 42 x4+ +xt+x +x?+x+1
41 xM+x3 41 40 X xS xt i +1

39 X +x*+1 38 X+ xC+ xS +x+1

37 X+ +xt i +x+1 36 X0+ x0+ x5+ xt+x%+x+1
35 xB+x2+1 34 X7 x4 x4 x+1
33 xB 4 x®+xtrx+1 32 X2+ x7+ x5+ x3+x%+x+1
31 X3 +x3+1 30 X0+ xb +xt+x+1

29 x¥ +x2+1 28 B+ x3+1

27 X+ x5 +x2+x+1 26 x®+x0+x?+x+1

25 x®+x3+1 24 X+ xt+xt +x+1

23 xB+x5+1 22 x2+x+1

21 x +x2+1 20 X2 +x3+1

19 P +xS+x?+x+1 18 x84+ x5 +x2+x+1

17 x7+x34+1 16 x4+ +x+x%+1

15 X +x+1 14 xS +x+x+1

13 xBrxt+xd+x+1 12 X2 xb+xt+x+1

11 x4+ x2+1 10 x0+x3+1

A. Canteaut, V. Lallemand, G. Leander, P. Neumann, and F. Wiemer

39

9 X +xt+1
7 x7+x+1
5 x>4+x2+1

8 xS +xt+x+x2+1
6 x®+x+1
4 x*t+x+1

B DDTand LAT Figures of BISON

B.1 DT for k = 13 averaged over w (left) resp. fixed w = k (right)

10

20

25

30

10

a 15

20

25

30

20

25

30

B

0 5 10 15 20 25 30
Lo b b b b b i
n
|| |
.l " ||
| ||
|| ||
|| n
| |
|| n
| |
|| n
|| ||
| n
|| ||
| n
|| ||
n ||
| |
n ||
| |
n ||
| |
n ||
| ||
n ||
. m,
n ||
| |
n
ARARARRRARARRRARANRSARASRRARARRRARARER)
0 5 10 15 20 25 30
Lo b b b b b i
n
u
n |
n
n
ARARARRRARARREARARRSARASRRARARRRARARRN)
0 5 10 15 20 25 30
Lo b b b b b i
n

Q

]

]

B

0 5 10 15 20 25 30
Lo b b b b b i

20

25

30

1 round

B

0 5 10 15 20 25 30
Lo b b b b b i

20

25

30

2 rounds

B

0 5 10 15 20 25 30
Lo b b b b b i

20

25

|
30

3 rounds

3
.

0

3
.

0

3
.

0

32

32

32

40 BISON — Instantiating the Whitened Swap-Or-Not Construction
0 5 10 15 20 25 30 0 5 10 15 20 25 30
| | | | | | | | | | | | | |
Ot-HH\\HHHH\H\HHH\HH\Hj Ot.\\\\\\\\\\\\\\\HH\H\HHH\Hj ~— @ 32
5 N 5 N
10] B 10] B
alSé o alS; g 1 16
. g | S
2 = 24 F e
E = E = ®
25 | = 25 —| =
50 | B 50 | B
eI AAARERRARRE AR AR RAR AR R R R T T T T T T T o— 0
4 rounds
0 5 10 15 20 25 30 0 5 10 15 20 25 30
| | | | | | | | | | | | | |
Ot-HH\\HHHH\H\HHH\HH\Hj Ot.\\\\\\\\\\\\\\\HH\H\HHH\Hj -~ @ 32
5 N 5 N
10; ; 10% ;
alsé ; alSE ; — 16
2 8 2 S |
E = E = @
25 | = 25 —| =
30; ; 30% ;
AR ARARERRARRERRRRAR AR RR AR T T T T T T T T T —Oo— 0
5 rounds
0 5 10 15 20 25 30 0 5 10 15 20 25 30
0 Lo b b b b bl Lo b b b b b lig @ 32
5 N 5 N
10] E 10 - E
a15§ ; alSE ; — 16
2 8 2 Ee
E = E = e
25 | - 25 —| -
30 E 30 E
E - . - —o

6 rounds

A. Canteaut, V. Lallemand, G. Leander, P. Neumann, and F. Wiemer

41

10

a 15

20

25

30

10

20

25

30

20

25

30

B

0 5 10 15 20 25 30
Lo b b b b b i
u

ARARARRRARARRRARANRRARASRRARARRRARARAN)
0 5 10 15 20 25 30
Lo b b b b b i
u

ARAEANRRARARRRARANRRARASRRARARRRARARRN)
0 5 10 15 20 25 30
Lo b b b b b i

Q

Q

]

B

0 5 10 15 20 25 30

20

25

30

7 rounds

B

0 5 10 15 20 25 30

20
25

30

8 rounds

B

0 5 10 15 20 25 30
Lo b b b b b i

20

25

30

9 rounds

@ 32
- 16
]

D
@
(]

— o

@ 32
— 16
]

@
[]

— o

@ 32
— 16

®
®
—o

42

BISON — Instantiating the Whitened Swap-Or-Not Construction

B.2

10

20
25

30

10

20
25

30

10
a 15
20
25

30

B

0 5 10 15 20 25 30
Lo b b b b bl

.l
.-"'-.
"-.___-..
",
(AARARARRRARARRRRRRARRR ARRRNRARRRR RN
B
l...
o,
l.
LS
L
by
AARARARRRARARRRRRRARRR ARRRNRARRRREN
B
I..
I..
n
n
l..
-l
.I

B

0 5 10 15 20 25 30
L b b b b bl
0 -
E I EEE ENR
5 — I
emann
1 N Em ENE EN
15
Immmm L
T HEE NN LN
25;
S H N ENEN |
*» A ENEN
EARARRARARNARRRRNARARERRARRRARARERN]
1 round
0 5 10 15 20 25 30
L b b b b bl
0 |
. | u_u n L}
m -.:“ .- .-. -: -. -
5 n m-m .
Eal-alﬂ-ll:l-
105. ._..‘- .-.. .-
. | n_u H
m .‘. u --..-:-
L= BN L | imliBpl
1™ I-l-:.klk
20 | m__ ™ n mm N
EPI-I-I | -.
L = am " m
Im_ = n .]
1 o e e g L B
SUE n || .-.-. .
EARAEREARARNERRRARNRRARARRARRERARARERN]
2 rounds
0 5 10 15 20 25 30
L b b b b bl
0 am | n
TRNE, AT
5 ||

20

25

30

danliy

u
"

I’.!

3 rounds

LAT for k = 13 averaged over w (left) resp. fixed w = k (right)

32

32

32

A. Canteaut, V. Lallemand, G. Leander, P. Neumann, and F. Wiemer

43

10

a 15

20

25

30

10

a 15

20

25

30

10

a 15

20

25

30

B

0 5 10 15 20 25 30
Lo b b b b bl
n
| |
|
||
|
n
n
||
n
n
|
n
(AARARRRARARNERRARNARARRERRARRRRRRRRREE
0 5 10 15 20 25 30
Lo b b b b bl
||
n
n
||
n
n
| |
n
(AARARRRABAANERRARNARARERRARRNRRRRAREE
0 5 10 15 20 25 30
Lo b b b b bl
n
n
n
n

20

25

30

B

0 5 10 15 20 25 30
J_\H\\\H\HMHHMHHMHH\H\H\H

4 rounds

20

25

30

B

0 5 10 15 20 25 30
J_\H\\\H\HMHHMHHMHH\H\H\H

r.. l"-_l-l'

a‘? a*

a-%'&

5 rounds

20

25

30

B

0 5 10 15 20 25 30
J_\H\\\H\HMHHMHHMHH\H\H\H

e
?'-hﬁfr'rf

n -
II

k.

ST

H\\HH\HW\‘H\H‘H\H‘H\H\H\H\

6 rounds

32

-16

32

32

44 BISON — Instantiating the Whitened Swap-Or-Not Construction

0 5 10 15 20 25 30 0 5 10 15 20 25 30
| | | | | | | | | | | | | |
o i.\\\\\ UL L L] Hj o t \HH-\¥ IR H.\H H\H-H — @ 32
| i | :.F_ ol o
5 = 5 - .Jf
] B 5;'-.-:'2" . $|”
10 - 10 Bm o=
] B | iy e iy ~ I3
] - 1 ', i o
15 - 15 m o
a] B a 18 l- 1 ik hl; 0
. - B - -l" li
20 | - 20 Ly | .I-. .:..j
i - B] -
25 | - 25 | fl I— ol - o e
E - : an" m o, m
S) T il
:\\\\\\\\\\H\\\H\\\HH\H\H\HH\\H: :\H\\H.\H\HH\\\HH\H\H\H\H\H: @ 32
7 rounds
0 5 10 15 20 25 30 0 5 10 15 20 25 30
| | | | | | | | | | | | | |
Oi.\\\\\\\\\\\HHHH\\HH\HHHT Ot \HH\HH\HH\HH\HHHH\HT — @ 32
5 - - 5 - -
i i i S S L
10 | - 10 | -
g g | S 1
a 15 Eooa 15 - o
20 2 20 2
25 | B 25 | B e
30 - B 30 B
R R RN E RN ERREREERE R EE R R R RN RRERERREREEEE R EERE R nnd @ 32
8 rounds
0 5 10 15 20 25 30 0 5 10 15 20 25 30
0i.‘\\\\\‘\\\H‘H\H‘H\H‘H\H‘HH\‘H? 0ta\l\\\\‘\HH‘\HH‘\HH‘H\H‘HH\‘Hj @ 32
E - B E-] -
g - R] . HI .
5 | sj‘I J..: u e
. -] | L - — 16
E -] - m [
- o e
| i i e oY ol
a Foa v - mm - o
E - = ﬂ -1... -
20 | - 20 —| |] -
E - B | LN S
E - :..l- | IS | :1 - | 16
25 = 25 - " i L:}
SRS L
RN ARAARERRARRERRRRAR AR RR AR R AR ARARERRARRERRARAR AR RR AR RN @ 32
9 rounds

C Testvectors for BISON

Testvectors for n = 129, k, = w, = k, and r = 387 rounds, p plaintext, and c¢ ciphertext.
The polynomials used are p;(x) = x'?° + x> + 1, and p,,(x) = x*28 + x7 + x2 + x + 1.
1. p= 0x000000000000000000000000000000000
k = 0x000000000000000000000000000000001
¢ = 0x181cc4852868b2821895e250£296401d6

A. Canteaut, V. Lallemand, G. Leander, P. Neumann, and F. Wiemer

45

2.

p=
k =

0x000000000000000000000000000000001
0x000000000000000000000000000000001
0x031£e824e9ca7792006399496a1c£9252

= 0Ox0Odeadbeefdeadbeefdeadbeefdeadbeef

= 0x000000000000000000000000000000001

0x1d3£48720538f0a3a0e2ca7b4491aeb587

= 0x000000000000000000000000000000000

= 0x0Odeadbeefdeadbeefdeadbeefdeadbeef

0x1c4100a60bf60e6b777b62f7b0clabbc2

= 0x000000000000000000000000000000001
= 0Ox0Odeadbeefdeadbeefdeadbeefdeadbeef

0x156b4215ca4587d821c9681761d6dalbe

= 0Ox0Odeadbeefdeadbeefdeadbeefdeadbeef
= 0Ox0Odeadbeefdeadbeefdeadbeefdeadbeef

0x03cbcbfb9ceObd2ee33890aaed0ab676£f3

= 0x0730b82b57fa8c9213a03052042d1198
= 0x000000000000000000000000000000001

0x0Odeadbeefdeadbeefdeadbeefdeadbeef

= 0x14e95b7c90aa803d1209c040aa05ab335
= 0Ox0Odeadbeefdeadbeefdeadbeefdeadbeef

0x0deadbeefdeadbeefdeadbeefdeadbeef

Additional intermediate results are listed in Table 4.

Table 4: Testvectors with intermediate results for n = 129, k, = w, = 0x0deadbeefdeadbeefdeadbeefdeadbeef, p = x, = 1. The used polynomials

are pp(x)=x"+x°+1,and p,(x) = x> +x" +x* + x + 1.

i i ki wi < Xit+1

0 0x0000()000001 0x0 £ 1 £ f 0; f £ £ £ 0x00000000000000000000000000000001 0x00000000000000000¢)00001

1 0x0000()000000000001 0x1bd5b7ddfbd5b7ddfbd5b7ddfbd5b7dde 0xbd5b7ddfbd5b7ddfbd5b7ddfbd5b7d59 0x80000000000000000000000000000043 0x0000000000000000¢)00001

2 0x00000C)000000000000000001 0x17ab6bbf7ab6fbbf7ab6fbbf7ab6fb9d 0x7ab6fbbf7ab6fbbf7ab6fbbf7ab6fa3s 0xc0000000000000000000000000000062 0x000000C)000001

3 0x0()00000000000001 0x0£56d£77ef56df77ef56df77ef56df71b 0x£56df77ef56df77ef56df77ef56df46a 0x60000000000000000000000000000031 0x0£56df77ef56df77ef56df77ef56df71a

4 0x0f56df77ef56df77ef56df77ef56df71a Oxleadbeef f dbeefdeadbee36 0; dbeefdeadbeefd £ dbe85. 0xb000000000000000000000000000005b 0x11fb619831fb619831fb619831fb6192c

5 0x11fb619831fb619831fb619831fb6192¢c 0x1d5b7ddfbd5b7ddfbd5b7ddfbd5b7dc4d 0xd5b7ddfbd5b7ddfbd5b7ddfbd5b7d021 0:)0000000000000000006: 0x11fb619831fb619831fb619831fb6192¢

6 0x11fb619831fb619831fb619831fb6192¢ 0x1ab6fbbf7ab6fbbf7ab6fbbf7ab6fb8bb 0xab6fbbf7ab6fbbf7ab6fbbf7ab6fadcs 0x6c000000000000000000000000000037 0x0b4d9a274b4d9a274b4d9a274b4d9a197

7 0x0b4d9a274b4d9a274b4d9a274b4d9al197 0x156df77ef56df77e£56df77ef56d£7157 0x56df77ef56df77ef56df77ef56df410d 0xb6000000000000000000000000000058 0x1e206d59be206d59be206d59be206d0cO

8 0x1e206d59be206d59be206d59be206d0cO OxOadbeefdeadbeef £ 281 Oxadbeef: £ £ 21a 0x5b00000000000000000000000000002¢ 0x1e206d59be206d59be206d59be206d0cO

9 0x1e206d59be206d59be206d59be206d0cO 0x15b7ddfbd5b7ddfbd5b7ddfbd5b7dc51e 0x5b7ddfbd5b7ddfbd5b7ddfbd5b7d04b3 0x2d800000000000000000000000000016 0x0b97b0a26b97b0a26b97b0a26b97b15de
10 0x0b97b0a26b97b0a26b97b0a26b97b15de 0x0b6fbbf7ab6fbbf7ab6fbbf7ab6fb8ald 0xb6fbbf7ab6fbbf7ab6fbbf7ab6fa0966 0x16c0000000000000000000000000000b 0x00£80b55c0£80b55c0£80b55c0£809fc3
11 0x00£80b55c0£80b55c0£80b55c0£809fc3 0x16df77ef56df77ef56df77ef56df7143a 0x6df77ef56df77ef56df77ef56df4124b 0x8b600000000000000000000000000046 0x16277cba96277cba96277cba962778bf9
12 0x16277cba96277cba96277cba962778bf9 0x0 3 £ 55 Oxdbeef £ £ 2496 0x45b00000000000000000000000000023 0x1b9993643b9993643b9993643b999a3ac
13 0x1b999: b999. 0x1b7ddfbd5b7ddfbd5b7ddfbd5b7dc50aa 0xb7ddfbd5b7ddfbd5b7ddfbd5b7d049ab 0xa2d80000000000000000000000000052 0x00e44cd960e44cd960e44cd960e45£306
14 0x00e44cd960e44cd960e44cd960e45£306 0x16fbbf7ab6fbbf7ab6fbbf7ab6fb8al75 0x6fbbf7ab6fbbf7ab6fbbf7ab6fa093d1 0x516c0000000000000000000000000029 0x00e44cd960e44cd960e44cd960e45£306
15 0x00e44cd960e44cd960e44cd960e45£306 0x0df77ef56df77ef56df77ef56df7142chb 0xdf77ef56df77ef56df77ef56df4127a2 0xa8b60000000000000000000000000057 0x00e44cd960e44cd960e44cd960e45£306
16 0x00e44cd960e44cd960e44cd960e45£306 Ox1beefdeadbeef £ 8596 Oxbeef £ £ 24fc3 0xd45b0000000000000000000000000068 0x1b0ab133bb0ab133bb0ab133bb0a77690
17 0x1b0ab133bb0ab133bb0ab133bb0a77690 0x17ddfbd5b7ddfbd5b7ddfbd5b7dc50b0d 0x7ddfbd5b7ddfbd5b7ddfbd5b7d049£01 0x6a2d8000000000000000000000000034 0x0cd74ae60cd74ae60cd74ae60cd627d9d
18 0x0cd74ae60cd74ae60cd74ae60cd627d9d 0x0fbbf7ab6fbbf7ab6fbbf7ab6fb8a163b 0xfbbf7ab6fbbf7ab6fbbf7ab6fa093e02 0x%3516c00000000000000000000000001a 0x0cd74ae60cd74ae60cd74ae60cd627d9d
371 0x0aT: b1a460c265e6b20dde3f47 0x0 96 0xfad2de74b812de74b812de74b812b187 0xd49e324034f56778ec4681a6eaf3d243 0x0cedf240e87d378d03f1d84243ee65dd1
372 0x0cedf240e87d378d03f 1d84243ee65dd1 0x0d3d2c52c6670c52c6670c52c6670c52¢ 0xf485bce97025bce97025bce970256389 0xeadf19201a7ab3bc762340d37579e962 0x0cedf240e87d378d03f1d84243ee65dd1
373 0x0cedf240e87d378d03f1d84243ee65dd1 0Oxla7a58ab8ccel8ab8ccel8ab8ccel18a58 0xe90b79d2e04b79d2e04b79d2e04ac795 0x75278c900d3d59de3b11a069babcf4bl 0x0cedf240e87d378d03f1d84243ee65dd1
374 0x0cedf240e87d378d03f1d84243ee65dd1 0x14f4b14b199¢314b199¢314b199c31491 0xd216£3a5c096£3a5c096£3a5c0958fad 0xba93c648069eacef1d88d034dd5e7alb 0x0cedf240e87d378d03f1d84243ee65dd1
375 0x0cedf240e87d378d03f1d84243ee65dd1 0x09e96296. 6296333862963 6290. 0xa42de74b812de74b812de74b812b1fdd 0xdd49e324034£56778ec4681a6eaf3dde 0x0cedf240e87d378d03f1d84243ee65dd1
376 0x0cedf240e87d378d03f1d84243ee65dd1 0x13d2c52c6670c52c6670c52c6670c5206 0x485bce97025bce97025bce9702563£3d 0x6eadf19201a7ab3bc762340d37579eaT 0x1£3£376c8e0df2a165811d6e259ea0fd7
377 0x1£3f376c8e0df2a165811d6e259ea0fd7 0x07ab8ab8ccel8ab8cce18ab8ccel8ad2d 0x90b79d2e04b79d2e04b79d2e04ac7e7a 0xb75278c900d3d59de3b11a069babcf10 0x1892abd3442ec78£9a9609736e97f2abfa
378 0x1892bd3442ec78£929609736e97f2abfa 0x0£4b14b199c314b199¢314b199c31485a 0x216£3a5c096£3a5: £3a5c0958£c73 0: 48069 £1d88d034dd5e788 0x17d12985db2f6c4830a3838770bc3e3a0
379 0x17d12985db2f6c4830: 70b 0 0x1e96296. 6296, 6296. 6290b4 0x42de74b812de74b812de74b812b1£8e6 0x2dd49e324034£56778ec4681a6eaf3cd 0x094780e6e829452b0325aae4433a17314
380 0x094780 'b0325aae44. 17314 0x1d2c52c6670c52c6670c52c6670c52149 0x85bce97025bce97025bce9702663f 1cc 0x16ea4f19201a7ab3bc762340d37579e2 0x094780e6e829452b0325aae4433a17314
381 0x094780e6e8a9452b0325aae4433a17314 0x1a58a58ccel8ab8ccel8ab8ccel18a42b3 0x0b79d2e04b79d2e04b79d2e04ac7e31f 0x0b75278c900d3d59de3b11a069babcf1 0x131£2656a26ble0a7cd3d0f688d22b31a7
382 0x131£256a26ble0a7cd3d0f688d22b31a7 0x14b14b199c314b199c314b199c3148547 0x16£3a5c096£3a5c096£3a5c0958fc63e 0x85ba93c648069eacef1d88d034dd5e3b 0x07ae6e73ba80abbe510c44711113fbdel
383 0x07ae6e73ba80abbe510c44711113fb4de0 0x096: 3386290aaf 0x2de74b812de74b812de74b812b1£8c7c 0xc2dd49e324034£56778ec4681a6eafbe 0x07ae6e73ba80abbe510c44711113fbde0
384 0x07ae6e73ba80abbe510c44711113fb4de0 0x12¢52c6670c52c6670c52c6670c52155¢e 0x5bce97025bce97025bce9702563£18£8 0x616ea4£19201a7ab3bc762340d3757af 0x156b4215ca4587d821c9681761d6dalbe
385 0x156b4215ca4587d821c9681761d6dalbe 0x058a58ccel8ab8ccel8ab8ccel8a42a9d 0xb79d2e04b79d2e04b79d2e04ac7e31£0 0xb0b75278c900d3d59de3b11a069bab94 0x156b4215ca4587d821c9681761d6dalbe
386 0x156b4215ca4587d821c9681761d6dalbe 0x0b14b199c314b199¢314b199c3148553a 0x6£3a5c096£3a5: £325c0958£c6367 48069 £1d88d034dd5ca 0x156b4215ca4587d821c9681761d6dalbe

514

nuelsu] — NOSId

ne

D J0N-10-dems paualyp 2y3 Su

uonodINIIsuo

A. Canteaut, V. Lallemand, G. Leander, P. Neumann, and F. Wiemer 47

D Testvectors for WISENT

Testvectors for n = 128, k, = w, = k, and r = 384 rounds, p plaintext, and c¢ ciphertext.
The polynomials used are p;(x) = x'2® + x” + x2+ x+1, and p,,(x) = x*?” + x + 1.
1. p= 0x00000000000000000000000000000000
k = 0x00000000000000000000000000000001
¢ = 0x601173d1cbd0c64£174f1fe24b67b8df

2. p = 0x00000000000000000000000000000001
k = 0x00000000000000000000000000000001
¢ = 0x8e5ed061bceb8e9c102398811401e6ea

3. p= Oxdeadbeefdeadbeefdeadbeefdeadbeef
k = 0x00000000000000000000000000000001
¢ = 0xfb2590882a98736f1f28ed25£81a8439

4. p = 0x00000000000000000000000000000000
k = Oxdeadbeefdeadbeefdeadbeefdeadbeef
¢ = 0x6edfffe3ad79e09d3350ef39a6f7ccbb

5. p = 0x00000000000000000000000000000001
k = Oxdeadbeefdeadbeefdeadbeefdeadbeef
¢ = 0xd563b578fcd30c35e835f48aabl24eaa

6. p = Oxdeadbeefdeadbeefdeadbeefdeadbeef
k = Oxdeadbeefdeadbeefdeadbeefdeadbeef
¢ = 0xcb2e95c271764e49cb9ab7f69£9fb9chb

7. p= 0xd9a01703fe4fc43ebea093fddbdc0d83
k = 0x00000000000000000000000000000001
¢ = Oxdeadbeefdeadbeefdeadbeefdeadbeef

8. p = 0xc977dd753264551d917b6d8eal7aef90
k = Oxdeadbeefdeadbeefdeadbeefdeadbeef
¢ = Oxdeadbeefdeadbeefdeadbeefdeadbeef

Additional intermediate results are listed in Table 5.

Table 5: Testvectors with intermediate results for n = 128, k, = wy, = Oxdeadbeefdeadbeefdeadbeefdeadbeef, p

are pi(x) =x2+x” +x2+ x+1, and p,,(x) = x'¥” + x + 1.

= xo = 1. The used polynomials

i Xi ki wi ¢ Xit1
0 0x0000000000000000000000¢ 1 0. £ £ £ 3 0x5eadb: 3 3 £ 0x00000000000000000000000000000001 0x()0000000000000000000001
1 0x000000000000000000000(1 0xbd5b7ddfbd5b7ddfbd5b7ddfbd5b7d59 0x3d5b7ddfbd5b7ddfbd5b7ddfbd5b7ddd 0x4(10000000¢)0)1 0xbd5b7ddfbd5b7ddfbd5b7ddfbd5b7d58
2 0xbd5b7ddfbd5b7ddfbd5b7ddfbd5b7d58 0x7ab6fbbf7ab6fbbf7ab6fbbf7ab6fa3s 0x7ab6fbbf7ab6fbbf7ab6fbbf7ab6fbba 0x6()0000000¢ 100000001 0xbd5b7ddfbd5b7ddfbd5b7ddfbd5b7d58
3 0xbd5b7ddfbd5b7ddfbd5b7ddfbd5b7d58 0xf56df77ef56df77ef56df77ef56df46a 0x756df77ef56df77ef56df77ef56df777 0x70000000000C 00001 0x48368221483682a14836822148368932
4 0x48368aa1483682a1483682a148368932 0 dbeefdeadbeefd dbe85. 0x6a dbeefdeadb d)00001 0xa2ed645 d645ca2ed645ca2ed6161
5 Oxa2ed645ca2ed645ca2ed645ca2ed6161 0xd5b7ddfbd5b7ddfbd5b7ddfbd5b7d021 0x55b7ddfbd5b7ddfbd5b7ddfbd5b7ddd9)1 0x775ab9a7775ab9a7775ab9a7775ab140
6 0x775ab9a7775ab9a7775ab9a7775ab140 0xab6fbbf7ab6fbbf7ab6fbbf7ab6fadcs 0x2b6fbbf7ab6fbbf7ab6fbbf7ab6fbbbl)01 0xdc350250dc350250dc350250dc351185
7 0xdc350250dc350250dc350250dc351185 0x56df77ef56df77ef56df77e£56df410d 0x56df77ef56df77ef56df77ef56df7762)01 0xdc350250dc350250dc350250dc351185
8 0xdc350250dc350250dc350250dc351185 Oxadbeef £ £ 21a 0x2dbeef £ £ 7 0x7£8000000000¢)000001 0x718bed8e718bed8e718bed8e718b939f
9 0x718bed8e718bed8e718bed8e718b939f 0x5b7ddfbd5b7ddfbd5b7ddfbd5b7d04b3 0x5b7ddfbd5b7ddfbd5b7ddfbd5b7ddd8e 0x7£c000000000¢ 000001 0x718bed8e718bed8e718bed8e718b939f
10 0x718bed8e718bed8e718bed8e718b939f 0xb6fbbf7ab6fbbf7ab6fbbf7ab6fa0966 0x36£bbf7ab6fbbf7ab6fbbf7ab6fbbblf 0x7£e00000000000000000000000000001 0xc77052£4c77052f4c77052f4c7719af9
11 0xc77052£4c77052f4c77052f4c7719af9 0x6df77ef56df77ef56df77ef56df4124b 0x6df77ef56df77ef56df77ef56df7763e 0x7££000000000()000001 0xc77052£4c77052f4c77052f4c7719af9
12 0xc77052f4c77052f4c77062f4c7719af9 Oxdbeefdeadbeefdeadbeefdeadbe82496 0Ox5beef £ £ 7f 0x7££8C D0000(0000001 Ox1c9eafielc9eafieic9eaflelc99bebf
13 Ox1ic9eaflelc9eaflelc9eaflielc99bebf 0xb7ddfbd5b7ddfbd5b7ddfbd5b7d049ab 0x37ddfbd5b7ddfbd5b7ddfbd5b7ddd8fd 0x7ffcC 0001 Ox1c9eafielc9eaflelic9eaflelc99bebf
14 Ox1ic9eaflelc9eaflelc9eaflelc99bebf 0x6fbbf7ab6fbbf7ab6fbbf7ab6fa093d1 0x6fbbf7ab6fbbf7ab6fbbf7ab6fbbbifa 0x7££e000000(0001 0x732558b5732558b57. b573392dbe
15 0x732558b5732558b5732558b573392dbe 0xdf77ef56df77ef56df77ef56df4127a2 0x5£77ef56df77ef56df77e£56df7763£7 0x7£££00(1 Oxac52b7e3ac52b7e3acb2b7e3ac780alc
16 Oxacb52b7e3ac52b7e3ac52b7e3ac780alc Oxbeefdeadbeefdeadbeefdeadbe824fc3 Ox3eef deadbeef Ted 0x7£££800000¢)0001 Oxac52b7e3ac52b7e3ac52b7e3ac780alc
17 Oxacb2b7e3ac52b7e3ac52b7e3ac780alc 0x7ddfbd5b7ddfbd5b7ddfbd5b7d049£01 0x7ddfbd5b7ddfbd5b7ddfbd5b7ddd8fda 0x7£££c000000000000000000000000001 0xd18d0ab8d18d0ab8d18d0ab8d17c951d
18 0xd18d0ab8d18d0ab8d18d0ab8d17c951d 0xfbbf7ab6fbbf7ab6fbbf7ab6fa093e02 0x7bbf7ab6fbbf7ab6fbbf7ab6fbbb1fb7 0x7£££e000000000000000000000000001 0xd18d0ab8d18d0ab8d18d0ab8d17c951d
368 0xb25e9247dbec2b0acf0ad3b58fadel7d 0x3f485bce97025bce97025bce97025620 0x1557616e7f8f616e7f8f616e7f8f616e 4 0x8d16c9894 70c45808887b18afb75d
369 0x8d16c9894cee70c45808887b18afb75d 0x7e90b79d2e04b79d2e04b79d2e04ac40 Ox2aaec2dcfflec2dcfflec2dcfflec2dc 0x8d16c9894cee70c45808887b18afb75d
370 0x8d16c9894cee70c45808887b18afb75d 0xfd216£3a5c096£3a5c096£3a5c095880 0; 3d85b8 0: 0x7037a6b310e71ffe0401e74144a6efdd
371 0x7037a6b310e71ffe0401e74144a6efdd 0xfa42de74b812de74b812de74b812b187 0x2abb0b73£c7b0b73£c7b0b73£c7b0b73 0x1 0x7037a6b310e71ffe0401e74144a6efdd
372 0x7037a6b310e71ffe0401e74144a6efdd 0x£485bce97025bce97025bce970256389 0x557616e7£8£616e7f8£616e7£8f616e6 0x4 0x84b21a5a60c2a31774245ba834838c54
373 0x84b21a5a60c2a31774245ba834838c54 0xe90b79d2e04b79d2e04b79d2e04ac795 Ox2aec2dcfflec2dcfflec2dcfflec2dcf 0: 4 0x6db! dac5946£227ad4c94bcl
374 0x6db963888089dac5946f227ad4c94bcl 0xd216£3a5c096£3a5c096£3a5c0958fad d85b9f e3d85b9f e3d85b9 0 3 0xbfaf902d401£296054£9d1df145ccd6c
375 0xbfaf902d401£296054£9d1df145ccd6c 0xad2de74b812de74b812de74b812b1fdd 0x2bb0b73£c7b0b73£c7b0b73fc7b0b73f 0x1 0xbfaf902d401£296054£9d1df145ccd6c
376 0xbfaf902d401£296054f9d1df145cc46¢ 0x485bce97025bce97025bce9702563£3d 0x57616e7£8£616e7£8f616e7f8f616eTe 0x4 b 0xf7f45ebad244e7£756a21£48160afb51
377 0xf7f45ebad244e7f756a21£48160afb51 0x90b79d2e04b79d2e04b79d2e04ac7e7a 0Ox2ec2dcfflec2dcffiec2dcffiec2dcff 0. 0x6743c39446f37ad95215826612a6852b
378 0x6743c39446f372ad952156826612a6852b 0x216£3a5c096£3a5c096£3a5c0958£c73 0; £ fe 0 0x462cf9c84f9c40855b7ab83albfe7958
379 0x462c£9c84f9c40855b7ab83albfe7958 0x42de74b812de74b812de74b812b1f8e6 0x3b0b73£c7b0b73£c7b0b73£c7b0b73ff 0x1 0x462cf9c84f9c40855b7ab83albfe7958
380 0x462c£9c84£9c40855b7ab83albfe7958 0x85bce97025bce97025bce9702563f1cc 0x7616e7£8f616e7f8f616e7£8f616e7fe 0x4 0xc39010b86a20a9f57ec6514:
381 0xc39010b86a20a9f57ec6514a3e9d8894 0x0b79d2e04b79d2e04b79d2e04ac7e31f 0x6c2dcfflec2dcfflec2dcfflec2dcfff 0 0xc39010b86a20a9f57ec6514:
382 0xc39010b86a20a9f57ec6514: 0x16£3a5c096£3a5c096£3a5c0958fc63e 3d85b9fe3d85b9f ffd 0x7 33. 0xd563b578fcd30c35e835f48aabl24eaa
383 0xd563b578fcd30c35e835f48aabl24eaa 0x2de74b812de74b812de74b812b1£8c7c 0x30b73£c7b0b73£c7b0b73£c7bOb73££9 0 0xd563b578£cd30c35 5f48aabl24eaa

514

nuelsu] — NOSId

ne

D J0N-10-dems paualyp 2y3 Su

uonodINIIsuo

- Y 7L I N U R

A. Canteaut, V. Lallemand, G. Leander, P. Neumann, and F. Wiemer

49

E SAGEMATH Implementation of BISON

Fx = GF(2)["x"]
polys = {129: Fx("x"129 + x°5 + 1"),
128: Fx("x"128 + x77 + x72 + x + 1"),
127: Fx("x"127 + x + 1"),
126: Fx("x"126 + x77 + x4 + x~2 + 1")
[...]
81: Fx("x"81 + x74 + 1")
80: Fx("x"80 + x77 + x5 + x™3 + x72 + x + 1"),
[...]
65: Fx("x"65 + x4 + x°3 + x + 1"),
64: Fx("x"64 + x74 + x73 + x + 1"),
63: Fx("x"63 + x + 1"),
62: Fx("x"62 + x"6 + x°5 + x73 + 1"),
[...]
33: Fx("x"33 + x6 + x74 + x + 1"),
32: Fx("x732 + x°7 + x75 + x73 + x72 + x + 1"),
31: Fx("x"31 + x~°3 + 1"),
[...]
5: Fx("x"5 + x72 + 1"),
4: Fx("x"4 + x + 1"),

}

class BISON:

_n
_r
_kp
_wp
_cp

def

def

def

0

0
= None
= None
= None

__init__(self, n_bits, r_rounds=None):
self._n = n_bits
if r_rounds is None:
self. _r = 3*xself._n
else:
self. _r = r_rounds

assert n_bits in polys.keys() and n_bits % 2 == 1
kp = polys[self._nl]

wp = polysl[self._n-1]

assert kp.is_primitive(), wp.is_primitive()

self._kp = companion_matrix (kp)
self._wp = companion_matrix (wp)
self._cp = companion_matrix(wp).inverse()

_bits_to_int (self, bits):

converts a list/vector of bits to the corresponding

integer. the 1lsb is at index O

return reduce(lambda acc, x: acc*2 + Integer(x),
bits[::-11, 0)

_int_to_bits(self, x, n):

wn

converts an integer x to a vector in GF(2) of at
most n bit. if the binary representation of the
integer needs more then n bits, the vector is
truncated and the most significant bits are
discarded.

e

bits = Integer(x).digits(base=2, padto=n)[:n]
return vector (GF(2), bits)

65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
9%
97
98
99

100

101

102

103

104

105

106

107

108

109

110

1

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

50

BISON — Instantiating the Whitened Swap-Or-Not Construction

def keyschedule(self, key_k, key_w, i):

def

def

def

def

one possible keyschedule for the whitened swap or

not construction.
modulo kp(x)/wp(x)

ki = (self._kp~
wi = (self._wp~
ci = (self._cp~
return ki, wi,

f_i(self, vec):

one possible f function for the whitened swap or
not construction f(x,y)

i)
i)
i)

ci

compute

* key_k
* key_w

s K_i,

W_i as x71 K,W

* vector (GF(2),

x = vec[:(self._n-1)/2]
y = vec[(self._n-1)/2:]

return x * y

phi(self, k, x)

replacement of max(.)

assert k != 0

i = list(k).index (1)
return matrix (GF(2),

x[il*k + x).delete_columns ([i]).row(0)

round (self, x,

computes the i’

key_k, key

th

not construction

nwnn

f_bit = 0 if i

ki, wi, ci = se

if self.f_i(wi + ci + self.phi(ki, x)) =

x = x + ki
else:
X = X

return x

encrypt (self, plain,

encrypts the input plain under key,
input length and number of rounds many iteration.

<=

1f

.keyschedule (key_k,

= <x,

y>

_w, i):

[1]

+ [0]*(self._n-2))

round of the whitened swap or

self._r / 2 else 1

key_k,

key_w):

key_w,

(1+f_bit):

i)

assuming n bit

TESTS:
sage: cipher = BISON(5, 10)
sage: p = randint (1, (1<<5)-1),
sage: k = randint (1, (1<<5)-1),
sage: w = randint (1, (1<<4)-1),
sage: assert p == \
..... cipher.decrypt (cipher.encrypt (\
..... p, k, w), k, w)
nnn
assert key_k != 0
state = self._int_to_bits(plain, self._n)
kvec = self._int_to_bits(key_k, self._n)
wvec = self._int_to_bits(key_w, self._n-1)

for i in range(self._r):

130
131
132
133
134
135
136
137
138
139
140
141
142
143

VW ® N U AW N e

A. Canteaut, V. Lallemand, G. Leander, P. Neumann, and F. Wiemer

51

def

state = self.round(state, kvec, wvec, i)
return self._bits_to_int(state)

decrypt (self, cipher, key_k, key_w):
decrypts the input cipher under key, assuming n bit
input length and number of rounds many iteration.
state = self._int_to_bits(cipher, self._n)
kvec = self._int_to_bits(key_k, self._n)
wvec = self._int_to_bits(key_w, self._n-1)
for i in range(self._r-1, -1, -1):
state = self.round(state, kvec, wvec, i)
return self._bits_to_int(state)

F SAGEMATH Implementation of WISENT

Fx = GF(2)["x"]

polys =

[...]

{128: Fx("x7128 + x°7 + x72 + x + 1"),
127: Fx("x~127 + x + 1"),

6: Fx("x"6 + x + 1"),
5: Fx("x"5 + x°2 + 1"),
}

class WISENT (BISON):

def

def

def

def

__init__(self, n_bits, r_rounds):

self. _n = n_bits

self._r = r_rounds

assert n_bits in polys.keys() and n_bits % 2 == 0

kp = polys([self._n]
wp = polysl[self._n-1]
assert kp.is_primitive(), wp.is_primitive()

self._kp = companion_matrix (kp)
self._wp = companion_matrix (wp)
self._cp = companion_matrix(wp).inverse()

__str__(self):
return "WSN-Instance (WISENT) with %d bits and %d rounds"
% (self._n, self._r)

g(self, a, b, c, d, e):
bf = BooleanFunction(’00071356°)
return GF(2) (bf([a,b,c,d,el))

f_i(self, vec):

x = vec[b6 : b+(self._n-6)/2]

y = vec[b+(self._n-6)/2 :]

return (x * y) + self.g(xvec[:5])

\

52 BISON - Instantiating the Whitened Swap-Or-Not Construction

G cImplementation of BISON

#include <stdbool.h>
#include <stdint.h>
#include <string.h>

1
2
3
4
5 #define N_BITS_DEFINE 1291u
6 #define N_ROUNDS (3*N_BITS_DEFINE)

7 #define W_DEFINE 0x87

8 #define K_DEFINE 0x21

9 #define C_DEFINE 0x43

11 struct key_w { uint64_t words[2]; };

12 struct key_k { uint64_t words[2]; bool msb; };
13 typedef struct key_w key_w;

14 typedef struct key_w key_c;

15 typedef struct key_k key_k;

16 typedef struct key_k state;

18 inline void copy(struct key_k* lhs,

19 const struct key_k* rhs) {

20 lhs->words [0] = rhs->words [0];

21 lhs->words [1] = rhs->words[1];

22 lhs->msb = rhs->msb;

23 }

24

25 inline void add_w(struct key_k* 1lhs,

26 const key_w* rhs) {

27 lhs->words [0] "= rhs->words [0];

28 lhs->words [1] ~= rhs->words[1];

29 }

30

31 inline void add(struct key_kx* lhs,

32 const struct key_k* rhs) {

33 lhs->words [0] ~= rhs->words [0];

34 lhs->words [1] ~= rhs->words[1];

35 lhs->msb “= rhs->msb;

36 F

37

38 void ks(key_c* c, key_wx w, key_kx k) {

39 bool test_bit0 = O0;

40 bool test_bitl = 0;

41 test_bit0 = w->words [0] >> 63;

42 test_bitl = w->words[1] >> 63;

43 w->words [0] = (w->words[0] << 1) ~ (test_bitl * W_DEFINE);
44 w->words [1] = (w->words[1] << 1) =~ test_bit0;

45

46 test_bit0 = c->words[0] & 1;

47 test_bitl = c->words[1] & 1;

48 c->words [0] = (c->words[0] >> 1) ~ ((uint64_t)test_bitl << 63) \
49 ~ (test_bit0 * C_DEFINE);

50 c->words [1] = (c->words[1] >> 1) = ((uint64_t)test_bit0 << 63);
51

52 test_bit0 = k->words[0] >> 63;

53 test_bitl = k->words[1] >> 63;

54 k->words [0] = (k->words[0] << 1) ~ (k->msb * K_DEFINE);
55 k->words [1] = (k->words[1] << 1) =~ test_bit0;

56 k->msb = test_bitl;

57}

58

59 bool f_i(const statex x) {

60 uint64_t and = x->words[0] & x->words[1];

61 uint8_t output = __builtin_popcount(and & Oxffffffff);
62 return (output + __builtin_popcount (and >> 32)) % 2;

A. Canteaut, V. Lallemand, G. Leander, P. Neumann, and F. Wiemer 53

64

65 void phi(state* x, const key_kx* k) {

66 uint8_t idx = O0;

67 uint8_t word_idx = O0;

68

69 // find index of lowest set bit in k

70 while (true) {

71 word_idx = 0;

72 if (idx == 128) {

73 if (k->msb == 1) {

74 break;

75 }

76 } else if (idx >= 64) {

77 word_idx = 1;

78 }

79

80 if (((k->words[word_idx] >> (idx - word_idx*64)) & 1) == 1) {
81 break;

82 }

83

84 idx += 1;

85 }

86

87 // test that bit in x and if it is set add

88 // key k to state x

89 bool bit_set = false;

% if (idx == 128) {

91 bit_set = x->msb == 1;

92 } else {

93 bit_set = (((x->words[word_idx] >> (idx - word_idx*64)) & 1) == 1);
94 }

95

9% if (bit_set) {

97 add(x, k);

98 }

99

100 // delete the bit from x by shifting everything

101 // higher than that bit one to the right

102 if (idx == 128) {

103 return;

104 } else if (idx >= 64) {

105 uint64_t constant = x->words[1] % (1lu << (idx-64));
106 x->words [1] = ((uint64_t)x->msb << 63) ~ ((x->words[1] constant) >> 1) \
107 ~ constant;

108 } else {

109 uint8_t bit = x->words[1] & 1;

110 x->words [1] = ((uint64_t)x->msb << 63) ~ (x->words[1] >> 1);
111 uint64_t constant = x->words[0] % (1lu << idx);
112 x->words [0] = (((uint64_t)bit) << 63) ~ ((x->words[0] comnstant) >> 1) \
113 " constant;

114 }

115 x->msb = 0;

116)

117

18 /%

119 * return the output after one round of the swap or

120 * not construction under the keys w and k, where

121 * fi_bit is either 0 or 1 and fi is f_i(x) xor fi_bit
122 */

123 void swap_or_not_round(state* X, statex*x tmp_x,

124 const key_c* c, const key_w* w,
125 const key_k* k, int i) {

126 copy(tmp_x, x);

127 phi(tmp_x, k);

128 add_w(tmp_x, w);

129 add_w(tmp_x, c);

130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146

© ® N U AW N =

54 BISON — Instantiating the Whitened Swap-Or-Not Construction

if (f_i(tmp_x) == (171i))
add(x, k);
}

VEX:
* inplace encrypts x under the keys w and k over
¥ N=3*nroudns rounds
*/
void encrypt(state* x, key_w* w, key_kx* k) {
state tmp_x;
key_c ¢ = {{1,0}};
for (size_t i = 0; i < N_ROUNDS; i++) {
swap_or_not_round(x, &tmp_x, &c, w, k,
i <= N_ROUNDS/2 ? 0 : 1);
ks (&c, w, k);

}

H cImplementation of WISENT

#include <inttypes.h>
#include <stdbool.h>
#include <strings.h>

#define N_BITS_DEFINE 1281lu
#define N_ROUNDS (3*xN_BITS_DEFINE)

struct uint128_t {
uint64_t words [2];
};

typedef struct uint128_t key_w;
typedef struct uintl28_t key_c;
typedef struct uint128_t key_k;
typedef struct uintl28_t state;

void encrypt(state* x, key_w* w, key_kx* k);

#define K_DEFINE 0x87
#define W_DEFINE 0x03
#define C_DEFINE 0x01

inline void copy(key_k* lhs, const key_k* rhs) {
lhs->words [0] = rhs->words[0];
lhs->words [1] = rhs->words[1];

inline void add(key_k* lhs, const key_k* rhs) {
lhs->words [0] ~= rhs->words[0];
lhs->words [1] "= rhs->words[1];

}

void ks(key_c* c, key_wx w, key_kx k) {
bool test_bit0O = 0;
bool test_bitl = 0;

test_bit0 = w->words[0] >> 63;

test_bitl = (w->words[1] >> 62) & 1;

w->words [0] = (w->words[0] << 1) ~ (test_bit1l

w->words [1] = (w->words[1] << 1) =~ test_bitO0

test_bit0 = c->words[0] & 1;

test_bitl = c->words[1] & 1;

c->words [0] = (c->words[0] >> 1) = ((uint64_t)test_bitl << 63) \
(test_bit0 * C_DEFINE);

c->words [1]

* W_DEFINE);
((uint64_t)test_bitl << 63);

(c->words [1] >> 1) ~ ((uint64_t)test_bit0 << 62);

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111

A. Canteaut, V. Lallemand, G. Leander, P. Neumann, and F. Wiemer

55

test_bit0 = k-
test_bitl = k-
k->words [0] =
k->words [1] =

bool g(uint8_t x) {
uint32_t trutht
return (truthta

}

bool f_i(const stat
bool g_x =

uint64_t lsword
uint64_t msword

uint64_t and =

uint8_t output
return ((output

void phi(statex* x,

uint8_t idx = 0;

uint8_t word_id

// find index o
while (true) {
word_idx =

if (idx >=
word_id

}

if (((k->wo
break;

}

idx += 1;

}

// test that bi
bool bit_set =

if (bit_set) {
add(x, k);
}

>words [0] >>
>words [1] >>
(k->words [0]
(k->words [1]

63;
63;
<< 1)
<< 1)

~ (test_bitl * K_DEFINE);
- test_bitO;

able = 0x00071356;
ble >> x) & 1;

ex x) {

((x->words [0] >> 5)
= (x->words[1] >> 2)

lsword & msword;

g(x->words [0] & ((1<<5)-1));

(x->words [1] <<

= __builtin_popcount(and & Oxffffffff);

+ __builtin_popcount (and >> 32)) %

const key_k* k) {

s

x = 0;

f lowest set bit in k

0;
64) {
x = 1;

rds [word_idx] >> (idx

t in x and if it

2) °

word_idx*64)) & 1) == 1) {

is set add key k to state x
(((x->words [word_idx] >> (idx -

word_idx*64)) & 1)

// delete the bit from x by shifting everything higher than that

// bit one to t
if (idx >= 64)
uint64_t co
x->words [1]
} else {
uint8_t bit
x->words [1]
uint64_t co
x->words [0]
~ const

return;

}

VEX:

* return the output after one round of the swap-or-not

he right
{

nstant =

= x->words [1] & 1;
= (x->words [1] >> 1);
nstant =

ant ;

x->words [1] %
= ((x->words [1] “constant) >> 1)

x->words [0] %
= (((uint64_t)bit) << 63) ~

(11u << (idx-64));

constant;

(11lu << idx);

construction

59)) & ((1lu<<61)-1);
& ((1lu<<61)-1);

1);

((x->words [0] “constant) >> 1) \

112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137

56 BISON — Instantiating the Whitened Swap-Or-Not Construction

* under the keys w and k, where fi_bit is either O or 1 and fi is
* maiorana_mcfarland(x) xor fi_bit
*/
void swap_or_not_round(state* x, state* tmp_x,
const key_c* c, const key_w* w,
const key_k* k, int i) {
copy(tmp_x, x);
phi(tmp_x, k);
add (tmp_x, w);
add (tmp_x, c);
if (f_i(tmp_x) == (171i))
add (x, k);
}

/**
* inplace encrypts x under the keys w and k over N=2*nroudns rounds
*/
void encrypt(state* x, key_w* w, key_kx* k) {
state tmp_x;
key_c ¢ = {{1,0}};

for (size_t i = 0; i < N_ROUNDS; i++) {
swap_or_not_round(x, &tmp_x, &c, w, k, i <= N_ROUNDS/2 7 0 : 1);
ks (&c, w, k);

	Introduction
	Preliminaries
	Whitened Swap-or-Not
	Boolean Functions
	Differential and Linear Cryptanalysis

	Inherent Restrictions
	Number of Rounds
	Round Function

	Differential Cryptanalysis of bison-like instances
	From One-Round Differential Characteristics
	To Differentials over more Rounds

	Specification of bison
	Round function
	Key schedule

	Security Analysis
	Linear Cryptanalysis
	Higher-Order Differentials and Algebraic Attacks.
	Other attacks

	Implementation
	wisent
	Specification of wisent
	Security Analysis of wisent
	Implementation Aspects of wisent

	Conclusion
	Polynomials for the key schedule
	ddt and lat Figures of bison
	ddt for k=13 averaged over w (left) resp. fixed w=k (right)
	lat for k = 13 averaged over w (left) resp. fixed w=k (right)

	Testvectors for bison
	Testvectors for wisent
	SageMath Implementation of bison
	SageMath Implementation of wisent
	c Implementation of bison
	c Implementation of wisent

