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Abstract. We propose an instantiation of public key encryption scheme
based on the ring learning with error problem, where the modulus is at
a byte level and the noise is at a bit level, achieving one of the most
compact lattice based schemes in the literature. The main technical chal-
lenges are a) the decryption error rates increases and needs to be handled
elegantly, and b) we cannot use the Number Theoretic Transform (NTT)
technique to speed up the implementation. We overcome those limita-
tions with some customized parameter sets and heavy error correction
codes. We give a treatment of the concrete security of the proposed pa-
rameter set, with regards to the recent advance in lattice based cryptanal-
ysis. We present an optimized implementation taking advantage of our
byte level modulus and bit level noise. In addition, a byte level modulus
allows for high parallelization and the bit level noise avoids the modu-
lus reduction during multiplication. Our result shows that LAC is more
compact than most of the existing (Ring-)LWE based solutions, while
achieving a similar level of efficiency, compared with popular solutions
in this domain, such as Kyber.

1 Introduction

Due to the rapid advances of quantum computing, the construction of crypto-
graphic schemes secure against quantum attacks (a.k.a post-quantum cryptog-
raphy) becomes an important mission in the field of cryptology. Lattice based
cryptography is one of the most promising and mature candidates for the post-
quantum migration plan of the National Institute of Standards and Technology
(NIST) [21,55]. Currently, most of the practical lattice based encryption schemes
are designed based on the Learning With Errors (LWE) problem, which was
initially proposed by Regev [63], and became extremely versatile in construct-
ing public key encryption schemes [61,57,45,53,14], identity based encryption
schemes [37,20,1,2] and fully homomorphic encryption schemes [18,17,38]. De-
spite of all those ground breaking applications, the main drawback remains that
they have key size at least quadratic in the main security parameter. Inspired by
the NTRU cryptosystem [40] and the ring-based short integer solution problem



[52,48], Lyubashevsky, Peikert and Regev [49,50,60] resolved this problem by
introducing an algebraic variant of LWE, namely, Ring-LWE; and showed that
its security can be reduced to worst-case problems on ideal lattices. It is worth
noting that in a concurrent and independent work, Stehlé et al. [69] also pro-
posed a special case of Ring-LWE over power-of-two cyclotomic polynomials; in
[60], it was shown that Ring-LWE problem is hard for any ring with appropriate
error distribution.

For almost all LWE based constructions, there exists an instantiation with
Ring-LWE where the size of the public key and the ciphertext can be reduced by
a factor of n, where n is the dimension of the polynomial ring. Depending on the
choice of the ring, one may also carry out the ring multiplications in O(n log n)
by using the fast Fourier transform (FFT) or number theoretic transform (NTT).
Due to its great security, utility and efficiency, Ring-LWE and its variants be-
come the most popular building-blocks in the design of practical cryptosystems
[15,8,7,16,43,66,9].

To date, the (Ring-)LWE based public key encryption schemes have arrived
at a mature state that is almost ready for deployment, except for the afore-
mentioned size problem. For the public key encryption schemes, they all follow
a similar framework by Regev [63] and Lyubashevsky et al. [49]. For the key
exchange protocols, one may use the reconciliation method, first put forth by
Ding [30], and then refined by Peikert [58], to improve efficiency.

Subsequent works, such as [15,8,16,66,9], have contributed to a large portion
of the NIST post-quantum cryptography standardization process (NIST-PQC)
[55]. As one has seen from those work, further improvement of the bandwidth
efficiency has become one of the main missions in the design of practical lattice
based cryptographic schemes.

1.1 Our Contributions

Motivation. Before presenting our contributions, let us briefly present our
motivation. For the sake of simplicity, we will use the ring R = Zq[x]/(xn + 1)
with a power-of-two n, a favorable choice by many Ring-LWE based schemes
[32,8], to illustrate our idea, although we must remark that it is shown by Peikert
et al. in [60] that Ring-LWE is hard for any ring of integers.

Intuitively, the hardness of Ring-LWE problem is mainly determined by the
error rate α (the ratio of the noise magnitude to the modulus q) and the dimen-
sion n. According to the concrete hardness analysis 1 in [6,8,5], suitable choices
of the dimension n are 29 = 512 and 210 = 1024. For these choices, q = 12289 is
the smallest prime for which q ≡ 1 mod 2n. In other words, to enable the super
efficient NTT multiplications, we have a constraint that q is at least 12289. As
a result, q = 12289 is one of the most widely used modulus for the Ring-LWE
based schemes. Almost concurrent of this paper, in the design of Kyber [16], a
smaller polynomial ring of degree n = 256 was used as the basic block of the

1 As opposite to the provable security, this is a method to obtain the bit-complexity
by looking at the cost of best known attacks, such as BKZ with quantum sieving.



Module-LWE problem. NTT over this ring is possible with a smaller modulus
q = 7681. Recently, based on a new variant of the NTT technique [51], the
modulus q = 3329 was used in the NIST-PQC second round version of Kyber,

From the view of cryptographic scheme design, this constraint is a bit arti-
ficial, in that it is purely decided by NTT, and not regulated by any security
requirement. To be more specific, the security level grows with the error rate,
which is the ratio between the error and the modulus, rather than the modulus
itself. Therefore, for the sake of space complexity, it makes sense to choose the
modulus as small as possible, while keeping the ratio somewhat a constant to
maintain a same security level.

In this paper, we investigate the above approach. We consider “byte” level
modulus. Byte is the smallest data type that modern processors handle. It seems
to be a sweet spot to balance performance, size and security. We also remark
that for moduli that are significantly smaller than 256, the performance gain
will be minimal (since processors will treat the data type as a byte anyway)
while it becomes unfeasible to find error distributions that can maintain a same
error/modulus ratio.

Parameter Derivation. There have been a sequence of work on the theoretical
worst-case hardness of Ring-LWE problems [69,49,60,65]. However, they give no
guidance on the choice of concrete parameters. Parameter derivation is an active
research topic for lattice based cryptography, for both cryptography and crypt-
analysis [22,59,4]. Arguably, most lattice based submissions to NIST-PQC follow
a similar design [49,45,30,58], and a major differentiator among the schemes is
the choices of parameters.

As mentioned earlier, we consider the family of “byte” level modulus that
breaks the constraint of NTT modulus. Specifically, we consider three types of
byte-level moduli, namely “power-of-two modulus”, “max-split modulus” and
“min-split modulus”. We then select proper secret and error distribution to
match the proposed modulus. Since the concrete security partially relies on the
error rates, to be able to sample errors efficiently becomes crucial to the overall
design. For provable security one requires discrete Gaussian samples; however,
in practice it is sufficient to sample from distributions that are close enough to
a Gaussian. We observe that centered binomial distribution with the standard
deviation of σ = 1/

√
2 is a sweet spot for security, correctness and efficiency.

To show the concrete security of our scheme, similar to other works in this
field, we perform a concrete analysis of best known attacks, using both the
popular and generic analysis such as BKZ with (quantum) sieving [6,8,5] and
hybrid attacks [41,39], as well as dedicated attacks, such as the subfield attacks,
hamming weight attacks [54] and pattern attacks [62].

Versions. Since the debut of our first proposal realizing the above methodology,
there have been two versions of parameters. The first version of our scheme was
submitted to the first round of NIST-PQC. Parameter sets for this submission



is referred to as

LAC-v1 = {LAC-128-v1, LAC-192-v1, LAC-256-v1}.

In the second round of NIST-PQC, as well as the previous version of this
paper [47], we proposed a second version of the parameter sets, addressing several
potential risks arised during the first round evaluation and the second round
evaluation [54]. Those are referred to as

LAC-v2 = {LAC-128-v2, LAC-192-v2, LAC-256-v2}.

The major change from LAC-v1 to LAC-v2 is that the secrets and the noises are
sampled from a fixed hamming weight binomial distribution; and consequently
a weaker error correction code is adopted. It was observed that LAC-v1 may be
vulnerable to side channel attacks [27] and high hamming weight attacks [54].
We moved to LAC-v2 to seal those leakage. We give a detailed analysis of those
attacks in section 5.

For completeness we list both LAC-v1/2 parameter sets in Appendix A.
In this paper/revision, we introduce a third version of the parameter set

LAC-v3 = {LAC-light-v3a, LAC-128-v3a, LAC-192-v3a, LAC-256-v3a

LAC-light-v3b, LAC-128-v3b, LAC-192-v3b, LAC-256-v3b},

in accouting for new cryptanalysis results [29,28,27,25,62]. This revision sees two
major changes. First, we present LAC-light-v3. This parameter is designed for
embedded systems such as a Cortex M4 platform. It is a variant of LAC-128-v3,
with smaller noise and weaker error corrections. Second, for each level, we have
two parameter sets, for example, LAC-128-v3a and LAC-128-v3b, corresponding
to modulus 251 and 256, respectively.

It is worth noting that the underlying algorithms remain unchanged for all
three versions of LAC parameter sets.

Error Corrections. In most lattice based schemes, dated back from one of
the first lattice based encryption schemes, NTRU [40], there exists a (tunable)
decryption error probability. One may choose a zero decryption error probability,
at the cost of a larger modulus (and hence larger keys and ciphertexts); or
a negligible one, with a moderate size modulus. See, for example [34], for a
comparison of different error correction codes for lattice based cryptography.
Our byte level modulus incurs a very high decryption error rate by design; and
simple error correction techniques, such as D2 or D4 codes [8], do not work well
in our use case.

To cope with this error growth, we encode the plaintext message with an
error correction code that supports very large block size. Generally speaking,
with the great power comes great cost: error correction code for large block sizes
brings severe efficiency penalty. We propose to use binary BCH error correction
code, which is particularly efficient, in both encoding and decoding. With BCH
code we are able to decrease the decryption error rate to a desirable level.



The main drawback of a large block error correction code is the high computa-
tion cost. To balance the time and space complexity, we choose the combination
of D2 and BCH. Briefly, the message is firstly encoded with the BCH code, then
encoded with the D2 code. In the decryption algorithm, the code words will be
corrected using D2-then-BCH method. In this approach, the error rate is sharply
decreased by D2 already, and we only need to correct a small number of errors
by using BCH. Since D2 is very efficient, the combination of D2 and a small
number of BCH error correction is sufficient for our use case while remaining
efficient.

We remark that our usage of heavy error correction mechanism has sparked
fruitful discussions which lead to advancement of cryptanalysis in the field, for
instance, see [29,28,27,25,62]. Looking ahead, our revised LAC-v3 parameter sets
are robust against all those attacks. We also note that, the choice of error cor-
rection code will not affect the theoretical security of the scheme (see Section
4.4 for more details). Our scheme in principle supports any error correction code
with required error correction ability.

Implementation. Recall that we have switched to a byte level modulus, we can
no longer resort to NTT for efficient ring multiplications. Popular alternatives
are Karatsuba/Toom-Cook algorithms, such as [11,23,26] and index based multi-
plications algorithms, such as [9]. We adopt the index based solutions, combined
with the following customized optimization for our parameters.

– Faster Multiplication. Our secrets are sampled from a centered binomial
distribution with a fixed hamming weight. No less than 50% of the secrets
are 0s. So the total number of the additive operations can be reduced by half.
Meanwhile, the polynomial multiplication is carried out without invoking in-
teger multiplications. The secrets lie in {−1, 0, 1} implies that the polynomial
multiplication can be carried out with integer additions and subtractions.

– Less Modulus Reduction. Since the modulus and the noise are both
very small, the intermediate value during the polynomial multiplication will
always be smaller than 216. When the intermediate states are stored with
uint16 t types, we only need to do a final mod operation, instead of for
each addition.

– High Parallelism. We use uint8 t to store the coefficients of the poly-
nomial. For a non-AVX computer, we use uint16 t to store intermediate
variables during the execution. This achieves a 4-way parallelism with a
64 bits register. With AVX2, we achieve 16 and 32-way parallelism using
mm256 madd epi16 and mm256 madd epi8 intrinsic, for LAC-v3a and LAC-

v3b, respectively.

Our code is publicly available at [46]. It contains two types of optimized
implementations over Intel64 platform, the first one is based on the general
64bits operations. The second solution is based on the AVX2 SIMD instructions.
The code achieve constant time execution, while being significantly faster than
previous implementations that are submitted to NIST-PQC process.



Constant time implementation. At a high level, for constant time implemen-
tations of polynomial multiplication, we used a new form of representation of
the secret vectors. Instead of storing the exact values of {−1, 0, 1}, we store the
positions of 1s, followed by −1s. Then, the polynomial multiplication can be
carried out by executing a constant number of of accumulations. In addition,
since the secret vector has a fixed hamming weight, the number of iterations is
also constant.

Compared with previous implementation, we also achieved a constant time
BCH code for LAC-v3. Previously, making BCH constant time incurs a very high
cost, in that the decoder will need to iteration for l times, where l is the maximum
number of errors. This is possible for LAC-v3 because the are significantly smaller
than that of LAC-v1/v2.

Performance improvement. In terms of improvements, a brief comparison of the
performance across three versions are listed in Table 12 (Appendix B). The main
source of the improvement comes from:

– Accumulation based polynomial multiplication. Instead of using coefficients
representation, we directly store the positions of 1 and −1 in the secret
vector. Thus the polynomial multiplications can be carried out directly by
accumulations.

– Higher parallelism and free modulus reduction with modulus q = 256. When
q = 256 the intermediate value are stored in uint8 t instead of uint16 t,
which supports 32-way parallelism based on AVX2 SIMD instructions.

– LAC-light without BCH. The decoding algorithm of BCH code is one of
the most time consuming part in our scheme. LAC-light that achieves small
decryption error rate, where D2 and parity check code is sufficient.

– An AES-NI and SIMD based pseudorandom generator. This was adopted from
[16]. It improves the previous one (adopted from openssl) by 8 times.

1.2 Comparison.

To highlight the compactness and efficiency of our scheme, we briefly compare
the performance of our scheme with Kyber [16] (detailed comparison with other
lattice based schemes can be found in section 6). We compare the chosen cipher-
text secure version of the schemes. All these schemes uses BKZ with (quantum)
sieving to estimate their security. Note that our estimation is independently
confirmed in [4].

In a nutshell, LAC outperforms Kyber at 128 and 256 bits security levels, in
terms of key size, ciphertext size; while remaining adequately more generous on
the security margin. It is also worth pointing out that our LAC-192-v3b may also
be considered for NIST-PQC level 5, and has outperformed Kyber1024 for this
category.



NIST-PQC
Scheme

Size (in Bytes) AVX2 Cycles
Security

category sk pk ct gen enc dec

N/A
LAC-light-v3b 1056 544 664 13,388 20,775 22,094 117
LAC-light-v3a 1056 544 664 19,139 28,064 32,396 118

I

Kyber512-90s 1632 800 736 20,004 30,384 24,604 100
Kyber512 1632 800 736 33,428 49,184 40,564 100
LAC-128-v3b 1056 544 704 20,703 33,546 45,165 133
LAC-128-v3a 1056 544 704 28,759 46,068 63,672 133

III

Kyber768-90s 2400 1184 1088 30,884 45,892 37,844 164
Kyber768 2400 1184 1088 62,396 83,748 70,304 164
LAC-192-v3b 2080 1056 1352 27,242 45,531 68,707 258
LAC-192-v3a 2080 1056 1352 46,322 76,208 113,029 259

V

Kyber1024-90s 3168 1568 1568 44,040 64,352 54,448 230
Kyber1024 3168 1568 1568 88,568 115,952 99,764 230
LAC-256-v3b 2080 1056 1464 38,230 68,320 148,468 276
LAC-256-v3a 2080 1056 1464 62,894 112,060 213,001 277

sk secret key pk public key
ct ciphertext gen key generation
enc encryption or encapsulation dec decryption or decapsulation

Table 1. Comparison of Kyber and LAC

1.3 Outline

In section 2 we recall basic definitions and notations. In section 3 we present
our Ring-LWE based public key encryption scheme. In section 4 we describe the
selection of parameters. In section 5 we give the security evaluation of our new
scheme. In section 6 we discuss implementation issues of our scheme. Finally, we
give the conclusion in section 7.

2 Preliminaries

In this section we first define several mathematical notations, the definitions of
Ring-LWE and public key encryption schemes.

2.1 Basic Notations

Vectors are denoted by lower-case characters, such as ~a. ~at denotes the transpo-
sition of ~a. Matrices are denoted by upper-case characters, such as ~A. ~At denotes
the transposition of ~A. For an m-dimensional vector ~a = (a0, a1, ..., am−1), its l1-

norm is defined as ‖~a‖1 =
∑m−1
i=0 |ai|; the l2-norm, also known as the Euclidean

norm, is defined as ‖~a‖2 =
√∑m−1

i=0 a2i , or solely denoted as ‖~a‖. The length of

a matrix is the norm of its longest column vector, e.g., ‖ ~A‖ := max ‖~ai‖. For
an m-dimensional vector ~a = (a0, · · · , am−1) and a non-negative integer l ≤ m,
define (~a)l := (a0, · · · , al−1).



For a set S, x
$← S denotes that an element x is chosen from S uniformly

at random. For a distribution D, x
$← D denotes that a random variable x is

sampled according to D. For a randomized algorithm A, y
$← A(x) denotes that

y is assigned randomly from the set of output of A with input x; if the algorithm
A is deterministic, we simplify it as y ← A(x).

For an integer q ≥ 1, let Zq be the residue class ring modulo q, define the
ring of integer polynomials modulo xn + 1 as R := Z[x]/(xn + 1) for an integer
n ≥ 1, and the ring Rq := Zq[x]/(xn + 1) denotes the polynomial ring modulo
xn + 1 where the coefficients are from Zq.

2.2 Distributions and Random Sampling

The Uniform Distribution. The uniform distribution over a set X is defined
as U(X). For example, the uniform distribution over Rq is U(Rq).

The Centered Binomial Distribution. The idea to simulate a Gaussian
distribution with binomial distribution was firstly introduced in [8], in order to
mitigate the heavy cost of Gaussian sampling. Let Ψσ be the centered binomial
distribution with σ being the parameter of the distribution, where the corre-
sponding standard variance is

√
σ
2 . In the design of LAC we also use centered

binomial distribution with parameters 1 and 1
2 (denoted as Ψ1 and Ψ 1

2
respec-

tively) as follows:

Definition 1 (Ψ1). Sample (a, b)
$← {0, 1}2, and output a − b. It picks 0 with

probability 1
2 , and ±1 with probability 1

4 according to the distribution Ψ1. The
mean value of Ψ1 is 0 and the variance is 1

2 .

Definition 2 (Ψ 1
2
). Sample (a, b)

$← Ψ1, and output a ∗ b. It picks 0 with prob-

ability 3
4 , and ±1 with probability 1

8 according to the distribution Ψ 1
2
. The mean

value of Ψ 1
2
is 0 and the variance is 1

4 .

We define n-ary centered binomial distribution with fixed Hamming weight,
denoted as Ψhn , where 0 < h < n/2 is even. For a random variable according
to the distribution, its Hamming weight is fixed to the expectation h, and the
numbers of both 1’s and −1’s are h/2, the number of 0 is n− h.

Random Sampling. Denote by Samp an abstract algorithm that samples a
random variable according to a distribution with a given seed:

x← Samp(D; seed),

where D is a distribution, and seed is the random seed used to sample x. For an

empty seed = ⊥, the process is randomized, and equivalent to x
$← D. When a

seed is present, the sampling of x will be deterministic.



We extend the definition to a multiple dimension setting. We use

(x1, x2, · · · , xt)← Samp(D1, D2, · · · , Dt; seed)

to denote the process of sampling random variables xi-s from distributions Di-s
for 1 ≤ i ≤ t.

2.3 Learning with Errors (over Rings)

We refer the readers to [63,64,69,49,60] for a concrete background of the defini-
tions and reductions.

Definition 3 (Search LWE). Let n,m, q be positive integers, and χ~s, χ~e be

(bounded) distributions over Z. Given ( ~A,~b = ~A~s + ~e), recover the secret ~s,

where ~A
$← Zm×nq , the secret ~s

$← χn~s and the error ~e
$← χm~e .

Definition 4 (Decisional LWE). Let n,m, q be positive integers, and χ~s, χ~e
be (bounded) distributions over Z. Distinguish the two distributions of ( ~A,~b) and

( ~A, ~u), where ~b = ~A~s+ ~e for ~A
$← Zm×nq , ~s

$← χn~s , ~e
$← χm~e , ~u

$← Zmq .

Definition 5 (Search RLWE). Let n, q be positive integers, and χ~s, χ~e be

(bounded) distributions over R. Given (~a,~b = ~a~s+~e), recover the secret ~s, where

~a
$← Rq, the secret ~s

$← χ~s and the error ~e
$← χ~e.

Definition 6 (Decisional RLWE). Let n, q be positive integers, and χ~s, χ~e be

(bounded) distributions over R. Distinguish two distributions of (~a,~b) and (~a, ~u),

where ~b = ~a~s+ ~e for ~a
$← Rq, ~s

$← χ~s, ~e
$← χ~e, ~u

$← Rq.

2.4 Public Key Encryption

A public key encryption scheme PKE=(Gen,Enc,Dec) with message space M
consists of three polynomial-time algorithms.

– KG(l): A probabilistic polynomial-time key generation algorithm takes as
input the security parameter l and outputs a public key pk and a private
key sk. We write (pk, sk)← KG(l).

– Enc(pk,m): A probabilistic polynomial-time encryption algorithm takes as
inputs a public key pk, a plaintext m and outputs a ciphertext c. We write
c← Epk(m).

– Dec(sk, c): A decryption algorithm takes as inputs a ciphertext c and a
private key sk, and outputs a plaintext m. We write m← Dsk(c).

A public key encryption scheme is IND-CCA2 (indistinguishable against
adaptive chosen ciphertexts attacks) secure if the advantage of any adversary



A defined in the following is negligible in the security parameter l:

Advcca
A (l) =

∣∣∣∣∣∣∣∣∣∣
Pr

b′ = b :

(pk, sk)← Gen(l),
(m0,m1)← ADsk(·)(pk),

b
R← {0, 1},

c∗ ← Epk(mb),
b′ ← ADsk(·)(pk, c∗).

− 1

2

∣∣∣∣∣∣∣∣∣∣
,

where A is restricted not to query Dsk(·) with c∗.

3 The LAC Scheme

In this section we describe our Ring-LWE based public key encryption scheme
“LAC”. LAC is a concrete instantiation of the Ring-LWE based scheme proposed
in [49]. The main deviation at an algorithmic level is that the plaintext message
is encoded with a large-block error correction code.

3.1 The Scheme

Notations. Let q be the modulus. Define the polynomial ring Rq = Zq/(xn+1).
Define the message space M be {0, 1}lm for a positive integer lm, and the

space of random seeds S be {0, 1}ls for a positive integer ls. The integers lm and
ls will be specified afterwards.

We use the n-ary centered binomial distribution with fixed hamming weight
Ψhn , where the concrete choices of parameters will be given later.

Subroutines. In the subroutines dealing with the encoding and decoding of
the error correction codes, ECCEnc,ECCDec, the conversion between a message

~m ∈ {0, 1}lm and its encoding ~̂m ∈ {0, 1}lv is provided, wherein lv is a positive
integer denoting the length of the encoding and depending on the specific choice
of the parameter settings.

The algorithm LAC.KG randomly generates a pair of public key and secret
key (pk, sk).

Algorithm 1 LAC.KG()

Ensure: A pair of public key and secret key (pk, sk).

1: seed~a
$← S

2: ~a← Samp(U(Rq); seed~a) ∈ Rq
3: ~s

$← Ψhn

4: ~e
$← Ψhn

5: ~b← ~a~s+ ~e ∈ Rq
6: return (pk := (seed~a,~b), sk := ~s)



The algorithm LAC.Enc on input pk and a message ~m, encrypts ~m with
the randomness seed. In case that seed is not given, the process is randomized.
Otherwise, the encryption is deterministic for the same seed. The subroutine

ECCEnc converts the message ~m into a codeword ~̂m.

Algorithm 2 LAC.Enc(pk = (seed~a,~b), ~m ∈M; seed ∈ S)

Ensure: A ciphertext ~c.
1: ~a← Samp(U(Rq); seed~a) ∈ Rq
2: ~̂m← ECCEnc(~m) ∈ {0, 1}lv
3: (~r,~e1, ~e2)← Samp(Ψhn , Ψ

h
n , Ψ

h
n ; seed)

4: ~c1 ← ~a~r + ~e1 ∈ Rq
5: ~c2 ← (~b~r)lv + ~e2 + b q

2
e · ~̂m ∈ Zlvq

6: return ~c := (~c1,~c2) ∈ Rq × Zlvq

The algorithm LAC.Dec on input sk and a ciphertext ~c, recovers the corre-

sponding message ~m. The subroutine ECCDec on input an encoding ~̂m, decoding
the codeword in it. Usually, a message ~m ∈ M is recovered. When there is a
decryption error, the returned message ~m /∈M.

Algorithm 3 LAC.Dec(sk = ~s,~c = (~c1,~c2))

Ensure: A plaintext ~m.
1: ~u← ~c1~s ∈ Rq
2: ~̃m←~c2 − (~u)lv ∈ Zlvq
3: for i = 0 to lv − 1 do
4: if q

4
≤ ~̃mi <

3q
4

then

5: ~̂mi ← 1
6: else
7: ~̂mi ← 0
8: end if
9: end for

10: ~m← ECCDec( ~̂m)
11: return ~m

3.2 Formal Security

Following the result of [45], the chosen plaintext security of LAC can be easily
reduced to the Ring-LWE assumption. Then, with Fujisaki-Okamoto transfor-
mation, we obtain the chosen ciphertext security version of LAC in both classical
random oracle model [35,36] and quantum random oracle model [42]. It is easy
to verify that the embedded error correction code will not affect the security
reduction and these security proofs can be directly extended to the case of LAC.
Therefore, we omit the details for both reductions.



4 Parameter Selection

Almost all lattice based key exchanges and public key encryptions, except for
NTRU based ones, follow a similar framework from [30,58,15,7]. We have a set of
theoretical results on the choice of rings, moduli, errors, etc [60,59,65] that ensure
the framework stems from a provable secure design. However, those theoretical
results do not give any guidance on selecting concrete parameters. Choosing
parameters for (Ring-)LWE based schemes becomes one of a main research di-
rection in subsequent works [15,7,59,16,43,66], and a main differentiator in most
NIST-PQC submissions [55]. In this section, we present our choice of parameters,
and give our design rational over common choices.

4.1 Modulus

Our first and foremost priority is to reduce the modulus. As mentioned earlier,
the payload sizes are governed mainly by the dimension and the modulus. The
choice of power-of-2 cyclotomic polynomial does not allow much freedom in the
choice of n. Hence we will work on reducing the modulus. Note that the modulus
cannot be too small; it needs to be large enough to tolerant the errors during
decryption. Prior to our work, a common choice was q = 12289. We take a more
aggressive approach by using “byte level modulus”.

A byte is the basic operating unit for most processors. Such a choice makes
the public keys and ciphertexts compact, and is also optimal for implementations.
The downside is that decryption errors increase when modulus is smaller. We
will give more details in Section 4.3.

Depending on the structure of the polynomial ring, we consider three types
of byte-level modulus.

– Power-of-Two Modulus: From the view of implementation, the most suit-
able byte-level modulus is q = 256, for which the modulus operation can be
efficiently realized by ignoring the carrier data. However, since q = 256 is not
a prime, Z256[x]/(xn+1) does not yield a field for our choice of n. Currently,
it is unclear whether this algebraic structure will cause any weakness in the
security.

– Max-Split Modulus: The reason for choosing q ≡ 1 mod 2n is that xn+1 ∈
Zq[x] can be completely factorized. For byte-level modulus, this is no longer
the case. However, we notice that when q = 257, xn + 1 ∈ Z257[x] has
maximum number of factors:

x512 + 1 =

128∏
i=1

(x4 + τi), x1024 + 1 =

128∏
i=1

(x8 + τi),

where τi ∈ Zq. We call this type of modulus “Max-Split Modulus”, for which
xn+1 can be maximally factorized into polynomials with very small degrees.

– Min-Split Modulus: Unlike q = 257, for some other modulus, xn + 1 ∈
Zq[x] may have minimum number of factors. Concretely, we notice that for



q = 251, which is the largest prime smaller than 28, xn + 1 ∈ Z251[x] can be
minimally factorized as:

xn + 1 = (xn/2 + 91xn/4 + 250)(xn/2 + 160xn/4 + 250).

We call this type of modulus “Min-Split Modulus”, for which xn + 1 can
only be factorized into two polynomials with the degree of n/2.

It has been argued that less algebraic structure reduces the attacking surface
[11]. For conservative purpose, and also for the sake of simplicity, we choose the
min-split modulus q = 251 for the main version of our scheme submitted to
NIST-PQC. Nonetheless, we do not see any weakness of the power-of-two mod-
ulus or the max-split modulus. For different kinds of security and performance
balance, in this paper, we also give an extended version of our scheme by using
q = 256. Recently, Lyubashevsky et al. [51] proposed new tricks that partially
enable NTT for max-split rings. We leave the implementation of q = 257 version
of our scheme to future research.

4.2 The Errors and Secrets Distribution

There are two principles for the choice of the distribution for the error and secret
vector of the poly-LWE problem. Firstly, the errors and the secrets must be large
enough to guarantee the hardness of the poly-LWE problem. Secondly, the errors
and the secrets must be small enough to guarantee the correctness of the de-
cryption algorithm. In literatures, there are mainly two families of distributions
that satisfy the average/worst case reduction theorem [63,49], namely, discrete
Gaussian distribution [49,8] and centered binomial distribution [16]. Gaussian
distribution consumes lots of entropy, is hard to implement in constant time,
and is also vulnerable to memory based side channel attacks [19] when imple-
mented with look-up tables [32]. Therefore, we opt to use the centered binomial
distribution for our scheme.

In the implementation, as described in [8], a centered binomial distribution

with the standard deviation of
√
λ/2 can be generated as

∑λ
i=1(bi − b̂i), where

bi, b̂i ∈ {0, 1} are uniformly random bits. When a byte-level modulus is used, the
error-modulus-ratio becomes large enough even for small error distributions. This
allows us to use the simplest centered binomial distribution with λ = 1 as our
basic error distribution. That is, in order to get a centered binomial distribution
with λ = 1, each element of the error vector is generated by b− b̂, where b, b̂ are
uniformly random bits. Then we can get the distribution Ψ1: Pr[x = 0] = 1/2,
Pr[x = ±1] = 1/4. This, and its variants, are used in LAC-v1.

As pointed out by Alperin-Sheriff in the comments to LAC-v1 [55], when a
centered binomial distribution is used, the adversary can increase the decryp-
tion error rate by finding high hamming weight random vectors through pre-
computation. The direct approach to resist this attack is to decrease the error
rate by using a more powerful error correction code. However, correcting more
errors will affect the efficiency of the error correction code.



Looking ahead, to make LAC-v2/v3 immune to high hamming weight attack
in a more efficient manner, we use n-ary centered binomial distribution Ψhn with
fixed Hamming weight h for the error and secret vectors (h/2 ones and h/2
minus ones). The implementation of fixed weight centered binomial distribution
will be described in section 6.

4.3 Decryption Errors

As shown in the decryption algorithm, the message is recovered via two steps.

First, the error correction code word ~̂m is recovered from the ciphertext. Then,
the message ~m is recovered from the code word. It is easy to verify that:

~̃m = ~c2 − (~c1~s)lv
= (~br)lv + ~e2 + b q2e ~̂m− (~c1~s)lv
= (( ~as+ ~e)~r)lv + ~e2 + b q2e ~̂m− (( ~ar + ~e1)~s)lv
= (~er − ~e1~s)lv + ~e2 + b q2e ~̂m

(1)

Let ~w = (~er − ~e1~s)lv + ~e2, we have that the error rate of each m̃i is δ =
1 − Pr[−b q4e < wi < b q4e]. If ~s,~e, ~r,~e1, ~e2 are all randomly chosen from a small
distribution with a standard deviation of σ and an expectation of 0, then accord-
ing to the central limit theory, wi follows a distribution that is very close to a
discrete Gaussian distribution with a standard deviation of σ2

√
2n and an expec-

tation of 0. Thus, the error rate for each bit can be approximated by the Gaussian

error function as δ ≈ 1 − erf
(

bq/4e√
2(σ2
√
2n)

)
. For example, For n = 512, q = 251,

and a distribution of Ψ1 with a standard deviation σ = 1/
√

2, the error rate of
each bit is estimated by:

δ ≈ 1− erf

(
b251/4e√

2((1/
√

2)2
√

2× 512)

)
≈ 2−13.95.

When D2 is used, one message bit will be encoded as two elements in ~̃m. As
a result, the error rate of the message bit is δ = 1− Pr[|wi|+ |wj | < b q2e]. Thus

the error rate of each message bit can be estimated as δ ≈ 1− erf
(

bq/2e√
2(σ2
√
4n)

)
.

For the case of n = 512, q = 251, the error rate of each message bit is:

δ ≈ 1− erf

(
b251/2e√

2((1/
√

2)2
√

4× 512)

)
≈ 2−25.95.

Suppose that the error correction code can correct lt errors at most and the
code word length is ln = lv, and assume the coefficients of ~w are independent
from each other, we have the decryption error rate for a message ~m:

∆ ≈
lv∑

j=lt+1

((
lv
j

)
δj(1− δ)lv−j

)
(2)



Note that, as pointed out by D’Anvers [28], when single bit error rate δ is too
large, we can not assume that the coefficients of ~w are independent from each
other. The theoretical dependence model and experiment results of D’Anvers
show that the dependence mainly comes from the norm of ~s,~e, ~r,~e1. This leads
to the use of fix hamming weight distribution in LAC-v2 and LAC-v3. When
~s,~e, ~r,~e1 are sample from this distribution, their norms are also fixed and the
main source of dependence is removed. So we can assume that the coefficients
of ~w are independent from each other.

Based on the equations above, we can estimate the decryption error rate
in the case of chosen plaintext attacks, in which the secrets and errors are all
randomly selected according to the sampling algorithm. However, in the case of
chosen ciphertext attacks, the adversary may choose noise vectors with special
patterns to increase the correlation between the coefficients of ~w. For example,
Guo et al.[62] propose several patterns to increase the decryption error rate
of LAC-v2. At the current stage, a comprehensive theoretical analysis of the
dependence model seems impossible. Our solution in LAC-v3 is to decrease the
decryption error rate further.

4.4 Error Correction Code

Our byte level modulus incurs a high decryption error rate by design. Trivial
or light error correction methods such as D2 or D4 code [8] are not capable of
handling such a situation. Heavy error correction methods ought to be used for
our use case. In the field of code theory, there are many powerful codes such as
BCH, Goppa, LDPC, Turbo and Polar. In principle, any code with enough error
correcting capability can be used in our scheme. For the sake of simplicity and
efficiency we choose BCH code for implementation.

Although BCH code with large enough error correction capability can de-
crease the decryption error rate small enough, it will also bring high computa-
tional cost (see section 6 for detailed computational cost). To solve this problem,
in this paper we choose the combination of D2 and BCH code. That is, the plain-
text is firstly encoded with the BCH code, then the code word is encoded with
the D2 code. With the help of the high performance D2 code, the BCH only need
to correct a small number of errors. Concrete parameters of BCH are described
in the next subsection.

4.5 Recommended Parameter Set

The main parameters of LAC-v3a are listed in Table 2, with respect to three
categories of NIST-PQC standardization project [55], namely, the equivalent
security level of AES128, AES192 and AES256. Since the decoding of BCH code
is a time consuming operation, it may not suitable for small embedded processors
such as Cortex M4. We also propose a light version of LAC, named as LAC-light,
which can be seen as a noise reduced version of LAC-128. The error rate of LAC-
light is small. We can achieve suitable decryption error rate based on simple
parity check error correction technique combined with D2 code.



Categories n q dis ecc l~m pk sk ct bit-er dec-er

light-v3a 512 251 Ψ128
512 parity check+D2 128 544 512 664 2−81.73 2−150

128-v3a 512 251 Ψ256
512 BCH[255,128,17]+D2 128 544 512 704 2−22.26 2−151

192-v3a 1024 251 Ψ256
1024 BCH[511,256,17]+D2 256 1056 1024 1352 2−42.24 2−324

256-v3a 1024 251 Ψ384
1024 BCH[511,256,41]+D2 256 1056 1024 1464 2−20.01 2−302

dis secret and noise distributions ecc error correction code
l~m message length sk secret key size (bytes)
pk public key size (bytes) ct ciphertext size (bytes)
bit-er single bit error rate without BCH dec-er decryption error rate

Table 2. Main parameter of LAC

The dimension n, modulus q and the error distribution are selected to achieve
high enough security levels according to the lattice reduction attacks and hybrid
attacks (detailed analysis are in section 5).

The parameters of BCH “[lc, lm, ld]” are selected to achieve a small enough
decryption error rate to defeat the high Hamming weight attacks [55] and pattern
attacks [62]. Concretely, for LAC-128 and LAC-192, we choose ld = 17 which
allows us to correct upto 8 bits of errors; for LAC-256 we choose ld = 41 which
allows to correct upto 20 bits of errors.

Note that the error rate for each coefficient is estimated by a convolution
of all the error terms. In order to minimize the size of the ciphertext, in our
implementation the lower 4 bits for each coefficient in ~c2 are discarded. This
brings an additional uniformly random (under Ring-LWE assumption) error over
[−7, 8].

A public key consists of a 32 bytes seed seed~a, and an n bytes vector ~b.
A secret key is an n bytes vector. One may simply store a 32 bytes seed for
the secret key to minimize storage, at a cost of slightly slower decryption. In the
case where Fujisaki-Okamoto transformation is used to achieve chosen ciphertext
security, a secret key also contains a copy of the corresponding public key, so that
the decryption algorithm can re-encrypt to check the validity of the ciphertext.
Thus the size of a secret key becomes 2n+32. Finally, a ciphertext contains both
an n bytes vector ~c1, and lv bytes of ~c2. For LAC-light lv = lm + 3× 8, where 3
is the byte size of the redundant data of the parity check error correction code.
For LAC-128 and LAC-192 parameter set, lv = lm + 8× 8, where 8 is the size of
the redundant data. For LAC-256, lv = lm + 21 × 8, where 21 is the size of the
redundant data.

In Table 2, the modulus of LAC-v3a is q = 251, which keeps the same as
LAC-v1 and LAC-v2 . In addition, we also propose an alternative parameter set,
named as LAC-v3b, with q = 256 instead of 251.The reminder of the parameters
stays the same. Since the modulus is a little larger, the decryption error rate of
LAC-v3b is a slightly smaller than the counterpart in LAC-v3a.



5 Concrete Security

We consider the best known generic attacks against Ring-LWE with our pa-
rameters, which treat the Ring-LWE problems as plain LWE problems. Those
attacks are well-known by the community; their costs (e.g. BKZ with (quantum)
sieving2) are well understood. Since our secrets and errors are sparse, we also
evaluate the cost of hybrid attacks [41,70,39].

We also consider dedicated attacks that target specific designs of our scheme,
namely the subfield attacks, the high Hamming weight attacks and the pattern
attacks. Those attacks are reported as comments to the Round 1/2 version of
LAC submission to NIST-PQC.

5.1 Generic Attacks

There are many generic algorithms to solve the LWE problem, see [6,68] for
a survey of known techniques. It has been shown that lattice reduction attacks
utilizing the BKZ algorithm [22] are more powerful than exhaustive search, com-
binational and algebraic algorithms. For simplicity, following the analysis of [7],
we focus primly on two embedding attacks that are commonly referred to as
primal attack and dual attack. We also evaluate the cost for hybrid attacks. We
summarize the security estimates in Table 3.

Algorithm
Primal Attack Dual Attack Hybird Attack
C Q B C Q B C Q

LAC-LIGHT 131 118 448 130 118 445 124 119

LAC-128 148 135 509 147 133 505 148 141

LAC-192 288 261 986 286 259 978 278 267

LAC-256 308 279 1054 305 277 1044 316 301

LAC-LIGHT-q256 130 118 447 129 117 444 124 118

LAC-128-q256 148 134 508 147 133 503 148 140

LAC-192-q256 287 261 984 288 258 975 278 266

LAC-256-q256 307 278 1051 304 276 1042 315 300

C: Classical complexity Q: Quantum complexity
B: Block Size

Table 3. Concrete security of LAC

Primal Attack. In a primal attack, one builds a lattice with a unique-SVP
instance from the LWE samples; then, uses BKZ algorithm to recover this unique

2 There has been some debate on the accuracy of the formula to calculate the concrete
cost of sieving [54]. These discussions are irrelevant to our parameters since a) they
do not change that fact that the generic attacks remain the best attacks for LAC,
and b) the LAC-v3 parameters are derived from the more conservative side of the
debates.



shortest vector. In a nutshell, given an LWE instance ( ~A,~b = ~A~s+~e), ~A ∈ Zm×nq ,
the target lattice of dimension d = m+ n+ 1 is constructed as

Λ ~A = {~x ∈ Zm+n+1 : ( ~A|~Im| −~b)~x = ~0 mod q}.

It is easy to verify that, ~v = (~s,~e, 1) is the unique-SVP solution when both ~s
and ~e are reasonably short. For exmaple, as shown in [7], the attack is successful
if and only if σ

√
b ≤ δ2b−d−1 × qm/d, where σ is the standard deviation of the

errors and secrets, δ = ((πb)1/bb/2πe)1/(2(b−1)).
BKZ algorithm progressively processes the lattice basis by calling polynomial

times a subroutine, such as the (quantum) sieving algorithm, to solve the exact
shortest vector problem for sub-lattices with dimension (i.e. blocksize) b. This
method is known as BKZ-core-(Q)Sieving, and its complexity depends solely on
the block dimension b that is required for the BKZ algorithm to find the unique

solution. According to [7], the best complexity of the SVP oracle is
√

3/2
b+o(b)

≈
20.292b for classical sieving algorithms, and

√
13/9

b+o(b)
≈ 20.265b for quantum

sieving algorithms.

Dual Attack. In a dual attack, one firstly tries to build a dual lattice of the
aforementioned primal lattice, and then uses the dual lattice to solve the deci-
sional LWE problem. At a high level, given the LWE instance ( ~A,~b = ~A~s + ~e),
~A ∈ Zm×nq , the target lattice of dimension d = m+ n is constructed as

Λ⊥~A = {(~x, ~y) ∈ Zm × Zn : ~At~x = ~y mod q}.

Again, [7] showed that BKZ is capable of finding a vector ~v = (~x, ~y) of length

l = δd−1qn/d, where the distance between ~vt~b and the uniform distribution will
be bounded by ε = 4 exp (−2π2τ2) for τ = lσ/q. This breaks the decisional LWE
problem with an advantage ε.

Similar to primal attacks, the concrete security of dual attack also depends
on the complexity of BKZ algorithm. There is a slight caveat when BKZ-core-
QSieving is used: the attacker is able to amplify ε to 1/2 by repeating the sieving
algorithm for R = max(1, 1/(γε2)) times. This operation is almost free to the
attacker, since sieving algorithm will produce γ = 20.2075b vectors which far
exceed the required number of short vectors 1/ε2 for repeating.

Hybrid Attack. At a high level, the hybrid attack takes the following steps.

– Firstly, one interprets the lattice basis B ∈ Zn,n as a concatenation of two
matrices B1, B2 ∈ Z`,n×Zk,n, with ` > n/2 and `+k = n. Note that L(B1)
spans a sublattice of dimension `.

– Then, one performs lattice reductions over this sublattice, to an extend that
it allows for solving bounded distance decoding problem effectively.

– Next, one guesses linear combinations of row vectors from B2. If one has
guessed the correct combination as the unique shortest vector (or their ro-
tations) in B, this vector will be a close vector to L(B1).



– Lastly, one uses the reduced basis of L(B1) to solve the bounded distance
decoding problem.

It is easily to see that, to get the best performance, one usually assumes
the cost of lattice reductions is on the same order of guessing. What remains to
be estimated is the individual cost for each step. There are a few subtlety on
estimating the cost of the above procedure. To be more conservative, we make
the following assumptions/decisions.

– In the estimation, the cost of solving CVP/BDD is often neglected; a good
basis yields a polynomial time algorithm (for example, Babai’s algorithms),
which may adds a few bits complexity in practice.

– We use BKZ with (quantum)-core sieving to estimate the cost of BKZ. This
model counts the cost of a single SVP, and ignores the number of iterations.
It is also a more conservative choice than BKZ with enumeration.

– We also assume that if basis is “good”, and if we have successfully guessed
the correct combination, then, the probability of solving the CVP is exactly
1.

– To be more conservative on the searching side, we estimate the entropy in
the guessing phase, and taking its square root (in accounting for Grover’s
algorithm) as the cost of guessing. This results into a lower bound that
isn’t achievable through classical MITM attacks. This also assumes vector
additions incur a cost of 1.

The details of the hybrid attack parameters can be found in Table 4. It was
generated with the estimator [67].

Algorithm
Classical Quantum

` Block BKZ Search Total ` Block BKZ Search Total

LAC-light-v3a 633 425 124 124 124 658 449 119 118 119

LAC-light-v3b 635 424 124 124 124 658 446 118 118 118

LAC-128-v3a 718 508 148 148 148 743 553 141 140 141

LAC-128-v3b 720 507 148 147 148 742 529 140 140 140

LAC-192-v3a 1141 953 278 278 278 1191 1009 267 266 267

LAC-192-v3b 1145 952 278 277 278 1190 1003 266 266 266

LAC-256-v3a 1255 1081 316 315 316 1303 1135 301 301 301

LAC-256-v3b 1257 1077 315 315 315 1307 1134 300 300 300
Table 4. Parameterizing the hybrid attacks

Security Estimates. We use BKZ simulator with core-(Q)sieving model to
estimate the security for our scheme. The corresponding security is estimated for
the obtained blocksize. Our script is available at [46]. Note that in [4], Albrecht
et al. independently evaluated the security for all (Ring-)LWE candidates, and
their estimation matches ours in this paper.



5.2 Dedicated Attacks

Subfield Attacks. The idea of exploiting subfields is known to the lattice
community for years [10,3,13,44], and to use this idea to analyze LAC was firstly
proposed by Alperin-Sheriff [54] during the first round evaluation of NIST-PQC.
Recall that xn + 1 has two factors modulo q = 251:

xn + 1 = (xn/2 + 91xn/4 + 250)(xn/2 + 160xn/4 + 250).

In other words, there exist two subfields defined by two polynomials ~g and ~h
where ~g = xn/2 + 91xn/4 + 250 and ~h = xn/2 + 160xn/4 + 250.

Given (~a,~b = ~as+ ~e), one may recover (~s,~e) by looking at the samples over
the subfields. It may be sufficient to recover (~sg := ~s mod ~g,~eg := ~e mod ~g) from

(~a mod ~g,~b mod ~g), and (~sh, ~eh, respectively). Next, it becomes straightforward
to recover (~s,~e) via Chinese remainder theorem.

Analysis. In the rest, we give a high level analysis of this attack. The key point of
the attack is that by moving to the subfield, the lattice dimension is practically
halved. Therefore, the BKZ complexity may be reduced for the new sub-lattices.
Note that this is not necessarily always the case under core-(Q)Sieving model
where only the cost of subroutine counts (while the number of iterations does
not); and the cost of the subroutine depends only on the root Hermite factor.
Nonetheless, to have a meaningful analysis, we assume that this is not an obsta-
cle: the attacker may access an SVP oracle for BKZ subroutines solely for this
attack.

We will show that the corresponding vectors in the subfields, (~sg, ~eg), will be
larger than the Gaussian heuristic length. In other words, even if one was able
to perform lattice reduction over the dimension-halved lattices, he will not be
able to recover the desired vectors.

The attack reduces the dimension, in the meantime, the modulo operation
increases the size of (~sg, ~eg) (similarly, (~sh, ~eh)). To be precise, when (~s,~e) are
small polynomials with the coefficients in {−1, 0, 1}, the coefficients of (~sg, ~eg)
will lie in {0,±1,±2,±91}. Coefficients of ±91 will be too large. Alperin-Sheriff
also pointed out that by multiplying ~s and ~e by 11, all the coefficients of (~sg, ~eg)
will be within the interval of [−25, 25].

Let ~A =
[
~Ag|~I|11×~bg

]
, where ~Ag is the matrix generated by ~ag, if ~z =

[11× ~sg|11× ~eg| − 1] is the shortest solution of ~Az = 0 mod q, we can recover ~z
with the primal attack. Note that, the dimension of a primal attack is reduced
from d = 2n+1 to d = n+1 via the subfield attack. Since ~A is a random matrix,
the q-ary lattice Λ⊥q ( ~A) will behave as a random lattice [24], and therefore it is
sufficient to use Gaussian heuristic to estimate the length of shortest vectors in
this lattice:

λ1(Λ⊥q ) ≈ qm/d
√

d

2πe
.

In the case of n = 512 and n = 1024, the lengths of the shortest vector is
expected at 86.36 and 122.4, respectively.



On the other hand, we also need to estimate the length of ~z. Central limit
theory says that the length of ~z approximately follows a discrete Gaussian distri-
bution. Our implementation shows that ~z closely follows a Gaussian distribution
with a mean and deviation pair of (253.59, 6.9) for LAC-128, (253.26, 6.29) for
LAC-192 and (358.42, 6.86) for LAC-2563.

It is easy to verify that, the length of ~z will be larger than the solution of
~Az = 0 mod q except for negligible probability. Hence ~z will not be a short vector

in this lattice. In other words, if one were to use subfield attack, and assuming
that they have free access to SVP oracles simply for the sub-lattices, they will
not be able to locate the vector.

To sum up, the subfield attack described above will not affect the security of
LAC for either original parameter sets or the revised version.

High Hamming Weight Attack. This is a chosen ciphertext attack that
exploits the fact that the secrets and errors (~r,~e1) in some ciphertexts (with
certain probability) may have higher-than-usual Hamming weight. It is feasible
if (~r,~e1) are randomly selected from Ψ1 or Ψ 1

2
. It is easy to see that the decryption

error rate is influenced by the Hamming weight. Therefore, with enough number
of random samples (and correspondingly, pre-computations), an attacker may
obtain sufficient number of samples with higher Hamming weight secrets and
errors. This may leak information on the secret key.

Analysis. It has been shown that chosen plaintext secure version of (Ring-)LWE
based schemes suffer from an reaction attack [33]. To address this vulnerabil-
ity, most schemes rely on Fujisaki-Okamoto transformation [35,36,42] to achieve
chosen ciphertext security. We also adopt the same approach. Via this transfor-
mation, the randomness vectors (~r,~e1) are generated from the plaintext message
by a pseudorandom generator. Thus the vectors (~r,~e1) are randomly distributed
from the view of the adversary.

In a comment to LAC in the Round1 estimation of NIST-PQC [55], Alperin-
Sheriff pointed out that, for the LAC-256 parameter set, the probability that a
pair of valid (~r,~e1) with a Hamming weight of at least 1024 + 310 = 1334 is
greater than (

2048

1334

)
/22048 ≈ 2−143.

Therefore, with 2207 pre-computations (assuming each access to the pseu-
dorandom generator incurs a cost of 1), the adversary will obtain 264 messages
for which the corresponding (~r,~e1) have Hamming weight exceeding 1334. It is
worth noting that the adversary can only access the decryption oracle for 264

times in the security model of NIST-PQC. Next, for samples with such high

3 The data is obtained over 100,000 random samples for each parameter set using Sage-
Math. The experiment does not mean to extensive to show any proof of statistical
distances; the mean is obviously much higher than Gaussian heuristic length.



Hamming weights, the decryption error rate for each bit of m̃i is expected at

δhigh ≈ 1− erf

(
b251/4e√

2((1/
√

2)
√

(1024 + 310)/2048
√

2× 1024)

)
≈ 2−5.9,

This yields a decryption error rate for the message ~m:

∆high =

1023∑
j=55+1

((
1023

j

)
δjhigh(1− δhigh)1023−j

)
≈ 2−44.4.

As a result, with 2207 pre-computations and 264 decryption oracle queries, the
adversary can get about 219.6 decryption failures.

Counter measures. To prevent high hamming weigh attacks, we switch to n-ary
centered binomial distribution with fixed Hamming weight. This makes LAC com-
pletely immune from high Hamming weight attacks and their potential variants.

Pattern Attack. Recently, a new analysis result was proposed by Guo et al..
Its main idea is to find error vectors with special kind of patterns. In general,
the adversary tries to find error vectors that contain consecutive “1”s or “−1”s.
If this is the case, one can except a higher-then-normal decryption error rate.
And as mentioned earlier, with enough decryption errors, the attacker will learn
(partial) information about the secret key.

Concretely, the authors showed that, with the pre-computation cost of 2162

and online computation cost of 279, they can recover the private key of LAC-256-
v1 with a success probability of 2−64.

Analysis. There are mainly two reasons that LAC-256-v1 and LAC-256-v2 are
vulnerable to pattern attacks. Firstly, we do not have multi-target protection
in LAC-v1/2. That is, a pre-computation can be used to attack multiple public
keys. This can be prevented easily by hashing the public key into the seed that
instantiate the PRNG. Then, the adversary must compute errors for each public
key; and cannot pre-process this task. The second reason is that the decryption
error rate of LAC-256-v1 and LAC-256-v2 are non-negligible with regard to its
security level.

Counter measures. To make LAC immune to decryption error based attacks,
such as high Hamming attack and pattern attacks, we further decrease the av-
erage case decryption error rate of LAC-v3 to negligible. In other words, for a
security level l, the decryption error rate will be smaller than 2−l.

6 Implementations and Performance

The implementation of LAC mainly includes four subroutines:



– Random polynomial sampling;
– Secret polynomial sampling;
– Polynomial multiplication;
– Encoding/decoding of error correction code.

6.1 Random Polynomial Generation

For q = 256, we simply sample n random bytes, and cast it as ~a ∈ Zq[x]/(xn+1).
For q = 251, we use rejection sampling based technique, and keep reading from
the sampler until we have gathered n integers that are small than q. Note that
the data associated with this subroutine are all public. Rejection sampling here
does not affect the fact that the execution of the code is independent from secret
information.

The performance of this subroutine is summarized in Table 5.

n (dimension) q (modulus) prf (with aes256ctr) performance (Cycles)

512 251 openssl 7253

1024 251 openssl 11774

512 251 AES-NI, SIMD 2817

1024 251 AES-NI, SIMD 4312

512 256 openssl 3981

1024 256 openssl 7626

512 256 AES-NI, SIMD 681

1024 256 AES-NI, SIMD 1099
Table 5. Performance of Random Polynomial Generation

“prf”: the pseudo-random function used to generate the random bytes;
“openssl”: the aes256ctr function from the openssl lib, used in LAC-v1/2;

“AES-NI, SIMD”:the aes256ctr function from [56], used in LAC-v3.

6.2 Secret and Error Polynomial Generation

A trivial idea to generate a polynomial from Ψhn is to randomly set h/2 positions
to 1, h/2 positions to −1, and the rest n− h positions to 0. This method is not
constant time, and can only be used during encryption.

Under the CCA security, the decryptor will need to re-encrypt the message.
Therefore, it is desirable to have a constant time sampler that can be used by
both encryption and decryption. Sampling in constant time from Ψhn has already
been implemented in [9,12]. Here, we use a permutation based solution that is
both efficient and constant time.

The algorithm “gen r” outputs a polynomial ~r ∈ Ψhn as follows:

1. Init: Set ri = i for i ∈ [0, n− 1].
2. Permute: For i ∈ [0, n − 1], generate a random si ∈ [i, n − 1], permute ri

and rsi .
3. Output: Output the first h positions of ~r.



The intuition is that, gen r is a map from a fixed element to another element
in the support of Ψhn . For each position i, an random index rsi will be selected.
If we sample si ∈ [i, n− 1] randomly, then we get a shuffle of i ∈ [0, n− 1].

In the algorithm above, the trivial approach to generate si ∈ [i, n − 1] is
sample rejection. However, this will cause non-constant executing time. In our
implementation, for the sake of constant time, we use a sightly different form of
the above procedure as follows:

1. Init: Set ri = i for i ∈ [0, n− 1], and p = 0.
2. Permute: For i ∈ [0, repeat], generate a random si ∈ [0, n − 1], if si ≥ i,

then permute rp and rsi , update p = p+ 1, else permute rp and rp.
3. Output: Output the first h positions of ~r.

The second step will repeat enough times to guarantee that the first h posi-
tions of ~r are permuted. For each security level l, we set the value “repeat” to
make sure that Pr[p ≥ h] < 2−l. The performance of this subroutine is described
in Table 6.

n (distribution) prf (with aes256ctr) repeat times performance (Cycles)

Ψ128
512 openssl 245 4978

Ψ256
512 openssl 590 10446

Ψ256
1024 openssl 495 9566

Ψ384
1024 openssl 815 14761

Ψ128
512 AES-NI, SIMD 245 2040

Ψ256
512 AES-NI, SIMD 590 4466

Ψ256
1024 AES-NI, SIMD 495 3834

Ψ384
1024 AES-NI, SIMD 815 6118

Follows the notations of Table 5.
Table 6. Performance of Secret and Error Polynomial Generation

6.3 Polynomial Multiplication

We provide three types of polynomial multiplication targeting different use cases:

– ref: The reference implementation is the most general version that only re-
quires 32bits registers. It can be executed on most of the personal computers
or servers, and can be easily translated to embedded platforms such as Cor-
tex M4.

– opt: The optimized implementation uses a 64bits variant. It packs four 16bits
intermediate values. This implementation can be used in any 64bits plat-
forms.

– avx: The avx version use a 256bits register and the AVX2 instructions. It
packs 16 or 32 intermediate values. The avx version relies on the hardware
support of AVX2 instruction sets.



Now we are ready to describe our algorithm for polynomial multiplications, that
is adopted in all three versions.

Given ~a and ~r, let ~v = 〈−a0, · · · ,−an−1, a0, · · · , an−1〉, according to the

definition of Zq[x]/(xn + 1), we can compute ~b = ~ar as:

~b =

n−1∑
i=0

(~v[n− i : 2 ∗ n− i− 1] · ri),

where ~v[x : y] denote the vector of {vx, · · · , vy}. Note that, in our scheme ri ∈
{−1, 0, 1}, so the computation can be simplified as:

~b =
∑
ri==1

~v[n− i : 2 ∗ n− i− 1]−
∑

ri==−1
~v[n− i : 2 ∗ n− i− 1].

Concretely, when ~r ∈ Ψhn is in the form of position based representation
(the first h/2 positions stores the indexes that ri==1, the second h/2 positions
stores the indexes that ri == −1) the ref version of our implementation works
as follows:

1. Prepare ~v: Set ~v = {−a0, · · · ,−an−1, a0, · · · , an−1}.
2. Init accumulator: Initialize the intermediate accumulators:

~sum one = 0, ~sum mone = 0,

where ~sum one is the accumulator vector for ri == 1 and ~sum mone is the
accumulator for vector ri == −1.

3. Addition: For i = 0 to i = h/2− 1, compute:

~sum one = ~sum one+ ~v[n− ri : 2 ∗ n− ri − 1],

~sum mone = ~sum mone+ ~v[n− ri+h/2 : 2 ∗ n− ri+h/2 − 1].

4. Output: Output ~b = ~sum one− ~sum mone mod q.

Note that, when the intermediate accumulators are stored with uint16 t,
we only need execute the modq operation for once in the last step, instead for
each iteration during the third step.

In addition, our opt and avx implementations use various parallalizations,
depending on the computer architecture and the modulus q. We summarize the
performance in Table 7.



distribution q (modulus) ref(cycles) opt(cycles) avx(cycles)

Ψ128
512 251 23,792 15,553 7,008

Ψ256
512 251 46,718 28,377 13,259

Ψ256
1024 251 92,818 57,842 27,901

Ψ384
1024 251 138,333 80,649 41,100

Ψ128
512 256 23,424 14,057 3,661

Ψ256
512 256 46,391 26,883 7,094

Ψ256
1024 256 91,934 52,468 14,062

Ψ384
1024 256 137,223 77,582 20,950
Table 7. Performance of Polynomial Multiplication

6.4 Error Correction Code

LAC-v1/v2 uses a generic binary BCH encoding/decoding library [31]. This im-
plementation is not constant time, and may lead to timing and memory attacks
[27]. In LAC-v3, we used an constant time implementation, modified from [31].
We highlight our modifications as follows.

– Constant Looping Statements: There are three loops to compute the
syndromes, error location polynomials and roots. In [31], the number of
iterations in each loop may be reduced based on the input data, in order
to improve efficiency. In our modification, these loops will iterate for the
maximum value regardless of the input.

– Constant Branching Statements: We removed the branching statements
and used the masking technique to control whether a particular value gets
updated or not. In [31], within error location polynomial computation, two
branching structures (“if”) are used to decide whether the intermediate sta-
tus will be updated. We removed the branching statements and used masking
a value to control the update of the status.

In [31], looking up tables are also frequently used. This may be vulnerable to
cache attacks. Naive methods for constant time array access will decrease per-
formance drastically. Our implementation unfortunately still uses a same lookup
table. We leave the cache attacks resistant implementation to future research.
The performance of BCH[511,128,17], BCH[511,256,17] and BCH[511,256,41] for
LAC-192v3 is described in Table 8. We test the performance of different errors
from 0 to 8. As one shall see from the table, there is an almost negligible deviation
of the decoder.



Number of errors BCH[511,128,17] BCH[511,256,17] BCH[511,256,41]

0 8521 13983 49041

1 8530 13994 49054

2 8533 13999 49058

3 8533 13994 49062

4 8534 13992 49053

5 8532 14004 49026

6 8537 14002 49044

7 8541 14005 49046

8 8524 14004 49045
Table 8. Performance of BCH, in Cycles

6.5 Performance

The performance of LAC-v3 is described in Table 9. where ref denotes the ref-
erence version, opt denotes the optimized version over 64bits instruction, avx
denotes the optimized version over AVX2 SIMD instructions. There main differ-
ence among these three versions is their underlying polynomial multiplication.
In the ref and opt version, openssl based pseudo-random function is used in
the secret/noise polynomial generation. In the avx version, the AES-NI & SIMD

based pseudo-random function is used the secret/noise polynomial generation.
The performance results are tested on the ubuntu 18.04 operation system run-
ning on the Intel Xeon(R)W-2123 @ 3.6GHz, memory 15.3GB, with Turbo Boost
and Hyperthreading disabled.

Scheme
ref (Cycles) opt (Cycles) avx (Cycles)

gen enc dec gen enc dec gen enc dec

light-v3a 51,049 74,328 90,024 39,712 57,111 66,017 19,139 28,064 32,396

128-v3a 88,765 143,740 193,355 65,663 104,660 137,344 28,759 46,068 63,672

192-v3a 149,212 234,636 320,457 110,839 175,077 238,633 46,322 76,208 113,029

256-v3a 231,417 410,739 618,689 151,312 261,869 403,563 62,894 112,060 213,001

light-v3b 50,465 74,963 90,839 35,311 51,694 59,897 13,388 20,775 22,094

128-v3b 87,696 145,173 194,307 60,293 98,334 120,958 20,703 33,546 45,165

192-v3b 141,331 227,948 313,432 101,010 163,770 222,955 27,242 45,531 68,707

256-v3b 213,731 381,269 574,613 133,323 240,771 381,833 38,230 68,320 148,468

Table 9. Performance of CCA Secure LAC

6.6 Comparison

We compare LAC with the other ring LWE based public key encryption schemes
in Table 10. Performance results of LAC are test on ubuntu 18.04 operation
system running on the Intel Xeon(R)W-2123 @ 3.6GHz, memory 15.3GB, with



Turbo Boost and Hyperthreading disabled. Parameters of the other 5 schemes
are obtained from their Round-2 submission to NIST-PQC [56]. Note that Three-
Bears stores seeds instead of the secret key to minimize the storage. As a trade-off
it is computationally more costly decryption to regenerate the keys.

We also provide a performance comparison according to each security level in
Fig 1, 2 and 3, for the ease of comparison. Note that, since the concrete security
of LAC-192-v3a and LAC-192-v3b under the BKZ-core-(Q)Sieving modelmeets
level 5, they are listed in both Fig 2 and 3.

NIST-PQC
Scheme

Size (in Bytes) AVX2 103 Cycles
Q-Security

category sk pk ct gen enc dec

N/A
LAC-light-v3b 1056 544 664 13 21 22 117
LAC-light-v3a 1056 544 664 19 28 32 118

I

NewHope512 1888 928 1120 68 110 114 101
LAC-128-v3b 1056 544 704 21 34 45 133
LAC-128-v3a 1056 544 704 29 46 64 133
Kyber512-90s 1632 800 736 20 30 25 100
Kyber512 1632 800 736 33 49 41 100
BabyBear 40 804 917 41 60 101 140
R5ND 1PKE 0d 708 676 756 65 100 141 118
R5ND 1PKE 5d 493 461 636 50 85 122 120
LightSaber 1568 672 736 62 73 71 114

III

LAC-192-v3b 2080 1056 1352 27 46 69 258
LAC-192-v3a 2080 1056 1352 46 76 113 259
Kyber768-90s 2400 1184 1088 31 46 38 164
Kyber768 2400 1184 1088 62 84 70 164
MamaBear 40 1194 1307 79 96 156 213
R5ND 3PKE 0d 1031 983 1119 88 138 192 180
R5ND 3PKE 5d 828 780 950 91 159 237 176
Saber 2304 992 1088 104 122 120 185

V

NewHope1024 3680 1824 2208 130 210 221 233
LAC-256-v3b 2080 1056 1464 38 68 148 276
LAC-256-v3a 2080 1056 1464 63 112 213 277
Kyber1024-90s 3168 1568 1568 44 64 54 230
Kyber1024 3168 1568 1568 89 116 100 230
PapaBear 40 1584 1697 118 145 211 285
R5ND 5PKE 0d 1413 1349 1525 104 169 235 246
R5ND 5PKE 5d 1042 978 1301 143 241 365 232
FireSaber 3040 1312 1472 161 185 187 257

Follows the notations of Table 1.
Table 10. Comparison of ring LWE based PKE in NIST-PQC Round2
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Fig. 1. Performance of 128-bits security level (AVX2 version)
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Fig. 2. Performance of 192-bits security level (AVX2 version)
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7 Conclusion

Better instantiations and implementations of (Ring) LWE based PKE/KEX
schemes have been a major topic for post-quantum cryptography community
for the past years. Building on top of previous results, our work pushes the size
limitation of post-quantum cryptography further. In parallel to rounding, mod-
ular lattices and other proposal, our idea of byte size modulus plus large block
error corrections provides a new approach to get compact and efficient lattice
based public key encryption.
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A Previous parameter sets

Categories n q dis ecc l~m pk sk ct bit-er dec-er

LAC-128-v1 512 251 Ψ1 BCH[511,264,59] 256 544 512 1024 2−13.35 2−239.6

LAC-192-v1 1024 251 Ψ1/2 BCH[511,392,27] 384 1056 1024 1536 2−24.51 2−253.8

LAC-256-v1 1024 251 Ψ1 BCH[1023,520,111] 512 1056 1024 2048 2−7.48 2−115.4

LAC-128-v2 512 251 Ψ256
512 BCH[511,256,33] 256 544 512 712 2−12.61 2−116

LAC-192-v2 1024 251 Ψ256
1024 BCH[511,256,17] 256 1056 1024 1188 2−22.27 2−143

LAC-256-v2 1024 251 Ψ512
1024 BCH[511,256,33]+D2 256 1056 1024 1424 2−12.96 2−122

Follows the notations of Table 2.
Table 11. Parameters of LAC-v1 and LAC-v2
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B Performance comparison of three versions of LAC

Scheme
AVX2 103 Cycles Speed-up

KeyGen Encryption Decryption Total

LAC-128-v1 36 71 90 197

LAC-128-v2 63 98 156 317

LAC-128-v3a 29 46 64 139 2.28x

LAC-128-v3b 20 34 45 99 3.20x

LAC-light-v3a 19 28 32 79 4.01x

LAC-light-v3b 13 21 22 56 5.66x

LAC-192-v1 112 167 238 517

LAC-192-v2 147 204 340 691

LAC-192-v3a 46 76 113 235 2.94x

LAC-192-v3b 27 46 69 142 4.87x

LAC-256-v1 100 199 363 662

LAC-256-v2 185 295 433 913

LAC-256-v3a 63 112 213 388 2.35x

LAC-256-v3b 38 68 148 254 3.59x
Table 12. Performance of avx version of LAC-v1, LAC-v2 and LAC-v3

Test on ubuntu 18.04, Intel Xeon(R)W-2123 @ 3.6GHz, memory 15.3GB,
with TurboBoost and Hyperthreading disabled.
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