
Secure Data Retrieval on the Cloud:
Homomorphic Encryption meets Coresets

Adi Akavia∗1, Dan Feldman†2 and Hayim Shaul‡3

1 University of Haifa, akavia@cs.haifa.ac.il
2 University of Haifa, dan.feldman@gmail.com
3 University of Haifa hayim.shaul@gmail.com

Abstract. Secure report is the problem of a client that retrieves all records matching
specified attributes from a database table at the server (e.g. cloud), as in SQL
SELECT queries, but where the query and the database are encrypted. Here, only
the client has the secret key, but still the server is expected to compute and return
the encrypted result. Secure report is theoretically possible with Fully Homomorphic
Encryption (FHE). However, the current state-of-the-art solutions are realized by a
polynomial of degree that is at least linear in the number m of records, which is too
slow in practice even for very small databases.
We present the first solution that is realized by a polynomial that attains degree
independent of the number of records m, as well as the first implementation of an
FHE solution to Secure report. This is by suggesting a novel paradigm that forges
a link between cryptography and modern data summarization techniques known as
coresets (core-sets), and sketches in particular. The key idea is to compute only a
coreset of the desired report. Since the coreset is small, the client can quickly decode
the desired report that the server computes after decrypting the coreset.
We implemented our main reporting system in an open source library. This is the
first implemented system that can answer such database queries when processing
only FHE encrypted data and queries. As our analysis promises, the experimental
results show that we can run Secure report queries on billions records in minutes on
an Amazon EC2 server, compared to less than a hundred-thousands in previous FHE
based solutions.
Keywords: Fully Homomorphic Encryption · Secure Computation · Secure Outsourc-
ing of Computation · Secure Search · Coresets · Sketches · Group Testing

1 Introduction
Outsourcing storage and computation to large third-party systems often called “the cloud”
(server) has become the norm for organizations and individuals (client). Typically this
involves a trust-relationship where the client is required to reveal her private records to the
server who executes the computations for her. To avoid this undesirable exposure of her
personal, proprietary, or other sensitive information, secure computation techniques [64, 38]
offer an appealing alternative: it is feasible for the client and server to jointly compute
the desired functionality, while revealing nothing beyond the designated output. A main
∗This work was supported in part by the Center for Cyber Law & Policy at the University of Haifa in

conjunction with the Israel National Cyber Directorate in the Prime Minister’s Office.
†Supported by BSF grant no 2014627. This work was done in part while he was visiting the Simons

Institute for the Theory of Computing.
‡Supported by grant no. 2014384 from the U.S.-Israeli Binational Science Foundation. Supported in

part by the Bar Ilan Cyber Center.

mailto:akavia@cs.haifa.ac.il
mailto:dan.feldman@gmail.com
mailto:hayim.shaul@gmail.com

2 Secure Data Retrieval on the Cloud:

challenge however in the design of secure computation is to attain low overhead over the
un-secure version, in terms of both the communication and computation complexity. This
translates to the goal of presenting the computation as a polynomial over a finite field
with (a) low-degree and (b) low overall number of multiplications (see e.g. [7]).

Secure report. In this work we focus on secure outsourcing of data storage and retrieval
tasks – a fundamental computational building block useful in numerous applications such
as secure retrieval from a database, a corpus of tagged images, text documents, genomic
data, and so forth. In the secure outsourcing context the client is the owner of data,
queries, and retrieval outcome. The server is expected to provide the storage and desired
data retrieval functionality while learning no (or minimal) information on the client’s data,
queries and retrieved outcome.

We address the report data retrieval functionality, where the data is an unsorted
array of elements array = (x1, . . . , xm), the query ` corresponds to an agreed predicate
isMatch(xi, `) ∈ {0, 1} (see below), and the retrieved outcome should be the list of (index,
value) pairs for all array elements matching the query:

L = { (i, xi) | isMatch(xi, `) = 1} .

Namely, the report functionality involves two parties, a client and a server, where the
client’s input and output are (array, `) and L respectively, and the server has no input or
output other than the shared parameters (the security parameter, and upper bounds on
the number and size of records, queries and output L).

isMatch Implementation. The predicate isMatch(xi, `) can be instantiated with
any matching criterion, in a black-box fashion, to address versatile retrieval tasks. For
example, exact-match retrieval is addressed by taking isMatch to be an equality-test (i.e.,
isMatch(xi, `) = 1 if-and-only-if xi = `); similarity-search is addressed by taking isMatch
to be the predicate accepting 1 if-and-only-if dist(xi, `) ≤ τ where τ is a threshold, and
dist is a distance measure such as the Hamming, Euclidean, or Edit. Likewise, appropriate
instantiations of isMatch on encrypted data yield wild-card matching, range queries,
Boolean queries, and sub-array queries; See [65, 20, 52, 19, 50, 61, 51, 6]. In this work we
address the complementary problem of retrieving the set of matching elements, as defined
by the provided isMatch predicate.

For Secure report, the server should provide the report functionality obliviously of data,
query and outcome. Furthermore, we make the following requirements: the protocol should
use a single-server in single-round with low communication proportional only to the size
of encrypted input and output, and perform no pre-processing of the cleartext data.

Motivating use-cases scenarios for our above requirements arise in settings where either:
(a) We cannot assume non-collusion between multiple servers, or do not have availability
of multiple servers; (b) Communication is intermittent, unreliable or costly, e.g., when
communicating with mostly off-line clients as with sensors networks, posing a limiting
factor on the number of communication rounds; (c) Communication is slow or expensive
leading to the low bandwidth requirement; (d) it is infeasible to pre-process the cleartext
data, e.g., for sorting, indexing or insertion into search-oriented data-structures such as
search trees or hash tables. We note that retrieval from an unsorted data necessitates a
linear-scan of the data even on cleartext data; yet it naturally arises in many use-cases.
Examples for settings disallowing pre-processing the cleartext data follow:

• A-priori unknown matching criterion, as in ad-hoc SQL queries and our generic
isMatch predicate;

Adi Akavia, Dan Feldman and Hayim Shaul 3

• Range queries on high dimensional data, where index is infeasible due to size
exponential in the number of attributes;

• Streaming data with each element discarded by the client immediately after being
encrypted and uploaded to the server;

• Low capacity client too weak to store or sort the clear-text data, as in Internet-of-
Things (IoT) devices;

• Fragmented data uploaded to the server from multiple distinct clients (e.g., agents,
users, devices) with no single entity that holds entire clear-text data.

In all these examples, pre-processing the cleartext data is infeasible, whether because no
single entity holds the entire cleartext data or has the capacity to process it, or because
the required index is exponential large, or unknown in advance.

Threat Model. Our security requirement is that the adversary controlling the server
learns no new information from participating in the protocol. For example, the adversary
must not distinguish between two adversarially-chosen equal size queries ` (similarly, data
arrays array) from participating in the protocol. We note that there is no need to consider
adversaries controlling the client because the server has no input or output. We address
computationally-bounded semi-honest adversaries, i.e., adversaries that follow the protocol
but may try to learn additional information.

Secure report on FHE encrypted data. Protocols satisfying the above requirements are
feasible using Fully Homomorphic Encryption (FHE) [57, 33, 34]. FHE is an encryption
scheme that enables homomorphically-evaluating polynomials f over encrypted input; that
is, given a ciphertext JxK encrypting the input x, it is possible to compute the ciphertext JyK
encrypting the output y = f(x) (with no access to a decryption key that would compromise
security).

Secure report protocol using FHE would easily follow by providing a polynomial f
realizing the above report functionality, i.e., f s.t.

f(array, `) = L.

The protocol using f would be as follows. The client first generates public and secret keys
for the FHE, keeps the secret key to herself, and sends to the server the public key and
encrypted data elements JarrayK = (Jx1K, . . . , JxmK). The client can then repeatedly issue
encrypted retrieval queries J`K for the server to homomorphically evaluate f on JarrayK
and J`K, sends the encrypted outcome

JLK = { (JiK, JxiK) | isMatch(xi, `) = 1}

to the client which decrypts it and obtain the desired result L.
Clearly this protocol has a single-server, single round, low bandwidth communication

(proportional only to the encrypted input and output, while being independent of the
complexity of the report functionality), and involves no preprocessing of the cleartext data.
Moreover, security easily follows from the semantic security of the FHE scheme.

The problem is that known polynomials f for the report functionality have high degree
Ω(m · d), for m the number of data records and d the degree of the polynomial realizing
the matching condition isMatch; See Appendix A. This is too slow with current FHE
candidates and implementations.

The motivation for our work is to answer affirmatively the following question: Is there
an efficient protocol for Secure report on FHE encrypted data and query?

4 Secure Data Retrieval on the Cloud:

1.1 Our Contribution
We propose a novel paradigm, named coresets for homomorphic encryption (CHE), that
forges a link between data summarization techniques (known as “coresets” or “sketches”)
and secure computation on FHE encrypted data: Whereas it is not clear if low-degree
polynomials exist for many classic tasks, such as search and report, our paradigm suggests
instead for the server to compute a coreset for these problems for the goal of gaining a
dramatic reduction in server’s complexity, while essentially conserving the communication
and client’s complexity; See Section 2.

We demonstrate the strength of our CHE paradigm by applying it on the Secure
report problem to dramatically reduce the server’s complexity: reducing the degree of the
polynomial evaluated by the server to be as low as the degree d of the polynomial realizing
isMatch (improving over degree Ω(m · d) in the direct polynomial). We stress that the
degree in our solution is independent of the number of data records m. See Section 3.

Elaborating on the above, our Secure report solution improves over the direct polynomial
in both the server’s degree and overall multiplications by multiplicative factors Ω(m) and
Ω(|L| ·m) respectively. Conversely, our Secure report exhibit a slight degradation in the
communication and client’s complexity (by a factor |L| and (|L|+ logm)O(1) respectively);
this is a minor degradation when the number of matches |L| is moderate, say, logarithmic
in m (whereas for large |L| transmitting all these matches would typically be undesirable,
due to the high communication it entails even without the discussed overhead).

Experimental results. We implemented our Secure report solution in a C++ library
building on HElib [43] FHE implementation, and ran extensive experiments. Our experi-
mental results show that we can run our Secure report on billions of database records in
a minute, on a single Amazon AWS server (compared to less than a hundred-thousand
records with the direct polynomial, on the same hardware); See Fig. 1 and Section 5.

Our code is provided for the community in an open source library of Coresets for
Homomorphic Encryption (CHElib) [3], to reproduce our experiments, to extend our
results for real-world applications, and for practitioners at industry or academy that wish
to use these results for their future papers or products.

Future research. We expect our coresets for homomorphic encryption paradigm to
be further employed for degree reduction in the context of other secure computation
tasks, possibly together with classical degree reduction techniques such as low-degree
approximation [55, 59] and randomized polynomials [48]. Indeed, our paradigm was
already employed in a follow-up work [5] to solve the secure search problem of returning the
first-match (i.e., returning (i, xi) for i = min { i ∈ [m] | isMatch(xi, `) = 1}), motivated
by use-cases where the number of matches to report is too large.

1.2 Related Works
Secure search has been extensively studied employing a variety of cryptographic tools
leading to solutions with versatile properties.

Most relevant scenario: Secure search on FHE encrypted data. The scenario most
relevant to our settings is secure search on FHE encrypted data [34], when focusing on
protocols with single-server, single-round, low-communication proportional only to the size
of encrypted input and output, and with no pre-processing on cleartext data. We note
that disallowing pre-processing necessitates a linear scan of the data, even if we were to
compute on cleartext data and query.

Private Information Retrieval (PIR) [22] enables a client to retrieve a data item from
a server holding a data array, while hiding from the server the client’s query, the retrieved

Adi Akavia, Dan Feldman and Hayim Shaul 5

Figure 1: A log-scaled graph showing the server’s running time (y-axis) on a single
machine of Amazon’s cloud, for different vector size (x-axis) of Secure Report (Protocol 3)
over encrypted vector. In these experimets the vectors had 40 matching elements to
be reported. The yellow line marks the running time of our report algorithm. The red
line marks the running time of the direct report algorithm, where a solid line marks
experiements that were made and a dashed line marks our interpolation based on our
analysis.

data item, and the query and access patterns. The PIR query is typically the item’s index
i ∈ [m]. Nevertheless, constructions of PIR on FHE encrypted data [33, 11, 30] are easily
extended for retrieving encrypted keywords provided the keyword uniquely identifies at
most a single data item (uniqueness constraint). In contrast, in our work we do not require
the query to be a unique identifier to a single data item.

Secure search on encrypted data, eliminating the aforementioned uniqueness constraint,
was recently achieved [5], providing secure search on FHE encrypted hiding the content
of data items and queries, as well as the query and access patterns. In [5] the retrieved
item is the first matching item in the array; whereas retrieving subsequent items requires
further interaction, another round for each fetch-next item to be retrieved. In contrast, in
our work we retrieve all matches in a single round.

Other scenarios: relaxed settings. Numerous other related works on secure search
are relevant, if relaxing the above settings to allow, for example, leaking information
on the access or search patterns, searching on cleartext data, k > 1 servers, R > 1
rounds, communication bandwidth growing with database size m or with complexity of
the computed functionality, allowing pre-processing the cleartext data, etc.

When allowing information leakage, as in leaking access and query patterns or revealing
order, searchable and structured encryption (SE and STE) [60, 16] allow for highly efficient
construction approaching plaintext search time. Furthermore, these constructions typically
allow pre-processing the cleartext data for achieving sub-linear search time. Yet, the
inherent information leakage has been often exploited to obtain the content of query and
data items [14, 66, 49, 1, 36, 40, 41, 54].

When searching on unencrypted data (in contrast to encrypted data in our settings),
indexing can be used to enforce uniqueness to allow using the aforementioned PIR on
FHE encryption data protocols [15, 58]; this indexing however incurs considerable time
and memory overhead. Furthermore, if allowing pre-processing of cleartext data on top of
searching on unencrypted data, then we could employ PIR-by-Keywords [21] techniques to
get sub-linear complexity.

When allowing k > 2 non-colluding servers, fast private queries on public (unencrypted)
data systems were presented in [8, 62].

6 Secure Data Retrieval on the Cloud:

When allowing R > 1 rounds, logm communication overhead, and a client maintaining
and updating state – Oblivious RAM (ORAM) [37] enable hiding data access patterns
with sub-linear server time (breaking the linear scan barrier of our settings).

When allowing communication bandwidth to grow with the time to compute the search
functionality, classical “pre-FHE” secure two-party computation (2PC*) techniques can be
employed, such as garbled circuits and secret sharing [64, 39].

Likewise, when allowing communication bandwidth to grow with the number of records
m, secure pattern matching (SPM) shows how to efficiently compute isMatch on FHE
encrypted data item. Query [65, 20, 52, 19, 61, 51] can be employed by the server to
compute the encrypted length m indicator vector indicating the desired matches, and
transmitting this entire vector of length m to the client. This is clearly impractical for
large databases where m is large.

Table 1: Comparison to related works for secure data retrieval on FHE encrypted data
with single-server, single-round protocols, and no pre-processing of cleartext data. Rows
correspond to approaches: Secure Pattern Matching [65, 20, 52, 19, 61, 51] (SPM), Private
Information Retrieval [11, 30, 15, 58](PIR), Secure Search [5], the Direct polynomial (see
Appendix A), and our Report-Coreset approach (CHElib). Columns correspond to desired
properties: sub-linear communication and client’s complexity, low degree for the polynomial
homomorphically-evaluated by the server, handling query without uniqueness constraint,
returning all matches (rather than a single match), and returning both index and record
(rather than only the index). The parameter d is the degree of the specified matching
predicate isMatch; and m is the number of records in the data array.

Approaches Sub-linear Server’s Non-unique Returns Returns
Client degree Identifiers All Matches Records

SPM × d X X ×
PIR X d × × X

Secure Search X d · log3 m X × X
Direct method X d ·m X X X
CHELib X d X X X

2 New Paradigm: Coresets for Homomorphic Encryption
In this section we give an overview of how we propose to employ coresets, sketches and
group-testing for reducing the complexity of computing on FHE encrypted data.

Coreset is a data summarization C of a set P of items (e.g. points, vectors or database
records) with respect to a set Q of queries (e.g. models, shapes, classifiers, points, lines)
and a loss function f , such that f(P, q) is approximately the same as f(C, q) for every
query q ∈ Q. The goal is to have provable bounds for (i) the size of C (say, 1/ε), (ii) the
approximation error (say, ε ∈ (0, 1)) and (iii) construction time of C given (P,Q, f). We
can then run (possibly inefficient) existing algorithms and heuristics on the small coreset
C, to obtain provably approximated solution for the optimal query (with respect to f) of
the original data.

Sketches are a special type of coresets, where given an m × d matrix P and a “fat”,
s × m matrix As,m, with s � m, the result C = As,mP is an s × d (“sketch”) vector.
Many problems can be solved on the sketch C instead of the long vector P , by designing
a corresponding (sketch) matrix As,m. For example, if the entries of As,m are random

Adi Akavia, Dan Feldman and Hayim Shaul 7

standard Gaussian variables, then we can approximate the k-means problem on C by the
Johnson-Lindenstrauss Lemma; see [9]. In this paper we use sketches in the context of
compressed sensing, or more precisely, Group Testing [31].

The coreset is a paradigm in the sense that its exact definition, structure and properties
change from paper to paper. The term “coreset” was coined by Agarwal, Har-Peled, and
Varadarajan [2] and originally used for optimization in computational geometry (e.g. [53, 23,
13]). Since then coresets were used in fields such as machine learning (e.g.[45, 12]), numerical
algebra [63], graph theory (e.g. [29]), time series [46, 56, 35] streaming [26, 32, 24, 27] and
pattern recognition [17, 25, 42, 28, 44].

Coresets for Homomorphic Encryption (CHE). In this paper we suggest a new paradigm
that is inspired by the coreset paradigm, but for a very different application and context.
Instead of running the complete secure algorithm on the server side and encrypted data,
the server computes only (encrypted) coresets for the problem at hand and sends them back
to the client. Since the coresets are small, communicating them to the client, decrypting
them, and decoding the desired result from the coreset is relatively fast and require only
little additional time on the client side.

In this paper we introduce the first two CHEs (cf. Fig. 2): one for reporting non-zero
values in an array, and one for reducing the ring size from r to O(log r); see Section 4.
These two coresets are then combined to give our secure solution to the report problem;
see Theorem 1. The report coreset uses a sketch matrix to communicate the sparse binary
vector of the reported indices to the client.

The key property that we show in this paper is that computing coresets on the server
side securely (i.e., via polynomials) dramatically reduces its computation by reducing the
degree of the polynomial from at least linear to logarithmic on the input size (CRT coreset)
or even constant (report coreset).

Informally, in this paper a function S is an efficient coreset construction scheme for a
problem if it has the following pair of properties.

(i) S(P) ∈ Rk is a short vector that can be computed efficiently. Usually k = (logm)O(1)

for an input vector P of length m.

(ii) S(P) is a coreset or a “sketch” vector in the sense that the desired information,
in a problem dependent sense, can be extracted efficiently and exactly from S(P),
without having access to (the large) original vector.

Another significant difference from traditional coreset and sketches papers is that the
coresets in this paper are exact in the sense that the data reduction does not introduce
any additional error ε.

Group Testing meets FHE for report coreset. Our report coreset in Protocol 3 uses a
modern result from the field of Group Testing [31]. To our knowledge, this is the first
application of Group Testing to FHE. The motivation is to return to the client the very
large (m bits) but sparse binary (indicator) vector χ of the desired s indices that were
computed in Line 2a of our report coreset (Protocol 3) by communicating a number of bits
that is only poly-logarithmic in m. Specifically, entries χ(i) = isMatch(xi, `) indicate
whether data elements xi match the query `.

The server however sees only the ciphertexts Jχ(i)K, encrypting the indicators χ(i), that
the server obtains by homomorphically-evaluating the isMatch polynomial on encrypted
elements JxiK and query J`K. Since the vector χ is encrypted, an efficient algorithm must be
realized by a low-degree polynomial, so simple comparison of each entry to 1 is impossible
by such a polynomial. Instead, Group Testing suggests to extract the set of 1’s entries in
χ from a small number of predefined sums on subsets entries in χ.

8 Secure Data Retrieval on the Cloud:

Our Report Coreset multiplies the (encrypted) indicator vector χ by a (sketch) matrix
As,m of size k × m where k is polynomial in s and logm, i.e., we compute few linear
combinations As,m · χ of the entries of χ. In fact, since the sketch matrix As,m is public,
computing these linear combinations requires only an additively homomorphic encryption.
Indyk, Ngo and Rudra [47] suggested such a binary matrix As,m with k = O(s2 logm)
rows, so that our χ vector can be decoded from As,m · χ in time that is also polynomial in
s and logm on the client side.

Unfortunately, unlike χ, the vector As,m · χ is not a binary vector; moreover, correct
decoding of the sketch assumes this product is computed over the reals. In contrast, in the
context of FHE, computation is typically within a finite ring, e.g., computation modulo p
for a prime p, and not over the reals.1 Taking a sufficiently large p (e.g., p > m if Am,s
is binary), would have resolved the correctness issue, albeit introducing an undesirable
complexity increase, as larger p leads to a general slowdown in the homomorphic operations
as well as size inflation of the keys and ciphertexts. To aggravating the problem further, if
isMatch(xi, `) uses Fermat’s Little Theorem (e.g., for testing equality), then the degree
of the polynomial for computing χ in Line 2a of Protocol 3 grows at least linearly with p,
resulting in a high-degree polynomial.

Our CRT Coreset offers a solution that guarantees to resolve both the correctness and
complexity issues by executing the homomorphic evaluations in multiple rings (in parallel),
where the CRT coreset is the tuple of results in all the rings. Our analysis follows from
the Chinese Remainder Theorem (CRT) showing that computing modulo O(logm) small
primes p = Õ(logm), not only guarantees the efficiency and low-degree of the polynomials
we evaluate, but also ensures that the correct outcome can be efficiently decoded from the
CRT coreset.

In addition, the value s of the sparsity of χ is required to compute the sketch matrix
As,m but unknown to the server. These and other challenges are handled by the algorithms
of our system.

3 Problem Statement and Main Result
In this section we formally define the Secure report problem and state our main theorem.

3.1 The Secure Report Problem
Our main example application for using coresets in the service of FHE is to solve the
following report queries problem efficiently on a secure database.

For simplicity of the presentation, we first address the problem of reporting the list
I consisting of all indices i ∈ {1, . . . ,m} for the matching elements, i.e., all xi so that
isMatch(xi, `) = 1. The extension for reporting the list L of index and value pairs (i, xi),
for i ∈ I, is simple and requires no increase in the round complexity; see Section 4.2.2.

We focus here on key components of the definition, deferring to Section 3.3 some
implementation details regarding the input representation and compatibility requirements
for the isMatch polynomial and the FHE.

Definition 1 (Report problem). Let m be a positive integer, letM and Q the domains of
data-elements and queries respectively, isMatch : M×Q→ {0, 1} a polynomial specifying
the matching condition. In the Report problem, on input array = (x1, . . . , xm) ∈Mm and
query ` ∈ Q, the output is the set I of all entries in array matching `:

I = { i ∈ {1, . . . ,m} | isMatch(xi, `) = 1} .
1An exception is a recent FHE scheme computing over the reals, albeit inherently introducing rounding

errors in each computation [18].

Adi Akavia, Dan Feldman and Hayim Shaul 9

Figure 2: Overview of the suggested system for reporting the indices I = {2, 4, 5} of the
lookup value ` = 5 in the array (1, 5, 3, 5, 5, 4, 2). Green and blue titles correspond to
algorithms that run on the client’s and server’s side, respectively. The rightmost boxes
represent encrypted saved versions of the array. After the client calls Report on the
right, a version is computed from the shared memory (top right) to each of the few ring
values (only q = 5 is shown). IsMatch (bottom right) contains binary results for each
ring. The client computes the number |I| of occurrences (bottom left) of ` in the array,
by applying the CRT-Coreset on the Count results that are computed by the server.
It then computes the closest power of 2 for |I| (i.e., s∗ = 4), decrypts the corresponding
sketched vector (ys = 4), and ignores the other sketches. The client then computes I
efficiently from ys. Each sketch vector is computed by the server using CRT-Coreset
which computes, for every ring’s size q, its ReportCoreset (in the middle) that uses
IsMatch = array − (`, · · · , `) for q (bottom right).

In the context of our coreset for FHE paradigm, we relax the report problem to allow
outputting a short sketch for I, named, report-coreset, on which the client applies an
efficient decoding algorithm to obtain I. We assume an upper-bound s ∈ [0,m] on the
number of matches is given; See Section 4.2.3 for treatment of the case s is unknown.
Looking ahead, for efficiency we’d like the report-coreset to be short and the decoding
time to be efficient, specifically, we’d like them to be polynomial in s and logm.

Definition 2 (Report coreset). Let m, array, ` and I be as in Definition 1. Let s ∈ [0,m]
be an upper bound on the number of matches |I|. A vector y ∈ Zk is an s-report coreset
for (array, `) if, given only y, we can decode (compute) the set I.

10 Secure Data Retrieval on the Cloud:

The secure-report problem is the report-problem where the input (array, `) and report-
coreset output y are replaced by their encryption.

Definition 3 (Secure-report coreset problem). Let m, array, `, I, s and y be as in
Definition 2. In the secure-report problem, on input ciphertexts (JarrayK, J`K), the output
is a ciphertext JyK for an s-report coreset y for (array, `).

Here JarrayK = (Jx1K, . . . , JxmK) is the entry-by-entry encryption of the data array,
and J`K is the encryption of the query `, where encryption is with an FHE scheme specified
as parameters to the problem.

A secure-report protocol via coresets. The usage scenario is that the client first generates
keys and uploads the encrypted data JarrayK to the server; the client can then issue repeated
encrypted report queries J`K, for which the server homomophically computes and sends to
the client the s-report coreset JyK; the client can then decrypt and decode to obtain the
desired outcome I.

In details, for m, array, `, I, s and y as in Definition 2, the protocol for Secure
report via the secure-report coreset involves two parties, a client and a server with shared
input parameters (see below); a client’s input (array, `) for array a length m array of
data-elements and ` a query (or lookup value); the client’s output the list of matching
elements I; and no input or output for the server. The steps of the protocol are as
follows First, in an initialization and data upload phase, the client generates keys for the
FHE specified in the shared parameter, encrypts array entry-by-entry, and uploads the
corresponding ciphertexts JarrayK to the server. Next, in a search-phase, the client can
repeatedly encrypt report queries ` and send the encrypted queries J`K to the server. The
server then homomophically computes s-report coreset JyK, and sends it to the client. The
client then decrypts and decodes to obtain the desired outcome I.

The shared input parameters for our protocol (Protocol 3) are λ, E , p,M, Q, isMatch,
m and s defined as follows: λ is the security parameter, p the smallest prime larger than m,
E = (Gen,Enc,Dec,Eval) an FHE scheme that can compute homomorphic evaluations in
GF (p),M the data elements space, Q the queries-space, isMatch a polynomial realizing
the matching criterion isMatch : M×Q→ {0, 1}, m the number of data elements (for
an upper-bound pad with zeros), and s an upper-bound on the number of matching data
elements.

In our extension for the case that an upper bound s on the number of matches is
unknown (Section 4.2.3), we omit s from the shared parameters.

In our optimization utilizing our CRT-coreset to reduce the ring size for the homomorphic-
evaluations from linear to logarithmic in m (Section 4.2.2), we replace the large prime p
by a small set P = {p1, . . . , pκ} of small primes. Specifically, we set P to consist of the
first κ primes larger than log2 m for κ = dlogm/ log logme.

Remarks and extensions. For simplicity of the presentation we assume the entire data
array is uploaded in a single execution of the protocol, together with the keys generation.
This can be easily modified. The keys can be generated at a separate time, possibly
by a separate entity distributing the public key to the clients who will upload the data
(data-sources) and to the server, and distributing the secret key to the clients who will
issue search queries (search-clients). The upload can occur over time and from multiple
data-sources, gradually uploading new encrypted data records for the server to append to
its array of ciphertexts.

The question motivating this work, which we affirmatively answer is as follows:

Can we solve the secure-report problem via a server homomorphically evaluating
of a polynomial of degree independent of the number of data elements m, and
where the communication and client’s is complexity sub-linear in m?

Adi Akavia, Dan Feldman and Hayim Shaul 11

3.2 Main Theoretical Result
The main result of this paper is the first solution for the Secure report-coreset problem on
FHE encrypted data (see Definition 3) via polynomial of degree independent of the number
m of elements in the data array. We employ this polynomial to give a secure-report protocol
via coreset, in a single-server, single-round protocol with no pre-processing of cleartext
data (no sorting, indexing, or search oriented data-structures are used). The protocol
attains our complexity goals: The server homomorphically evaluates a polynomial of degree
independent of the number m of elements in the data array, and the communication
and client’s complexity is sub-linear (in fact, poly-logarithmic) is m and quadratic in the
upper-bound s on the number of matches.

Theorem 1 (basic settings, see extension below). There exists a protocol for secure-
report via coresets satisfying the following, when executed on client’s input array =
(x1, . . . , xm) ∈Mm and ` ∈ Q, and shared parameters (λ, p, E ,M,Q, isMatch,m, s), as
defined in Section 3.1:

• Structural requirements: The protocol is a single-server, single-round protocol, with
no preprocessing on cleartext data.

• Correctness: If |I| ≤ s, then the client’s output is I = { i | isMatch(xi, `) = 1}.

• Complexity: The complexity of the protocol is as follows, when denoting by d, µ the
degree and overall multiplication in the isMatch polynomial specified in the shared
parameters:

– The server homomorphically-evaluates over GF (p) a polynomial of degree d and
overall multiplications m · µ (for p the smallest prime larger than m).

– The communication consists of |`| ciphertexts sent from the client and O(s2 logm)
ciphertexts sent from the server (for |`| denoting the representation length of `).

– The client’s running-time is polynomial in |`|, λ, s and logm.

• Security: The protocol is secure against semi-honest adversary controlling the server.

Our subsequent protocols offer some extension and optimizations and tradeoffs on the
above theorem, as detailed next.

3.2.1 Extensions and Optimizations

The above theorem states our basic result that can be optimized and extended in several
forms.

Outputting L. The output can be extended to consist of (index, value) pairs for all
matches, i.e., outputting

L = { (i, xi) | isMatch(xi, `) = 1} .

This extension increased the client’s run-time, communication complexity, and number
of polynomials evaluated by the server by a factor w, for w the binary representation
length of records xi. There is no degradation however in the structural requirements or
the complexity polynomials evaluated by the server.

12 Secure Data Retrieval on the Cloud:

Reducing the prime to logarithmic in m. The prime p can be reduced to p = Õ(logm)
using our CRT-coreset. In this case we essentially repeat our protocol in parallel over
distinct fields GF (p1), . . . , GF (pκ) for κ = dloglogmme and p1, . . . , pκ the first κ primes
larger than log2 m. This incurs a κ = o(log2 m) increase on the client’s run-time, com-
munication complexity, and number of polynomials evaluated by the server. There is no
degradation however in the structural requirements, or the complexity of the polynomials
evaluated by the server.

Handling unknown number of matches. If a sufficiently small upper-bound s on the
number of matches is unknown we offer two incomparable alternatives.

The first alternative is to add a communication round in which the client and server
engage in a secure computation protocol to compute the number of matches |I|, and then
executing our Secure report protocol setting the upper-bound s to be at least |I| (possibly
s > |I| to not reveal the exact count). Computing the number of matches can be done in
a single-round protocol, where the server evaluates a polynomial of degree d and overall
multiplications Õ(m · µ). Elaborating on the above, if allowing homomorphic evaluations
over a large field GF (p) for p > m, then counting the number of matches is straightforward
(Section 4.2.3). To reduce the field size to logarithmic p = Õ(logm), we propose employing
our CRT-coreset (Section 4.2.2).

The second alternative is request that the server homomorphically evaluates the report
coreset for s ∈

{
20, 21, 22, . . . ,m

}
(sending each resulting encrypted coresets as soon as

its computation has completed). This does no increase the degree of the polynomials
evaluated by the server’s, but does have a high overall number of multiplications and
servers communication complexity. Nonetheless, this approach might be relevant if the
client can abort (preferably, covertly without the server knowing when the client aborts);
this results in client’s received communication and run-time that are still polynomial in λ,
|`|, |I| and logm, as desired.

3.3 Details: Compatibility Requirements
We next set some notation (below) and give the technical details on the compatibility
requirements from isMatch (Section 3.3.1) and the requirements from the used FHE
scheme (Section 3.3.2).

Notations. For a data record z or a lookup value, we denote by |z| the binary representa-
tion length of z. For an integer m, we denote [m] = {1, . . . ,m}. We follow the convention
that array indexes start from 1, with entry i denoted array(i). Vectors are column vectors
unless stated otherwise. We assume the array size m is a power of two (otherwise pad
with zero). Logarithms are in base 2 unless explicitly stated otherwise.

3.3.1 Compatibility Requirements for isMatch

We next elaborate on the compatibility requirements for ensuring that (a) the input
representation is compatible to the message space of the FHE scheme, and (b) the provided
polynomial for isMatch is compatible with both the input representation and the ring for
the FHE evaluations.

The polynomial isMatch specifies the matching criteria by mapping pairs (xi, `) ∈
M×Q of data element and query to a Boolean value isMatch(xi, `) ∈ {0, 1} accepting
value 1 if-and-only-if the element xi is a match to the query `. To plug-into our protocol
the polynomial isMatch, we make few requirements for compatible with the input
representation, compatibility with the underlying FHE, and for security.

Compatibility of isMatch to the input representation mean that data element and
query pair (xi, `) must be in the domain of isMatch. A few examples follow. When the

Adi Akavia, Dan Feldman and Hayim Shaul 13

matching criterion is an equality-test polynomial isMatch : {0, 1}w × {0, 1}w → {0, 1}
(Section 4.2.5), we require that data elements xi and queries (or lookup value) ` are specified
in binary representation of length w. When the matching criterion is an equality-test
polynomial isMatch : {0, . . . , p− 1}w × {0, . . . , p− 1}w → {0, 1} over GF (p) for a prime
p > 2 (Section 4.2.5), we require that data elements xi and query (or lookup value) ` are
specified using w digits in base p. When the matching criterion is a range query, the elements
and queries come from different domains, where for example elements may be integer
values xi and queries are a pair of integer endpoints (a, b) so that isMatch(xi, (a, b)) = 1
if-and-only-if xi is in the ranger (a, b). In general, forM and Q the spaces of data elements
and queries respectively, the matching criterion is a function isMatch : M×Q→ {0, 1}.

Compatibility of isMatch with the underlying FHE means the following. First, the
data elements spaceM and queries space Q must be contained in the message space for
the FHE so that they can be encrypted. Second, the polynomial provided for isMatch
must be over the same ring where the FHE computations are executed so that it can be
homomorphically evaluated.

For security, we require thatM consists of equal length data elements and Q consists
of equal length queries, because the encryption does not hide length information; use
padding as needed.

3.3.2 Compatibility Requirements for our Black-Box usage of FHE

Our protocols employ a fully (or, leveled) homomorphic encryption (FHE) in a black-box
fashion: we require only a black-box usage of the standard algorithms for FHE (key
generation, encryption, decryption, and evaluation). The only requirement we make on the
scheme is that we can choose as a parameter the plaintext modulus to be a prime number
p of our choice, so that the homomorphic operations are additions and multiplications
modulo p. This is the case in many of the FHE candidates, for example, [10]. For security
of our scheme we require that the FHE scheme is semantically secure.

To emphasize the plaintext modulus p we use the following notations for the standard
algorithms specifying an FHE scheme E = (Gen,Enc,Dec,Eval):
• Gen is a randomized algorithm that takes a security parameter λ as input and a
prime p, and outputs a public key pkp = (p, pk) and a secret key skp = (p, sk) for
plaintext modulus p, denoted:

(pkp = (p, pk), skp = (p, sk))← Gen(1λ; p).

• Enc is a randomized algorithm that takes pkp and a plaintext message msg, and
outputs a ciphertext JmsgKp for plaintext modulus p, denoted:

JmsgKp ← Encpkp(msg).

• Dec is an algorithm that takes skp and a ciphertext JmsgKp as input, and outputs a
plaintext msg′, denoted:

msg′ ← Decskp(JmsgKp).
Correctness is the standard requirement that msg′ = msg.

• Eval is a (possibly randomized) algorithm takes pkp, a polynomial f(x1, . . . , xt), and
a tuple of ciphertexts (Jm1Kp, . . . , JmtKp), and outputs a ciphertext c, denoted:

c← Evalpkp(f, Jm1Kp, . . . , JmtKp).

Correctness is the requirement that decryption would return the message resulting
from evaluating (modulo p) the polynomial f() on inputs m1, . . . ,mt,
Decskp(Evalpkp(f, Jm1Kp, . . . , JmtKp)) = f(m1, . . . ,mt) mod p. Semantic security
implies that the resulting ciphertext c is computationally indistinguishable from a
fresh ciphertext Jf(m1, . . . ,mt)Kp.

14 Secure Data Retrieval on the Cloud:

Shorthand notations we use in this writeup are detailed next. (a) We encrypt mes-
sages m = (m1, . . . ,mt) digit-by-digit, and encrypt arrays entry-by-entry. We abuse
notation by denoting the resulting tuple of ciphertextst by JmsgKp = (Jm1Kp, . . . , JmtKp)
for Jmsg(i)Kp ← Encpkp(mi) and JarrayKp = (Jarray(1)Kp, . . . , Jarray(m)Kp). (b) When
the modulus p is for a ciphertext JmKp clear from context we omit it and write JmK. (c)
When the public key pkp is clear from the context we use a more natural presentation of
homomorphic evaluation:

4 The Secure Report via Coreset Protocol
In this section we give the details of our upload and report protocol, starting with the basic
version of the protocols and continuing with the extensions, optimizations and trade-offs.

4.1 The Basic Protocol
In this section we give the details of our upload and report protocol (basic version), and
analyze the protocol to prove Theorem 1; See a protocol summary in Fig. 3.

The Secure report protocol (basic version). The protocol begins with an initialization
and data upload phase. In this phase the client generates keys for the FHE, encrypts the
data elements x1, . . . , xm, and sends the encrypted data and the public key to the server.
The FHE is initialized here with plaintext modulus p so that p > m for m the provided
upper-bound on the number of data elements.

Next the protocols enters the report queries phase. In this phase the client can
repeatedly issue encrypted report queries `. For each such encrypted query J`K, the server
does the following. First the server homomorphically evaluates the specified matching
polynomial isMatch to obtain the encrypted indicator vector χ = (χ(1), . . . , χ(m)), where

Jχ(i)Kp := isMatch(JxiKp, J`Kp)

for all i ∈ [m]. Next, the server homomorphically multiplies χ by an (s,m)-sketch matrix
As,m, to obtain and send to the client the encryption of y = As,m · χ:

JyKp := As,m · JχKp.

The client decrypts using her secret key to obtain y, and then decodes y using the decoding
algorithms for the sketch to obtain χ.

Proof of Theorem 1. The protocol is a single-server, single-round protocol, that performs
no pre-processing on the cleartext data.

Correctness is argued as follows. First observe that χ satisfies that χ(i) = 1 if-and-
only-if isMatch(xi, `) = 1. This implies that χ is a binary length m vector with at
most s positive entries (by the premise that the number of matches is upper-bounded
by s). By the correctness of the sketch As,m, we know that when computing y = As,mχ
over the real number, the sketch decoding algorithm returns the set of entries where χ is
positive, that is, the correct output I. In our case however computation is over GF (p).
Nonetheless, our choice of p > m ensures that no overflow occurs, and the obtained result
is identical to the result when computing over the reals. Namely, the output is the desired
set I = { i ∈ [m] | isMatch(xi, `) = 1}.

Complexity analysis follows. The server homomorphically-evaluates over GF (p) the
composition of two polynomials: the isMatch polynomial and the linear polynomial that
computes the product of a plaintext matrix and an encrypted vector. The former has
degree d, whereas the latter add nothing to the degree because the linear combinations

Adi Akavia, Dan Feldman and Hayim Shaul 15

specifying the entries y(i) are computed using only homomorphic addition (by summing
the encrypted entries ind(j) for all j where the As,m(i, j) = 1). Thus, the server computes
a polynomial of degree d (the degree of isMatch). The overall number multiplications
is µ multiplications to compute isMatch on each of the m data elements, resulting in a
total of m · µ multiplications. The communication consists J`K and JyK. The consists of |`|,
the latter consists of a ciphertext for each entry of y, that is, O(s2 logm) ciphertexts as
the number of rows in Am,s. The client’s running-time is the time to encrypt and decrypt
the sent and received ciphertexts respectively, plus the time to decode y. The time to
encrypt and decrypt is polynomial in the number of cihpertexts and the security parameter
λ, the decoding time is polynomial in s and logm. The overall running time is therefore
polynomial in |`|, λ, s and logm.

Security against a semi-honest adversary controlling the server follows from the semantic-
security on the underlying FHE scheme, because the entire protocol can be simulated by
an efficient simulator oblivious of the client’s input and output.

Shared Parameters: The security parameter λ, the FHE scheme E =
(Gen,Enc,Dec,Eval), a prime p > m, the records spaceM and lookup values space
Q, a polynomial realizing the matching criterion isMatch : M× Q → {0, 1}, an
upper-bound on the number of data records m, and an upper-bound on the number
of matches s ∈ [0,m].
Inputs: The client’s input is a data array = (x1, . . . , xm) ∈Mm and queries ` ∈ Q;
The server has no input.
Outputs: The client’s output is the set I = { i ∈ [m] | isMatch(xi, `) = 1}; The
server has no output.
Initialization and upload phase The client does the following:
• Generate keys (pkp, skp)← Gen(1λ; p).

• Encrypt the data elements JxiKp ← Encpkp(xi) for all i ∈ [m].

• Send to server pkp and (Jx1Kp, . . . , JxmKp).

Report queries phase:

1. To issue each report query `, the client encrypts the query J`Kp ← Encpkp(`) and
sends J`Kp to the server.

2. The server then does the following:

(a) Compute Jχ(i)Kp := isMatch(JxiKp, J`Kp) for all i ∈ [m].
(b) Compute JyKp := As,m ·JχKp for As,m an (s,m)-sketch matrix (see Section 2)

and JχKp = (Jχ(1)Kp, . . . , Jχ(m)Kp); send JyKp to the client.

3. The client decrypts y ← Decskp(JyKp) and decodes y (see Section 2) to obtain
the output I.

Figure 3: Secure report protocol via report-coreset.

4.2 Extensions and Optimizations
We discuss extensions and optimizations of our protocol for reporting both value and
index; handling the case that s is unknown; reducing the ring size for the homomorphic
evaluation from linear to logarithmic in m; and handling dynamic data management.

16 Secure Data Retrieval on the Cloud:

4.2.1 Reporting values on top of indexes (L)

To report the matching elements values xi ∈ {0, 1}w (L) on top of their indexes (I) we do
the following. The server homomorphically evaluates w + 1 sketches, instead of a single
sketch: One sketch for χ (this is the same as in the basic protocol), plus w sketches – a
sketch for each digit j ∈ [w] in the binary representation of the matching data elements.

The sketch for the j-th digit is computed as follows. Denote the bits in the binary
representation of xi by xi(1), . . . , xi(w) (for i ∈ [m]). Consider the vector consisting of all
the j-th bits of the data elements:

allDataj = (x1(j), . . . , xm(j))

Observe that the server implicitly holds the encrypted version of allDataj (encrypted
entry-by-entry). To compute the sketch for the j-bit of the matching data elements the
server first homomorphically maps allDataj to the s-sparse vector sparseDataj whose
i-th entries (i ∈ [m]) are the product of χ(i) and allDataj(i):

JsparseDataj(i)Kp := Jχ(i)Kp · JallDataj(i)Kp.

Next, the server homomorphically evaluates the sketch for sparseDataj(i) by left-multiplying
its encrypted version by the cleartext binary matrix As,m

JsketchjKp := As,m · JsparseDatajK

The server then sends to the client all the encrypted sketches JyKp and JsketchjKp for all
j ∈ [m]. The client decrypts and decode JyKp to obtain I, and decrypts and decode each
JsketchjKp to obtain the j-th entry of the matching elements Putting it all together, the
protocol outputs

L = { (i, xi) | i ∈ [m], isMatch(xi, `) = 1} .

The complexity is affected as follows. There is a growth by a factor w in the server’s
overall multiplications, the communication complexity and the client’s time. The degree of
the homomorphically evaluated polynomial however does not suffer from any degradation.

4.2.2 Reducing the Modulus p to Quasi-Logarithmic in m

Our basic protocol requires that the homomorphic evaluations are done over GF (p) for
large prime modulus p > m. In this section we employ the CRT-coreset to reduce the
modulus to nearly logarithmic in m, while repeating the small modulus protocol for
κ = dlogm/ log logme times.

The small modulus protocol is similar to our basic protocol, except for the following.
First, the initialization, encryption and homomorphic evaluations are with respect to
a small modulus p = O(logm). Second, the initialization upload and homomorphic
evaluations are done in parallel for κ primes p1, . . . , pκ (specifically, the κ first primes
larger than logm). Third, the client receiving κ sketches:

JyKp1 , . . . , JyKpκ

does the following: decrypt all sketches to obtain the residues yj = As,mχ mod pj for
j ∈ [κ], apply the CRT-decoding algorithm on these residues to obtain the value y = As,mχ
over the reals, now apply the sketch-decoding algorithm (as in the basic protocol) to obtain
I.

In this modified protocol, the degree of the polynomial evaluated by the server is
unchanged while the modulus is reduced to logarithmic p = Õ(logm) (by the prime numbers
theorem). The overall number of multiplications by the server and the communication
and client’s complexiyt grow by a factor of κ.

Adi Akavia, Dan Feldman and Hayim Shaul 17

4.2.3 Handling Unknown Number of Matches

We discussed two approaches to address settings when an upper-bound s on the number
of matches is unknown.

The first approach, yielding a 2-rounds protocol revealing and upper-bound s on |I|.
In this approach the client and server engage in a preliminary round of communication
for the client to learns |I| (the server learns nothing). The client then sends to the server
an upper-bound s on |I| as she pleases, and engages in the report protocol for known
upper-bound s.

Computing |I| is as follows. For the simple case when that modulus p is larger than m,
computing |I| is very simple: The server homomorphically evaluates

JcntKp :=
∑
i∈[m]

Jχ(i)Kp

and sends to the client who decrypts and learns |I|. For the case where we require the
use of small moduli p = Õ(logm) the protocol employs the CRT-coreset: The server
homorphically evaluates the above sum modulo pj the κ = O(logm) small primes pj :

JcntKpj :=
∑
i∈[m]

Jχ(i)Kpj

and sends the tuple of resulting ciphertexts to the client. The client decrypts JcntKpj for
all j ∈ [κ] to obtain the residues modulo pj of |I|. From these residues the client computes
|I| using the standard CRT-decode algorithm.

The second approach yields a 1-round protocol, albeit with high overall multiplications
and outgoing communication on the server’s side (communication that the client mostly
can ignore). In this case, the server sends to the client J|I|Kp as well as the messages send in
the report protocol when executed with number of matches upper-bounds s = 20, 21, . . . ,m
(assuming here w.l.o.g that m is a power of two). The client decrypts J|I|Kp to learn |I| and
then decrypts only the sketch corresponding to the smallest s larger than |I|. Although
the Cloud has communication complexity of Ω(m), the user can abort the protocol after
receiving communication that is polynomial in |I| and logm. We remark that we assumed
here that p > m; extension to small moduli p is via using the CRT-coreset analogously to
the above.

4.2.4 Dynamic Data Management

We next elaborate on how to extending the Secure report functionality to dynamic data
management: Insert, Update and Delete.

Insert. Insertion of additional data elements is simply be the client encrypting and
sending the element for the server to append at the end of the encrypted array (and update
the array size parameter m accordingly).

Update. To update the i-th data element xi, the client issues an update request
(UPDATE, JiK, JdiffK) with encrypted index i and encrypted difference value diff =
new − old for new the new value for xi and old the current value. (If the client doesn’t
have old she can use PIR to retrieve it.) The server then homomorphically adds to each
elements JxjK of the stored array the value IsEqual(JiK, j) · JdiffK, where i and j are in
binary representation and IsEqual : {0, 1}logm × {0, 1}logm → {0, 1} is the equality-test
polynomial (see Section 4.2.5). This results in a new encrypted array Jx′K satisfying
x′i = new and ∀j 6= i, x′j is unchanged.

18 Secure Data Retrieval on the Cloud:

Delete. Deletion of elements can be implemented by updating them to a reserved “Deleted”
symbol. Another option is switching the value of the element we wish to delete to that of
the last element in the array and reducing the number of elements m by 1 (for cases when
the dynamic size of the data is either maintained by the client, or is not a secret and can
be maintained by the server).

4.2.5 isMatch Instantiation in our Experimental Results

For our experimental results we used an equality-test instantiation of isMatch for exact-
match Secure report. The data and query and specified in binary representation.

Specifically we instantiate isMatch to using the following equality-test polynomial over
GF (p) for data and query in binary representation. The polynomial isMatch : {0, 1}w ×
{0, 1}w → {0, 1} is defined by:

isMatch((a1, . . . , aw), (b1, . . . , bw)) =
w∏
i=1

(
1− (ai − bi)2

)
mod p.

of degree 2w.
We remark that for p = 2 a degree w polynomial suffice, as there is no need to square

the difference ai − bi. For large p > 2 the standard polynomial raises the difference by
p − 1 using Fermat’s Little Theorem to guarantee that all non-zero values map to one.
Nonetheless for data in binary representation, as considered here, taking the square suffice
as we are guaranteed that the difference is in {−1, 0, 1}.

5 System & Experimental Results
In this section we describe experiments on the Secure report that we implemented based
on our algorithms (Protocol 3). For example, it can report the locations of all 1’s in a
10-sparse vector of size 3 · 109 = 3, 000, 000, 000 entries in less than one minute by using
a single machine on Amazon EC2 cloud. The system is fully open sourced, and all our
experiments are reproducible. We hope to extend and improve the system in future papers
together with both the theoretical and practical community.

5.1 The System

System Overview. The system maintains an encrypted database that is stored on
Amazon’s AWS cloud. The system gets from the user an encrypted lookup value ` to
search for, and a column name array in a database table of length m. The encryption is
computed on the user’s side using a secret key that is unknown to the cloud. The user
can send the request through a web-browser, that can be run e.g. from a smart-phone or
a laptop. The system then runs our Secure report coreset algorithm on the cloud, and
returns a report coreset for (array, `). The web browser then decrypts this coreset on
the user’s machine and uses it to compute the solution to the report query, which is the
indices i1, . . . , icnt in array that matches `. Database updates can be maintained between
search calls, and support multiple users that share the same security key.

Hardware. Our system is generic but in this section we evaluate it on Amazon’s AWS
cloud. We use one of the standard suggested EC2 x1.32xlarge server, each with 64 2.4
GHz Intel Xeon E5-2676 v3 (Haswell) cores and 1,952 GigaByte of RAM.

Adi Akavia, Dan Feldman and Hayim Shaul 19

Open Software and Security. The algorithms were implemented in C + +. HELib
library [43] was used for the FHE commands. The source of our system is open under the
GNU v3 license and can be found in [3]. For our experiments below we use a security key
of 80 bits of security.

5.2 Experimental Results
In this sub-section we describe our preliminary experiments with our system and explain
the results. Due to lack of space we omit more results and description that can be found
in the fuller version [4].

Data. We ran the system on a lookup value ` = 1 in an array of m integers array ∈
{0, . . . ,m− 1}m. The vector was all zeroes except for s random indices, and different
values for m and s were used. As expected, the actual values behind the encrypted records
had no effect on the running times.

The Experiment. We ran Algorithm 3 for database table columns ranging from m = 10
to m = 3, 000, 000, 000 = 3 · 109 records, and cnt ∈ {10, 20, 40}.

Results. Our experimental results for a single machine on the cloud are shown as the
circle points in Fig 1. The table of exact values appears in the full version [4].

The user’s decoding time was negligible in all the experiments, so the cloud’s time
equals to the overall running time. For example, the graph shows that a single machine
can report in about 2 minutes all 1’s in a 20-sparse column of 3,000,000,000 binary entries.

Comparison to the direct approach. Our theoretical results proves that the running
time of our new algorithm is only poly-logarithmic in the number m of entries compared to
the direct approach which is polynomial in m. However, it assumes that both our and the
direct algorithm may use m machines in parallel, i.e., a machine for each record. The goal
of our experiment was to show a significant time reduction even using a single machine on
the cloud where a running time that is linear in m is expected.

The graph in Fig. 1 is log scaled so a linear curve shows a polynomial relation, and its
slope is the degree of the polynomial. Our experiments indeed show that our algorithm is
linear in m as expected. The direct algorithm perform worse, both on small number of
entries (the ratio is approximately 1000), but also asymptotically: The slope of the direct
approach is about 1.5, indicating a running time of O(m1.5) (as oppose to our O(m)). The
main reason for the improvement in running time of our algorithm is that unlike the direct
algorithm, our algorithm does not use multiplications to compute the sketch.

6 Conclusion
In this paper we give a secure protocol for the report problem on encrypted data elements
and query. Our protocol retrieves all matching elements in a data array, where both data
elements and query are encrypted using Fully Homomorphic Encryption (FHE).

Our protocol involves a single-server, single-round, and requires no pre-processing
of the cleartext data. The complexity of our protocol, given an upper-bound s on the
number of matches, is as follows: The server evaluates a polynomial of degree independent
of the array size m; the communication and client’s complexity is polynomial in s and
logm. The protocol is secure against semi-honest adversaries controlling the server. We
presented extensions and optimizations of our protocol: handling the case that s is unknown;
reducing the ring size for the homomorphic evaluation from linear to logarithmic in m;

20 Secure Data Retrieval on the Cloud:

Table 2: Server’s running time of Report Coreset (Algorithm 3) as measured on a single
machine on Amazon’s cloud for different database array size (1st column). In these
experiments cnt = 40, i.e. at most 40 elements matched the report criteria. The 3rd
column shows the time in minute to compute report with the direct algorithm and The
4th column shows the time in minute to compute report with our coreset algorithm. The
2nd column shows the the speedup of our report coreset. Since we could not run the direct
approach for too large databases we give estimations In parentheses are values based on
our analysis.

Records time(direct)
time(coreset) Direct Repot (minutes) Report Coreset (minutes)

89,600 48 4 0.083
192,000 47 7 0.15
396,800 73 22 0.3
806,400 109 67 0.61
1,625,600 164 199 1.21
3,264,000 268 689 2.56
6,540,800 450 2,281 10.16
13,094,400 (754) (7,661) 20.55
26,201,600 (441) (9,068) 40.58
52,416,000 (542) (21,990) 82.38
104,844,800 (577) (47,568) 163.56
209,702,400 (3,107) (508,126) 328.08
419,417,600 (3,502) (1,148,875) 653.07

Figure 4: The speedup of using our report coreset (ratio between the direct algorithm and
the report coreset) for arrays with cnt = 40, i.e. at most 40 records matched the query.
The x-axis shows the array size (in millions) and the y-axis shows the ratio.

and handling dynamic data management. Furthermore, our protocol is compatible with
versatile matching conditions isMatch, and can be utilized for example for exact match,
similarity search, wild-card matching, range queries, Boolean queries and more.

We implemented our protocol in an open source library based on HElib, and ran
experiments on Amazon’s AWS EC2 cloud. Our experiments show that we can search in
billions of encrypted data elements for an encrypted query in a minute.

To achieve our results we put forth our coreset paradigm for homomorphic encryption,
and present a low-degree polynomial for Secure report. Both contributions could be useful
for future works. The coreset for homomorphic encryption paradigm has already been
employed in follow-up works. The low-degree polynomial could be useful in the broader

Adi Akavia, Dan Feldman and Hayim Shaul 21

context of secure computation, using other techniques such as secret sharing beyond FHE.
The simplicity of our algorithm makes it a good candidate to run on small embedded

systems. Motivating examples are data sources such as sensors of wearable devices
uploading data to a server while keeping it hidden from the Server but still allowing to
query the data. In this case the sensors take the role of the data source client in the
running the upload phase of our protocol. With our protocol a network of weak sensor
devices can store their encrypted data in a server for the search client to issue the report
queries.

References
[1] M. A. Abdelraheem, T. Andersson, and C. Gehrmann. Inference and record-injection

attacks on searchable encrypted relational databases. IACR Cryptology ePrint Archive,
2017:24, 2017.

[2] P. K. Agarwal, S. Har-Peled, and K. R. Varadarajan. Geometric approximation via
coresets. Combinatorial and computational geometry, 52:1–30, 2005.

[3] A. Akavia, D. Feldman, and H. Shaul. ReportLib: Open library for FHE report, 2018.

[4] A. Akavia, D. Feldman, and H. Shaul. Secure data retrieval on the cloud homomorphic
encryption meets coresets. Cryptology ePrint Archive, Report 2018/1003, 2018.
https://eprint.iacr.org/2018/1003.

[5] A. Akavia, D. Feldman, and H. Shaul. Secure search via sketching for homomor-
phic encryption. In Proceedings of the 25th ACM Conference on Computer and
Communications Security. ACM, 2018.

[6] A. Akavia, C. Gentry, S. Halevi, and M. Leibovich. Setup-free secure search on
encrypted data: Faster and post-processing free. Cryptology ePrint Archive, Report
2018/1235, 2018. https://eprint.iacr.org/2018/1235.

[7] O. Barkol and Y. Ishai. Secure computation of constant-depth circuits with applications
to database search problems. In Annual International Cryptology Conference, pages
395–411. Springer, 2005.

[8] D. Boneh, C. Gentry, S. Halevi, F. Wang, and D. J. Wu. Private database queries
using somewhat homomorphic encryption. In International Conference on Applied
Cryptography and Network Security, pages 102–118. Springer, 2013.

[9] C. Boutsidis, A. Zouzias, and P. Drineas. Random projections for k-means clustering.
In Advances in Neural Information Processing Systems, pages 298–306, 2010.

[10] Z. Brakerski, C. Gentry, and V. Vaikuntanathan. (leveled) fully homomorphic en-
cryption without bootstrapping. In Proceedings of the 3rd Innovations in Theoretical
Computer Science Conference, ITCS ’12, pages 309–325, New York, NY, USA, 2012.
ACM.

[11] Z. Brakerski and V. Vaikuntanathan. Efficient fully homomorphic encryption from
(standard) LWE. In IEEE 52nd Annual Symposium on Foundations of Computer
Science, FOCS 2011, Palm Springs, CA, USA, October 22-25, 2011, pages 97–106,
2011.

[12] V. Braverman, G. Frahling, H. Lang, C. Sohler, and L. F. Yang. Clustering high
dimensional dynamic data streams. arXiv preprint arXiv:1706.03887, 2017.

https://eprint.iacr.org/2018/1003
https://eprint.iacr.org/2018/1235

22 Secure Data Retrieval on the Cloud:

[13] V. Braverman, A. Meyerson, R. Ostrovsky, A. Roytman, M. Shindler, and B. Tagiku.
Streaming k-means on well-clusterable data. In Proceedings of the twenty-second
annual ACM-SIAM symposium on Discrete Algorithms, pages 26–40. Society for
Industrial and Applied Mathematics, 2011.

[14] D. Cash, P. Grubbs, J. Perry, and T. Ristenpart. Leakage-abuse attacks against
searchable encryption. In Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security, pages 668–679. ACM, 2015.

[15] G. S. qCetin, W. Dai, Y. Doröz, W. J. Martin, and B. Sunar. Blind web search: How
far are we from a privacy preserving search engine? IACR Cryptology ePrint Archive,
2016:801, 2016.

[16] M. Chase and S. Kamara. Structured encryption and controlled disclosure. In
International Conference on the Theory and Application of Cryptology and Information
Security, pages 577–594. Springer, 2010.

[17] J. Chen and Q. Zhang. Bias-aware sketches. Proceedings of the VLDB Endowment,
10(9):961–972, 2017.

[18] J. H. Cheon, A. Kim, M. Kim, and Y. S. Song. Homomorphic encryption for arithmetic
of approximate numbers. In T. Takagi and T. Peyrin, editors, Advances in Cryptology
- ASIACRYPT 2017 - 23rd International Conference on the Theory and Applications
of Cryptology and Information Security, Hong Kong, China, December 3-7, 2017,
Proceedings, Part I, volume 10624 of Lecture Notes in Computer Science, pages
409–437. Springer, 2017.

[19] J. H. Cheon, M. Kim, and M. Kim. Optimized search-and-compute circuits and
their application to query evaluation on encrypted data. IEEE Trans. Information
Forensics and Security, 11(1):188–199, 2016.

[20] J. H. Cheon, M. Kim, and K. E. Lauter. Homomorphic computation of edit distance.
In Financial Cryptography Workshops, pages 194–212, 2015.

[21] B. Chor, N. Gilboa, and M. Naor. Private information retrieval by keywords, 1997.

[22] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. Private information retrieval.
In Foundations of Computer Science, 1995. Proceedings., 36th Annual Symposium on,
pages 41–50. IEEE, 1995.

[23] K. L. Clarkson. Coresets, sparse greedy approximation, and the Frank-Wolfe algorithm.
ACM Transactions on Algorithms (TALG), 6(4):63, 2010.

[24] E. Cohen and H. Kaplan. Tighter estimation using bottom k sketches. Proceedings of
the VLDB Endowment, 1(1):213–224, 2008.

[25] R. Cole, D. Shasha, and X. Zhao. Fast window correlations over uncooperative time
series. In Proceedings of the eleventh ACM SIGKDD international conference on
Knowledge discovery in data mining, pages 743–749. ACM, 2005.

[26] G. Cormode and M. Garofalakis. Sketching streams through the net: Distributed
approximate query tracking. In Proceedings of the 31st international conference on
Very large data bases, pages 13–24. VLDB Endowment, 2005.

[27] G. Cormode and M. Garofalakis. Sketching probabilistic data streams. In Proceedings
of the 2007 ACM SIGMOD international conference on Management of data, pages
281–292. ACM, 2007.

Adi Akavia, Dan Feldman and Hayim Shaul 23

[28] G. Cormode, M. Garofalakis, P. J. Haas, and C. Jermaine. Synopses for massive
data: Samples, histograms, wavelets, sketches. Foundations and Trends in Databases,
4(1–3):1–294, 2012.

[29] A. Czumaj, C. Lammersen, M. Monemizadeh, and C. Sohler. (1+ ε)-approximation
for facility location in data streams. In Proceedings of the twenty-fourth annual ACM-
SIAM symposium on Discrete algorithms, pages 1710–1728. Society for Industrial and
Applied Mathematics, 2013.

[30] Y. Doröz, B. Sunar, and G. Hammouri. Bandwidth efficient PIR from NTRU. In
Financial Cryptography and Data Security - FC 2014 Workshops, BITCOIN and
WAHC 2014, Christ Church, Barbados, March 7, 2014, Revised Selected Papers, pages
195–207, 2014.

[31] D. Du, F. K. Hwang, and F. Hwang. Combinatorial group testing and its applications,
volume 12. World Scientific, 2000.

[32] M. Garofalakis, D. Keren, and V. Samoladas. Sketch-based geometric monitoring
of distributed stream queries. Proceedings of the VLDB Endowment, 6(10):937–948,
2013.

[33] C. Gentry. A Fully Homomorphic Encryption Scheme. PhD thesis, Stanford University,
Stanford, CA, USA, 2009. AAI3382729.

[34] C. Gentry. Fully homomorphic encryption using ideal lattices. In Proceedings of
the Forty-first Annual ACM Symposium on Theory of Computing, STOC ’09, pages
169–178, New York, NY, USA, 2009. ACM.

[35] A. C. Gilbert, Y. Kotidis, S. Muthukrishnan, and M. Strauss. Surfing wavelets on
streams: One-pass summaries for approximate aggregate queries. In VLDB, volume 1,
pages 79–88, 2001.

[36] M. Giraud, A. Anzala-Yamajako, O. Bernard, and P. Lafourcade. Practical passive
leakage-abuse attacks against symmetric searchable encryption. In 14th International
Conference on Security and Cryptography SECRYPT 2017. SCITEPRESS-Science
and Technology Publications, 2017.

[37] O. Goldreich. Towards a theory of software protection and simulation by oblivious
rams. In Proceedings of the Nineteenth Annual ACM Symposium on Theory of
Computing, STOC ’87, pages 182–194, New York, NY, USA, 1987. ACM.

[38] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game. In
Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing,
STOC ’87, pages 218–229, New York, NY, USA, 1987. ACM.

[39] O. Goldreich, S. Micali, and A. Wigderson. How to play any mental game. In
Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing,
STOC ’87, pages 218–229, New York, NY, USA, 1987. ACM.

[40] P. Grubbs, R. McPherson, M. Naveed, T. Ristenpart, and V. Shmatikov. Breaking
web applications built on top of encrypted data. In Proceedings of the 2016 ACM
SIGSAC Conference on Computer and Communications Security, pages 1353–1364.
ACM, 2016.

[41] P. Grubbs, K. Sekniqi, V. Bindschaedler, M. Naveed, and T. Ristenpart. Leakage-
abuse attacks against order-revealing encryption. In Security and Privacy (SP), 2017
IEEE Symposium on, pages 655–672. IEEE, 2017.

24 Secure Data Retrieval on the Cloud:

[42] S. Guha and A. McGregor. Graph synopses, sketches, and streams: A survey.
Proceedings of the VLDB Endowment, 5(12):2030–2031, 2012.

[43] S. Halevi. Helib - an implementation of homomorphic encryption. https://github.
com/shaih/HElib/, 2013.

[44] H. Huang and S. P. Kasiviswanathan. Streaming anomaly detection using randomized
matrix sketching. Proceedings of the VLDB Endowment, 9(3):192–203, 2015.

[45] J. Huggins, T. Campbell, and T. Broderick. Coresets for scalable bayesian logistic
regression. In Advances in Neural Information Processing Systems, pages 4080–4088,
2016.

[46] P. Indyk, N. Koudas, and S. Muthukrishnan. Identifying representative trends in
massive time series data sets using sketches. In VLDB, pages 363–372, 2000.

[47] P. Indyk, H. Q. Ngo, and A. Rudra. Efficiently decodable non-adaptive group
testing. In Proceedings of the twenty-first annual ACM-SIAM symposium on Discrete
Algorithms, pages 1126–1142. SIAM, 2010.

[48] Y. Ishai and E. Kushilevitz. Randomizing polynomials: A new representation with
applications to round-efficient secure computation. In focs, page 294. IEEE, 2000.

[49] M. S. Islam, M. Kuzu, and M. Kantarcioglu. Access pattern disclosure on searchable
encryption: Ramification, attack and mitigation. In Ndss, volume 20, page 12, 2012.

[50] M. Kim, H. T. Lee, S. Ling, S. Q. Ren, B. H. M. Tan, and H. Wang. Better security
for queries on encrypted databases. IACR Cryptology ePrint Archive, 2016:470, 2016.

[51] M. Kim, H. T. Lee, S. Ling, B. H. M. Tan, and H. Wang. Private compound wildcard
queries using fully homomorphic encryption. IEEE Transactions on Dependable and
Secure Computing, 2017.

[52] K. E. Lauter, A. López-Alt, and M. Naehrig. Private computation on encrypted
genomic data. IACR Cryptology ePrint Archive, 2015:133, 2015.

[53] J. M. Phillips. Coresets and sketches. arXiv preprint arXiv:1601.00617, 2016.

[54] D. Pouliot and C. V. Wright. The shadow nemesis: Inference attacks on efficiently
deployable, efficiently searchable encryption. In Proceedings of the 2016 ACM SIGSAC
conference on computer and communications security, pages 1341–1352. ACM, 2016.

[55] A. A. Razborov. Lower bounds on the size of bounded depth circuits over a complete
basis with logical addition. Mathematical Notes of the Academy of Sciences of the
USSR, 41(4):333–338, 1987.

[56] G. Reeves, J. Liu, S. Nath, and F. Zhao. Managing massive time series streams with
multi-scale compressed trickles. Proceedings of the VLDB Endowment, 2(1):97–108,
2009.

[57] R. L. Rivest, L. Adleman, and M. L. Dertouzos. On data banks and privacy homo-
morphisms. Foundations of Secure Computation, Academia Press, pages 169–179,
1978.

[58] S. S. Roy, F. Vercauteren, J. Vliegen, and I. Verbauwhede. Hardware assisted fully
homomorphic function evaluation and encrypted search. IEEE Transactions on
Computers, 2017.

https://github.com/shaih/HElib/
https://github.com/shaih/HElib/

Adi Akavia, Dan Feldman and Hayim Shaul 25

[59] R. Smolensky. Algebraic methods in the theory of lower bounds for boolean circuit
complexity. In Proceedings of the nineteenth annual ACM symposium on Theory of
computing, pages 77–82. ACM, 1987.

[60] D. X. Song, D. Wagner, and A. Perrig. Practical techniques for searches on encrypted
data. In Security and Privacy, 2000. S&P 2000. Proceedings. 2000 IEEE Symposium
on, pages 44–55. IEEE, 2000.

[61] H. Tang, X. Jiang, X. Wang, S. Wang, H. Sofia, D. Fox, K. Lauter, B. Malin, A. Telenti,
L. Xiong, and L. Ohno-Machado. Protecting genomic data analytics in the cloud:
state of the art and opportunities. BMC Medical Genomics, 9(1):63, Oct 2016.

[62] F. Wang, C. Yun, S. Goldwasser, V. Vaikuntanathan, and M. Zaharia. Splinter:
Practical private queries on public data. In NSDI, pages 299–313. USENIX Association,
2017.

[63] D. P. Woodruff et al. Sketching as a tool for numerical linear algebra. Foundations
and Trends R© in Theoretical Computer Science, 10(1–2):1–157, 2014.

[64] A. C.-C. Yao. How to generate and exchange secrets. In Proceedings of the 27th
Annual Symposium on Foundations of Computer Science, SFCS ’86, pages 162–167,
Washington, DC, USA, 1986. IEEE Computer Society.

[65] M. Yasuda, T. Shimoyama, J. Kogure, K. Yokoyama, and T. Koshiba. Secure pattern
matching using somewhat homomorphic encryption. In Proceedings of the 2013 ACM
Workshop on Cloud Computing Security Workshop, CCSW ’13, pages 65–76, New
York, NY, USA, 2013. ACM.

[66] Y. Zhang, J. Katz, and C. Papamanthou. All your queries are belong to us: The power
of file-injection attacks on searchable encryption. In USENIX Security Symposium,
pages 707–720, 2016.

A Direct Polynomial
We present the direct polynomial for returning all matches. We present here the polynomial
as defined on cleartext data. To compute on encrypted data the polynomial is replaced by
its homomorphic version, as standard.

Specifications for the direct polynomial. We first define the direct polynomial’s param-
eters, input and output.
• The direct polynomial is parameterized by the number of elements m, a prime
p > m so that computations are in GF (p), the number of matches to be returned
cnt ∈ {1, . . . ,m}, the domain of data-elementsM and of queries Q, and a polynomial
realizing the matching criterion isMatch : M×Q→ {0, 1}.

• The input to the polynomial is the data array = (x1, . . . , xm) ∈ Mm and query
` ∈ Q.

• The output is the indexes of the matching elements output ∈ {0, . . . ,m}cnt, where
for every k ∈ [cnt], output(k) is the index i ∈ [m] of the k-th match for ` in array.
That is, output(k) = i if-and-only-if both the following holds:

1. The i-th element is a match: isMatch(xi, `) = 1, and
2. There are k−1 preceding matches: |{j ∈ [i− 1] | isMatch(xj , `) = 1}| = k−1.

In case cnt > |I|, for I the set of all matches as defined in Section 3, the output on
entries k ∈ {|I|+ 1, . . . , cnt} is 0.

26 Secure Data Retrieval on the Cloud:

Realization of the direct polynomial. We next specify how to realized the direct polyno-
mial. Computation in the following is over GF (p) for a prime p > m. For every k ∈ [cnt],
we define:

output(k) =
m∑
i=1

i · isMatch(xi, `) ·
(

1− (prevMatches(i)− (k − 1))p−1
)

where prevMatches(i) is the number of matches in the sub-array (x,1 . . . , xi−1), as
computed by the following polynomial:

prevMatches(i) =
i−1∑
j=1

isMatch(xj , `).

Analysis of the direct polynomial. The analysis for the direct polynomial follows.

Correctness. To argue correctness observer first that prevMatches(i) is the number of
elements in x1, . . . , xi−1 that match `, namely:

prevMatches(i) = |{I ∩ {1, . . . , i− 1}}| .

Next, for every k ∈ {1, . . . , |I|}, by Fermat’s Little Theorem (FLT), we have that

1− (prevMatches(i)− (k − 1))p−1 =
{

1 if prevMatches(i) = k − 1
0 otherwise.

Therefore, isMatch(xi, `) ·
(

1− (prevMatches(i)− (k − 1))p−1
)
evaluates to 1 if-and-

only-if both conditions (1) and (2) from the output definition above hold, and it is 0
otherwise. So,

i · isMatch(array(i), `) ·
(

1− (prevMatches(i)− (k − 1))p−1
)

is equal to i if-and-only-if i is the index of the k-th matching element to ` in array, and
it is 0 otherwise We conclude that the output[k] = i for i the index of the k-th matching
element to ` in array.

Complexity. We show that the direct polynomial has degree Ω(m · d) for d the degree
of isMatch. The direct polynomial for computing output(k) is the product of several
sub-polynomials: (i) The plaintext coefficient i, (ii) The isMatch polynomial, and (iii)
The product of (p−1) polynomials, each of degree identical to the degree of prevMatches.
The latter is equal to the degree of isMatch (as it is the sum of isMatch evaluations).
The degree of a product of polynomials is the sum of their degrees. So the degree of the
direct polynomial is d+ (p− 1)d = pd. We conclude, by assigning p > m, that the degree
of the direct polynomial is Ω(m · d).

Remarks. The requirement that p > m is necessary for correctness. Otherwise, the output
is incorrect due to two reasons. First, for p ≤ |I|, prevMatches would have “false-zero”
value whenever the number of previous-matches is a multiple of p, leading to incorrect
output. Second, for p ∈ (|I| ,m), the output values are the residues “i mod p” of the
desired indexes i, which is insufficient information for reconstructing i when i ∈ [p+ 1,m].

We note that there are other possible implementations for the direct polynomial. In
particular, the output of prevMatches could be specified in binary representation. In
the case, computations can be done over GF (2), and the comparison of prevMatches to
k − 1 can be done in low-degree logm. However, the degree of counting the number of
previous matches prevMatches becomes Ω(m · d).

	Introduction
	Our Contribution
	Related Works

	New Paradigm: Coresets for Homomorphic Encryption
	Problem Statement and Main Result
	The Secure Report Problem
	Main Theoretical Result
	Details: Compatibility Requirements

	The Secure Report via Coreset Protocol
	The Basic Protocol
	Extensions and Optimizations

	System & Experimental Results
	The System
	Experimental Results

	Conclusion
	Direct Polynomial

