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Abstract. Classification algorithms and tools become more and more
powerful and pervasive. Yet, for some use cases, it is necessary to be
able to protect data privacy while benefiting from the functionalities
they provide. Among the tools that may be used to ensure such privacy,
we are focusing in this paper on functional encryption. These relatively
new cryptographic primitives enable the evaluation of functions over en-
crypted inputs, outputting cleartext results. Theoretically, this property
makes them well-suited to the process of classification over encrypted
data. Indeed, its design enables one to perform the classification algo-
rithm over encrypted inputs (i.e. without knowing the inputs) while only
getting the input classes as a result in the clear.

In this paper, we study the security and privacy issues of classifiers using
today practical functional encryption schemes. We provide an analysis of
the information leakage about the input data that are processed in the
encrypted domain with state-of-the-art functional encryption schemes.
This study, based on experiments ran on two datasets (MNIST and
Census Income), shows that neural networks are able to partially re-
cover information that should have been kept secret. Hence, great care
should be taken when using the currently available functional encryption
schemes to build (seemingly) privacy-preserving classification services. It
should be emphasized that this work does not attack the cryptographic
security of functional encryption schemes, it rather warns the commu-
nity against the fact that they should be used with caution for some use
cases and that the current state-of-the-art may lead to some operational
weaknesses that could be mitigated in the future once more powerful
functional encryption schemes are available.
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Introduction

Nowadays, we have at our disposal many powerful machine learning algorithms.
It includes, among others, the capability to classify accurately and efficiently all
sorts of data. However for some use cases, dealing with medical data for instance,
there is a strong need for privacy as well as being able to perform such algorithms.



In this paper, we focus on Functional Encryption (FE), a primitive that we use
to ensure data privacy in a classification use case. Functional Encryption is a
generalization of traditional public key cryptography which offers the possibility
to only evaluate authorized functions on encrypted inputs. More precisely, inputs
are encrypted with a public key, while dedicated secret keys allow their owner
to evaluate specific functions (each of these functions being related to a specific
secret key) over the encrypted inputs, then providing the resulting evaluation
output in the clear. Several works from the literature [30, 13] propose to use
simple yet practical FE schemes in order to classify encrypted images with the
help of Inner-product FE (IPFE) [30] and quadratic FE [13]. In these works,
the MNIST dataset of handwritten digits is employed to assess feasibility and
practical performance of such classifiers for “reading blindly”.

An inherent drawback of FE schemes, for a use in this context, is that some
details about the encrypted input data naturally “leak” via the cleartext out-
put of the authorized functions evaluations. We call information leakage of a
FE scheme the maximal information one can gain about the private input data
from the cleartext output(s) of the FE function(s) evaluation(s). It should be
emphasized that this kind of leakage is beyond the scope of the cryptographic
security properties of the FE scheme as cleartext evaluations outputs are de-
sired in such primitives, whose security goal is to guarantee that nothing more
than the cleartext outputs can be learned about the private inputs. Yet, as we
demonstrate in this paper, in the context of classification the information we
can infer on a private input from a (set of) cleartext evaluation(s) output(s)
may jeopardize the operational security of current (cryptographically secure)
FE-schemes deployment. This work also aims at contributing to help deciding
if a given neural network is indeed acceptable or not in terms of user privacy,
when it is implemented within the constraints imposed by present day practical
FE schemes.

Contributions

In the present work, we first analyze the possible designs for FE-based classifiers
according to the current state-of-the-art of FE schemes. Current practical FE
schemes can only be used to evaluate limited functionalities, in particular linear
or quadratic functions over encrypted inputs. This limited functionality of prac-
tical FE schemes implies that one needs to cut the classification process into two
steps: (i) the first one precisely consists in the evaluations of several linear or
quadratic functions over the encrypted inputs, provided by a FE scheme, which
produce several cleartext evaluations output values; (ii) then, a second step uses
these intermediate values to compute the final output of the classification. Our
purpose in this paper is to show how these cleartext intermediate values can be
used to recover information about the original encrypted inputs.

In previous works addressing this setup [30], the first step was achieved by
a linear FE scheme, namely an IPFE scheme, whereas in the present work we
focus on the use in the first step of a quadratic FE scheme, which should a priori



provide a higher privacy level as more computation is performed over encrypted
inputs.

We also introduce the notion of minimal and operational information leakages
for FE-based classifiers. Roughly speaking, the minimal leakage is the minimal
information leakage intrinsicly related to the use case goal achievement (e.g.
perform a classification task), whereas the operational leakage is the information
leakage resulting from an actual implementation of the use case (resulting from a
dichotomy between encrypted then clear domain calculations). The operational
information leakage is necessarily larger than the minimal one, as intermediate
use case data are available in the clear, whereas in the minimal case the whole
classification process is performed in the encrypted domain.

Our study takes place in the context of an honest-but-curious threat model,
where the server evaluating the classification process may act maliciously and
attempt to gain as much information as possible on the encrypted inputs, while
all parties are behaving as expected. Hence, the attacker has complete access to
the classification process, even to the clear intermediate values output by the
FE scheme. In this context, we measure and compare operational and minimal
information leakage estimations in classification use cases. Information leakage
is estimated with the help of machine learning tools, in particular neural net-
works. We perform extensive experimental studies on two datasets: the MNIST
dataset and the Census Income dataset. We show that with the MNIST dataset,
an attacker is able to reconstruct input digit images which are close (in terms
of MSE distance, as well as visually) to original ones. Hence it is easier to im-
personate people who originally wrote the digits used as inputs, or to steal their
identities. In the case of the Census Income dataset, ou study shows that an
attacker is able to gain more insights on highly-private features, characteristics
of individuals. For example, he is able to assert with a higher confidence the
gender or the ethnic origin of an individual, among other features.

Finally, we show that, using a second classifier, we are able to decrease the
number of needed FE evaluations compared with the classification based on a
logistic regression model proposed in [13] (which used a large number of FE
evaluations, at least larger than needed). This decreases at the same time the
estimated information leakage, thus improving the privacy of encrypted inputs.

Related works

Privacy-preserving classification is a promising research direction in machine
learning field, which goal is to perform prediction tasks while preserving the
privacy of individual data. Privacy issues may concern the data used during the
training phase, the data given to the classifier during the inference phase (pre-
diction), or the classifier itself. Several types of attacks and studies address each
of these issues. In the present paper, we focus on the issues concerning the users
data during the inference phase. Privacy issue concerning the classification algo-
rithm /process/model, or concerning the users data involved during the training
phase are out of the scope of this paper. Please, also note that the present paper



only focuses on privacy issues, and attacks aiming to provoke mis-classification
are out of the scope of our study.

Several works found in the literature treat different techniques to perform
predictions tasks and to keep the privacy of input data [31,2]. In [40] the au-
thors provide a review of techniques and methods, ranging from heuristic to
cryptography-based ones, for privacy-preserving prediction. In [34], an extensive
study on attack surface, adversarial goals and capabilities of privacy preserving
machine learning systems is discussed.

In [13], the authors use a quadratic functional encryption scheme to clas-
sify data into n classes. They define a neural network with quadratic activation
functions and use it to generate n quadratic polynomials, each one describing
a class. Afterwards, they generate n FE secret keys associated with each of
the above quadratic polynomials. A classification model built in this way corre-
sponds to a multinomial logistic regression model with quadratic features. The
authors experimented this privacy-preserving classifier with the MNIST dataset
of handwritten digits and got 97.54% of classification accuracy with 10 secret
keys. Although straightforward, this classification model does not fully exploit
the information contained in the n values of quadratic polynomials evaluation.
Indeed, in [30] and also in the present paper, the values obtained after FE eval-
uation/decryption are considered as intermediate values for a second step of
the classification process. This means that a more accurate classification model
can be built using the same number of FE secret keys or a model reaching the
same classification accuracy using a smaller number FE secret keys. In practice
a smaller number of FE secret keys implies less computation, i.e. less FE eval-
uations/decryptions to perform. Another non-negligible effect of FE secret keys
decrease is that the information leakage on input encrypted data is potentially
smaller. Our work completes the privacy-preserving classification model from [13]
with a second-step of classification and additionally describe the ability of an
attacker to gain more information on input data than its class only.

As stated above, FE is a cryptographic primitive (alongside others) which
can be used to accomplish privacy preserving prediction. Our work focuses on
information leakage estimation linked with the use of current state-of-the-art
FE-based classifiers. We exploit intermediate values revealed in the clear by the
use of linear or quadratic FE schemes to infer private information about the
original inputs.

Our approach shares some similarities with model inversion attacks, which
use the output of a model applied to an unknown input and infer certain features
about this input. More precisely, inversion attacks use the knowledge of a model
— resulting from the learning phase — to infer private information about the
inputs. Fredrikson et al. [15] investigated model inversion attacks applied to a
linear regression model in the field of pharmacogenetics. Their study reveals that
such a model leaks sensitive information about patient genotype and would pose
a danger to genomic privacy. In a subsequent work [14], this model inversion
attack is further generalized to different machine learning primitives: decision
trees for lifestyle surveys and neural networks for facial recognition. In both



cases, confidence values — which are revealed in order to make predictions — are
used to estimate input features or reconstruct recognizable face images. Our
approach and inversion attacks are similar as they both use some knowledge
about intermediary data used in the classification step — which depend on the
inputs — to infer some private information about this input. At the same time,
both attacks are different as in our case the attacker should have access to
the intermediate values in the clear, and then should have access to the whole
classifier, whereas in the inversion model attack the attacker may be external and
will first query the classifier to estimate the classification model and coefficients.

In the context of searchable encryption [11] and of order-revealing encryp-
tion [18] the type of leakage attacks studied in our work are called leakage-abuse
attacks. The goal of leakage-abuse attack is to exploit the leakage explicitly al-
lowed by a cryptographic scheme in order to reveal/obtain information about
input data, which is similar to our work except that the cryptographic con-
struction is different. In any case, the leakage-abuse attack does not attack the
cryptographic primitive itself but only its use in an operational context (use
case).

Other types of attacks have been run on machine learning use cases, such
as membership inference attacks [38,6,37,19,32] or model extraction attacks
[5,39]. On one hand, membership inference attacks — also referred as tracing
attacks — aim to determine whether or not an input was a part of the dataset
used during the training phase of a target model. In this paper, we do not focus on
this membership privacy concern. On the other hand, model extraction attacks
aim to extract the parameters of a target model trained on a private dataset.
The main motivation is to construct a model whose predictive performance is
similar to the targeted model. Compared to this attack in our case the model is
already available to the attacker.

Organization of the paper

This paper is organized as follows. Section 1 comprehensively details the kind
of deployment scenarios and the underlying threat model which we address in
this work. We then proceed in Section 2 with a formalization of generic FE
schemes and a description of linear and quadratic schemes, which are the only
practical schemes available today. Afterwards, in Section 3 we describe in details
the information leakage in FE based classification use cases, and how to estimate
it with machine learning tools. In Section 4 we describe the datasets we used,
and the experiments we performed, and provide an analysis of the results we
obtained concerning the information leakage. Finally, we conclude this work and
provide some perspectives for future works in Section 5.

1 Classification over encrypted data by means of
Functional Encryption: scenario and threat model

This section aims at precising the kind of classification use case that can be
meaningfully addressed by means of Functional Encryption (FE) and, then, the



resulting threat model. More technical details about the structure of FE are
provided in Section 2. We start by considering the following concrete application
scenario. There is a pharmaceutical firm wishing to conduct an epidemiologic
study over, say, the population of a given country. In order to do so, they need
to evaluate e.g. a specific neural network on some health related data over a
large set of patients. The point is that (1) the evaluation of the neural network
should be done on their own servers (i.e. at their own cost) without interaction
and (2) to conduct their study there is no legitimate need to have access to
the inputs of the neural network but rather only to its outputs. Bringing FE
into the picture, we consider that a health authority is the (trusted) owner
of a FE scheme instance that is a public key which any patient can use to
encrypt some data and the associated master secret key which allows to spawn
additional secret evaluation keys. In this setup, the firm needs first to submit its
study to the health authority which includes full disclosure (to that authority)
of its neural network. The authority then decides whether or not the network
is acceptable with respect to patient privacy (for example, a malicious neural
network outputting its inputs would straightforwardly not be acceptable as its
evaluation would grant access to the input data). Deciding whether or not a
neural network (or any other algorithm) is acceptable is easier said than done,
as the present paper contributes to demonstrate. This decision is under the
responsibility of the authority. If acceptable, the authority gives to the firm a
specific evaluation secret key, which allows the firm to evaluate a specific function
over inputs that have been encrypted under the FE scheme public key; in the
FE paradigm, the output of this evaluation is provided as a cleartexrt result,
which is then readable by nature. Patients (or perhaps rather the doctors to
which patients give their consent) can then encrypt the relevant data under
the FE public key (as provided by the health authority) and send them to the
pharmaceutical company to contribute to the study. This setup leads to the
following properties:

— The pharmaceutical firm (evaluation server) has no access to its neural net-
work inputs (z) but only to its output (f(z)) and cannot compute another
function unless the authority provides it with a new secret key tight to that
new function.

— The health authority (authority) has access to neither patient data nor neural
network output and has no role to play in the operational running of the
study (i.e. no server to operate or no cost to incur on a per-patient basis).

— The patients (users) have to trust that the health authority will allow the
evaluation only of acceptable (in terms of private information leakage) func-
tions on their data and that it will not collude with the pharmaceutical
firm.

In terms of threat model, this setup allows to address confidentiality threats on
user inputs from the evaluation server. Our study takes place in the honest-
but-curious model, where all parties follow the attended protocol, but can try
to get advantage of the information they are allowed to access. In our case,
we focus on a malicious classifier (evaluation server), which may try to learn



sensitive information about the users inputs from what it can observe during
the classification process.

It should be emphasized that such type of privacy could also be achieved
by means of Fully Homomorphic Encryption (FHE) but with different conse-
quences in terms of system architecture. In essence, in a FHE-based setup, the
pharmaceutical company could send its network to the authority, and the patient
would send their data encrypted under the FHE public key of the company to
the authority, which would homomorphically evaluate the network, and get an
encrypted result, which would be sent back to the company for decryption and
further exploitation. This FHE-based setup achieves the same security proper-
ties as the previous FE-based one, but this time the health authority becomes
an FHE-computation operator which most likely requires to acquire fairly large-
scale computing resources involved on a per-patient basis. On the contrary, the
FE setup duly puts the main computing burden on the pharmaceutical firm,
involving the health authority on per-study rather than per-patient basis. This
is why we focus in this paper on the FE-based classification setup, which is more
pertinent from a practical point of view in such a privacy-preserving use case.

Unfortunately, yet, the current state-of-art in FE does not credibly allow to
practically evaluate a full neural network, so the evaluation of the network has
to be split into a first encrypted-domain evaluation phase and a second clear-
domain one, meaning that the server has also access to intermediate results
rather than just the final network outputs. In essence, this paper investigates
the consequences of this partitioning on user input privacy, which is really dif-
ferent to what is going on in other threat models where the attacker infers some
parameters of the classifier (in our study, the classifier is supposed to be com-
pletely known by the attacker). In fact, this work can be seen as taking the
point of view of the (health) authority above in contributing to help deciding on
whether or not a given neural network is indeed acceptable in terms of user pri-
vacy when implemented within the constraints imposed by present day practical
FE schemes.

2 Functional encryption

Functional Encryption (FE) is a quite recent generalization of public-key cryp-
tography, which can be used in cloud computing [9] and verifiable computation
[35]. Functional encryption also generalizes attribute-based encryption [42,28,
41], identity based encryption [8,36] or predicate encryption [23,33]. It can also
be used to preserve data privacy in some classification use cases, as in [30, 13].
In this section, we will recall definitions and specificities concerning functional
encryption, and will summarize the state-of-the-art concerning the current avail-
able schemes proposed in the literature.

The FE paradigm adds a new party, an authority, to the two traditional
asymmetric parties. The authority generates a master secret key and a public
key. The master secret key is known only by the authority. This particular key
is necessary to derive what are called secret keys. The secret keys are associated



with functions; for instance, we denote by sk the secret key associated with
function f. The public key, as expected, is used to encrypt messages. Let ct, be
an encryption of a message x. A user owning sky and ct, can run the evaluation
algorithm and get f(x) as plaintext output. Hence, there is no traditional way
to decrypt, but a kind of evaluation of some functions f (one function for each
secret key) over the encrypted messages, with unencrypted evaluation results
at the end. Boneh et al. provide in [9] the following standard definitions for
functional encryption using the notion of functionality.

Definition 1. A functionality F' defined with (K, X) is a function F : K x X —
Y U{L}. The set K is the key space, the set X is the plaintext space, and the
set X is the output space and does not contain the special symbol 1.

Definition 2. A functional encryption scheme for a functionality F' is a tuple
FE = (setup,keyGen, encrypt, decrypt) of four algorithms with the following
properties.

— The setup algorithm takes as input the security parameter 1* and outputs a
tuple composed of a public key and a master secret key (PUB, MSK).

— The keyGen algorithm takes as inputs the master secret key MSK and k € K
which is a key of the functionality F. It outputs a secret key sk for k.

— The encrypt algorithm takes as inputs the public key PUB and a plaintext
x € X. This randomized algorithm outputs a ciphertext c, for x.

— The decrypt algorithm takes as inputs the public key PUB, a secret key and
a ciphertext. It outputs y € X U{L}.

It is required that for all (PUB, MSK) «+ setup(1?"), all keys k € K and
all plaintexts z € X, if sk < keyGen(MSK, k) and ¢ < encrypt(PUB,z) we
have F(K, X) = decrypt(PUB, sk, ¢) with an overwhelming probability. Figure
1 illustrates FE actors and their roles as described above.

AUTHORITY
(PUB, MSK) + setup(1*)
sk < keyGen(MSK, f)

SERVER USER

f(z)  decrypt(sky, cts) ct, + encrypt(PUB, z)

Fig. 1: The three actors of a functional encryption system, the algorithm they
use and their communications. In this figure, the public key, the master secret
key and the secret key associated with function f are respectively called PUB,
MSK and sky.



The cryptographic community is currently looking for public-key functional
encryption schemes enabling to evaluate any polynomial time computable func-
tion. Goldwasser et al. proposed a construction based on fully homomorphic en-
cryption [17], Garg et al. proposed another construction using an indistinguisha-
bility obfuscator [16]. At present, however, these constructions remain mostly of
theoretical interest. Nevertheless, more recent schemes for simpler functionali-
ties have been proposed, for example FE schemes supporting linear [1,3] (also
called inner-product functional encryption or IPFE) or quadratic [7] polynomial
evaluation. The advantage of these schemes is their decent performance and
applicability in real applications.

Linear FE or inner-product FE We call linear functional encryption a
scheme which enables the evaluation of degree-one polynomials. In the litera-
ture these schemes are also called functional encryption for the inner-product
functionality or inner-product functional encryption (IPFE). Let v be a vector,
cty an encryption of v, w be a vector of coefficients, and sk,, the secret key
associated with w. The decryption of ciphertext ct, with secret key sk,, returns
vl w = >; w; - v, thus a linear polynomial evaluated at v.

Abdalla et al. [1] proposed constructions for the inner-product encryption
schemes satisfying standard security definitions, under well-understood assump-
tions like the Decisional Diffie-Hellman and Learning With Errors. However they
only proved their schemes to be secure against selective adversaries. Agrawal et
al. [3] upgraded those schemes to provide them a full security (security against
adaptive attacks).

Quadratic FE We call quadratic functional encryption a functional encryption
system which can evaluate degree-two polynomials. A first construction of this
type has been recently provided in [7]. Let v be a vector, ct, an encryption of
v, W a square matrix of coefficients and skyw the secret key associated with
W . The decryption of ciphertext ct, with secret key skyy returns v - W - vT =
Zi’j Wi ; - vi - v5, thus a quadratic polynomial evaluated at v.

3 Information leakage in typical FE deployment scenarios

3.1 Classification use case

A natural use case for functional encryption schemes is the classification over
encrypted data. Several classification algorithms from the machine learning field
use polynomial projection of input data features, e.g. Linear Classification, Gaus-
sian Mixture Model, etc.

Unfortunately, as mentioned in Section 2, today no functional encryption
scheme can be found in the literature that would allow to perform practical ar-
bitrary computations over encrypted data. Available schemes which are practical
from a computation point of view only allow to evaluate linear and quadratic
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Fig.2: Algorithm decomposition in a FE use case. Red and green boxes denote
respectively encrypted and clear data.

polynomials. These schemes cannot be used as is in classification use cases be-
cause most of them require more complex processing. A solution to bypass this
limitation is to adapt the use case algorithm and decompose it in two steps: (i)
linear/quadratic polynomial evaluations over encrypted data, (ii) any computa-
tion performed on clear data resulting from the first step. Figure 2 illustrates this
decomposition. Here, in the first step, k polynomials P; (.),..., P (.) are evalu-
ated over an encrypted input sample x using the functional encryption scheme,
with the help of the corresponding FE secret keys skp,, ..., skp,. As an inherent
property of functional encryption, the resulting values Py (x), ..., Py (z) are pro-
vided in the clear. They are used as inputs for the second step, which performs
the additional computations related to the use case. This second step does no
more involve encrypted data and only performs in the clear.

Classification over encrypted data can be built upon this decomposition. The
first step of the use case algorithm is either a linear or a quadratic polynomial
evaluation over encrypted data. After this step, any computation can be per-
formed on the first step output values, because they are available in the clear
form. For the second step, we have several possibilities (non-exhaustive list):

— “sign” function for binary classification,
— “argmax” function for one-vs-all multi-class classification,
— a full-fledged classification algorithm.

The last possibility needs some clarification. Any classification algorithm taking
as input the polynomial evaluations from the first step can be used as a “final”
classification algorithm, and the intermediate polynomial evaluations obtained
with the help of the FE scheme can be seen as linear or quadratic projections of
the input dataset.

3.2 Information leakage

Each output of a FE scheme consists in the cleartext data representing the
evaluation of the functionality embedded in the corresponding FE secret key. An
attacker could use this clear text data in order to infer more information about
the input data than it is supposed to know. This is particularly relevant when



several functions can be evaluated by the same entity over the same sensitive
encrypted input. We call information leakage this downside of FE schemes. A
more precise (yet still informal) definition is given below:

Definition 3 (Information leakage). Let sk¢ be a functional encryption se-
cret key, embedding functionality f. The decrypt operation (described in previ-
ous section) allows to obtain a cleartext value of f(x) from an encrypted x. The
information leakage is defined as the mazximal information that can be inferred
about © from the knowledge of both f(x) and function f specification.

Knowing the specification of f we are able to evaluate f and consequently to
obtain the cleartext value f(z) for any . This information leakage definition is
straightforwardly generalized to FE scheme instantiations where several secret
keys sky,,...,sky, are available.

In the introduction, we defined minimal and operational information leak-
ages, which are both beyond the scope of the underlying FE scheme security
properties which guarantee that given n decryption keys sky,,...,sky, and an
input = an attacker learns nothing more than fi(x),..., fi(z). We define the
minimal leakage as the minimal information leakage intrinsicly related to the
use case goal achievement, e.g. here perform a classification task. Hence ideally
in our use case only the final classification result should be revealed about the
input data x. We also define the operational leakage as the information leakage
resulting from an actual implementation of the use case.

Hence, in our use case minimal and operational information leakages may
be equal if the whole classification could be processed over encrypted data with
a unique authorized function evaluation, revealing in the clear only the final
classification result. But, according to the current necessary dichotomy between
encrypted then clear domain calculations, we need in practice to evaluate k
polynomials over the input x. Hence, in this case the attacker will have access
to the k evaluations results, which may reveal more information about = than
the final classification result. In this case, operational information leakage may
then be much larger than the minimal one.

However we keep the above definition informal and provide more intuition
below. Indeed measuring the absolute information leakage of a function (for a
given input or a given set of inputs) is not easy (not computable), as it is linked
to the Kolmogorov complexity (as a generalization of entropy) of that input. In
essence, the output of a function f : {0,1}™ — {0,1}" with m >> n leaks
at most n bits about the corresponding input (at most because some functions,
e.g. a constant function, lead to no leak at all). Intuitively, feeding random data,
or equivalently an input with large Kolmogorov complexity, into any function
appears benign because the leak is indeed limited to n bits. Difficulties start
to crop up when low Kolmogorov complexity data are fed into a given function
because in that case n may not be much smaller than the minimum number
of bits required to describe that input. Therefore, the induced leak could (in
principle, yet intrinsically) allow to retrieve the input in question with enough
precision. When considering machine learning algorithms, we are typically in a
setup where the function purpose is to extract a few highly discriminant bits



from highly correlated partially redundant data i.e. data of relatively low Kol-
mogorov complexity. So, we are bending towards the dark side. Yet, due to the
non-computability of Kolmogorov complexity, it is difficult to quantitatively ap-
prehend the above intuitions. Still, the neural network-based leakage estimation
technique presented subsequently provides an (efficient) approximation of an or-
acle able to retrieve low Kolmogorov complexity inputs from the corresponding
outputs. Full (formal) details on the deep connections between Kolmogorov com-
plexity and machine learning underlying the above intuitive arguments may be
found in [20].

3.3 Leakage estimation

In this section, we introduce a method for estimating the information leakage
resulting from the use of functional encryption schemes in use cases implying
the classification of encrypted data. In this context, which has been described in
Section 3.1, we propose to estimate the leakage with the help of the information
discovery capabilities of a Neural Network (NN).

Leakage estimation protocol Let f be a functionality encoded in an FE scheme
and let X be a representative dataset. By “representative dataset” we under-
stand a dataset that follows the same distribution as the dataset used by the
classification algorithm, i.e. X contains typical classification inputs. We suppose
that such a dataset X is available in the clear and that we can straightforwardly
obtain f(x) for any z € X because functionality f is not hidden in public-key FE
schemes. Our goal is to accurately predict/reconstruct dataset samples = (whole
x or a part of it) from f(z). The accuracy is measured by using a suitable met-
ric (more details are given below). To accomplish this goal, a neural network is
employed.

Achieving maximum accuracy is not possible as the problem of obtaining
an universal predictor [21,22,27] is intractable in the general case. Hence, the
estimated information leakage (measured by the accuracy metric) will be a lower
bound to the operational information leakage. Nevertheless, such an estimation
proves to be useful for comparing information leakages of different FE instan-
tiations. We assume that the NN model has the same information extraction
power, independently of FE instantiation used upon. This is (supposedly) the
case when comparing estimated minimal and operational information leakages
of classification use cases.

We place ourselves in the context of the FE-based classification use case
described in Section 3.1. A Neural Network is used to reconstruct an input x
from use case data available in the clear. Figure 3 illustrates this methodology.
We have two possible leakage estimation NNs, depending of the data which is
available in the clear form

— second/final classifier prediction pred(z) only,
— or FE outputs Pi(x), ..., Py(x) (linear/quadratic polynomial evaluations).
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Fig.3: Operational and minimal information leakage estimation using Neural
Network. Top part of this illustration is the FE use case from Figure 2.

An estimation of the minimal information leakage is obtained in the first case,
whereas operational information leakage in the second one. By comparing the
prediction accuracies of these two NNs we should be able to better understand
and to gain insights about classification use case information leakage.

4 Experiments

We start this section by providing more details about the employed datasets and
the neural networks used for classification and for information leakage estima-
tion. Afterwards, we provide an aggregation of the results we obtained. We shall
note that no FE schemes evaluation were performed in this work since, as already
emphasized, we are not attacking the cryptographic security of FE schemes but
exploiting the fact that they by intent provide cleartext output (as well as the
fact that existing practical FE schemes are limited in terms of expressiveness).
Typical execution times for linear and quadratic FE schemes decryption (corre-
sponding to polynomial evaluation) is small (few seconds). Please refer to [30,
13] for more details about FE performance.

4.1 Datasets

Two datasets are used in our experimentation. The first one is the well known
MNIST dataset [26]. The MNIST database is a collection of handwritten digit
images. Dataset images have size 28 x 28 and each pixel has 256 levels of grey.
The handwritten digits are normalized in size and are centered. There are 10
output classes in the dataset (digits from 0 to 9). The MNIST dataset has been
extensively used by the ML community for classifier validation. For a review of
ML methods applied to MNIST, please refer to [10, 25].



The second one is the Census Income dataset introduced in [24], and which
can be found in [4]. This dataset contains highly-sensitive personal data (age,
education, race, etc.) of approximately 50 thousands individuals given by 14 fea-
tures. 6 features are continuous (e.g. age) and other 8 are categorical (e.g. race).
Two redundant features (fnlwgt, Education) have been removed. The missing
values in categorical features were replaced by the most frequent value. Con-
tinuous features have been scaled to zero mean and unit variance. Categorical
features have been one-hot-encoded, i.e. transformed to binary features, denoting
whether an individual is in the corresponding category. The transformed dataset
has 82 features, of which 5 continuous and 77 are binary. The prediction task is
to determine whether a person earns over 50K$ a year.

These datasets are split into training, validation and test subsets. The train-
ing subset is used to train both the prediction classifier and the information
leakage estimation neural network. The validation subset is used to choose the
final neural network (prediction and information leakages). The test subset is
used for asserting both the prediction accuracy (i.e. for the nominal use of the
system) and the estimated information leakage of the chosen neural network (i.e.
during the attack).

4.2 Neural networks structure

We describe in more details the neural networks used for prediction and for
information leakage estimation.

Prediction NN The neural network used for prediction (i.e. for the nominal
use of the system) has the following structure:

— linear or quadratic first layer,
— one hidden layer (optional),
— one output layer.

First layer The first layer corresponds to the functionality of a linear, respec-
tively quadratic, FE scheme. In this way, the neural network model automatically
learns the coefficients of FE scheme secret keys. This layer has k outputs, cor-
responding to k FE secret keys/evaluations. In our experiments k belongs to
{1,...,10}. No activation function is used on this layer, so that the hidden and
output layers can be directly evaluated from the outputs of a FE scheme.

This linear layer simply performs inner products or, equivalently, a projec-
tion to a k-dimensional space. For the quadratic layer, we used the same approx-
imation of quadratic polynomials as in [13]. In particular, input data is firstly
projected to a d-dimensional space for d € {50,100}. Each component of the
d-dimensional space is then individually squared. Finally, these components are
projected to a k-dimensional space.



Hidden layer The hidden layer is optional. When there is no intermediary layer
the neural network corresponds to a logistic regression model (or multinomial
logistic regression in case of MNIST). In this way we can test simple linear or
quadratic prediction models, and compare our prediction results with those from
[29, 30, 13]. A ReLU (Rectified Linear Unit) activation function is used here. This
layer has 256 nodes. Empirical results have shown that there is no need for more
than one hidden layer in our experimental setup.

Output layer The output layer has a single node for the Census Income and 10
nodes for the MNIST dataset. The activation functions are sigmoid for the first
one, and softmax for the second one. The sign and argmax functions (used to
transform continuous neural network output values into labels) are not included
in the neural network, otherwise we will not be able to train the model. The
employed validation metric is the prediction accuracy of the obtained neural
network classifier. The prediction accuracy is the ratio of correct predictions to
the total number of predictions made and belongs to [0, 1] range.

Attack NN The neural networks used to estimate the information leakage (i.e.
NN used during the attack) follow the same structure as above: (i) an input layer
to which the information available to attacker is fed, (ii) several hidden layers,
(iii) and an output layer.

Information leakage — MNIST use case The input layer for the minimal infor-
mation leakage estimation neural network has 11 input nodes. One input node
is the digit label (integer value from 0 to 9) and 10 other nodes represent the
one-hot-encoding of this label . We have chosen to provide different encodings of
digit label in order to ease the neural network training. Usually, initial weights
of NN layers are randomly chosen so that gradient descent like training algo-
rithms avoid local minima. We have selected the initial weights in such a way
that the NN outputs an average of images in the train dataset for a digit when
the one-hot-encoding input corresponding to this digit is activated. Actually,
a small random noise is added to the average in order to avoid local minima.
In practice training algorithm convergence is accelerated by this initialization
process instead of randomly selecting network weights.

In the case of the neural network for operational information leakage the
input layer has k additional nodes which correspond to the outputs of the FE
scheme. Two hidden layers with 256 nodes each are used. The output layer
has 784 nodes corresponding to each pixel of the image to reconstruct. All the
layers use the ReLU activation function. The validation metric is the MSE (mean
squared error) score.

Information leakage — Census Income use case The minimal information leakage
estimation network has a single input node. To this input the binary output

4 The one-hot-encoding of a digit m is the vector v where v,, = 1 and v; = 0 for all
other i # m.



(whether a person earns over 50K$ a year) of the prediction network is fed.
In the case of operational information leakage estimation the neural network
has additionally k£ input nodes corresponding to FE scheme decryption outputs.
Two hidden layers with 256 and 32 nodes are used. The output layer has a single
node. Hidden layers use ReLU activation function and output layer the sigmoid
activation.

The information leakage for the Census Income dataset is measured as the
ability for the leakage estimation model to make good predictions on a feature
of the input dataset. In our experiments the information estimate leakage is
estimated for binary input dataset features, in particular: Sex_Male, Race_White,
Race_Black, Race_Asian-Pac-Islander and Race_Other. The validation metric is the
ROC AUC score (Area Under the Receiver Operating Characteristic Curve). To
summarize, the prediction is performed on the full Census Income Dataset and
the goal of the attack network is to predict one input dataset feature from the
output of the prediction network.

4.3 Results

In this subsection, we present the experimental results we have obtained for the
prediction accuracy and the information leakage estimation.

We have used 2 datasets, 3 types of FEs (1 linear and 2 quadratic), 11 dif-
ferent number of FE evaluations (10 for the NN models and 1 for the logistic
regression model). In total, we have modeled 66 neural networks for the pre-
diction task (2 datasets x 3 FE types x 11 FE evaluations). A minimal and a
operational leakage analysis NN was built for each MNIST model, a total of 66
neural networks (33 prediction NN x 2 leakage analysis types) are obtained. For
the Census Income dataset the operational and the minimal information leak-
age estimation is performed on 5 different input features, a total of 330 neural
networks (33 prediction NN x 5 features x 2 leakage analysis types).

Keras framework [12] is used to implement these neural networks (note that
the linear logistic regression model is simply a 1-layer network and the quadratic
one is a 2-layer network). A batched training (batch size 32) over 100 epochs
is performed. sgd (stochastic gradient descent) optimizer is used for training
NNs except for the Census Income information leakage NNs where adam (a
variant of stochastic gradient-based optimization method) optimizer is employed.
Binary (Census Income) and categorical (MNIST) cross-entropy are used as
loss functions during the training phase. Other optimization parameters are the
default ones.

The best network (after each epoch) in terms of optimization metric value
on the validation set is chosen as the neural network to keep. The training
process is executed 5 times with different random seeds. The average of metric
value over the test dataset is used in illustrations. The best prediction model, in
terms of metric value over the validation dataset, is used for information leakage
estimation. Prediction models are denoted as:

— linear NN model (fel): linear FE and a neural network as second classifier,



— linear logistic model (fel_logit): linear FE and a logistic regression model as
second classifier,

— quadratic NN model (fe2_d): quadratic FE d-space projection and a neural
network as second classifier.

— quadratic logistic model (fe2_d_logit): quadratic FE with d-space projection
and a logistic regression model as second classifier.

Neural networks structure (number of layers, layer sizes, etc.) and training
hyper-parameters have been manually chosen for maximizing prediction accu-
racy. We have tried to increase hidden layer count, increase/decrease hidden
layer sizes, change activation functions, use different optimizer and number of
training epochs. The obtained NN accuracies were practically the same. Never-
theless, we are not able to formally ensure that the NN structure and the training
hyper-parameters we have chosen are the best possible ones.

MNIST dataset

MNIST - accuracy Figure 4 shows how the final prediction accuracy (i.e. the
ratio between the number of good predictions vs. the total number of samples)
evolves, according to the number of FE evaluations used in the first step (i.e.
according ot the number of intermediate values provided in the clear form by
the FE scheme). We can observe that there is no significant difference in terms
of accuracy between quadratic models with different projection sizes (50 or 100)
in our experimental settings. As expected, the quadratic models always give
better accuracies than the linear ones. Even if prediction accuracies using a
single FE evaluation are not overwhelming (0.5 for linear and > 0.7 for quadratic
polynomials), it is much better than one would expect using random guessing
(= 0.1).

The quadratic logistic model (fe2_d_logit) attains the same accuracy as the
quadratic NN model (fe2_d). Although, comparable accuracies are obtained by
the quadratic NN model starting with only 5 FE evaluations. Using a NN model
is more interesting as the number of FE decryptions to perform will be smaller
in this case.

The accuracy of the linear logistic model (fel_logit) corresponds to the accu-
racy of a linear NN model with 5 — 6 FE evaluations.

MNIST - information leakage Figure 5 illustrates the information leakage in
terms of MSE (the lower MSE, the greater information leakage). Obviously,
MSE corresponding to the minimal information leakage is always larger than
the one corresponding to the operational information leakage.

At first glance it may seem counter-intuitive that the minimal leakage is not
the same for different numbers of FE evaluations (secret keys). As the minimal
leakage estimation NN uses predicted digits labels by the classification NN and
not real ones, the prediction error translates to smaller minimal leakage (larger
MSE values). For a given digit, the reconstructed image obtained by the minimal
leakage NN should correspond to the average of images of this digit in the train
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Fig.4: MNIST dataset — prediction accuracy.

dataset. Actually, it corresponds to the average of the images which are classified
as this digit by the classification NN.

The minimal leakage is roughly the same for both quadratic models. We ob-
serve that the minimal leakage is approximately equal to the operational leakage
of linear/quadratic NN models when one FE evaluation is used. This means
that the operational leakage estimation network has no significant advantage
over the minimal one, i.e. approximately the same information about input im-
ages is leaked in both cases. As said earlier, even one FE evaluation allows to
increase the prediction accuracy to a much better value than random guessing.
So in these conditions, using a FE-based classifier leaks the same amount of
information as a cleartext one.

There is no significant difference between linear and quadratic NN models in
terms of operational information leakage. Although, for a higher number of FE
evaluations the linear NN model (f1) leaks a little more information than the
quadratic counterpart (fe2_d).

The leakage of logistic models is equivalent to the leakage of linear /quadratic
NN models with 10 FE evaluations. We may conclude that there is a strong cor-
relation between the number of FE evaluations and the estimated information
leakage. At least, stronger than the correlation between evaluated polynomials
themselves (i.e. theirs coefficients) and the information leakage. There is a neg-
ative correlation between prediction accuracy and operational information leak-
age (MSE) (correlation coefficient ~ —0.8) for quadratic models and stronger for
linear ones (correlation coefficient ~ —0.87). As expected, better classification
accuracy induces larger information leakage.

Estimated information leakages presented above are average measures over
all digits. Figure 6 illustrates estimated information leakage per digit for models
using 5 FE evaluations. Minimal leakage depends mainly on the average image
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of a digit in the train dataset. There is no significant difference between minimal
leakages for different attack models (fel, fel 50 and fe2_100) as expected. Min-
imal leakage values in the figure are equal to the average of variance of image
pixels for a given digit.

The operational information leakage is larger (smaller MSE) than the min-
imal one for every digit. The ratio between minimal and operational leakages
(averaged over attack models) is shown below each bar plot. These ratios differ
from one digit to another and vary from 1.11 to 1.5. As FE secret keys are the
same (i.e. same linear/quadratic polynomial coefficients) we conclude that the
operational information leakages depends on the input data distribution also.
That is to say some digits (e.g. digit 1) are easier to reconstruct/recover from
FE evaluations than others (e.g. digit 8).

Figure 7 illustrates the impact of the number of FE evaluations on the resem-
blance of reconstructed images with the input ones. In this figure, each image
contains 4 lines of digits from 0 to 9. First and third lines are samples of input
images. Second and fourth lines are the reconstructed images with, respectively,
the minimal and maximal MSE score. Thus, second line images are the best
reconstructed digits and the fourth line images the worst reconstructed ones.

We observe that for the minimal leakage model there is no difference between
the reconstructed images (lines 2 and 4 are the same). These images are very close
(MSE difference is under 1075) to the average of images of the same digit from
the train dataset. On the other side, when 10 FE evaluations are available the
reconstruction quality is quite good. We can easily see the handwritten traits
and style of writing digits in the reconstructed images. Reconstructed images
for other operational information leakage estimation models follow the same
resemblance pattern.
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Census Income dataset

Census Income dataset — accuracy The prediction accuracy obtained for the
Census Income dataset is given in Figure 8. The NN models have better perfor-
mance than the logistic regression ones with the same number of FE evaluations.
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The number of FE evaluations does not impact a lot the classification per-
formance, although a positive trend is observed when number of FE evaluations
increases. The fluctuations in the prediction accuracy we observe are due to the
fact that these NN models are hard to learn. Partially because, there is no strong
dependence between the loss function (binary cross-entropy) and the validation
metric (prediction accuracy). For this particular dataset, using a NN model does
not significantly modify the prediction accuracy (< 2%) of a basic logistic model.
Although, when quadratic features are used better results are obtained.

Census Income dataset — information leakage The bar plot in Figure 9 illus-
trates the ROC AUC score for input dataset feature leakage we study for each
prediction model with one FE evaluation. We note that a predictor giving a
ROC AUC score of 0.5 is equivalent to random guessing. In our context, this
means that the information leakage estimated by the NN model is equal to zero.
The minimal leakage ROC AUC score is never 0.5 because of dataset skewness
allowing the NN to perform better than random guessing. Supposedly, the NN
model uses the correlation between attacked feature and prediction model out-
put (whether person earns over 50K$ a year) in order to better estimate the
information leakage.

Minimal (blue) and operational (red) leakages are plotted on the same bar to
ease the comparison. As expected, the operational information leakage is always
larger than the minimal one. It means, for example, that an attacker will be able
to increase its confidence in the fact that a given individual is a male.

In our experiments we have observed that information leakage estimation
depends a lot on the frequency of a studied feature in the input dataset. Infor-
mation leakages of features which are balanced in the input dataset are better
estimated. It is a well know fact that machine learning algorithms learn bet-



Leakage by attack field

1 FE evaluation/secret key
0.80

fel fel_logit fe2_100 fe2_100_logit fe2_50 fe2_50_logit
EEE min. EEE min. E min. HEEE min. EEE min. EEE min.
EEN oper. EEE oper. EEE oper. EEE oper. N oper. EEE oper.
0.75 4
0.70
%}
2
5 0.65
o
=4
0.60
0.55 1
0.50 -
Sex Race Race Race Race
Male White Black Asian-Pac- Other

Islander

Fig.9: Census Income — information leakage estimation.

ter on un-skewed datasets. The skewness of Census Income dataset features is
given in Table 1. We note that information leakage attack results for dataset
features which are heavily under-represented or over-represented) (in particular
Race_Asian-Pac-Islander and Race_Other) should be interpreted with care.

Dataset feature Frequency
Sex_Male 66.92%
Race_White 86.39%
Race_Black 9.59%
Race_Asian-Pac-Islander| 3.19%
Race_Other 0.83%

Table 1: The frequencies of Census Income dataset features (number of individ-
uals possessing this feature).

The operational information leakage for the MNIST dataset increases with
the number of FE evaluations. In order to see if this pattern is also verified for
the Census Income dataset we have estimated the leakage of the Sex_Male feature
as a function of the number of secret keys. operational and minimal information
leakages for this feature are plotted in Figure 10.

As expected, the operational information leakage increases when the number
of FE evaluations increases. The leakage of NN and logistic models is very close
for one FE evaluation. When the number of FE evaluations belongs to range
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6 — 10, an attacker will be able to state with very high confidence that a given
individual is a male. Deploying a prediction model using 6 to 10 FE evaluations
will clearly represent a real risk to individual privacy.

Information leakage on other features of the Census Income dataset are pre-
sented in the Appendix. The leakage on these fields follow same trend as the
leakage on Sex_Male feature.

5 Conclusion and future works

Functional encryption schemes offer the ability to evaluate functions over en-
crypted inputs while granting access to the evaluation result in clear form i.e.,
meaning that an owner of a secret key sky is able to get no more than f(m)
from an encryption of m. According to this specific property, this cryptographic
primitive seems perfectly suited for privacy-preserving classification, as it is able
to keep inputs private while also allowing to perform computations over cipher-
texts. However, we show in the present paper that due to the limitations on
the classes of functions supported in today practical FE schemes, input data
privacy cannot be ensured. Indeed, the current state-of-art of functional encryp-
tion only provides schemes for linear or quadratic functions evaluation, which
forces us to finalize the classification process from clear-domain intermediate
values. With that respect, the goal of this article was to study how much in-
formation these intermediate values reveal about the private input of a neural
network-based classifier. To do so, we proposed a methodology to estimate and
compare the information leakage of classification use cases and provide exten-
sive experimental results on classification and information leakage estimations
on two well-known datasets: the MNIST dataset of handwritten digits and the



Census Income dataset, showing in realistic conditions how much information
an attacker can infer about the inputs that were supposed to be kept private.
More precisely, concerning the MNIST dataset, we showed that an attacker is
able to reconstruct input digit images which are close (in terms of MSE dis-
tance, as well as visually) to the original ones. Hence it is easier to recover the
handwriting of the people who originally wrote the digits used as inputs. In the
case of the Census Income dataset, our study showed that an attacker is able to
gain more insights on highly private characteristics of individuals. For example,
it is possible to assert with a higher confidence the gender or the ethnic origin
of an individual, among other features. Finally, we showed that, using a sec-
ond classifier, we are able to decrease the number of needed function encryption
evaluations, when compared with the classification based on a logistic regres-
sion model proposed in [13] (which used a large number of functional encryption
evaluations, at least larger than needed). This decreases at the same time the
information leakage, and thus improves the privacy of the input data.

It is important to notice that beyond the privacy-preserving classification
use-case discussed in the present paper, this study is relevant for other use-cases
implying functional encryption. Also, this methodology of attack is not limited
to linear or quadratic functional encryption schemes, neither to the public key
setting. Indeed, as long as some part of the classification process is performed
over clear intermediate values, our attack line can be used. Of course, the higher
the degrees of the polynomials that are handled by the functional encryption
scheme, the higher privacy can be reached as long as this results in smaller sets
of intermediate cleartext values.

We hope that this work will be followed by other studies, helping to decide
if a given neural network is acceptable or not in terms of user privacy, when
it is implemented within the constraints imposed by today practical functional
encryption schemes. In this direction, it would be interesting to explore other
machine learning models than neural networks for the second step of the pre-
diction and also for the information leakage estimation. Also, further studies
should explore other choices for the function used to estimate and measure the
leakage. In our work, we measured the information leakage by the ability to pre-
dict input data set features. We chose the gain in prediction accuracy of input
dataset features for Census Income, and the MSE score between input image
and reconstructed images for MNIST. In future work, we envisage to develop
more refined methods to measure the information leakage. For instance, in the
case of MNIST, an image resemblance metric would be more suitable than the
MSE, such as the structural similarity (SSIM) index.
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A Information leakage on Census Income dataset

In this appendix are illustrated the operational and the minimal information
leakage on Race_White, Race_Black, Race_Asian-Pac-Islander and Race_Other fields
of the Census Income dataset.

Leakage by prediction model
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Fig.11: Census Income — Race_White feature information leakage estimation.



Leakage by prediction model
Attack field "Race Black"
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Fig.12: Census Income — Race_Black feature information leakage estimation.

Leakage by prediction model
Attack field "Race Asian-Pac-Islander"
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Fig. 13: Census Income — Race_Asian-Pac-Islander feature information leakage es-
timation.



Leakage by prediction model
Attack field "Race Other"
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Fig. 14: Census Income — Race_Other feature information leakage estimation.



