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Abstract

The Learning with Rounding Problem (LWR) has become a popular cryptographic as-
sumption to study recently due to its determinism and resistance to known quantum attacks.
Unfortunately, LWR is only known to be provably hard for instances of the problem where
the LWR modulus q is at least as large as some polynomial function of the number of sam-
ples given to an adversary, meaning LWR is provably hard only when (1) an adversary can
only see a fixed, predetermined amount of samples or (2) the modulus q is superpolynomial
in the security parameter, meaning that the hardness reduction is from superpolynomial
approximation factors on worst-case lattices.

In this work, we show that there exists a (still fully deterministic) variant of the LWR
problem that allows for both unbounded queries and a polynomial modulus q, breaking an
important theoretical barrier. To our knowledge, our new assumption, which we call the
Nearby Learning with Lattice Rounding Problem (NLWLR), is the first fully deterministic
version of the learning with errors (LWE) problem that allows for both unbounded queries
and a polynomial modulus. We note that our assumption is not practical for any kind of
use and is mainly intended as a theoretical proof of concept to show that provably hard
deterministic forms of LWE can exist with a modulus that does not grow polynomially with
the number of samples.

Keywords: Lattices, LWE, Learning with Rounding

1 Introduction

In recent years, the need for quantum-secure cryptographic protocols has seemingly dra-
matically increased. Many people and organizations, including apparently the NSA, believe
that powerful quantum computers will be coming soon. It therefore seems imperative that
the cryptographic community develop new, efficient quantum-secure protocols for all of the
common use cases of cryptography today.

Most of these protocols are based upon the Learning with Errors Assumption (LWE), which
was invented by Regev in [Reg05], or its ring variant. Informally, given a fixed random
vector s, the LWE assumption states that it is difficult to distinguish samples of the form
(aiai

ᵀs + δi) from random when the ais are uniformly sampled random vectors and the δis
are fresh samples from a low-norm noise distribution. While it is well-known that the LWE
assumption has played a huge role in the development of theoretical crytography, including
things like fully homomorphic encryption [BV11], recently LWE has been gaining traction

∗An edited version of this paper appears in PQCrypto 2018: The Ninth International Conference on Post-
Quantum Cryptography.
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as an assumption for practical cryptography due to the need for quantum security, including
in [BCD+16] and [Pei14]. In fact, it seems like most of the submissions to the NIST post-
quantum key exchange competition will be based on LWE (or its ring variants).

But with all of the attention given to the LWE assumption, we think it is worth considering a
related, simpler, and more efficient assumption: the learning with rounding (LWR) assump-
tion. The LWR assumption was invented in [BPR12] as a way to build the first nontrivial,
parallelizable (and hence low depth) PRFs1 from lattice assumptions. Informally, given a
fixed random vector s, the LWR assumption states that it is difficult to distinguish samples

of the form
(
ai daiᵀscp

)
from random when the ais are random vectors sampled uniformly

at random. Note that the operation d·cp can be thought of as the general rounding operation
‘round to the nearest multiple of qp and then divide by q

p ’. In the vast majority of cases where
the LWE assumption is used, the LWR assumption can be used in its place.

LWR has several advantages over LWE. The most obvious one is that, for fixed dimension
and vector distributions (i.e. key and sample distributions), LWR is faster to compute. This
is due to the fact that we don’t need to sample from the noise distribution when generating
an LWR sample, and this noise sampling is typically a major pain point for practical LWE
implementations. But LWR is also more resilient than LWE in many ways as well: since it
is deterministic, it makes it so an adversary that can somehow trick an oracle into repeating
samples (outputting a sample with the same value of ai but with a different noise sample)
gains nothing. An often-overlooked fact about LWR is that it would likely be much more
resistant to side channel attacks than LWE, since noise sampling can be difficult and take
a lot of effort to inure against these sorts of attack [RRVV14]. This fact implies that LWR
would be a very good post-quantum candidate for certain hardware implementations.

There have been many recent schemes that utilized the power of LWR. A natural use case
was lattice-based PRFs, including [BLMR13] and [BP14]. Papers with a practical focus
on things like key exchange have also been build using rounding, including [CKLS16] and
[DFH+16]. More powerful PRFs that provide increased functionality and also might provide
illustrating examples that even touch at things like indistinguishability obfuscation include
papers like [BFP+15], [CC17], and [BKM17].

Given all of the benefits of LWR mentioned so far, it seems silly that anyone would ever want
to use the LWE assumption instead. However, there is an excellent reason why people use
LWE instead of LWR: security. As of now, LWE does not reduce tightly to LWR, and LWR
does not have a direct reduction from worst-case lattice problems like LWE does. To reach
the same provable security levels as LWE schemes, it is often the case that the parameters of
LWR schemes have to be made substantially larger than their LWE counterparts, negating
many of the advantages of LWR.

Fundamentally, we think that there does not seem to be any obvious reason why LWR should
not be as hard or close to as hard as LWE (although without proofs we can never be sure)2.
The goal of this work is to continue to try to close the gap between the two problems in
terms of hardness. In this work, we do not fully close this gap, or even come up with a
primitive that is practically useful–we cannot think of any practical use cases for what we
build in this paper. But we do make progress on what we consider an extremely important
practical problem in lattice cryptography.

In fact, we think that if the hardness gap between LWR and LWE was closed, then there
would be little use for LWE in practice. For instance, if LWR was provably secure for
parameters where the ‘rounding loss’ q

p was not much larger than the noise magnitude for
LWE with similar levels of security, many of the very practical NIST post-quantum crypto
proposals like Kyber [BDK+17] or Frodo [BCD+16] would probably be redesigned to use

1It was previously known how to build completely sequential (and thus high depth) PRFs from PRGs using
generic constructions like [GGM84]. It is possible to build a very simple lattice-based PRF using the [GGM84]
construction by treating LWE as a PRG.

2Caution! This is just an opinion.
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LWR. We think that research on the hardness of LWR (or the lack thereof) could have
widespread practical application in the long run.

1.1 LWR: Security Background

In order to put our work in context and explain the motivation, it is useful to go over the
previous work on LWR and LWR security.

Original LWR Work [BPR12] : the original LWR paper [BPR12] proved the hard-
ness of LWR where the modulus q was superpolynomially larger than the B-bounded noise
distribution used in the LWE oracle in the proof. The reduction was straightforward: take

an LWE oracle, and round the LWE output. If the rounded LWE samples
(
ai, daiᵀs + δicp

)
were always equal to the LWR samples

(
ai, daiᵀscp

)
, then the LWR problem was at least as

hard as the underlying LWE problem. While this explanation simplifies the reduction, this
is the fundamental idea of how it works in this paper.

However, this condition obviously does not hold if the error δi causes the rounded LWE
output daiᵀs + δicp to differ in Zp from the rounded LWR output daiᵀscp. Since we have no
way of authoritatively telling whether this bad event happened or not, the authors of [BPR12]
required that the modulus q be superpolynomial relative to the B-bounded noise distribution
used in the LWE oracle. This ensured that the probability that any ai

ᵀs was within B of a
‘boundary’ where the rounding value changed was negligible for any polynomial amount of
LWR samples and allowed the proof to work.

Subsequent Work After the original paper, several further works cleverly improved
the state of LWR [AKPW13] [BGM+16] [BLL+15] [AA16]. In general, the authors of these
papers showed that, by cleverly sampling and leaking certain secret information and using
smart statistical analyses, it was possible to avoid instances where rounded LWE and LWR
samples differed in the reduction. These works substantially improved the parameters for
LWR in general, but unfortunately still required an apriori bounded number of samples in
the case of a polynomial modulus. Let c be a constant3, γ ≥ 1, let B be the B-bound for
the noise distribution of the LWE instance that we reduce to our LWR instance, let p be
the rounding parameter (the group Zp that we are rounding to), and let κ be a security
parameter. The table below (with format borrowed from [AA16]) summarizes the state of
the art.

Work Unbounded Modulus (q) Advantage
Samples (w) Change (ε→ ε′)

[BPR12] Yes Bpκω(1) ε− negl(κ)
[AKPW13] No γBwpκ ε/(2dw)
[BGM+16] No Bwp (ε/qw)2

[BLL+15] No Bwp (ε/qw)
2

[AA16] (1) No Bwpκ ε(wB)−c

[AA16] (2) No Bwpκ ε(w)−c

Work Dimension Straightforward Uniform
Change (d→ d′) Rounding Samples

[BPR12] d Yes Yes
[AKPW13] d log(γ)/ log q Yes Yes
[BGM+16] d/logρq Yes Yes
[BLL+15] d Yes Yes
[AA16] (1) d Yes Yes
[AA16] (2) d− c Yes Yes

3for typical choices of parameters
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A First Attempt. When attempting to reduce LWE to LWR, it is natural to ask why
we cannot just throw out or ignore the samples that are close to these rounding ‘boundaries’.
We could use probabilistic rejection sampling to make our LWR sample distribution mimic
the output of an LWE oracle. This works in essentially the following way (we are leaving
out some details here, and what we say isn’t exactly correct, but the intuition remains true):

recall that a regular LWR oracle would simply just output samples of the form
(
ai, daiᵀscp

)
.

Now suppose we have a new oracle that outputs samples in a somewhat similar manner, but
with a catch: for every sample, it samples some δi from the LWE noise distribution ψ. If
ai

ᵀs + δi is within a distance of B from the rounding boundary, then we reject the sample

and start over. Otherwise, we go on ahead and output
(
ai, daiᵀscp

)
as usual.

It shouldn’t take too much effort to see that the behavior of this new LWR oracle is exactly
the same as the following oracle: Take samples from an LWE oracle, and round the second

term, getting a term of the form
(
ai, daiᵀs + δicp

)
, but reject the samples if ai

ᵀs + δi is

within B of a rounding boundary. This oracle is directly simulatable given an LWE oracle,
so we can prove hardness directly from LWE using a reduction like this.

Unfortunately, this approach still has one glaring hole: this type of rounding with proba-
bilistic rejection is not fully deterministic. It is true that, for a fixed instance of the problem,
every tuple whose first term is ai will always have second term daiᵀscp. However, which ais
are in fact included in samples is highly nonuniform–and even probabilistic–and even though
it is very simple to show that the accumulated distribution of ais is computationally hard to
distinguish from fully random for one instance of the problem, this still presents significant
problems for many applications that require determinism. For instance, if we attempt to
build a PRF using this technique, different instantiations of the PRF may have different
outputs, since, depending on the noise sampled, some instantiations of the PRF will reject
certain ais while others will accept them. This could be disastrous for security if an adver-
sary has access to multiple copies of the PRF, since we can guess how close a particular value
of ai

ᵀs is to the boundary based on the number of outputs versus rejections for a particular
sample.

It seems difficult to improve this basic attempt if we wanted to keep the number of queries
to be an unbounded polynomial, since we cannot know any extra information about ai

ᵀs in
the simulation, and we could not leak any non-negligible amount of information per query
to help us without risking a complete reveal of the secret s.

Lattice Rounding. Our first core idea is the following: what if, instead of rounding
each sample to the nearest multiple of some integer, we group samples together and deter-
ministically round them to a nearby lattice point (not necessarily the nearest, obviously)?
We might be able to leak more information that can help us eliminate rounding mistakes this
way, as it could potentially be hard for an adversary to determine whether or not a point is
close to a boundary created by whatever lattice rounding algorithm we are using (think of
Babai’s nearest plane algorithm or regular Babai rounding)4.

However, we have to be careful when doing this. A simulator or adversary cannot have access
to both the values of uniformly random ai

ᵀs terms and the lattice points gained as a result
of rounding, or otherwise something similar to the famous ‘learning a hidden parallelepiped’
attack in [NR06] seems to occur and the (short) basis of the lattice can be learned. Once a
simulator (or an adversary for that matter) has access to the basis we are using to round,
then we gain very little from rounding to a lattice instead of to the nearest multiple of some
integer. Perhaps some clever trick could thwart this class of attacks, but we could not come
up with such an idea.

4Proving that an adversary cannot distinguish points close to the ‘rounding boundary’ of a lattice from uni-
formly random points without breaking some form of LWE seems like a very interesting open problem.
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Restricting the Samples The next main idea is something that arises naturally from
our first attempt: suppose we continue to utilize ‘lattice rounding’, but what if we restrict
the possible values of the samples Ai such that the values Ais are in some kind of ball around
points in the lattice that we are rounding to rather than let them be uniform? Note that
our samples consist of matrices now instead of vectors. We can use the LWE assumption
to show that such a distribution looks random to an adversary, and we can simulate such
samples without a trapdoor for the lattice we are rounding to as well: pick a random point
in the lattice to which we will ‘round’ the final value Ais (given a ‘bad’ basis, of course),
add noise to get the ‘actual’ value of Ais, and then output the value of Ai such that Ais
equals the lattice point we picked plus the noise term.

This has the unfortunate consequence that we cannot use a uniform distribution of Ais, but
allows us to potentially prove security because we do not need to know a short basis of the
lattice we are rounding to in order to simulate queries. However, we are still unable to issue
a challenge query in this regime–in order to find a point close to the lattice, our sampler
implicitly needs to know the lattice point.

Finding an Acceptable Output Our solution to the previous problem is the follow-
ing: rather than ouput samples Ai and the closest lattice point to Ais, what if we only
output some limited information about that lattice point, rather than the whole thing? It
turns out that if we write the ‘nearest’ lattice point in Λ (B) in the form Bu (according
to some rounding algorithm A–we may not actually output the closest lattice point) and
then output u mod 2, we can actually prove security. We develop a variant of the LWE
assumption that reduces from the standard LWE assumption that allows us to do this while
maintaining the properties of unbounded (polynomial) samples and a polynomially-sized
modulus.

Informally, our assumption says that, for certain Ais picked so that Ais is close to Λ (B),
samples of the form (

Ai, dAiscAΛ(B) mod 2
)

are indistinguishable from random. Note that our process is parameterized by a lattice Λ (B)
and a rounding algorithm A. We are obviously glossing over some important details here,
but this is the basic idea (and the details are in the body of the paper).

2 Preliminaries

In this section we present some basic material common to many cryptographic papers. A
reader familiar with general cryptography and particularly lattices and lattice cryptography
can probably safely skip this section. We borrow elements of the presentation from [BGG+14]
and [GPV08].

2.1 General Notation

For a random variable X we denote by x ← X the process of sampling a value x from the
distribution of X. If S is a finite set instead of a distribution, we denote by x← S the process
of sampling a value x according to the uniform distribution over S.

A non-negative function v (λ) is negligible if for every polynomial p (λ) it holds that v (λ) ≤
1

p(λ) for all sufficiently large λ ∈ N.

Statistical Distance: Let Ω be a finite domain, and let X and Y be random variables over
Ω. We define the statistical distance between X and Y , denoted SD (X,Y ) in the following
way:

SD (X,Y ) =
1

2

∑
ω∈Ω

|Pr [X = ω]− Pr [Y = ω] |
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We say that two variables X and Y are δ-close if SD (X,Y ) ≤ δ. If we parameterize X and
Y with the security parameter λ ∈ N , we can say that two families of distributions Xλ and
Yλ are statistically indistinguishable or statistically close if SD (Xλ, Yλ) is negligible in λ.

Rounding. For an integer p ≤ q, we define the modular “rounding” function

d·cp : Zq → Zp that maps x→ b(p/q) · xe

and extend it coordinate-wise to matrices and vectors over Zq.

B-Bounded. Let B = B (n) ∈ N be a natural number. A family of distributions ψ ∈
{ψn}n∈N is called B-bounded if Pr [ψ ∈ [−B,B]] = 1− negl (n).

2.2 Lattice Background

Lattice Notation: let q, n, and m be positive integers, and let A ∈ Zn×mq be a matrix.

We let Λ⊥q (A) denote the lattice spanned by all x ∈ Zmq such that A · x = 0 mod q. For
a vector u ∈ Znq , we generalize this and let Λu

q (A) denote the set of all vectors such that

A · x = u. Note that this is a coset of Λ⊥q (A).

Dual Lattice: For any n-dimensional lattice Λ, the dual lattice, which we denote Λ∗, is
defined to be the lattice spanned by all vectors x ∈ Rn such that, for all v ∈ Λ, xᵀ · v ∈ Z.

Gram-Schmidt Orthogonalization: let S be an ordered set of n linearly independent
vectors in Rn such that S = {s1, ..., sn}. We let S̃ = {s̃1, ..., s̃n} denote the Gram-Schmidt
Orthogonalization of S. We define the Gram-Schmidt Orthogonalization in the following
way: first, set s̃1 = s1. Then, for each i ∈ {2, n} set each s̃i equal to the component of si
orthogonal to the plane spanned by {s1, ..., si−1}.
For a lattice Λ, we define the Gram-Schmidt minimum, which we denote b̃l (Λ), as

b̃l = min
B
||B̃|| = min

B

[
max
bi
||b̃i||

]
where the minimum is taken over all (ordered) bases B of Λ.

Discrete Gaussians. We borrow the elegant presentation style of [GPV08]. For any s > 0
define the Gaussian function on Rn centered at c with parameter s:

∀x ∈ Rn, ρs,c (x) = e−π||x−c||
2/s2

We sometimes omit the subscripts s and c in the case that they are 1 and 0, respectively.

For any c ∈ Rn, real s > 0, and n-dimensional lattice Λ, we define the discrete Gaussian
distribution over Λ as:

∀x ∈ Λ, DΛ,s,c (x) =
ρs,c (x)

ρs,c (Λ)

Smoothing Parameter. In [MR04], Micciancio and Regev defined the smoothing param-
eter: for any n-dimensional lattice Λ and positive real ε, the smoothing paramter ηε (Λ) is
the smallest real s > 0 such that ρ1/s (Λ∗\ {0}) ≤ ε.

The Gadget Matrix. In [MP12], Micciancio and Peikert invented the gadget vector g
and the gadget matrix G. Let q = 2c be some integer, and let c ∈ Z = dlog2 qe. Recall
from [MP12] that the vector g ∈ Zcq is defined to be a primitive vector such that gi = 2i−1, or

gᵀ =
[
1|2|4|....|2c−1

]
. Additionally recall the matrix S ∈ Zc×cq was defined such that entries

of the form Si,i = 2, Si+1,i = −1, and all other entries are zero. In picture form, we have

[
1 2 4 .... 2c−1

]
·


2 0 0 ... 0
−1 2 0 ... 0
0 −1 2 ... 0
... ... ... ... ...
0 0 0 ... 2

 = [0 0 0 .... 0] mod q
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If q is not a power of 2, we can modify the last column to be the binary bit decomposition
of q. We also will need the standard tensor forms of g and S as well. We define the matrix
G ∈ Zn×ncq to be G = gᵀ ⊗ In and the matrix T ∈ Znc×ncq to be T = S⊗ In. Pictorially, we
have something like the following (dimensions not to scale):

−gᵀ− 0 0 ... 0
0 −gᵀ− 0 ... 0
0 0 −gᵀ− ... 0
... ... ... ... ...
0 0 0 ... −gᵀ−

 ·


S 0 0 ... 0
0 S 0 ... 0
0 0 S ... 0
... ... ... ... ...
0 0 0 ... S

 = 0nc×c mod q

We need yet another function from [MP12]. Let the function gG (s, e) ∈ Znq × Zmq → Zmq
which is parameterized by some matrix A ∈ Zn×mq be defined as follows:

gA (s, e) = Gᵀs + e

Peikert and Micciancio also prove the following:

Lemma 2.1. Let s ∈ Znq be arbitrary and let e ∈ P1/2

(
q−1B

)
, where B is a basis of

Λ⊥ (G). There is an oracle O for efficiently finding s and e given the output of gG (s, e).
For arbitrary modulus, ||B|| ≤

√
5.

2.3 LWE and Related Assumptions

Definition 2.2. Learning with Errors Problem (LWE): Consider integers n and q,
some distribution ψ over Zq, and distributions K and T , both over Znq .

A (q, n, ψ,K, T )-LWE problem instance consists of access to an unspecified challenge oracle
OLWE, being, either, a noisy pseudorandom sampler OLWE

s carrying some constant random
secret key s ∈ Znq sampled from the distribution K, or, a truly random sampler OLWE

$ , whose
behaviors are respectively as follows:

OLWE
s : Outputs samples of the form

(
ai,ai · s + δi

)
∈ Znq ×Zq, where s ∈ Znq is a persistent

value invariant across invocations sampled by querying the distribution K, δi ∈ Zq
consists of a fresh sample from ψ, and ai ∈ Znq is sampled at random from T .

OLWE
$ : Outputs samples of the form

(
ai, ri

)
∈ Znq ×Zq, where ai ∈ Znq is sampled at random

from T and ri is a uniform random sample from Zq.
The (q, n, ψ,K, T )-LWE problem allows repeated queries to the challenge oracle OLWE. We
say that an algorithm A decides the (q, n, ψ,K, T )-LWE problem if

AdvLWE [A]
def
=
∣∣Pr[AO

LWE
s = 1]− Pr[AO

LWE
$ = 1]

∣∣
is non-negligible for a s selected appropriately at random from K.

Definition 2.3. Learning with Rounding Problem (LWR): Consider integers n, p,
and q such that q ≥ p, and distributions K and T , both over Znq .

A (q, p, n,K, T )-LWR problem instance consists of access to an unspecified challenge oracle
OLWR, being, either, a noisy pseudorandom sampler OLWR

s carrying some constant random
secret key s ∈ Znq sampled from the distribution K, or, a truly random sampler OLWR

$ , whose
behaviors are respectively as follows:

OLWR
s : Outputs samples of the form

(
ai, dai · scp

)
∈ Znq ×Zp, where s ∈ Znq is a persistent

value invariant across invocations sampled by querying the distribution K and ai ∈ Znq
is sampled at random from T .

OLWR
$ : Outputs samples of the form

(
ai, ri

)
∈ Znq ×Zp, where ai ∈ Znq is sampled at random

from T and ri is a uniform random sample from Zp.

The (q, p, n,K, T )-LWR problem allows repeated queries to the challenge oracle OLWR. We
say that an algorithm A decides the (q, p, n,K, T )-LWR problem if

AdvLWR [A]
def
=
∣∣Pr[AO

LWR
s = 1]− Pr[AO

LWR
$ = 1]

∣∣
is non-negligible for a s selected appropriately at random from K.
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3 The Main Problem

We now are in a position to formally describe our new assumption. Before we begin with
the actual problem, though, we need to formally define lattice rounding.

Lattice Rounding We are going to overload the rounding function. Let q, m, and n
be integers with m ≥ n. For some deterministic rounding algorithm A and lattice basis
B ∈ Zm×nq , we define the “rounding” function

d·cAΛ(B) : Zmq → Znq that maps x→ u

such that A (x) = B · u

Note that, while our rounding algorithm A is deterministic, it doesn’t necessarily have to
be perfect at rounding points to close lattice points. Since finding the (exact) closest lattice
point is thought to be hard even when arbitrary ‘hints’ about the lattice are known, we
cannot expect any rounding algorithm to always find the closest lattice points. In order to
give a general definition, we only require that our rounding algorithm is deterministic.

However, we do note that, in order for our proof to hold, our rounding algorithm must round
points within some error factor e of a lattice point to the correct lattice point, but this e
can be substantially smaller than the shortest vector in the lattice. Examples of A could be
Babai’s nearest plane algorithm or Babai rounding with a ‘good’ lattice basis, for instance,
although we use more complicated rounding algorithms in this work.

In addition, note that we output the coefficient vector u instead of an actual lattice point
like B ·u. While in principle we could output a lattice point, it will make the presentation of
our results simpler if we define lattice rounding to output coefficient vectors instead of lattice
points. This choice also seemingly makes lattice rounding easier to use, as most potential
applications would prefer to have a uniformly random vector instead of a uniformly random
lattice point as output.

3.1 Nearby Learning with Lattice Rounding Description

We next describe the details of our lattice rounding system.

Nearby Learning with Lattice Rounding

Input:
• Integers n, m, and q such that m = O (n log q)
• A ‘noise’ distribution ψ ∈ Z2q

• Algorithm GenTrap (1n, 1m, q)→ Zm×nq × Z
m
2 ×

m
2

2q which outputs a parity
check matrix B ∈ Zm×nq and a ‘trapdoor’ TB as described in lemma 4.5.
• Algorithm Invert

(
B,TB,b ∈ Zm2q

)
→ Zn2q which outputs the vector u

where b = Bu + e for some short vector e ∈ Zm2q as described in lemma 4.5.

Setup:
• Set B,TB ← GenTrap (1n, 1m, q).
• Set s← Zm2q.

Output a Sample:
• Set ui ← Zn2q.
• Set δi ∈ Zm2q by concatenating m samples from ψ.
• Sample Ai ∈ Zm×m2q by choosing a random Ai that satisfies Ais = Bui + δi.

• Output
(
Ai, dAiscInvert(·)Λ(B) mod 2

)
= (Ai,ui mod 2).

Reconstruct a Sample Given Ai:

• Output
(
Ai, dAiscInvert(·)Λ(B) mod 2

)
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Some Comments. We note that the algorithms GenTrap and Invert closely resemble
those from [MP12]. Any standard lattice trapdoor algorithm will work here, but we chose
to use this one for its ease of use and efficiency. Invert is the function that takes the role of
our abstract rounding algorithm A, and GenTrap gives us the information necessary to run
Invert.

Our modulus 2q is an artifact of our proof technique, so it is not clear that this modulus is
absolutely necessary for the problem to be hard. Let k be any constant integer. It is also
worth pointing out that the problem can be easily modified to work with modulus kq and

outputs of the form
(
Ai, dAiscInvert(·)Λ(B) mod k

)
, as we essentially just swap the 2 factor

for some other constant k. However, we stick with the mod 2 case because generalizing
to k doesn’t give us anything too novel from a theoretical perspective and outputting more
randomness with each sample still does not make the problem practical.

A natural question to ask is why we need to generate B with a trapdoor. For many appli-
cations of LWR (like PRFs, for instance) we need to recompute the output of a sample Ai

given only the sample Ai and the key s (and not the actual output). For basic LWR, this is
trivial, but for NLWLR, this is difficult without a trapdoor. Our algorithm ‘Reconstruct a
Sample Given Ai’ handles this functionality and needs to use the lattice trapdoor to work.
We comment on this more in our security proof.

Additive Homomorphism. We also note that our outputs are ‘almost’ homomorphic–
i.e., if the error is small enough, then:

dAiscInvert(·)Λ(B) mod 2 + dAjscInvert(·)Λ(B) mod 2 =

d(Ai + Aj) scInvert(·)Λ(B) mod 2

This means that many standard cryptographic schemes that are built upon LWE can be built
(very inefficiently) from the NLWLR assumption as well in a fairly straightforward manner.
For instance, Regev-like encryption [Reg05] can be done fairly easily, and we briefly sketch
how here: create a public key consisting of k samples of the form(
Ai, dAiscInvert(·)Λ(B) mod 2

)
and a secret key including s and TB.

To encrypt a bit vector b ∈ Zn2 , pick a discrete Gaussian value ci over Z for every sample
Ai, and output the tuple(

k∑
i=1

ciAi mod 2q,

k∑
i=1

ci dAiscInvert(·)Λ(B) + b mod 2

)
Decryption is done in the natural Regev way. As long as the noise blow-up is controlled,
then correctness follows. Uniformity over the choice of lattice point (i.e.

∑k
i=1 ciui) can

be shown from the leftover hash lemma [BDK+11], and the leftover hash lemma over the

integers [AGHS13] can be used to show that the noise term (i.e.
∑k
i=1 ciδi) is distributed

as a proper discrete ellipsoid, meaning that we end up with a well-formed, properly chosen
sample Ai and output as our sum. This will require an extremely large k to be used but we
already said that this would be inefficient.

While we do not want to spend too much time going through inefficient cryptosystems
(thus why we do not offer a formal treatment of the previous argument), we just want to
illustrate that this new NLWLR assumption can, in fact, be used to build reasonably powerful
cryptosystems.

Parameter Choices. We next put forth a set of parameter choices that offers easy
instantiation and good theoretical hardness. Let m, n, and q be integers such that m ≥
4n log q. Let the distribution DZ,σ be a discrete Gaussian distribution with σ ≤ q

5m logn

(so that the overall distribution over Zm is a discrete Gaussian DZm,σ′ with parameter
σ′ ≤ q

5
√
m logn

).
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Existence of Efficient GenTrap and Invert. In lemmas 4.5 and 4.8 we prove that
the algorithms GenTrap and Invert exist as defined and that Invert is deterministic. We
prove in lemma 4.10, that, for the choice of parameters mentioned above, the output of
GenTrap is uniform and that the Invert algorithm is correct with all but negligible proba-
bility.

Reduction from Standard LWE. Also in lemma 4.10 we show that our construction
is at least as hard as standard LWE (uniform samples, uniform key) in dimension n over
modulus q and with discrete Gaussian noise with parameter σ

3 for the parameters described
above. If Q is the number of samples an adversary gets, we do lose a factor of Q in our security
reduction, but this doesn’t make an enormous difference theoretically. This means that,
through the LWE reduction of [BLP+13], we have a polynomially-approximate reduction
from worst-case lattice problems while still allowing an unbounded (polynomial) number of
queries.

We note that our reduction allows for substantially more general parameters than the ones
mentioned in this section.

4 Security Proof

In this section we prove the security of what we have called Nearby Learning with Lattice
Rounding. Our security proof is actually rather straightforward, but has a couple of twists
that can make it difficult to follow, so we offer a proof outline below to make it easier to
digest. We start by going over an uncommon way to look at the standard LWE problem.

4.1 Reverse LWE

Our proof will become much easier to understand when viewed through lens of what we call
‘reverse LWE’. Traditionally, LWE is thought of as the following procedure: given a fixed
key s, sample a random sample ai and a noise sample δi and output (ai,ai

ᵀs + δi).

However, we can also generate LWE samples in the following way: suppose we are given
a fixed key s. First, pick some random value u over the output domain. Then, sample a
value δi from the noise distribution, and choose a random ai subject to the constraint that
ai

ᵀs = u − δi. It should be clear that this distribution is statistically close to that of the
traditional LWE distribution, but what this variant of LWE gives us the power to do is to
choose our outputs to be distributed in a non-uniform way if we like. Picking us (or, more
precisely, vectors of us) from a distribution that is computationally indistinguishable from
uniform rather than one that is statistically close to uniform is something that we implicitly
exploit in our reduction.

4.2 Proof Outline

The core portion of our security proof has two main steps: first, we show that a particular
nonuniform variant of LWE is hard. Then we show that anyone that can distinguish outputs
of our nearby learning with lattice rounding oracle from random can break this nonuniform
LWE variant. Once we have shown that our output is indistinguishable from random, we
show that we can make the rounding mechanism work by appropriately sampling a random
lattice and a trapdoor that are compatible with our scheme.

A New Nonuniform LWE. Our reduction starts by showing that the following is a
hard (nonuniform) instance of LWE: samples of the form (ai,ai

ᵀ (2s) + δi) ∈ Znq ×Z2q, where
the operations are done modulo Z2q but the ais and s are sampled uniformly modulo q. The
proof goes approximately as follows: we start with a typical LWE instance over Zq. Imagine
we have samples of the form (ai,ai

ᵀs + δi). Suppose we multiply the second term by two
and ‘lift’ everything up to Z2q: we now have samples of the form (ai,ai

ᵀ (2s) + 2δi). Note
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that the second term of the tuple is, by the LWE assumption, indistinguishable over the
higher-order bits (the lowest-order bit will be zero since the modulus is a multiple of two).
We can then add in additional noise to make the 2s + 2δ term look uniform since the only
nonuniformity is in the lowest-order bit.

This gives us LWE samples of the form (ai,ai
ᵀ (2s) + δi), where both ai and s are uniform

over Znq rather than Zn2q that are still indistinguishable from random (for any attentive
readers, it is straightforward to show that the ‘random’ part of the LWE reduction holds as
well).

Moving to Rounding. We now have an LWE problem where we can manipulate the
lowest-order bits of the key. Given samples of the form (ai,ai

ᵀ (2s) + δi), we can sample a
term t ∈ Zn2 and add in ai

ᵀt to the second term of the tuple, which gives us a uniform key
over Zn2q (but we have knowledge of the lowest-order bits of the key!).

Suppose we now want to sample a single query from our rounding oracle. We can take m
LWE samples in the above form and concatenate them as rows into a matrix which we will
conveniently call B ∈ Znq . We have something of the form (B,Bs + δ) where we know the
lowest-order bits of s (in other words, s mod 2).

Given a random vector t ∈ Zm2q, we can set a matrix Ai ∈ Zm2q such that Ait = Bs − δ.
Thus we can output a sample (Ai, s mod 2) and have it be a valid output for our nearby
learning with lattice rounding oracle since Bs is the closest point in Λ (B) to Ait. It is also
straightforward to show that Ai is distributed uniformly at random (and independent of s
mod 2) if the original LWE samples were random.

Unfortunately, given that the secret in our reduction is a close lattice point (which only gives
us one query) rather than many queries (as a LWE secret might), we are forced to use a
hybrid argument over all of the adversary’s queries Q. This gives us a 1

Q -security loss in
our reduction, but we still can output an unbounded number of queries because Q must be
polynomial at the end of the day. We defer the details to the formal proof.

Actually Rounding. While the above argument explains why our output is indistin-
guishable from random, we would like to be able to actually round as well (for a valid Ai, any
entity with the requisite secrets s and TB should be able to produce a valid output) instead
of just simulating rounded output. This is essential for sort of any application where multiple
parties need to statelessly produce the same outputs given repeated samples Ai as input5.
The most basic way to do this would be to sample our lattice basis B with a trapdoor. Recall
that, in [MP12] the authors provide algorithms for sampling a random-looking parity check
matrix B ∈ Zm×nq and a corresponding trapdoor TB such that, given the trapdoor TB and
a sample of the form Bu + δ ∈ Zmq (for some u ← Znq and some noise vector δ ∈ Zmq ) it is
possible to efficiently determine u with high probability.

Unfortunately, we want an instance of this algorithm where B still lives in Zq but the output
samples and the secret u live in Z2q. As an astute reader might notice, this is slightly
annoying to go through all of the details, but conceptually simple. To illustrate, suppose we
have a collection of short vectors x such that Bx = 0 mod q, giving us a form of trapdoor
for B. Then B (2x) = 0 mod 2q, which gives us a slightly worse form of trapdoor. In sum,
getting this trapdoor sampler to work for a different modulus of output samples is fairly
straightforward, if a bit tedious. We slightly modify the algorithms from [MP12] in order to
do this easily and efficiently.

4.3 A New Nonuniform LWE

Our first lemma may seem a bit confusing, but it is really quite simple. As we described in
the proof outline, what we are doing is essentially just modulus lifting. We are taking an

5like PRFs, for instance. We discuss PRFs in the conclusion.
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LWE instance modulo q and raising it to an instance modulo 2q. The LWE samples remain
in Zq, however, and the key moves to 2 · Zq ∈ Z2q.

A brief sketch: this works for the following reason: if ai
ᵀs + δi = c mod q, then ai

ᵀ (2s) +
2δi = 2c mod 2q. Moreover, it should be immediately clear that the ‘doubled’ LWE instance
is random in all but the lowest-order bit (in which it will always be zero due to the multiple
of 2 in the terms and the fact that the modulus is 2q). Adding some low-norm noise that is
uniform over Z2 rectifies this and gives us the LWE instance we desire.

Lemma 4.1. Consider integers n and q, and some noise distribution ψ over Zq. Let
the distribution T be over Znq . Let Unq and Un2q denote the uniform distribution over their
respective domains, and let 2 ·Unq be the distribution over Zn2q defined in the natural way. Let
ψ′ be some distribution over Zn2q that is statistically close to uniform over Z2.

Any adversary that can solve the
(
2q, n, 2ψ + ψ′, 2 · Unq , T

)
-LWE problem with advantage ε

can be used to solve the
(
q, n, ψ,Unq , T

)
-LWE problem with advantage ε.

Proof. Given an oracle which we denote O1−LWE for the
(
q, n, ψ,Unq , T

)
-LWE problem, we

must show how to simulate an oracle for the
(
2q, n, 2ψ + ψ′, 2 · Unq , T

)
-LWE problem, which

we denote O2−LWE .

To do this, we show how to convert each output from a O1−LWE oracle into a valid output
from a O2−LWE oracle. For a vector ai ← T and a fixed key s ∈ Znq and integers ri ← Zq
and δi ← ψ, recall that outputs from O1−LWE have one of the two following forms:

(ai,ai
ᵀ · s + δi) , (ai, ri)

Suppose we take our output and multiply everything in the second term by two. We note
that, at this point, we assume the second term in each tuple lives in Zn2q rather than Znq .
This gives us the following set of possibilities:

(ai,ai
ᵀ · (2s) + 2δi) , (ai, 2ri)

Essentially we are just ‘lifting’ the second term in each tuple to the high-order bits of a new
modulus 2q. Note that the low-order bit of the second term in the tuples will always be zero
at this point. To deal with this, suppose we add in a sample from χ′ to the second term of
our sample. Let δ′i ← χ′. We get:

(ai,ai
ᵀ · (2s) + 2δi + δ′i) , (ai, 2ri + δ′i)

We claim that this is the proper distribution of a O2−LWE oracle. First, note that ai is a
valid sample from T , and 2δi + δ′i is a valid sample from 2ψ + ψ′. Note as well that 2s is
uniformly distributed over the high-order bits Zn2q and zero in the lowest-order bit, meaning
our LWE secret has the correct distribution. Finally, since δ′i is statistically close to uniform
over Z2 and 2ri is uniform in all but the lowest bit, we know that 2ri + δ′i is statistically
close to uniform over Z2q.

Since we have faithfully simulated a O2−LWE oracle, we can then feed the queries to our
adversary and then forward the adversary’s response to the challenger, preserving the ad-
vantage ε of the adversary in the reduction.

4.4 Reducing Rounding Output to LWE

We now formally define the Nearby Learning with Lattice Rounding Assumption. We note
that the output of this distribution (in the ‘real case’) is identical to that of the output
described in section 3.1, as required by definition.

Definition 4.2. Nearby Learning with Lattice Rounding (NLWLR): Consider in-
tegers m, n, and q, some B-bounded distribution ψ over Z2q, and a distribution T over
Znq .

12



Let the matrix B ∈ Zm×nq be distributed such that each row is a fresh sample from T . We
let Λ (B) denote the 2q-ary lattice with basis B6.

A (q, n, ψ,K,B)-NLWLR problem instance consists of access to the public matrix B and an
unspecified challenge oracle OnLWE, being, either, a noisy pseudorandom sampler ONLWLR

s

carrying some constant random secret key s ∈ Zn2q sampled from the distribution K, or, a

truly random sampler ONLWLR
$ , whose behaviors are respectively as follows:

ONLWLR
s : Outputs samples of the form

(
Ai, zi

)
∈ Zm×m2q ×Zm2 , where the terms are sampled

in the following way: first, recall that s ∈ Znq is a persistent value invariant across in-
vocations sampled by querying the distribution K. Let the value ui be sampled randomly
from Un2q, and let δi ∈ Zm2q be sampled by selecting m independent fresh samples from
ψ and concatenating them together to form a vector. To output Ai, we use Gaussian
elimination to solve for the matrix Ai that satisifies the following equation:

Ai · s = B · ui + δi

We then set zi = ui mod 2 and output that as well.

ONLWLR
$ : Outputs samples of the form

(
Ai, zi

)
∈ Zm×m2q ×Zm2 , where Ai ∈ Zm×nq is sampled

uniformly at random from Zm×m2q and zi is a randomly sampled vector in Zn2 .

The (q, n, ψ,K,B)-NLWLR problem allows repeated queries to the challenge oracle ONLWLR.
We say that an algorithm A decides the (q, n, ψ,K,B)-NLWLR problem if

AdvNLWLR [A]
def
=
∣∣Pr[AO

NLWLR
s = 1]− Pr[AO

NLWLR
$ = 1]

∣∣
is non-negligible for a s selected appropriately at random from K.

Lemma 4.3. Consider integers m, n, and q, some B-bounded distribution ψ over Z2q, and
a distribution T over Znq .

Let the matrix B ∈ Zm×nq be distributed such that each row is a fresh sample from T . We
let Λ (B) denote the 2q-ary lattice with basis B.

Let Q be the number of queries made to an nLWE oracle. Any adversary that can solve the
(q, n, ψ,Unq ,B)-NLWLR problem with advantage ε can be used to solve the

(
2q, n, ψ, 2 · Unq , T

)
-

LWE problem with advantage at least 1
Qε.

Proof. Our proof goal is standard and simple: given an LWE oracle OLWE that is either
OLWE

s or OLWE
$ , we need to simulate an NLWLR oracle ONLWLR so that we simulate a

ONLWLR
s oracle if we were given a OLWE

s oracle and a ONLWLR
$ oracle if we were given a

OLWE
$ oracle. To do this, we will need to use a hybrid argument, so our reduction will not

be exactly advantage-preserving.

Suppose an adversary is restricted to Q queries. For i ∈ [0, Q] we define a series of hybrid
experiments in the following way: let the experiment Hi denote outputting i samples from
ONLWLR

s followed by Q− i samples from ONLWLR
$ . As a sanity check, note that H0 denotes

output from a totally ‘random’ distribution, while HQ is the ‘real’ distribution.

As is usual for hybrid arguments, we will show that any adversary that can distinguish the
hybrids Hi and Hi+1 with advantage ε can be used to solve the standard LWE problem with
advantage ε. This in turn implies that an adversary that can solve the NLWLR problem can
also solve the standard LWE problem with advantage at least 1

Qε, completing the proof.

Generating the Hybrid Challenge. To start, let’s consider our oracle OLWE . It will
output samples of the form

(ai,ai
ᵀ · (2s) + δi) , (ai, ri) ∈ Znq × Z2q

6We are slightly abusing notation here since B lives in a finite ring, but the intuition is correct.
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where ai ← T , δi ← ψ, ri ← Z2q, and s ← Znq is fixed for all of the samples. Suppose

we query our oracle OLWE m times and concatenate the results into a matrix. Let the
concatenation of the row vectors ai be defined to be the matrix B ∈ Zm×nq . We can write
this concatenation in the following way:

(B,B · (2s) + δ) , (B, r) ∈ Zm×nq × Zm2q

Let’s define c ∈ Zn2q to be the second term of the above tuples (which one depends on which

version of OLWE we have been given. Thus, c = {B · (2s) + δ, r}. Next, suppose we sample
a vector x← Zn2 and add B · x to c. We have:

c = {B · (2s + x) + δ, r + B · x}

Let b = 2s+x ∈ Zn2q. By definition, b is distributed uniformly at random, and b mod 2 = x.
If we rewrite this, we have:

c = {B · b + δ, r + B · x}

Our goal is to make c into a hybrid-distinguishing query. To do that, suppose we sample
some t← Zm2q. Then we solve for some matrix A∗ such that

A∗ · t = c

Note that if c = B · b + δ, then A∗ will have the distribution of a single sample from
the ONLWLR

s . If c = r + B · x, then A∗ will be distributed uniformly at random (and
independently of x since the r term is uniform over Zm2q and independent of x), giving the

correct distribution of a single sample of ONLWLR
$ . Thus the sample (A∗,x) is a valid query

from ONLWLR parameterized by the lattice B.

Simulating the Hybrids. Now, suppose that an adversary can distinguish between the
hybrid experiments Hi and Hi+1. We show that such an adversary can be used to solve the
standard LWE problem parameterized in the problem statement. To start, suppose we have
run through all of the calculations in the Generating the Hybrid Challenge portion of the
proof, as we will use that notation here. We first start by sending the adversary the matrix
B as well as the rest of the public parameters.

For hybrid queries 1 through i, we respond in the following way: choose a random vector
zi ← Zn2q and create a vector δi ∈ Zm2q by sampling ψ a total of m times and concatenating
the result into a vector. Then we set the matrix Ai ∈ Zm×mq by solving the equation
Ai · t = B · zi + δi. Our query response becomes

(Ai, zi mod 2) ∈ Zm×m2q × Zn2

Note that this perfectly simulates a query response for the oracle ONLWLR
s parameterized

by the matrix B. For the challenge query i+ 1, we respond with the query

(A∗, x) ∈ Zm×m2q × Zn2

As we discussed earlier, this query will be distributed as from ONLWLR
s if we received the

oracle OLWE
s from the challenger and from ONLWLR

$ if we received the oracle OLWE
$ from

the challenger.

For queries i+ 2 through Q, we just respond with uniformly random output in Zm×mq ×Zm2 ,

which is exactly the required distribution of ONLWLR
$ .

Thus, in our hybrid simulation, we have simulated hybrid experiment Hi if we received
the oracle OLWE

$ and hybrid Hi+1 if we received the oracle OLWE
s . This implies that any

adversary that can distinguish the hybrid experiments Hi and Hi+1 with advantage ε can be
used to solve the standard LWE problem as parameterized in the theorem statement with
advantage ε, which is the fact we need to complete the proof.
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4.5 Generating a Trapdoor

In this section we show that there are suitable mechanisms for us to realize the GenTrap and
Invert functions needed for the nearby learning with lattice rounding assumption to work.
As we mentioned in the proof overview, this is really quite straightforward, but still takes
a bit of digging through the details in order to build a convincing proof. Our construction
of the GenTrap and Invert functions are almost identical to (and the notation is borrowed
from) those of [MP12], but in theory any kind of trapdoor generation could be used.

Previous Work Our starting point will be the following theorem from [MP12] (Theorem
5.1), which allows us to sample a uniform parity check matrix and a corresponding trapdoor:

Lemma 4.4. There is an efficient randomized algorithm GenTrap (1n, 1m, q) that, given any
integers n ≥ 1, q ≥ 2, and sufficiently large m = O (n log q) outputs a parity-check matrix
A ∈ Zn×mq and a ‘trapdoor’ R such that the distribution of A is negl (n)-close to uni-
form. Moreover, there are efficient algorithms Invert and SampleD that with overwhelming
probability over all random choices, do the following:

� For bᵀ = sᵀA + eᵀ, where s ∈ Znq is arbitrary and either ||e|| < q/O
(√
n log q

)
or e←

DZm,αq,0 for 1/α ≥
√
n log q ·ω

(√
log n

)
, the deterministing algorithm Invert (R,A,b)

outputs s and e.

� For any u ∈ Znq and a large enough s = O
(√
n log q

)
, the randomized algorithm

SampleD (R,A,u, s) samples from a distribution that is within negl (n) statistical
distance of DΛ⊥

u (A),s·ω(
√

logn).

We really do not need the full power of this theorem for our applications, but we do need
this theorem to work over nonstandard distributions. We list the necessary changes below
in red. Note that we do flip the dimensions to make our main proof easier to understand (so
we don’t have to write transpose everywhere) but this changes nothing technically.

Lemma 4.5. There is an efficient randomized algorithm GenTrap (1n, 1m, q) that, given
any integers n ≥ 1, q ≥ 2, and sufficiently large m = O (n log q) outputs a parity-check
matrix A ∈ Zm×nq and a ‘trapdoor’ R such that the distribution of A is negl (n)-close to
uniform. Moreover, there is an efficient algorithm Invert that with overwhelming probability
over all random choices, does the following:

� For b = As + e mod 2q, where s ∈ Zn2q is arbitrary and either ||e|| < q/O
(√
n log q

)
or e ← DZm,αq,0 for 1/α ≥

√
n log q · ω

(√
log n

)
, the deterministic algorithm Invert

(R,A,b) outputs s and e.

As an astute reader might notice, this is not that complicated. Someone familiar with
lattice trapdoor generation can probably see exactly how this works, but for the sake of
completeness, however, we will go through this in at least a little bit of detail. We start by
presenting our GenTrap algorithm, which is exactly the same as that of [MP12]. Note that
we present the simplified version (without an input A or a tag H) since we do not need these
extra features.
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Algorithm 1 Efficient algorithm GenTrapD (1n, 1m, q) for generating a parity check matrix A
with a trapdoor R

Input: Integers n, m, q, m, and w such that m = m+ w
• A distribution D over Zm×w.

Output: A parity check matrix A =

[
A
A1

]
∈ Zm×nq and trapdoor R ∈ Zm×w. The steps are:

• Sample A← Zm×nq

• Choose a random matrix R ∈ Zw×m from the distrbution D.

• Set A =

[
A

Gᵀ −RA

]
• Return A ∈ Zm×nq , R ∈ Zw×m.

A simple instantiation of the above GenTrap algorithm is all that we need. We state the
following instantiation choice which is suggested in [MP12]:

Lemma 4.6. Let the integers m, n, q, m, and w be defined such that m = w = 2n log q,
and let the distribution D output matrices R ∈ Zw×m such that each entry Rij is equal to
one with probability 1

4 , −1 with probability 1
4 , and zero otherwise. Then the matrix A is

distributed δ-close to uniform for some negligible δ.

Proof. This statement follows immediately from one of the parameter discussion choices
in [MP12] section 5.2.

Really the only work we have to do is to change the Invert algorithm, and we don’t have
to change it that much. The key point is that if we keep the error bound by its original
parameters (rather than potentially scaling it with the modulus) all of the equations from
the original Invert algorithm from [MP12] will hold as well. That way we can first solve
for s and e over the modulus q, but since ||e|| < q

2 absolutely, we can plug e back into our
original equation modulo 2q and get the full value of s.

Algorithm 2’ Efficient algorithm Invert (A,R,b) for inverting the function gA (s, e)

Input: An oracle O for inverting the function gG (ŝ, ê) when ê ∈ Zw is suitably small.
• parity-check matrix A ∈ Zm×nq

• G-trapdoor R ∈ Zm×kn for A
• vector b = gA (s, e) = As + e for any s ∈ Z2q and suitably small e ∈ Zm

Output: The vectors s and e. The steps are:

• Compute b̂ = [R||I] b mod q.

• Get (ŝ mod q, ê)← O
(
b̂
)

.

• Get e = b−Aŝ mod q (interpreted as a vector in Zm with entries ||ei|| < q
2 ).

• Solve for s using Gaussian elimination for As = b− e mod 2q.
• Return s and e.

Lemma 4.7. Suppose that oracle O in Algorithm 2′ correctly inverts gG (ŝ, ê) for any
error vector P1/2

(
qB−1

)
for some B. Then for any s and e of length ||e|| < q

2||B||s where

s =

√
s1 (R)

2
+ 1, algorithm 2′ correctly inverts gA (s, e), where s1 (R) denotes the largest

singular value of the singular value decomposition (SVd) of R and for our trapdoor R is no
more than

√
m. Moreover, for any s and random e← DZm,αq where 1

α ≥ 2||B||s ·ω
(√
logn

)
,

algorithm 2′ correctly inverts with high probability.

Proof. Since this theorem is almost exactly Theorem 5.4 from [MP12], the proof is almost
exactly the same. The oracle existence follows from lemma 2.1. Why everything holds
mod q follows exactly from that proof. The only thing we need to argue is to why we can
reconstruct s over the modulus 2q. This should be obvious: since we have kept the parameters
set so that we can always recover the error e exactly using the mod q formulation, we can
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plug it back into our original equation mod 2q and solve for s using Gaussian elimination.

Lemma 4.8. Let m, n, and q be integers such that m ≥ 4n log q. Let m = w = 2n log q, and
and let the distribution D output matrices R ∈ Zw×m such that each entry Rij is equal to
one with probability 1

4 , −1 with probability 1
4 , and zero otherwise. Finally, let the distribution

DZm,σ be a discrete Gaussian distribution with σ ≤ q
5
√
m logn

. Then the Invert algorithm

works with all but negligible probability.

Proof. This follows directly from lemmas 4.6 and 4.7.

4.6 Putting It All Together

We next combine lemmas from the previous subsections in order to give a direct reduction
from a standard LWE instance.

Lemma 4.9. Let m, n, and q be integers, and let the matrix B ∈ Zm×nq have each row
sampled from some distribution T . Let Q be the number of queries made to our NLWLR
oracle. Let ψ′ be a distribution over Z2q that is statistically close to uniform over Z2. Any
adversary that can solve the (q, n, 2ψ + ψ′,Unq ,B)-nLWE problem with advantage ε can be

used to solve the
(
q, n, ψ,Unq , T

)
-LWE problem with advantage 1

Qε.

Proof. This follows from applying lemmas 4.1 and 4.3 and carefully keeping track of param-
eters.

We note that this is the standard version of the LWE problem if ψ is picked to be a Gaussian
distribution and T is picked to be uniform. We can now instantiate this assumption so that
it is amenable to trapdoor sampling.

Lemma 4.10. Let m, n, and q be integers such that m ≥ 4n log q. Let m = w = 2n log q,
and and let the distribution D output matrices R ∈ Zw×m such that each entry Rij is equal to
one with probability 1

4 , −1 with probability 1
4 , and zero otherwise. Finally, let the distribution

ψ = DZ,σ be a discrete Gaussian distribution with σ ≤ q
5m logn . Let B ∈ Zm×nq be the output

of GenTrap. We also require that σ ≥ 3ηε (Zm).

Then there exist GenTrap and Invert algorithms that are correct with all but negligible
probability. In addition, any adversary that can solve the (q, n,DZ,σ,Unq ,B)-nLWE problem

with advantage ε can be used to solve the
(
q, n,DZ,σ3 ,U

n
q ,Unq

)
-LWE problem with advantage

1
Qε.

Proof. This lemma follows from combining lemmas 4.9 and 4.8.

5 Conclusion and Open Problems

In this work, we developed a deterministic variant of LWE with polynomial modulus and
unbounded samples and showed that it is as hard as standard LWE. To our knowledge, this is
the first such construction. Below we summarize our results in a table. Let c be a constant7,
γ ≥ 1, let B be the B-bound for the noise distribution of the LWE instance that the LWR
instance reduces from, qnd let κ be a (negligible) security parameter. We have:

7for typical choices of parameters
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Work Unbounded Modulus (q) Advantage
Samples (w) Change (ε→ ε′)

[BPR12] Yes Bpκω(1) ε− negl(κ)
[AKPW13] No γBwpκ ε/(2dw)
[BGM+16] No Bwp (ε/qw)2

[BLL+15] No Bwp (ε/qw)
2

[AA16] (1) No Bwpκ ε(wB)−c

[AA16] (2) No Bwpκ ε(w)−c

This Yes O
(
B
√
n log q

)
· ε (w)

−1

ω
(√

log n
)

Work Dimension Straightforward Uniform
Change (d→ d′) Rounding Samples

[BPR12] d Yes Yes
[AKPW13] d log(γ)/ log q Yes Yes
[BGM+16] d/logρq Yes Yes
[BLL+15] d Yes Yes
[AA16] (1) d Yes Yes
[AA16] (2) d− c Yes Yes

This d/O (log q) No No

While our construction does offer unbounded samples and a polynomial modulus (and thus
a polynomial approximation factor to worst-case lattice problems), it has some rather large
drawbacks as well. The fact that the distribution of the samples Ai is not uniform makes this
new assumption much more difficult to use in practice. Additionally, rounding to a lattice
rather than to the nearest multiple of some integer p means that we lose most (if not all) of
the efficiency advantages of rounding when compared to regular LWE.

It is our hope that future research can be done to eliminate these steps or to provide evidence
as to why they are essential to the security of learning with rounding over a polynomial
modulus with unbounded samples.

On Building PRFs. Given that we are building a deterministic variant of LWE that
supports an unbounded number of queries, a natural question to ask is whether we can
build fully parallelizable PRFs using the NLWLR assumption with a polynomial modulus
q. Unfortunately, this still seems like it will require a substantial amount of new ideas.
Note that even if we could prove that the standard form of LWR was exactly as hard as
LWE, then constructing a lattice-based PRF with polynomial modulus would still require
new ideas. This is because all of the known parallelizable lattice-based PRFs involve at least
some form of subset product LWE. In other words, these PRFs require things of the form

∏̀
i=1

Ai,bis + δj

for ‘random’ matrices Ai, a secret key s, input bits bi, and fresh noise samples δj to be
hard. While the clever construction in [BP14] attempts to minimize the noise blowup of
these subset products, even it must have these subset products in some (lesser) depth to
maintain a healthy amount of parallalelizability.

We consider proving the hardness of this subset product LWE problem for a polynomial
modulus (and reducing the hardness of it to a polynomial value for the LWE security reduc-
tion parameter α) or providing evidence why it cannot be easily reduced to be an important
open problem in this area.
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[BCD+16] Joppe W. Bos, Craig Costello, Léo Ducas, Ilya Mironov, Michael Naehrig, Va-
leria Nikolaenko, Ananth Raghunathan, and Douglas Stebila. Frodo: Take off
the ring! Practical, quantum-secure key exchange from LWE. In ACM CCS 16:
23rd Conference on Computer and Communications Security, pages 1006–1018.
ACM Press, 2016.

[BDK+11] Boaz Barak, Yevgeniy Dodis, Hugo Krawczyk, Olivier Pereira, Krzysztof
Pietrzak, François-Xavier Standaert, and Yu Yu. Leftover hash lemma, revisited.
In Phillip Rogaway, editor, Advances in Cryptology – CRYPTO 2011, volume
6841 of Lecture Notes in Computer Science, pages 1–20, Santa Barbara, CA,
USA, August 14–18, 2011. Springer, Heidelberg, Germany.
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