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Abstract

In this paper we consider linear secret sharing schemes over a finite field Fq,
where the secret is a vector in F`q and each of the n shares is a single element of
Fq. We obtain lower bounds on the so-called threshold gap g of such schemes,
defined as the quantity r − t where r is the smallest number such that any subset
of r shares uniquely determines the secret and t is the largest number such that
any subset of t shares provides no information about the secret. Our main result
establishes a family of bounds which are tighter than previously known bounds for
` ≥ 2. Furthermore, we also provide bounds, in terms of n and q, on the partial
reconstruction and privacy thresholds, a more fine-grained notion that considers the
amount of information about the secret that can be contained in a set of shares of a
given size. Finally, we compare our lower bounds with known upper bounds in the
asymptotic setting.

1 Introduction
Secret sharing, introduced independently by Blakley and Shamir [2, 28], is among the
most useful primitives in cryptography. A secret sharing scheme allows to distribute the
knowledge of a secret among n participants by sending each of them a piece of inform-
ation (a share), in such a way that only certain prescribed subsets of these participants
can reconstruct the secret from the joint information they have received. Secret sharing
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schemes are not only useful as a stand-alone primitive that can be used for secure dis-
tributed storage of information, but also play an important role as an element in more
complex cryptographic tools, in areas such as threshold cryptography or secure multiparty
computation.

In the study of secret sharing schemes and its applications it is often interesting to
determine the amount of information about the shared secret that can be derived from
pooling together a certain fixed number of shares. We say that a secret sharing scheme has
t-privacy if any set of t shares provides no additional information about the secret to what
was known a priori. On the other hand, the secret sharing scheme has r-reconstruction if
the knowledge of any set of r shares uniquely determines the secret. By abuse of notation,
fix t to be the largest integer for which there is t-privacy and fix r to be the smallest
integer for which there is r-reconstruction. Then obviously 0 ≤ t < r ≤ n, and we define
the threshold gap as g = r − t, which is thus a strictly positive integer. It is usually
desirable for applications of secret sharing that the privacy and reconstruction thresholds
are as close as possible and hence, that the threshold gap is small. Since this allows to
optimize the compromise between security against an adversary who attempts to learn
enough shares to gain information about the secret (for which we want to set t large),
and resilience against losing a number of shares by corruption or other reasons (for which
we want to set r small).

Secret sharing schemes with threshold gap g = 1 are called threshold secret sharing
schemes. Shamir’s secret sharing scheme (see Section 2 for its definition) is the most
well-known example of a threshold secret sharing scheme: for any integers t and n with
1 ≤ t < n, one can construct a Shamir secret sharing scheme for n participants with t
privacy and t + 1 reconstruction. However, Shamir’s scheme presents some restrictions
regarding the size of the secret and shares in terms of n: in first place, both the secret
and each of the shares are elements of the same finite field, which means that each of the
shares is as large as the secret; in second place, the finite field must have at least n + 1
elements (remember n is the number of participants) and therefore each share must be
at least log(n+ 1) bits long.

Typically, in applications of secret sharing we would like the secret to be as large as
possible while the shares are small, but it turns out that the two restrictions above are
unavoidable for threshold secret sharing schemes, and more in general in secret sharing
schemes with small threshold gap.

Consider first the relation between the size of the shares and the size of the secret. It
is well-known that in any threshold secret sharing scheme, each share must be at least the
same size as the secret (this holds more generally for any perfect secret sharing scheme,
i.e., any secret sharing scheme where every set of shares either has full information about
the secret or no information about it). And, more generally, if every share is an element of
a certain alphabet of size q and the secret is a-priori uniformly distributed in an alphabet
of size M , then it necessarily holds that

g ≥ logqM. (1)

This is a well known bound that is included as a special case of more general results
in [4, 19, 25, 26], which relate the size of the secret and shares to various properties of
the access and adversary structures of the secret sharing scheme1. However, when the

1The access structure is defined as the family of sets of participants which can determine uniquely
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only parameter about these structures we consider is the threshold gap, the bound in
(1) is tight: it can be attained by a generalization of Shamir’s scheme frequently known
as packed Shamir’s scheme, first proposed by Blakley and Meadows [3] (also defined in
Section 2) where each share is in a finite field Fq, the secret is in F`q for some ` ≥ 1 and
we have g = `. We point out that this secret sharing scheme requires that q ≥ n + `,
which indicates that a large number of participants n will also introduce a restriction for
the threshold gap and the size of secrets and shares, as we will see next.

First, we note that the size of the shares in a threshold scheme is restricted by the
number of participants, as a series of results have shown. In first place, it is known that
threshold secret sharing schemes where the secret and each share is in the same alphabet
are equivalent to maximum distance separable (MDS) codes (MDS codes are those which
attain the so-called Singleton bound, see for instance [23]). The length of these codes
is upper bounded by the size of the alphabet over which they are defined. Exploiting
this connection, one can already show that if 1 ≤ t < n − 1 (and g = 1, since we are
considering threshold schemes), then n < 2q − 2 (see [12], Theorem 11.113).

But even in the more general case where we do not assume that the secret is in the
same alphabet as the shares (for example even if the secret is just one bit), it was first
noticed in the unpublished work [20] (see [7] for the statement and proof) that in any
threshold scheme the average bitlength λ∗ of the shares is Ω(log(n− t)). The result was
later generalized in [7], where it was shown that for any secret sharing scheme where t ≥ 1
(no individual participant obtains information about the secret) it necessarily holds that

g ≥ n− t+ 1

2λ∗
.

If all shares belong to some alphabet of cardinality q, the bound can be rewritten as

g ≥ n− t+ 1

q
. (2)

This bound hence establishes that, for certain values of t and n, there exist limitations
on how small the threshold gap can be that depend solely on the size of the shares (and
not on the secret). The bound was shown to be tight for t = 1 and t = 2 (the latter only
in the case q = 2) in [27].

Later, [6] showed that if r ≤ n− 1, the bound

g ≥ r + 1

q

holds, which together with the bound in [7] implies

g ≥ n+ 2

2q − 1
(3)

as long as 1 ≤ t < r ≤ n− 1. This last bound had been shown earlier by [7] only in the
case where the secret sharing scheme is Fq-linear.

The two kinds of limitations that we have mentioned, represented by Equations (1)
and (3) above are incomparable: the former depends on the relation between the sizes of

the secret from the shares they hold while the adversary structure is the family of sets of participants
which can obtain no information about the secret (beyond what they know a priori) from their shares.
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the secret and shares, while the latter sets limitations on the relation between the size
of the shares and the number of participants. Note that, even though the bound given
in Equation (1) can be attained by the Blakley-Meadows construction, this requires that
n < q, and therefore the bound is not necessarily tight when n grows in relation to
q (and in fact in general it cannot be attained, by virtue of Equation (3)). It is then
natural to investigate what bounds one can get which depend on all these parameters
simultaneously. In this regard, for Fq-linear schemes where the secret is in F`q with ` ≥ 2
and each share is in Fq, [7] showed the bound

g ≥ n+ 2

2q + 1
+

2q

2q + 1
(`− 1) (4)

which is tighter than the straightforward combination g ≥ max{`, n+2
2q−1
} of Equations (1)

and (3), when ` is large enough.
Another bound depending on both the share size and the relation between the size

of the shares and the size of the secret can be deduced from [13]. In the language of
all-or-nothing transforms they present a bound which in the setting of secret sharing
implies

g ≥ r

q
+ 1− q − 1

q

r

q` − 1
. (5)

Here one should note that as ` increases the bounds tends to g ≥ r
q

+ 1. So for large
enough ` the bound in (4) performs better than this bound.2

1.1 Contributions

In this paper we focus on Fq-linear secret sharing schemes where secrets are in F`q and
every share is in Fq. In Section 3, we improve the bound (4) given in [7]. More precisely
our main result (Theorem 3.2) is a family of bounds given by

g ≥ qm − 1

qm+1 − 1
(n+ 2) +

qm+1 − qm

qm+1 − 1
(`− 2m), (6)

for m = 0, 1, . . . , ` − 1, and we show that for any ` ≥ 2, there is some m for which this
new bound is tighter than (4).

We obtain these bounds by proving limitations on the so-called partial privacy and
reconstruction thresholds. These are defined as follows: let ri, for i = 1, . . . , `, be the
smallest number such that every set of shares of that size gives at least i q-bits of inform-
ation about the secret and let ti, also for i = 1, . . . , `, be the largest integer such that
every set of shares of that size learns less than i q-bits about the secret. We call ti and ri
the partial privacy and reconstruction thresholds, respectively, and note that r` = r and
t1 = t which means that g = r` − t1.

2We also remark the similarities with the bound from Theorem 4.4 stating that g ≥ r+1
q + q−1

q bi,
where bi is an non-negative integer. With bi ≥ 1 this bound is tighter than r

q +1 and even for bi = 0 the
bound in (5) can only be one unit larger and in order to be larger we require a large `.
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Relative generalized Hamming weight (RGHW) was first studied in the context of
wiretap channel of type II, see [22]. However, when representing a linear secret sharing
scheme as a nested code pair, it is shown in [17, 21] that the RGHWs of the pair of nested
codes used in the construction determine the partial thresholds. Combining this with the
Griesmer bound on the RGHWs implies limitations for ti and ri which eventually leads
to the bounds in (6).

We emphasize that the improvement over (4) comes from two sources. The main
one is the fact that we use results on the application of Griesmer bounds directly to the
RGHWs instead of using a shortening argument to bound r and t and then applying the
Griesmer bound to the resulting code as in [7]. In addition, we set a parameter m that
determines how we bound each of the summands appearing in the Griesmer bound, while
[7] simply set m = 1. This provides more flexibility, which for example is beneficial when
proving asymptotic bounds (see Theorem 5.1).

In Section 4 we prove some additional results on the relation between the partial
privacy and reconstruction thresholds. We remark that this also imply bounds on the
RGHWs and therefore might also be relevant in the context of wiretap channel of type
II. In this section we follow more or less the same approach as in [7] but generalize some
of their results on r and t to the partial thresholds. We derive that as long as t ≥ 1, we
necessarily have

ri ≥
n

q`−i+1
+ 1

for all i ∈ {1, . . . , `}. Note that for i = ` we obtain r ≥ n
q

+ 1. This is a bound that was
also shown in [7] and was used to prove the more general inequality (2).

Moreover, we can also prove this bound under milder conditions, namely if tj ≥ j for
some j ∈ {1, . . . , `}, then the same bound

ri ≥
n

q`−i+1
+ 1

holds, but now for every i ∈ {j, j + 1, . . . , `}.
This leads to the following generalization of (3):

g ≥ n+ 2

2q − 1
+

q − 1

2q − 1
(ai + bi),

where ai = ti− t− i+1 ≥ 0 and bi = r−r`−i+1− i+1 ≥ 0 are two quantities that capture
how much the scheme deviates from the situation where t1 = t, t2 = t+1, . . . , t` = t+`−1
and r` = r, r`−1 = r−1, . . . , r1 = r−`+1, which occurs in the scheme of Blakley-Meadows
(also known as packed Shamir), and which would correspond to ai = 0, bi = 0 for all i.
At last in this section, we consider an example attaining this bound.

There are several potential uses of partial reconstruction and privacy thresholds in
cryptography. For example, the notion of functional secret sharing introduced in [1]
considers a scenario where large enough sets of participants can recover certain functions
of the secrets and hence the threshold ri gives us some information about functional secret
sharing schemes where the output of the functions of interest consist of i q-bits. On the
other hand, considering a relaxed notion of privacy (the threshold ti) may be interesting
in applications where secret sharing is combined with some other privacy amplification
technique. For example with the goal of constructing a linear-time encodable secret
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sharing scheme [11] combines an error correcting code (which can be seen as a secret
sharing scheme where small sets of participants can obtain partial information about the
secret) with a hash function that destroys this partial information, so that perfect privacy
is obtained in the final construction. This combination of “imperfect” secret sharing and
privacy amplification may be of interest in secure computation, too. Our bounds on ti
and ri would set some limitations on those potential applications as well.

Finally, we consider asymptotic secret sharing schemes in Section 5. We adopt the
setting considered in [16], define an asymptotic threshold gap (in Equation (24)) and
provide the asymptotic version of the previous bounds. At the end, we compare our
bound with the asymptotic version of the bounds in [7] and investigate how sharp is our
bound by comparing it with threshold gaps of secret sharing schemes constructed from
algebraic geometric codes (in the case of large fields) and from random linear codes (for
small fields).

2 Secret Sharing
In this section, we recall some notions regarding secret sharing schemes and their rela-
tionship with linear codes.

Let S0, S1, . . . , Sn be random variables taking values in the finite alphabets S0,S1, . . . ,Sn.
Then we call S = (S0, S1, . . . , Sn) a vector of random variables. In this paper, we let
I = {0, 1, . . . , n} and I∗ = {1, 2, . . . , n} for some n ∈ N and for a subset A ⊆ I we
denote by SA the vector (Si)i∈A. Notice that S = SI . With this notation we define a
secret sharing scheme.

Definition 2.1 (Secret Sharing Scheme): A secret sharing scheme Σ is a vector of
random variables

S = (S0, S1, . . . , Sn) ∈ S0 × S1 × · · · × Sn,

such that

Hq(S0) = logq |S0|,

where Hq is the Shannon entropy with base q.3 Further, we require that

Hq(S0|SI∗) = 0.

We call S0 the secret and, for i ∈ I∗, we call Si the i’th share. The scheme has n
participants, which we identify with the set I∗, and the i’th participant holds Si, for
i = 1, 2, . . . , n.

The requirement that Hq(S0) = logq |S0| implies that the random variable S0 is uni-
formly distributed in S0; while it is of course possible to consider secret sharing schemes
with a different distribution on the secret space, it was shown in [5] that such scheme could
be transformed into one where the distribution of secrets is uniform and with the same
reconstruction and privacy thresholds (introduced below). Therefore, this assumption is
without loss of generality for our purposes.

3Note that Hq is the Shannon entropy of base q and not the Rényi entropy of order q.
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The other requirement, that Hq(S0|SI∗) = 0, means that the secret is uniquely de-
termined by the set of all the shares with probability 1.

A secret sharing scheme is called linear if S is uniformly distributed on some subspace
V ⊆ S0×S1×· · ·×Sn and if Si is a Fq-vector space for all i ∈ I where Fq is the finite field
with q element. In this paper, we will focus on the schemes, where Si is one-dimensional
for i ∈ I∗ and S0 is `-dimensional. Without loss of generality we can assume that S0 = F`q
and Si = Fq for the i ∈ I∗.

Linear secret sharing schemes are also characterized by the following property; con-
sider two secrets s, t ∈ S0 = F`q. Let x ∈ Fnq be a possible share vector for the secret s,
i.e. P ((S0,SI∗) = (s,x)) > 0, and y ∈ Fnq a possible share vector for t. Thus, (s,x) ∈ V
and (t,y) ∈ V . For a, b ∈ Fq, we have (as + bt, ax + by) ∈ V , proving that

P ((S0,SI∗) = (as + bt, ax + by)) > 0.

Therefore, a linear combination of share vectors results in a share vector for the same
linear combination of the corresponding secrets. This property makes linear secret sharing
schemes very useful for secure multiparty computation and threshold cryptography.

Well known examples of linear secret sharing schemes are Shamir’s secret sharing
scheme and its generalization by Blakley and Meadows, described below. Assume that
n + ` ≤ q. Let α0,1, α0,2, . . . , α0,`, α1, α2, . . . , αn ∈ Fq be pairwise-distinct. Fix an integer
` − 1 ≤ k ≤ n − 1 and define the vector of random variables S given by selecting a
polynomial uniformly at random among the set of polynomials in Fq[X] of degree less
than k and defining S0 as the variable taking the value (f(α0,1), f(α0,2), . . . , f(α0,`)) ∈ F`q
and each of the Si’s as the variables taking values f(αi) ∈ Fq. Note that the condition
n+ ` ≤ q can be weakened to n ≤ q by using an element of an extension field as a single
evaluation point for the secret, rather than the elements α0,1, α0,2, . . . , α0,`, as was done
in for example [9].

Shamir’s scheme as defined in [28] is the version with ` = 1 and α0,1 = 0. Blakley
and Meadows’ scheme is sometimes referred to as packed Shamir’s scheme. It is easy to
verify that this scheme is linear.

The following alternative definition of linear secret sharing schemes was given in [10].
For completion we show that the definitions are equivalent in Appendix A.

Let C1, C2, and L be linear codes in Fnq , such that C1 = L⊕C2. Further, let dimL =
`, dimC2 = k2, dimC1 = k1 = k2 + `, and let {b1,b2, . . . ,b`} be a basis of L and
{b`+1,b`+2, . . . ,bk1} be a basis of C2. We define a linear secret sharing scheme from the
nested linear codes C2 ( C1 in the following manner. Given the secret s ∈ F`q, choose k2

uniformly random elements in Fq, say a1, a2, . . . , ak2 . Then the vector

c = s1b1 + s2b2 + · · ·+ s`b` + a1b`+1 + a2b`+2 + · · ·+ ak2bk1 ∈ C1

is called a share vector and the i’th share is defined to be the i’th entry of this vector
c. One should notice that, setting the distribution of the secret to be uniform in F`q, this
is indeed a secret sharing scheme according to our definition, since the set of all shares
corresponds to a vector in C1 = C2 ⊕ L which can be projected into a unique element in
L.

In secret sharing, we are interested in determining which subsets of participants are
able to reconstruct the secret from their shares and which subsets are not. This leads to
the definition of privacy and reconstructing sets.
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Definition 2.2 (Privacy and Reconstructing set): Let Σ be a secret sharing scheme
given by the vector of random variables S and let A ⊆ I∗. Then A is a privacy set if

Hq(S0|SA) = Hq(S0),

and A is a reconstructing set if

Hq(S0|SA) = 0.

As in Definition 2.1, Hq(S0|SA) = 0 implies that the secret is uniquely determined by the
shares held by the participants inA. On the other hand,Hq(S0|SA) = Hq(S0) is equivalent
to S0 and SA being independent. Therefore, the participants in A have no information
about the secret from their shares. Additionally, we can define the information held by
the participants in A using the mutual information

Iq(S0,SA) = Hq(S0)−Hq(S0|SA). (7)

This quantity is measured in q-bits and lies between 0 ≤ Iq(S0,SA) ≤ Hq(S0). It equals 0
exactly whenA is a privacy set and it equalsHq(S0) exactly whenA is a reconstructing set.
One should notice that for linear secret sharing schemes with S0 = F`q we haveHq(S0) = `.
Furthermore, it is shown in [21] that for such schemes the mutual information is given by

Iq(S0,SA) = dim πA(C1)− dimπA(C2), (8)

where πA is the projection πA : Fnq → F|A|q given by πA(c) = cA. Hence, we conclude that,
in linear secret sharing, the information about the secret held by some set of participants,
when expressed in q-bits, is always an integer between 0 and `. Furthermore, we have for
a subset A ⊆ I∗ and an element i ∈ I∗ \ A that

Iq(S0,SA) ≤ Iq(S0,SA∪{i}) ≤ Iq(S0,SA) + 1.

The set of all privacy sets is called the adversary structure of the scheme and is denoted
by A(Σ). Similarly, the set of all reconstructing sets is called the access structure and
is denoted by Γ(Σ). From these definitions we introduce some thresholds for the secret
sharing schemes.

Definition 2.3 (Privacy and Reconstruction Threshold): Let Σ be a secret shar-
ing scheme with adversary structure A(Σ) and access structure Γ(Σ). The privacy threshold
t for the scheme Σ is given by the maximal s such that

{A ⊆ I∗ : |A| = s} ⊆ A(Σ).

Similarly, the reconstruction threshold r is given by the minimal s such that

{A ⊆ I∗ : |A| = s} ⊆ Γ(Σ).

Definition 2.4 (Threshold gap): Let Σ be a secret sharing scheme, and let t and r be
the privacy and reconstruction threshold, respectively. Then

g = r − t

is the threshold gap.
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By (7) it can be deduced that 0 ≤ t < r ≤ n, and therefore the threshold gap g is always
a positive integer. Secret sharing schemes with r = t+ 1, and therefore g = 1, are called
threshold secret sharing schemes. As mentioned in the introduction it is often desirable
to have a small g, but this will have the disadvantage that the shares are large compared
to the secret, which means one has to consider this trade-off.

In a secret sharing scheme with secrets larger than the shares, some subsets of parti-
cipants will obtain partial information about the secret. This gives rise to defining the
partial privacy and reconstruction thresholds in a similar manner that we defined t and
r.

Definition 2.5 (Partial Privacy and Reconstruction Thresholds): The i’th par-
tial privacy threshold of a secret sharing scheme, ti, is given by

ti = max{s | ∀A ⊆ I∗, |A| = s, Iq(S0,SA) < i}.

Similarly, the i’th partial reconstruction threshold, ri, is given by

ri = min{s | ∀A ⊆ I∗, |A| = s, Iq(S0,SA) ≥ i}.

This means that ti is the maximal number such that all sets of ti participants do not
obtain i q-bits of information. On the other hand, ri is the minimal number such that all
subsets of ri participants can reconstruct i q-bits of information.

Since the information in q-bits is always a nonnegative integer and the maximum
information is ` we have that t = t1 and r = r`.

We will denote the dual of a linear code C by C⊥, the minimum distance by dmin(C),
the support by

supp(C) = {i : ∃(c1, c2, . . . , cn) ∈ C, ci 6= 0},

and the support weight by wS(C) = |supp(C)|. With these definitions, the i’th relative
generalized Hamming weight (RGHW) is defined as

Mi(C1, C2) = min{wS(D) : D ⊆ C1, D ∩ C2 = {0}, dim(D) = i}.

We notice that the first RGHW is simply the minimum Hamming weight of C1\C2, which
implies that dmin(C1) ≤M1(C1, C2). For C2 = {0} we have dmin(C1) = M1(C1, C2).

In [17, 21] it is shown that the RGHWs characterize the partial privacy and recon-
struction thresholds. They showed that

ti = Mi(C
⊥
2 , C

⊥
1 )− 1

ri = n−M`−i+1(C1, C2) + 1.
(9)

Further, it is shown in [22] that Mi(C1, C2) is strictly increasing with i, which implies
that ti < ti+1 and ri < ri+1, for all i = 1, 2 . . . `− 1.

In particular, (9) yields

t = M1(C⊥2 , C
⊥
1 )− 1

r = n−M1(C1, C2) + 1

g = n−
(
M1(C1, C2) +M1(C⊥2 , C

⊥
1 )
)

+ 2,

(10)
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which implies that
t ≥ dmin(C⊥2 )− 1

r ≤ n− dmin(C1) + 1

g ≤ n+ 2−
(
dmin(C1) + dmin(C⊥2 )

)
.

(11)

3 Bounds from the Generalized Griesmer Bound
In applications, we often want secret sharing schemes where the privacy and reconstruc-
tion thresholds are close to each other, which means that we want the threshold gap to be
small. From this point of view, we could refer to the bounds in (11) as positive bounds.

However, as it was mentioned in the introduction, there are known restrictions for
how small the shares of such schemes can be when one requires a small threshold gap.
These restrictions come from two sources: the relative size of the secret with respect
to the shares and the relation between the size of the shares and the total number of
participants.

In this section we obtain new bounds for the threshold gap of linear secret sharing
schemes that depend on the two aforementioned factors simultaneously and show how
they improve previous bounds in all cases.

First we recall known bounds. As in the previous section, let F`q be the space of secrets
and let each of the shares be an element of Fq. Then, it is well-known that g ≥ `. This is
a consequence of the more general result, also valid for non-linear secret sharing schemes,
that g ≥ H(S0)/H(Si) for every share Si, as proved in [4]. Coming back to the linear
case, it is interesting to see this bound in the light of partial privacy and reconstruction
thresholds too: in the context of Wiretap channel type II, the results in [22] imply the
following bounds on ti and ri:

ti ≤ k2 + i− 1

ri ≥ k2 + i,
(12)

which combined also yield g ≥ `. This bound is of the first type mentioned above: it
only depends on the relation between the size of the secret and the size of the shares, but
does not take into account the number of participants. The bound is attainable by the
Blakley-Meadows’ secret sharing scheme, but this scheme requires n ≤ q.

In [7] lower bounds on the threshold gap depending on the number of participants
and its relation to the size of the shares were derived. If we denote by

BCCX(1)(n, q) =
n+ 2

2q − 1
,

BCCX(2)(n, q, `) =
n+ 2

2q + 1
+

2q

2q + 1
(`− 1),

then the bounds in [7] state that

g ≥ BCCX(1)(n, q), if 1 ≤ t < r ≤ n− 1

g ≥ BCCX(2)(n, q, `), if ` ≥ 2.
(13)

Both bounds were proved in [7] for linear secret sharing schemes. However, the first one
is also valid for non-linear secret sharing schemes, as shown in [6].
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Note that both bounds exclude the case ` = 1 and t = 0, and the case ` = 1 and r = n.
This is unavoidable, since in both cases there exist secret sharing schemes where n and
q are unrestricted. Indeed in the first case the scheme consisting on simply distributing
the secret to all participants fulfils r = 1, and hence g = 1. On the other hand, for the
second case consider additive secret sharing schemes, where the secret is the sum of all
the shares, implying that t = n− 1. Note that the second bound implies that the bound
g ≥ ` we mentioned above cannot be attained with equality for all n and q as long ` ≥ 2.

In the following, by considering RGHWs, we construct a new lower bound on the
threshold gap for linear secret sharing schemes which, as in the case of g ≥ BCCX(2)(n, q, `),
also takes both the secret and the share size into account. Additionally, we will derive
limitation bounds on ti and ri using the same approach. We will compare the bound on
the threshold gap with the bounds in (13), showing improvement in most cases.

We first present the following bounds on the RGHWs from [31].

Proposition 3.1 (The generalized Griesmer bound on RGHW): Let C2 ( C1 be
linear codes. For 0 ≤ i ≤ k1 − k2 = `, the i’th RGHW satisfies

n ≥ k2 +Mi(C1, C2) +
`−i∑
j=1

⌈
q − 1

qj(qi − 1)
Mi(C1, C2)

⌉
.

By using that dae ≥ a, for the first m terms in the sum, and dae ≥ 1, for the remaining
terms, we write

n ≥ k2 +Mi(C1, C2) +
q − 1

qi − 1
Mi(C1, C2)

m∑
j=1

1

qj
+ `− i−m⇔

n ≥ k1 − i−m+Mi(C1, C2) +
qm − 1

qm+i − qm
Mi(C1, C2),

which is equivalent to

Mi(C1, C2) ≤ qm+i − qm

qm+i − 1
(n− k1 + i+m) . (14)

Similar arguments show that

Mi(C
⊥
2 , C

⊥
1 ) ≤ qm+i − qm

qm+i − 1
(k2 + i+m) . (15)

One should notice that different choices of m lead to different bounds on the RGHWs. It
is not necessarily the highest possible m which gives the best bound, and hence we need
to choose the parameter m carefully in order to make the bound as good as possible.

The expressions in (14) and (15) lead to the following bounds on the partial privacy
and reconstruction thresholds together with the threshold gap as well.

Theorem 3.2: Let C2 ( C1 define a linear secret sharing scheme. Then for i ∈ {1, 2, . . . , `},

ti ≤
qm+i − qm

qm+i − 1
(k2 +m+ i)− 1,

r`−i+1 ≥
qm − 1

qm+i − 1
n+

qm+i − qm

qm+i − 1
(k1 −m− i) + 1,
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for all m ∈ {0, 1, . . . , `− i}. Now, let

BGr
(m)(n, q, `) =

qm − 1

qm+1 − 1
(n+ 2) +

qm+1 − qm

qm+1 − 1
(`− 2m).

Then the threshold gap satisfies

g ≥ BGr
(m)(n, q, `),

for all m ∈ {0, 1, . . . , `− 1}.

Proof:
For r`−i+1 we combine (9) and (14) and obtain

r`−i+1 ≥ n− qm+i − qm

qm+i − 1
(n− k1 + i+m) + 1⇔

r`−i+1 ≥
qm − 1

qm+i − 1
n+

qm+i − qm

qm+i − 1
(k1 −m− i) + 1.

Similarly the bound on ti follows by combining (9) with (15).
In order to show the bound on g, we recall from (10) that

g = n+ 2−
(
M1(C1, C2) +M1(C⊥2 , C

⊥
1 )
)
,

which by (14) and (15) yield

g ≥ qm − 1

qm+1 − 1
(n+ 2) +

qm+1 − qm

qm+1 − 1
(`− 2m)

for all m ∈ {0, 1, . . . , `− 1}.

One should notice that g ≥ BGr
(0)(n, q, `) leads to the well-known bound g ≥ `. Hence,

for secret sharing schemes having ` = 1, this bound on the threshold gap do not improve
the existing bounds. However, when ` ≥ 2 we will show that there exist choices of m such
that BGr

(m)(n, q, `) is at least as good, and in almost all cases, better than the bounds
BCCX(1)(n, q) and BCCX(2)(n, q, `) in (13). We only consider m = 0, which imply g ≥ ` as
explained above, and m = 1, which imply the bound

g ≥ BGr
(1)(n, q, `) =

q − 1

q2 − 1
(n+ 2) +

q2 − q
q2 − 1

(`− 2)

=
n+ 2

q + 1
+

q

q + 1
(`− 2).

One should notice that other choices of m could improve BGr
(m)(n, q, `), but in the fol-

lowing theorem we show that either m = 0 or m = 1 imply a bound which is at least as
good as the known bounds.

Theorem 3.3: Let ` ≥ 2, then

BGr
(1)(n, q, `) ≥ BCCX(1)(n, q), (16)

and
BGr

(0)(n, q, `) ≥ BCCX(2)(n, q, `), when ` ≥ n− 2(q − 1),

BGr
(1)(n, q, `) ≥ BCCX(2)(n, q, `), when ` ≤ n− 2(q − 1).

(17)
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Proof:
In order to prove (16) we consider the difference

BGr
(1)(n, q, `)− BCCX(1)(n, q) =

n+ 2

q + 1
+

q

q + 1
(`− 2)− n+ 2

2q − 1

=
q − 2

(q + 1)(2q − 1)
(n+ 2) +

q

q + 1
(`− 2)

≥ 0, (18)

where the inequality holds for all n and q, since ` ≥ 2 and q ≥ 2.
To prove (17) we start by considering the difference

BGr
(0)(n, q, `)− BCCX(2)(n, q, `) = `−

(
n+ 2

2q + 1
+

2q

2q + 1
(`− 1)

)
=
`− n+ 2(q − 1)

2q + 1
.

This is greater than or equal to zero if

` ≥ n− 2(q − 1).

Similarly, the difference BGr
(1)(n, q, `)−BCCX(2)(n, q, `) is greater than or equal to zero

if

0 ≤ n+ 2

q + 1
+

q

q + 1
(`− 2)−

(
n+ 2

2q + 1
+

2q

2q + 1
(`− 1)

)
⇔

0 ≤ q

(q + 1)(2q + 1)
(n− `+ 2)− 2q2

(q + 1)(2q + 1)
⇔

` ≤ n− 2(q − 1),

which proves (17).

Remark:
One should notice that the inequality in (18) is strict if ` > 2 or if ` ≥ 2 and q > 2 showing
that the bound BGr

(1)(n, q, `) is sharper in these cases. Similarly, if ` 6= n− 2(q − 1) and
` ≥ 2 there exists a choice of m such that BGr

(m)(n, q, `) > BCCX(2)(n, q, `).

In order to illustrate how much this new bound on the threshold gap improves the existing
bounds we consider an example.

Example 3.5: Let q = 2, n = 100, and ` = 10. Then the well-known bound g ≥ ` yields
g ≥ 10. The bound BCCX(1)(100, 2) implies g ≥ 34. Similarly, the bound BCCX(2)(n, q, `)
implies g ≥ 28, since we can round up because the threshold gap is an integer. However,
form = 4, which is the optimal value form in this example, we have

⌈
BGr

(4)(100, 2, 10)
⌉

=

51. Hence, we conclude that a linear secret sharing scheme over F2 with 100 participants
for sharing 10-bit long secrets has a threshold gap greater than or equal to 51. J

We return to the bounds in Theorem 3.2 in Section 5, where the bounds are considered
asymptotic. Before that, we will focus on the bound BCCX(1)(n, q).
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4 Further Bounds on the Partial Reconstruction thresholds
Now, we will consider the bound g ≥ BCCX(1)(n, q) from [7] more in depth. This bound
is obtained first by proving that r ≥ n

q
+ 1 under the assumption that t ≥ 1, later using

shortening of secret sharing schemes to show g ≥ n−t+1
q

(still assuming t ≥ 1) and finally
applying this bound to the scheme and its dual, which yields g ≥ BCCX(1)(n, q) under the
conditions t ≥ 1, r ≤ n− 1.

In this section we consider the first step of that argument (the one showing r ≥ n
q

+1 if
t ≥ 1) and explore its generalization to the partial reconstruction and privacy thresholds
when ` > 1. First, we show that we can obtain the same bound on r but under a weaker
assumption, tj ≥ j. Note that t ≥ 1 implies tj ≥ j for all j, since tj < tj+1 as mentioned
in Section 2, but the converse is not necessarily true. Furthermore, we may extend the
results to obtain bounds for the partial reconstruction thresholds as well. We will derive
that

ri ≥
n

q`−i+1
+ 1,

for i ∈ {j, j + 1, . . . , `}, if tj ≥ j. Notice that under the assumption t ≥ 1 we obtain
that ri ≥ n

q`−i+1 + 1, for all 1 ≤ i ≤ `. Similarly, the result r ≥ n
q

+ 1 holds even if
we only assume that t` ≥ `. From these results on ri we will also generalize the bound
g ≥ BCCX(1)(n, q) by using shortening of codes.

Before proving the new bound for partial reconstruction thresholds we shall consider
Lemma 4.1 and introduce the following notation. For a subset V ⊆ Fnq , an element a ∈ Fq,
and an index i ∈ {1, . . . , n} define

(V )a,i = {v ∈ V : πi(v) = a}.

Note that if V is a linear code, where (V )a,i 6= ∅ for some a 6= 0, then

|(V )a,i| = |(V )b,i| (19)

for all a, b ∈ Fq by the linearity of V .

Lemma 4.1: Let C2 ( C1 define a secret sharing scheme and assume that tj ≥ j for
some j ∈ {1, 2, . . . , `}. Then there exists a set W = {v1,v2, . . . ,v`−j+1} ⊆ L, such
that the elements in W are linearly independent, and for all m ∈ {1, 2, . . . , n} and k ∈
{1, 2, . . . , `− j + 1}, we either have that

πm(C2) = {0} and πm(vk + C2) = {0}

or

|(C2)a,m| = |(vk + C2)a,m| = qk2−1, for all a ∈ Fq.

Proof:
Let B = {m : πm(C2) = {0}} and notice that πB(C1) = πB(L ⊕ C2) = πB(L). For
any A ⊆ B we have that Iq(S0,SA) = dimπA(C1) = dimπA(L) ≤ `. Now consider the
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homomorphism πB : L → F|B|q , and assume that dimπB(L) ≥ j. Then one can puncture
the code πB(L) at a set A with cardinality j, such that dim πA(L) = j. This contradicts
the assumption that tj ≥ j. Hence, dimπB(L) < j, which means that the kernel of πB
has dimension at least `− j + 1. Let W consists of `− j + 1 linearly independent vectors
in this kernel.

let m ∈ {0, 1, . . . , `− 1} \ B and a vk ∈ W . By (19), |(C2)a−πm(vk),m| = qk2−1, for all
a ∈ Fq. This shows that |(vk + C2)a,m| ≥ qk2−1, for all a ∈ Fq. However, since C2 and
vk+C2 can be considered as quotient classes in C1/C2, we have that |C2| = |vk+C2| = qk2 ,
implying that |(vk + C2)a,m| = qk2−1 for all a ∈ Fq.

We can now prove the aforementioned generalizations on ri.

Theorem 4.2: Let C2 ( C1 define a secret sharing scheme. If tj ≥ j the thresholds ri
satisfy

ri ≥
n

q`−i+1
+ 1,

for i ∈ {j, j + 1, . . . , `}.

Proof:
By assumption i ≥ j, implying that ` − i + 1 ≤ ` − j + 1. Therefore, by Lemma 4.1
there exists v1,v2, . . . ,v`−i+1 ∈ L linearly independent vectors satisfying for all m ∈
{1, 2, . . . , n} and k ∈ {1, 2 . . . , `− i+ 1}, that πm(C2) = {0} and πm(vk + C2) = {0} or

|(C2)a,m| = |(vk + C2)a,m| = qk2−1,

for all a ∈ Fq. We define the vector space

V (r1, r2, . . . , r`−i+1) = 〈v1 + r1,v2 + r2, . . . ,v`−i+1 + r`−i+1〉,

for some vectors rk, and consider the sum∑
r1∈C2

∑
r2∈C2

· · ·
∑

r`−i+1∈C2

wS(V (r1, r2, . . . , r`−i+1)).

Since v1,v2, . . . ,v`−i+1 are linearly independent, rk ∈ C2, and vk ∈ L, for all k, the
set V (r1, r2, . . . , r`−i+1) is an ` − i + 1 dimensional vector space in C1 having only 0 in
common with C2. Therefore, we conclude that wS(V (r1, r2, . . . , r`−i+1)) ≥M`−i+1(C1, C2)
and hence ∑

r1∈C2

∑
r2∈C2

· · ·
∑

r`−i+1∈C2

wS(V (r1, r2, . . . , r`−i+1))

≥ q(`−i+1)k2M`−i+1(C1, C2)

= q(`−i+1)k2(n− ri + 1),

(20)

where the last equality follows from (9). Now notice that

wS(V (r1, r2, . . . , r`−i+1)) =
n∑

m=1

dimπm(V (r1, r2, . . . , r`−i+1)),
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which implies that∑
r1∈C2

∑
r2∈C2

· · ·
∑

r`−i+1∈C2

wS(V (r1, r2, . . . , r`−i+1)) =

∑
r1∈C2

∑
r2∈C2

· · ·
∑

r`−i+1∈C2

n∑
m=1

dim πm(V (r1, r2, . . . , r`−i+1)) =

n∑
m=1

∑
r1∈C2

∑
r2∈C2

· · ·
∑

r`−i+1∈C2

dim πm(V (r1, r2, . . . , r`−i+1)).

In each term the dimension can either be zero or one. It is zero exactly when

πm(rk) = −πm(vk)

for all k = 1, 2, . . . , `− i+ 1. By the assumptions on vk, we have that πm(rk) = −πm(vk)
for at least qk2−1 of the elements rk ∈ C2 for a specific m. Since this holds for all
k = 1, 2, . . . , ` − i + 1, we have that πm(rk) = −πm(vk), for all k, at least q(`−i+1)(k2−1)

times. Hence,
n∑

m=1

∑
r1∈C2

∑
r2∈C2

· · ·
∑

r`−i+1∈C2

dimπm(V (r1, r2, . . . , r`−i+1))

≤
n∑

m=1

q(`−i+1)k2 − q(`−i+1)(k2−1)

= nq(`−i+1)k2
(
1− q−(`−i+1)

)
Combining this inequality with (20) we obtain that

q(`−i+1)k2(n− ri + 1) ≤ nq(`−i+1)k2
(
1− q−(`−i+1)

)
⇔

ri ≥
n

q`−i+1
+ 1.

We first define the notion of shortening a secret sharing scheme and prove some results
on the shortened schemes parameters before we prove the bounds on the threshold gap.
Let C2 ⊆ C1 define a secret sharing scheme and let A ⊆ I∗. Now define Ā = I∗ \ A.
Then the shortened secret sharing scheme is given by the code pair CA

2 ( CA
1 , where

CA
i = πĀ(kerπA(Ci)).

Lemma 4.3: Let A ⊆ I∗ be a set of participants in the secret sharing scheme defined by
C2 ( C1 such that Iq(S0,SA) = m. Denote by `A the dimension of LA, where LA is a
code such that CA

1 = LA⊕CA
2 . Additionally, denote by tAi and rAi the partial privacy and

reconstruction thresholds of the shortened scheme CA
2 ( CA

1 , and let nA be the length of
the shortened codes. Then

nA = n− |A|,
`A = `−m
tAi ≥ ti+m − |A|,
rAi ≤ ri+m − |A|,
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for all i ∈ {1, 2, . . . , `A}.

Proof:
The result on nA follows from the definition of πĀ. For `A we use Forney’s first duality
lemma [14], stating that for a code C,

dimC = dimπA(C) + dimCA.

This leads to

`A = dimCA
1 − dimCA

2

= k1 − dimπA(C1)− k2 + dim πA(C2)

= `−m.

Now let B ⊆ Ā and notice, that knowing |B| shares in the scheme CA
2 ( CA

1 corresponds
to knowing |B ∪ A| = |B| + |A| shares in the scheme C2 ( C1. However, for B = ∅, we
have Iq(S0,S∅) = 0 in the shortened scheme, while it gives Iq(S0,SA) = m in the original
scheme. So the information held by B in the shortened scheme equals Iq(S0,SA∪B)−m
in the original scheme.

If |B|+ |A| ≤ ti+m, the participants will know at most i+m− 1 q-bits in the scheme
C2 ( C1. This corresponds to knowing at most i− 1 q-bits in the shortened scheme, and
hence tAi ≥ ti+m − |A|, for i ∈ {1, 2, . . . , `A}.

Similarly for rAi , if |B|+ |A| ≥ ri+m, the participants in B will know at least i q-bits
in the shortened scheme, showing that rAi ≤ ri+m − |A|.

We will use the notation ai and bi to describe the gaps between ti and t, and r and r`−i+1,
respectively. Therefore, denote by

ai = ti − t− i+ 1

bi = r − r`−i+1 − i+ 1.
(21)

Since t = t1, r = r`, we have that a1 = b1 = 0. Using that ti and ri are strictly increasing
with i we have that ai ≥ 0 and bi ≥ 0.

Another way to interpret ai and bi is to consider the ti’s and ri’s as a staircase. Two
consecutive ti’s differ by at least one unit. The values ai measure how different the
sequence of ti behaves from the case where all these steps t′i := ti − ti−1 are exactly 1
(this happens in the Blakley-Meadows’ scheme). Indeed ai − ai−1 = ti − ti−1 − 1. So if
all steps t′i are 1, then all ai’s are 0, and in general ai =

∑i
j=2(t′i − 1), the sum of “all

deviations from 1” up to step i. An analogous relation holds with with ri and bi.
This also implies that ai and bi are non-decreasing with i, which is useful in the

following theorem.

Theorem 4.4: Let C2 ( C1 define a secret sharing scheme. Fix some i ∈ {1, 2, . . . , `}
and let ai and bi be as in (21). If ti ≥ i, then the threshold gap g satisfies

g ≥ n− t+ 1

q
+
q − 1

q
ai. (22)
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If r`−i+1 ≤ n− i, then the threshold gap g satisfies

g ≥ r + 1

q
+
q − 1

q
bi. (23)

If both ti ≥ i and r`−i+1 ≤ n− i, then the threshold gap g satisfies

g ≥ n+ 2

2q − 1
+

q − 1

2q − 1
(ai + bi).

Proof:
Choose A such that |A| = t − 1 + ai. Hence, the shortened scheme given by CA

2 ( CA1
has parameters nA = n− t + 1− ai, rA ≤ r − t + 1− ai, and tAi ≥ i by Lemma 4.3. By
Theorem 4.2 and Lemma 4.3, the threshold gap now satisfies

g = r − t ≥ rA + ai − 1

≥ nA

q
+ ai

=
n− t+ 1− ai

q
+ ai

=
n− t+ 1

q
+
q − 1

q
ai.

By (9) and (10) one has that the dual scheme has thresholds t⊥i = n − r`−i+1 and
r⊥`−i+1 = n − ti. Therefore, the threshold gap of the dual scheme is the same as for
the original and ai of the dual equals bi. We can use the bound in (22) on the dual
scheme if it holds that t⊥i ≥ i, but this is equivalent to the assumption r`−i+1 ≤ n − i.
Therefore, we obtain

g ≥ n− t⊥ + 1

q
+
q − 1

q
bi =

r + 1

q
+
q − 1

q
bi.

The last bound is obtained by summing the bounds in (22) and (23).

2g ≥ n− t+ 1 + r + 1

q
+
q − 1

q
(ai + bi) =

n+ g + 2

q
+
q − 1

q
(ai + bi)⇔

g ≥ n+ 2

2q − 1
+

q − 1

2q − 1
(ai + bi).

The bounds in [7], stating that

g ≥ n− t+ 1

q
, g ≥ r + 1

q
, g ≥ BCCX(1)(n, q),

if t ≥ 1 and r ≤ n− 1, are a particular case of this theorem.
In the following example we will consider a scheme attaining the bounds in Theorem

4.2. We will also note in which cases, for this particular example, the bounds from
Theorem 4.4 are sharp. Similar examples of codes attaining the bound g ≥ n−t+1

q
can be

found in [27].
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Example 4.5: Let vT1 ,vT2 , . . . ,vTq` be all possible vectors in F`q, and define the code C1

from the (`+ 1)× q` generator matrix

G =

[
v1 v2 · · · vq`
1 1 · · · 1

]
where C2 is generated by the last all-one row. Then clearly Iq(S0, Sj) = 1− 1 = 0 by (8)
for all 1 ≤ j ≤ n, meaning that t ≥ 1. In fact ti = i for all i in this example. This comes
from the fact that the canonical basis vectors and the all zero vector lie in F`q. The set
of participants corresponding to these vectors is a set with cardinality ` + 1, which can
reconstruct all ` q-bits. Therefore, t` ≤ `, and from this we conclude ti = i. Hence, we
will show that the bounds in Theorem 4.2 are sharp for this secret sharing scheme, that
is

ri =
n

q`−i+1
+ 1 =

q`

q`−i+1
+ 1 = qi−1 + 1.

We consider a set of participants A knowing i − 1 q-bits, and derive that |A| ≤ qi−1,
which means that qi−1 +1 participants will know at least i q-bits, and hence ri ≤ qi−1 +1.
Combining this with Theorem 4.2 yields ri = qi−1 + 1.

Thus, assume that A knows i− 1 q-bits and assume for contradiction that |A| > qi−1.
First notice that by (8), we have

dimπA(C1) = i− 1 + dim πA(C2) = i

On the other hand, we can determine the dimension of πA(C1) in another way by consid-
ering the generator matrix. Let A = {j1, j2, . . . , jk}, where k > qi−1. Denote by

GA =

[
vj1 vj2 · · · vjk
1 1 · · · 1

]
and

G′A =
[
vj1 vj2 · · · vjk

]
.

The rank of GA equals dimπA(C1). Clearly, rank(G′A) ≤ rank(GA), but since |A| > qi−1,
we obtain rank(G′A) = i. This means that we have i linearly independent columns, and
without loss of generality we denote these by vj1 ,vj2 , . . . ,vji . Hence, all the columns in
G′A must be of the form

a1vj1 + a2vj2 + · · ·+ aivji ,

for some ak ∈ Fq. However, since rank(G′A) = rank(GA) one has that
∑i

k=1 ak = 1.
Therefore, |A| ≤ qi−1, contradicting the assumption on A.

From this we conclude that ri = qi−1 + 1, showing that the bound in Theorem 4.2
is sharp for this example. The threshold gap in this example can also be determined;
g = r − t = q`−1 + 1 − 1 = q`−1. Now considering the bounds in Theorem 4.4 we show
that some of these bounds are attained in this case as well. Since ti = i, we have that
ai = 0 for all i in Theorem 4.4. Thus,

n− t+ 1

q
=
q` − 1 + 1

q
= q`−1 = g,
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which shows that the inequality in (22) is sharp. We consider the inequality in (23) as
well, and since bi is non-decreasing we determine b` in order to make the bound as good
as possible.

b` = r − r1 − `+ 1 = q`−1 + 1− 2− `+ 1 = q`−1 − `.

Hence, the bound states

g ≥ r + 1

q
+
q − 1

q
b` =

q`−1 + 2

q
+
q − 1

q

(
q`−1 − `

)
= q`−1 − `+

2 + `

q
.

Note that there is no contradiction with g = q`−1, since the bound does not hold for
` = 1 and q = 2. When ` = 1 we require, in order to use the bound, that r ≤ n− 1, but
n = 21 = 2 and r = 21−1 + 1 = 2 in this case.

For this bound to be sharp ` = 2+`
q
, which implies `(q − 1) = 2. Therefore, this

bound is attained in the case where ` = 2 and q = 2. The same would then hold for the
last bound in Theorem 4.4, since this bound is obtained by summing the two previous
bounds. J

5 Asymptotic Comparisons
In this section we analyse the asymptotic behaviour of the bounds presented in Theorem
3.2 when the number of players n grows, and the size of the secret ` grows as a linear
function of n.

We assume the setting considered in [16]; let {Σj}∞j=1 denote an infinite family of
Fq-linear secret sharing schemes with increasing number of participants nj and where Σj

has secrets in F`jq , so that {`j}∞j=1 is a monotonely increasing sequence such that

lim
j→∞

`j
nj

= L , for some L ∈ R with 0 < L < 1.

To simplify, we assume that if we denote k1(j), k2(j) the dimensions of the codes C1 and
C2 in any nested code pair representation of {Σj}, then k1(j)

nj
converges to some R1 ∈ R

and k2(j)
nj

converges to some R2 ∈ R. Clearly, L = R1 −R2 since `j = k1(j)− k2(j).
Denote the privacy threshold and reconstruction threshold of Σj by t(Σj) and r(Σj)

respectively. Furthermore, we define

Ω(1) = lim inf
j→∞

t(Σj)

nj
and Ω(2) = lim sup

j→∞

r(Σj)

nj
.

Additionally, we denote the threshold gap of Σj by g(Σj) and define

Ω(3) = lim sup
j→∞

g(Σj)

nj
. (24)
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Figure 1: Illustration of Ω(3). The solid lines illustrate t(Σj)

nj
and r(Σj)

nj
, both as a function

of j, and the black vertical dashed line illustrates g(Σj)

nj
for a specific j.

Note that Ω(3) does not necessarily equal Ω(2) − Ω(1). Indeed, in general we have

Ω(3) = lim sup
j→∞

(
r(Σj)

nj
− t(Σj)

nj

)
≤ lim sup

j→∞

r(Σj)

nj
− lim inf

j→∞

t(Σj)

nj
= Ω(2) − Ω(1). (25)

but equality may not hold as the example illustrated in Figure 1 shows. The lower dashed
line illustrates Ω(1) and the top dashed line Ω(2). As we can see in the figure, the difference
between Ω(2) and Ω(1) is larger than the actual threshold gap, which is the black vertical
dashed line.

We now present the asymptotic version of the bound g ≥ BGr
(m)(n, q, `) together with

bounds on Ω(1) and Ω(2).

Theorem 5.1: Let {Σj} be a family of secret sharing schemes over Fq as above. We
have

Ω(1) ≤ q − 1

q
R2,

Ω(2) ≥ 1

q
+
q − 1

q
R1,

Ω(3) ≥ 1

q
+
q − 1

q
L. (26)
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Proof:
We have by Theorem 3.2 that

t(Σj)

nj
≤ qmj+1 − qmj

qmj+1 − 1

(
k2(j)

nj
+
mj

nj
+

1

nj

)
− 1

nj
,

r(Σj)

nj
≥ qmj − 1

qmj+1 − 1
+
qmj+1 − qmj

qmj+1 − 1

(
k1(j)

nj
− mj

nj
− 1

nj

)
+

1

nj
,

g(Σj)

nj
≥ qmj − 1

qmj+1 − 1

(
1 +

2

nj

)
+
qmj+1 − qmj

qmj+1 − 1

(
`j
nj
− 2

mj

nj

) (27)

where mj is any choice of m for Σj in Theorem 3.2, i.e. mj ∈ {0, . . . , `j − 1}. In
particular we can choosemj as a function of nj such thatmj = o(nj) but still limj→∞mj =
∞, for example mj = min{`j − 1, blog njc} (where L > 0 implies that for large enough j,
we simply have mj = blog njc).

Letting j tend to infinity in (27) with such selection of mj, we obtain the claimed
result.

It is not difficult to see that the bound

Ω(3) ≥ 1

q
+
q − 1

q
L

that we just derived is strictly tighter than the asymptotic versions of the bounds g ≥ `,
BCCX(1)(n, q), and BCCX(2)(n, q, `), which are respectively

Ω(3) ≥ L, Ω(3) ≥ 1

2q − 1
, Ω(3) ≥ 1

2q + 1
+

2q

2q + 1
L,

for any q and any 0 < L < 1. We show these four bounds on Ω(3) in Figure 2 for the case
q = 2.

In the rest of this section, we collect known results on upper bounds for Ω(3), and
compare them with the lower bounds we have obtained.

We will consider algebraic geometric codes and random codes. As far as the authors
know, secret sharing schemes from algebraic geometric codes yield the smallest values of
Ω(3) when the finite field Fq is sufficiently large, while random codes give smaller Ω(3) for
small q.

An algebraic geometric evaluation code is defined from an algebraic function field F ,
a divisor G of F (which determines a space of functions to be evaluated) and a set of
rational places in F (as evaluation points), the latter usually represented by a divisor D.
We remit the reader to [29] for details. Secret sharing schemes defined from algebraic
geometric codes where first considered in [8]. We here use the construction from [10],
defined by a nested code pair where both codes are algebraic geometric codes defined
using the same function field F and the set of all rational places as evaluation points,
but different divisors G1, G2. Such secret sharing schemes then satisfy t ≥ k2 − G and
r ≤ k1 + G, where G is the genus of the function field, and k1, k2 are as always the
dimensions of the two linear codes. Moreover, the length of these codes (and hence the
number of shares n) is the number of rational places of the function field.

Consider now an optimal tower of function fields {Fj}∞j=1, i.e. limj→∞
Nj

Gj = A(q)

where Nj,Gj are respectively the number of rational places and genus in Fj and A(q) is
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Figure 2: Comparison of asymptotic bounds on the threshold gap for q = 2.

the so-called Ihara’s constant and Gj is the genus. Applying the construction described
above gives a family of secret sharing schemes such that

Ω(1) ≥ R2 −
1

A(q)
,

Ω(2) ≤ R1 +
1

A(q)
,

see [16]. By (25) this implies

Ω(3) ≤ L+
2

A(q)
. (28)

While Ihara’s constant A(q) has not been determined for every q, we sum up some
known facts next. First A(q) > 0 for all q, and in fact A(q) ≥ c log(q) for some constant
c, see for instance [24]. On the other hand, A(q) ≤ √q − 1, see [30]. If q is a perfect
square, it was shown in [18] that A(q) =

√
q − 1. Furthermore, Garcia and Stichtenoth

gave a explicit construction [15] of an optimal tower of function fields in this case.
Consequently, for small values of q, the bound in (28) is trivial since A(q) ≤ 2. For

large enough q, however, we have A(q) > 2 (for example for q square with q ≥ 16).
We observe the following, in relation with the lower bounds: the difference between

the upper bound (28) and the lower bound from Theorem 5.1 is

2

A(q)
− 1

q
(1− L).

Note that the term 1
q
(1 − L) is precisely what the bound in Theorem 5.1 has gained

with respect to the lower bound Ω(3) ≥ L. However this factor is overshadowed by the
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considerably larger factor 2/A(q). It is an interesting open question to bring these bounds
together, by either proving stronger lower bounds or improving the known constructions.

For small finite fields, the bounds in (28) are trivial and the best upper bounds are
achieved by inifinite families of secret sharing schemes based on random codes. We follow
the results from [10]. The following result is a consequence of the fact that random codes
are on the Gilbert-Varshamov bound.

Proposition 5.2: Let C be a random variable with the uniform distribution taking values
in the set of all [n, k] linear codes over Fq, and let 0 < d, d⊥ < (1− 1

q
)n be integers. For

a realization of C = C we then have

P (dmin(C) < d) ≤ qk+n(Hq( d
n

)−1)

P (dmin(C⊥) < d⊥) ≤ qnHq( d⊥
n

)−k,

where Hq(x) = x logq(q−1)−x logq(x)− (1−x) logq(1−x) is the q-ary entropy function.

The q-ary entropy function Hq is strictly increasing and therefore injective in the
interval [0, 1− 1

q
] (we define Hq(0) = 0 as usual) and there its image is the interval [0, 1].

We can therefore define the inverse H−1
q : [0, 1]→ [0, 1− 1

q
]. With this definition in mind,

we can choose d
n

= H−1
q (1 − k

n
− ε′) and d⊥

n
= H−1

q ( k
n
− ε′) for some ε′ > 0 and both

probabilities above become lower than or equal to q−ε′n.
A linear code C1 can be chosen uniformly at random from all [n, k1] linear codes by

rejection sampling of the elements bi in its basis. The subcode C2 ( C1 generated by
the last k2 basis elements is then also uniformly random among all [n, k2] linear codes.
Combining Proposition 5.2 and the comment below with the inequalities in (11), we
obtain

P

(
r

n
< 1−H−1

q

(
1− k1

n
− ε′

)
+

1

n

)
≥ 1− q−ε′n

P

(
t

n
> H−1

q

(
k2

n
− ε′

)
− 1

n

)
≥ 1− q−ε′n,

(29)

For any fixed ε′ > 0 the probabilities in (29) are larger than 0, and hence by the probab-
ilistic method we conclude that there exists an infinite family of secret sharing schemes
with

Ω(3) ≤ 1−H−1
q (1−R1 − ε′)−H−1

q (R2 − ε′) .

For a fixed L = R1 − R2, the smallest value of the right-hand side is attained by setting
R1 close to 1 (and hence R2 close to 1− L) or, symmetrically, setting R2 close to 0 (and
R1 = L). In that case, the inequality becomes

Ω(3) ≤ 1−H−1
q (1− L) + ε,

for any ε > 0.
In Figure 3, we compare this upper bound, in the case q = 2, with our lower bound

from equation (26).
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Figure 3: Comparison of asymptotic lower and upper bounds (when R1 = 1) on the
threshold gap for q = 2.

At last, we make the following remark on the asymptotic behaviors of the partial
privacy and reconstruction thresholds, which is one of the main focus in the work [16].
There the authors define

Λ(1)(δ1) = sup

{
lim inf
j→∞

tm1(j)

nj

∣∣∣∣
{m1(j)}∞j=1, 1 ≤ m1(j) ≤ `j, lim

j→∞

m1(j)

nj
= δ1L

}
,

Λ(2)(δ2) = inf

{
lim sup
j→∞

r`j−m2(j)+1

nj

∣∣∣∣
{m2(j)}∞j=1, 1 ≤ m2(j) ≤ `j, lim

j→∞

m2(j)

nj
= δ2L

}
.

That is, asymptotically, no fraction less than Λ(1)(δ1) of the participants holds more than
a fraction of δ1 of the secret. Similarly, Λ(2)(δ2) ensures that asymptotically a fraction of
Λ(2)(δ2) of the participants will be able to reconstruct a fraction of 1− δ2 of the secret.

In [16] the gap between the limitations on Λ(1)(δ1) and Λ(2)(δ2) and what is possible
to achieve is almost closed. The limitations considered there are derived from (12), i.e.,

Λ(1)(δ1) ≤ R2 + δ1L,

Λ(2)(δ2) ≥ R1 − δ2L.
(30)

We can obtain the same bounds from Theorem 3.2 by setting m = 0. However, contrary
to what happens in the proof of Theorem 5.1, choosing m as a small fraction of ` will not
improve this bound in this case.
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A Linear Secret Sharing
Proposition A.1: A secret sharing scheme based on a nested code pair C2 ⊆ C1 is a
linear secret sharing scheme.

Proof:
Clearly, Si is a Fq-linear subspace. So we need to show that S is uniformly distributed
on some subspace V ⊆ S0 × S1 × · · · × Sn. Indeed, this is the case for

V = {(s, c) : s ∈ F`q and c ∈ (s1b1 + s2b2 + · · ·+ s`b`) + C2}.

First of all it is a subspace, so we show that S is uniformly distributed on V .

P (S = (s, c1, c2, . . . , cn)) = P (SI∗ = (c1, c2, . . . , cn)|S0 = s)P (S0 = s)

=
1

qk2
1

q`

for S in V , showing that this construction resulting in a linear secret sharing scheme.

Proposition A.2: All linear secret sharing schemes can be represented by a nested code
pair C2 ( C1.

Proof:
Let a linear secret sharing scheme be given by S. Let V be the subspace such that S is
uniformly distributed on V , and define

C2 = {c : (0, c) ∈ V where 0 ∈ S0 and c ∈ S1 × S2 × · · · Sn}
C1 = {c : (s, c) ∈ V where s ∈ S0 and c ∈ S1 × S2 × · · · Sn}

Clearly, C2 ⊆ C1 and both are linear subspaces and therefore linear codes. Denote by
k2 the dimension of C2 and k1 the dimension of C1. Since both S and S0 are uniformly
distributed we also obtain that S|S0 = 0 is uniformly distributed on C2 with probability
function

pS(S|S0) =
pS(S)

pS0(S0)
=

1
qk1

1
q`

=
1

qk1−`
.

Hence, k2 = k1 − `. Because all the shares uniquely determine the secret in a secret
sharing scheme, there is a one-to-one correspondence between C1 and V , showing that
for any possible outcome of S there is a corresponding element in C1. Therefore, we can
represent the scheme using the nested codes C2 ( C1.
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