
Paralysis Proofs: Secure Dynamic Access Structures for
Cryptocurrency Custody and More∗

Fan Zhang

Cornell University

Philip Daian

Cornell Tech

Iddo Bentov

Cornell University

Ian Miers

Cornell Tech

Ari Juels

Cornell Tech

ABSTRACT
The growing adoption of digital assets—including but not limited

to cryptocurrencies, tokens, and even identities—calls for secure

and robust digital assets custody. A common way to distribute the

ownership of a digital asset is (M,N)-threshold access structures.

However, traditional access structures leave users with a painful

choice. SettingM = N seems attractive as it offers maximum resis-

tance to share compromise, but it also causes maximum brittleness:

A single lost share renders the asset permanently frozen, inducing

paralysis. LoweringM improves availability, but degrades security.

In this paper, we introduce techniques that address this impasse

by making general cryptographic access structures dynamic. The
core idea is what we call Paralysis Proofs, evidence that players or

shares are provably unavailable. Using Paralysis Proofs, we show
how to construct a Dynamic Access Structure System (DASS), which

can securely and flexibly update target access structures without a
trusted third party. We present DASS constructions that combine a

trust anchor (a trusted execution environment or smart contract)

with a censorship-resistant channel in the form of a blockchain. We

offer a formal framework for specifying DASS policies, and show

how to achieve critical security and usability properties (safety,

liveness, and paralysis-freeness) in a DASS.

To illustrate the wide range of applications, we present three

use cases of DASSes for improving digital asset custody: a multi-

signature scheme that can “downgrade” the threshold should play-

ers become unavailable; a hybrid scheme where the centralized

custodian can’t refuse service; and a smart-contract-based scheme

that supports recovery from unexpected bugs.

CCS CONCEPTS
• Security and privacy→ Key management; Access control.

KEYWORDS
Bitcoin, Blockchain, Trusted hardware, Access control, Digital Asset

Custody, Wallet

1 INTRODUCTION
Nearly all key management and access control systems have an

“always / never” requirement [65]: they should always provide avail-

ability when validly authorized, but never when not. Balancing

availability against the potential for misuse is a pervasive challenge

though. Consider the task of securing a single private key. Repli-

cate the key broadly across geography, machine architectures, and

custodians, and the risk of key compromise increases. Store the

∗
This an extended version of [83].

key in a single location and the probability of loss increases, as do

barriers to timely access.

Generally, this challenging trade-off is navigated by distributing

control across a small number of parties by means of an access
structure [37]. An access structure is a policy determining which

players can control a resource. (M,N)-access structures, as in, e.g.,
Shamir secret sharing [66], are a popular choice. They allow any

M out of N players to access a target resource, e.g., to sign a cryp-

tocurrency transaction. VaryingM and N provides flexibility on the

defensibility vs. availability spectrum. Unfortunately this flexibility

is often still inadequate.

For example, in the setting of a cryptocurrency custodian, despite

the availability of (M,N)-multisig wallets (which requireM of N
players to sign), loss and theft of cryptocurrency have been rampant

for years [15, 26, 57, 58, 73]. Over 980,000 Bitcoin (currently worth

about $6.4 billion) [62] have been stolen from exchanges alone. An

estimated 4,000,000 Bitcoin (currently worth around $26 billion),

have vanished forever due to lost keys [63].

One of the primary concerns looming over the use of (M,N)-
multisig schemes is what we call a “shareholders’ dilemma”: setting

M = N is not only desirable for its maximum resilience to key

compromise and collusion, but it could also be the only option to

meet certain business requirements, e.g., when N people want a

joint-account with equal ownership. However, settingM = N also

causes maximum brittleness: a single lost key share renders the

asset permanently frozen.

Fundamentally, the problemwith traditional (M,N)-access struc-
tures is that they are static.M cannot be lowered or N raised when

funds become unavailable, so insecure choices are often made at

system setup.

1.1 Our work
In this paper, we show how to achieve both good availability and
good security, and to do so without trusted third parties (TTPs).

Specifically, we show how to achieve a better trade-off than any

static access structure alone can do. We accomplish this by means

of access structures that are dynamic.
We introduce the idea of a Dynamic Access Structure System

(DASS), which allows for secure conditional downgrading, e.g., chang-
ing (3, 3)-multisig to a (2, 3)-multisig if a player becomes unavail-

able. Consequently, the full security of a (3, 3)-multisig is available

in the general case. A (2, 3)-multisig is instantiated in the critical

case that funds would otherwise be lost. (If Alice has lost her key,

it’s better to run the risk of Bob and Carol absconding with funds

than to lose funds with certainty forever.) In other words, a DASS

1

Fan Zhang, Philip Daian, Iddo Bentov, Ian Miers, and Ari Juels

implements a policy of access-structure migrations (e.g., down-

grades). Fig. 1 illustrates the idea by showing a three-player DASS

that can withstand two key losses.

DASSes do not completely avoid security/availability trade-offs.

They do however introduce new and desirable points on the se-

curity/availability spectrum, and thus new security management

options for cryptocurrencies and a wide range of other crypto-

graphic systems.

One major technical challenge in our work is ensuring that the

downgrading of access structures only happens when a player

is truly unavailable. Otherwise, players can cheat by simulating

the disappearance of a live player. The tool we introduce for this

purpose are strong proofs of player (or key-share) unavailability

called Paralysis Proofs.

1.2 Approach overview and challenges
Proving that a player is available is easy: just have her sign a fresh

message. Secure Paralysis Proofs, though, require that a player be

able to signal liveness when other players collude and potentially

try to block her network access. This is challenging even with a

trusted third party (TTP).

Our constructions rely on a censorship-resistant stateful channel
to detect and record the fact of an unavailable player. Such a channel

has two properties: censorship-resistance, meaning players can freely

send and receive messages with a bounded delay, and statefulness,
meaning messages sent through the channel are recorded and can

be retrieved later. These properties are strictly stronger than those

of anonymous channels (e.g., Tor [70]), which lack statefulness.

We leverage public blockchains as censorship-resistant stateful

channels in our work. The basic idea is that if a player, e.g., Alice,

disappears, other players can post a challenge to her on chain. If
Alice tries to post a response within ∆ blocks (for some suitable

∆), she can do so with high probability even in the face of power-

ful network adversaries and her response will be world readable.

Thanks to these properties, lack of response from Alice within ∆
blocks of a challenge constitutes a Paralysis Proof.

Building a DASS from Paralysis Proofs is easy given a TTP,

which can simply manage all users’ keys. Again, we aim critically

to avoid TTPs. Our DASS schemes thus reply on two technologies

that server as trust anchors by emulating TTPs: trusted execution

environment (TEEs) and smart contracts.

However, naïve combination of Paralysis Proofs with TEEs or

smart contracts doesn’t yield a DASS. Verifying a Paralysis Proof

requires the verifier to have an up-to-date view of the blockchain in

order to determine whether a given ∆ is appropriate. Keeping TEEs

in sync with a blockchain is undesirable and problematic, though,

as TEEs are fundamentally stateless and unaware of accurate time.

Attempts to work around these limitations result in larger attack

surface and/or extra assumptions. As we will show shortly, our

protocol does not require the TEE to have an up-to-date view of the

blockchain. In fact, it does not require any view of the blockchain.

Smart contracts, on the other hand, doesn’t suffer from the same

limitation. Indeed, for assets controllable by smart contracts, imple-

menting DASSes for them is straightforward. But for other assets

smart contracts can’t be employed in general because they can’t

manage secret keys. Moreover, smart contracts are known to suffer

P1 ∧ P2 ∧ P3

P1 ∧ P2 P1 ∧ P3 P2 ∧ P3

P1 P2 P3

“Paralysis Proof

for P1”

“Paralysis Proof

for P2”

Figure 1: An example DASS with three players. Nodes repre-
sent access structures, edges migration conditions.

unavailability induced by accidental or unexpected bugs. We ex-

plore a novel scheme that allows secure recovery of smart-contract-

controlled assets in face of software-induced paralysis.

To analyze and prove the security of DASSes, we provide a formal

framework for specifying dynamic access structure policies (DASPs)

and introduce new security definitions. Additionally, we also show

how to overcome technical obstacles in securing DASSes in practice.

One is to avoid placing a TEE on the critical path for ordinary

transactions and risking service failures by, e.g., storing players’

keys only in the TEE. We also consider minimizing the impact of

side-channel attacks on TEEs, e.g., [76].

1.3 Improved digital asset custody with DASS
We consider three use cases of Paralysis Proofs that illustrate our

techniques’ wide range of application to improving digital asset

custody and beyond:

Tolerate cryptocurrency key loss.We present a (M,N)-multisig

wallet that can downgrade the threshold if players become unavail-

able. We report on implementations for both script-based cryp-

tocurrencies (e.g., Bitcoin) and smart-contract-based ones (e.g.,

Ethereum).

Tolerate custodian failures. Centralized custodians, e.g., Coin-

base [55], help users manage keys, but are single points of failure.

We present a DASS that migrates control of funds to their own-

ers if and only if a custodian fails or refuses service. The “only if”

part guarantees that as long as the centralized custodian is opera-

tional, leaking a user’s key won’t breach the user’s account, which

is desirable.

Tolerate software-induced paralysis. Smart contract bugs can

lead not just to theft, but paralyzed funds, as in the $150 million

lost to the infamous (second) Parity Multisig Wallet bug [59]. We

propose a continuous-integration framework that regularly applies

a test suite to a smart contract to validate its correct functioning,

including liveness of funds. Critical error conditions such as paral-

ysis trigger an “escape hatch” [47], failover logic that refunds or

moves a smart contract’s assets.

1.4 Contributions
In summary, our main contributions are as follows:

Paralysis Proofs.We introduce Paralysis Proofs, and show how to

achieve them using censorship-resistant stateful channels such as

2

Paralysis Proofs: Secure Dynamic Access Structures for Cryptocurrency Custody and More

blockchains. We also introduce Dynamic Access Structure Systems

(DASSes), which offer security vs. availability trade-offs unachiev-

able with conventional, static access structures.

Formal definitions and framework. We formally define key

properties for a DASS (liveness, safety) and its underlying migration

policy (privilege-preserving, paralysis-free) (Section 3). We present

an ideal functionality that formally specifies security properties

required for a broad range of applications (Section 4).

Improved digital asset custody with DASS. We present three

example applications of DASS to protect digital asset custody from:

cryptocurrency key loss (Section 4), cryptocurrency custody failures

(Section 5), and smart contract failures (Section 6).

TEE compromise. We explore alternative DASS designs that pro-

vide resilience to TEE compromise, such as through side-channel

attacks demonstrated against SGX (Section 4.4).

Implementation.We present implementations in Ethereum and

Bitcoin for the first application, using smart contracts and TEEs

(Intel SGX, in particular) respectively. To illustrate the limitations

of pure blockchain approaches for Bitcoin, we also explore script-

based schemes in Appendix D.

2 BACKGROUND
In this section we provide some basic background on Trusted Exe-

cution Environments, Bitcoin, and smart contracts.

2.1 Trusted Execution Environments and SGX
A Trusted Execution Environment (TEE) is an execution environ-

ment that provides confidentiality and integrity for applications

running on potentially malicious hosts.

Intel Software Guard Extensions (SGX) [10, 35, 50] is a CPU-

based TEE implementation available in recent Intel CPUs. SGX

allows processes to execute in an enclave, an environment that

enforces application confidentiality and integrity against even a

malicious operating system and some classes of hardware attacks.

SGX also enables applications to emit third-party verifiable attesta-
tions to their origin and outputs.

Limitations of TEEs.Although powerful, TEEs have fundamental

security limitations. TEEs generally don’t guarantee availability.

Moreover, TEEs depend upon a potentially malicious operating

system for I/O. A consequence is that TEEs cannot provide trusted

sources of time. In the case of SGX, although a trusted relative

timer is available in an off-CPU component, the communication

between enclaves and the timer can be delayed by the malicious

OS [1]. Thus SGX enclaves can only ascertain a lower bound on the

elapsed time. Server-grade Intel CPUs offer no support for timers

at the time of writing. Moreover, unless with additional protection

mechanisms (e.g., [48]), SGX doesn’t have trustworthy monotonic

counters and therefore is susceptible to state rollback attack. These

security limitations make Paralysis Proofs challenging even with

TEE.

2.2 Bitcoin
Bitcoin is a decentralized electronic cash scheme in which transac-

tions moving funds are recorded in an append-only log, a blockchain.
Rather than storing funds in accounts whose balance is altered by

transactions, Bitcoin uses transactions themselves to record both

ownership and balance. Transactions consist of inputs and outputs.
An output consists of an amount and a script_pubkey that speci-

fies how that amount can be spent. Inputs specify the transaction

output which is the source of the funds and include a script_sig
showing authorization to use the funds. Thus transactions spend the

outputs of previous transactions. Unconsumed outputs are known

as Unspent Transaction Outputs (UTXOs). One can check if an

output has been spent by seeing if it is in the set of UTXOs. By

requiring that outputs can only be spent once and that the amount

of money included in a transaction’s inputs is at least as much as

its outputs, Bitcoin enforces the invariants of a monetary system

and prevents forgery.

Bitcoin Script. When creating an output, users can specify an ac-

cess control policy by embedding a script—called script_pubkey—
in the output. To spend an output, one must provide a witness—

called script_sig—such that running the script with the provided

witness outputs true. For example, a typical script_pubkey spec-

ifies the keys that must sign any transaction spending that output.

This may be a single key or an arbitrary combination of keys, e.g.,

(pk
1
∧ pk

2
) ∨ pk

3
. An input consuming an output with such a

script_pubkey would then need a signature that satisfied that

requirement, e.g., it would need to contain signatures under both

pk
1
and pk

2
. While in principle Bitcoin Script can represent com-

plex logic, in practice limitations on supported instructions and the

length of a script mean it is mainly used for simple authorization.

We use (V ,ϕ) to denote anUTXOofV coinswith a script_pubkey
ϕ. A Bitcoin transition (with the exception of coinbase transitions)

consumes a set of UTXOs and creates one or more new ones. We use

⟨{Ini }ni=1
w1, ...,wn
−−−−−−−−→

{
Outj

}m
j=1⟩ to denote a Bitcoin transaction

with n inputs,m outputs, and n witnesses, one for each input, such

thatwi satisfies the script of Ini .

Time-based opcodes. An essential ingredient of ΠSGX is Bitcoin’s

relative timeout script opcode, also known as CheckSequenceVerify

or CSV [20]. By putting the CSV instruction with parameter τ in

the script ϕ of a UTXO u, we assert that the transaction that spends

u must reside in a block whose height (or timestamp) is more than

τ relative to u.

2.3 Smart contracts
Smart contracts are executable objects stored in a blockchain. Users

can send transactions with input data to the blockchain to trigger

the execution of a smart contract. To process a transaction, the

blockchain executes the code with the provided input data and

potentially alters the blockchain state.

A key differentiator between such smart contracts and script-

based systems (e.g. Bitcoin) rich-statefulness [78]. In a smart contract

system, all executing transactions have native access to persistent

state stored across transactions, blocks, and time. Rich statefulness

is particularly relevant to our system. It is Bitcoin’s lack of such

that renders TEEs the only practical solution.

2.4 Censorship-resistant stateful channels
We use a blockchain to realize a censorship-resistant stateful chan-

nel, i.e., messages sent to the blockchain will be delivered within

∆ time, and items added to the blockchain cannot be removed. In

3

Fan Zhang, Philip Daian, Iddo Bentov, Ian Miers, and Ari Juels

practice, a central goal of public blockchains such as Bitcoin is to

prevent a malicious miner from dropping a user’s transactions [31].

Also thanks to the high redundancy of the underlying peer-to-peer

network, as long as a user can connect to some network nodes, her

transactions will be propagated and included in a block with high

probability, thus offering censorship-resistant access.

Bitcoin and other public blockchains have been proposed as a

means to facilitate an anonymous channel (e.g., in [4, 9]). We note,

however, that public blockchains are more powerful than anony-

mous channels (such as Tor), because blockchain-based channels

are also stateful, i.e., messages are persisted on-chain with strong

availability guarantees. As statefulness is critical in Paralysis Proofs,

anonymous channels such as Tor insufficient. The statefulness of

blockchains is also used in [25] to enforce fairness in MPC, and

in [39] to build stateful TEE execution.

3 DYNAMIC ACCESS STRUCTURE SYSTEMS
In this section, we develop formal definitions and a framework for

reasoning about the security of dynamic access structures.

A Dynamic Access Structure Policy (DASP) consists of a set of

access structures and rules dictating migration conditions among

them. For example, “this Bitcoin fund requires signatures fromAlice,

Bob and Carol to spend; if any of them disappears, signatures from

the remaining two suffice to spend the fund” informally specifies a

DASP. The access structure is the set of holders authorized to spend

Bitcoin, and migration entails removing unresponsive signers.

We use the term Dynamic Access Structure System (DASS) to

denote a system that enforces a DASP. Essential to our DASS con-

structions is the use of Paralysis Proofs to demonstrate conditions,

e.g., party incapacitation, that justify migration from one access

structure to another.

Motivating example. Getting dynamic access control policies

right is hard and intuitive correctness often is not enough. There

are subtle vulnerabilities that are missed without the formalism. For

example, consider s1 = “at least a majority of {1, 2, 3, 4} is required

to access”, s2 = “at least a majority of {1, 2, 3} is required to access”.

If the current access structure is s1 and player 4 goes missing, it’s

intuitive to permit migration to s2. However this is not secure as it
would deprive the privilege of one of the three players.

Looking forward, Definition 2 correctly prevents such a migra-

tion because s2 < SLP({1, 2, 3}). (The only secure migration is to

stay at s1.) Capturing subtle vulnerabilities like this is critical and
challenging, andmotivates our exploration of the formal framework

presented below.

3.1 Policy specification
3.1.1 Basic definitions. ADynamic Access Structure Policy (DASP)

comprises a tuple (R,S,M) that specifies the resources (R) be-
ing access-controlled, a set of access structures (S), and a set of

migration rules (M) dictating conditions under which access-

structure migrations are permitted.

Let {Pi } = {Pi }
N
i=1 denote the set of N parties at beginning of

the protocol, and Lt the set of live (i.e. not incapacitated) parties at
time t . As we shall see shortly, correctly determining Lt , i.e. which
parties are actually live, is the main technical challenge in enforcing

a DASP. We use Lt to denote the ground truth. When generally

referring to a single player, we drop the subscript and simply denote

the player as P . We assume that if a party becomes incapacitated, it

remains incapacitated throughout the protocol, i.e. P < Lt implies

P < Lt ′ for all t
′ > t .

In this paper, an access structure s is a function s(L) → {true, false}
that determines whether a set of live parties L ⊆ {Pi } is allowed to

access the managed resource. Access structures are monotonic, i.e.,

s(L) = true and L ⊆ L′ together imply that s(L′) = true.
Amigration rulemsi ,sj ∈ M is a functionmsi ,sj (ω) → {true, false}

that determines whether migrating from si to sj is permitted given

witness ω. We use si
ω
→ sj to denotemsi ,sj (ω) = true. The exact

form of ω depends on the migration rule. An example of ω is Lt ,
the set of live players.

For a given DASP, the set of access structures S and the asso-

ciated migration rulesM may be represented as a directed graph

G = (S,M). Here we overload S andM to denote respectively

the sets of nodes and edges. A node si ∈ S is an access structure

and an enhanced edge (si , sj) ∈ M represents the migration rule

msi ,sj , which specifies the condition to migrate from access struc-

ture si to sj . Access structure sn is said reachable from s1 by ω,

denoted s1
ω
⇝ sn , if there exists a path (s1, s2, . . . , sn) inG such that

si
ω
→ si+1 for all i ∈ [1,n − 1].

3.1.2 Security goals. A fundamental correctness requirement for

any access control is that migration between access structures does

not eliminate the privilege of live parties. We capture this notion by

stipulating that a DASP be privilege-preserving. To define this

property, we first require two technical definitions.

Definition 1. The set of least permissive access structures for
L ⊂ {Pi }, denoted by SLP(L), is defined as: SLP(L) = {s ∈ S : s(L) =
true ∧ (∀L′ ⫋ L, s(L′) = false)}.

Intuitively, SLP(L) is the set of all access structures such that if the
only possible live parties are in L, then all such parties must be live

to access the resource. Given this, we define privilege-preserving:

Definition 2. (Privilege-preserving) Let Lt be the set of live
parties at time t . A DASP (R,S,M) is privilege-preserving if Lt can
never migrate to an access structure that can be satisfied with a set
L′ of parties such that Lt ⊈ L′ at any time t . Formally, ∀s ∈ S such

that s(Lt) = true, if there exists a witness ω such that s
ω
→ s ′, then

s ′ ∈
⋃
Lt ⊆L SLP(L).

A DASP is paralysis-free if, when the current access structure

cannot be satisfied, switching to another satisfiable access struc-

ture is permitted provided that the migration will not deprive the

privilege of any live party.

Definition 3. (Paralysis-freeness) Let Lt be the set of live parties
at time t . A DASP (R,S,M) is paralysis-free if at any time t , ∀s ∈ S
such that s(Lt) = false, it holds that:

SLP(Lt) , ∅ =⇒ ∃ω, s ′ ∈ SLP(Lt) s .t . s ω
→ s ′.

Note that a paralysis-free DASP doesn’t imply the availability of

the resource. What a paralysis-free policy can guarantee is the best
possible availability: if there is a access structure s ′ that can get the

system out of paralysis, then the DASP should permit a transition

to s ′. However, if the set of live parties is too sparse to satisfy any of

4

Paralysis Proofs: Secure Dynamic Access Structures for Cryptocurrency Custody and More

the prescribed access structures (i.e. SLP(Lt) = ∅), then the desired

availability cannot be achieved.

Example 1. Let’s take the example of N shareholders who wish
to retain access to the resource R should one party disappear. Let
P = {Pi }

N
i=1 denote the set of N parties, and P−i = P \ {Pi } denote

the set of N − 1 parties that excludes Pi . Let I(·) denote an indicator
function. A DASP (R,S,M) that realizes the aforementioned access
control can be specified by S = {si }Ni=0 where s0 = IP and si = IP−i
for i ∈ [N], and the conditionms0,si (ω) ∈ M outputs true if ω is a
witness to Lt = P−i .

One can examine that theDASP in Example 1 is privilege-preserving

and paralysis-free.

3.2 Security definitions for a DASS
We use the term Dynamic Access Structure System (DASS) to denote

a system that enforces a DASP. In this section, we define the se-

curity of a DASS with a Universal Composability (UC) [23] ideal

functionality FDASS. Later in Section 4 we present a protocol ΠSGX

that UC-realizes FDASS.

3.2.1 Adversarial model. We assume an adversary that may corrupt

an arbitrary number of parties. An honest party always follows the

protocol, while a corrupted party controlled by the adversary may

deviate arbitrarily (i.e., perform Byzantine corruption). In the real-

ization of FDASS, we assume that the adversary has complete con-

trol of the network, with the exception that a censorship-resistant

stateful channel is available to all parties, i.e., anyone can send and

receive messages through the channel subject to bounded latency,

and messages sent through the channel are persisted and can be

retrieved later.

3.2.2 Ideal functionality. We specify security goals of a DASS in

the ideal functionality FDASS as defined in Fig. 2.

To reduce clutter, we omit the handling of session IDs (SIDs) in

FDASS but readers are advised that messages received and sent by

FDASS are implicitly associated with an SID. When FDASS sends

subroutine output to parties, we use the delayed output terminol-

ogy from [23] to reflect the network adversary. Specifically, when

FDASS sends a public delayed output to party Pi , the output is first
sent toA and then forwarded to Pi afterA’s acknowledgement or

∆ time has past, whichever happens first.

FDASS maintains internal states (Lt , s) for the set of live parties
and currently enforced access structure respectively. To capture the

paralysis explicitly, we extend the standard corruption model [23]

with special “paralysis” corruption. Upon receipt of a paralysis
message from A, a party immediately announces its paralysis and

halts until the end of the protocol. In the ideal protocol, A sends

(paralysis, Pi) to FDASS, who removes Pi from the set of live parties.

To access the resource, a set of parties P send (access, inp), in
which inp specifies the parameter of access, to FDASS. If P is per-

mitted to access by the current access structure, i.e. s(P) = true,
FDASS returns the result of accessing R. A set of parties can initiate

a migration to another access structure s ′ by sending (migrate, s ′)
to FDASS. If the transition to s ′ is permitted by the enforced DASP,

FDASS sets the current enforced access structure to s ′.

FDASS[s0,R,S,M] with parties {Pi }Ni=1
1 : On receiving∗ (init) from any Pi :

2 : Lt := {Pi }ni=1 , s := s0

3 : On receiving (paralysis, Pi) from A:

4 : Lt = Lt \ {Pi }

5 : On receiving (access, inp) from Pi ∈ Lt :

6 : let current time be t

7 : // if there is an unexpired access request for inp

8 : if find a stored (inp, P, T0) and t < T0 + ∆a then:

9 : add Pi to P

10 : // if no access request for inp or it has expired, create a new one

11 : else : store (inp, {Pi } , t), overwriting (inp, _, _) if exists

12 : if s(P) = true then:

13 : send a public delayed output R(P, inp) to all parties in P

14 : On receiving (migrate, s′) from Pi ∈ Lt :

15 : assert

(
s′ ∈ S ∧ms,s′ ∈ M

)
16 : L

fake-death
= ∅

17 : for all corrupted parties Pc ∈ Lt :

18 : ask A whether Pc should be added to L
fake-death

19 : if ms,s′ (Lt \ Lfake-death) = true then:

20 : send a public delayed output (s, s′, Pi , ok) to all; set s = s′

Figure 2: The ideal functionality of a Dynamic Access Struc-
ture System. The entry pointmarkedwith ∗ is only executed
once.

3.2.3 Security properties. FDASS[s0,R,S,M] encapsulates the fol-
lowing security properties of a Dynamic Access Structure System.

Let s denote the effective access structure of FDASS, and Lt the set
of live parties at time t . FDASS guarantees both safety and liveness
in all states s ∈ S at any time t :

Safety: A set of parties L ⊆ Lt can access R only if s(L) = true. A
transition to s ′ , s occurs only ifms,s ′(Lt) = true.
Liveness: If s(L) = true for some L ⊆ Lt , then L can access

R within ∆ time after interacting with the DASS honestly. If

ms,s ′(Lt) = true, then a transition to s ′ , s occurs within ∆
after Lt interacts with the DASS honestly.

Examples. Consider a DASS enforcing the DASP in Example 1,

the Safety property ensures that access is enforced by the current

access structure at any time, and that the access structure can be

downgraded to allow access by N − 1 shareholders only if |Lt | < N ,

i.e., a collusion of N − 1 shareholders cannot maliciously accuse

the N th
shareholder of being incapacitated and thereby steal her

share. The Liveness property ensures that access is granted if the

structure is satisfied by a set of cooperating parties. Moreover, if

allowed by the policy, the Liveness property ensures that the access

structure will be downgraded within a bounded time should parties

submit legitimate requests. Note that the Liveness property does

not stipulate that access structure si is automatically instantiated if

|Lt | < N . This is because parties may not immediately activate an

access-structure migration; in fact, if all parties are incapacitated,

such migration cannot happen.

5

Fan Zhang, Philip Daian, Iddo Bentov, Ian Miers, and Ari Juels

4 PARALYSIS PROOFS FOR
CRYPTOCURRENCIES

In this section, we expand on the use of Paralysis Proofs to recover

from cryptocurrency key loss (and related failures, e.g., player dis-

appearance).

Bitcoin, the most popular cryptocurrency with a market cap of

$110B at the time of writing, is an important application target for

Paralysis Proofs. Implementing secure Paralysis Proofs for the cur-

rent Bitcoin protocol, however, is challenging because of the limited

expressiveness of Bitcoin scripts. Were a proposed enhancement

called “covenants” available [53], we show in Appendix C that Paral-

ysis Proofs can be constructed, though with significantly higher

complexity. Moreover, it is unclear when or whether covenants will

be adopted in Bitcoin. Thus we explore an alternative approach

involves the use of TEEs—specifically, Intel SGX—in this section.

In Appendix D we give a similar Paralysis Proof construction com-

patible with the current Bitcoin protocol without using SGX, but it

only provides a weaker security guarantee and incurs more than

exponential overhead, making it impractical.

Realizing Paralysis Proofs is challenging even with TEEs, due to

their inherent security limitations: they can’t maintain persistent

states, their I/O can be censored by the malicious OS and they don’t

have an accurate sense of time. We use the following strawman pro-

tocol to illustrate why these limitations lead to design challenges.

A strawman protocol. Suppose there are N players. On initial-

ization, the enclave generates a key pair (sk, pk) and outputs pk.
Players moves the fund to the address of pk. The enclave also

initializes the access structure as an (N ,N)-multisig scheme, i.e.,

signatures from all N players are required to spend the fund con-

trolled by sk. To attempt to remove a player P , the enclave sends a
challenge to P and starts the timer. If P doesn’t respond within ∆
time, the enclave removes P from the access structure.

This strawman protocol is insecure for three reasons. First, unless

additional mechanisms (e.g., [14, 48]) are employed, an SGX enclave

is susceptible to state rollback. A malicious player could restore the

enclave to a state before she’s removed from the access structure,

defeating the basic security requirement. Second, since the enclave’s

network is censored by the network adversary, she can cause a live

player to be removed by delaying the response.

Note that these two problems can be solved by using a blockchain

as a censorship-resistant stateful channel between players and the

enclave. Nonetheless, the strawman protocol is still insecure. The

issue is that the enclave—lacking a trusted timer—cannot establish

an update-to-date view of the blockchain. For example, the adver-

sary could present the enclave with a fork without P ’s response.
Thanks to the lack of a trusted timer—in the case of SGX, an enclave

can only ascertain an lower bound on the elapsed time—even an

adversary with a low computational power can mount such attacks.

Solutions. Instead of patching TEEs to make the above strawman

protocol work, we took a different path that does not rely on TEE
for keeping track of time or maintaining the current access struc-
ture. It is important to emphasize that the security of our protocol

doesn’t require the enclave to have an update-to-date view of the

blockchain—in fact, the enclave need not any view of the blockchain

state. Moreover, a challenged player does not communicate with

the enclave to signal her liveness. Finally, the enclave doesn’t main-

tain any state, except for a secret key. Since the state is static, our

protocol is immune from state rollback.

The high-level idea behind our solution is to use Bitcoin’s time-

based opcodes to track time, and to condition the output of the

enclave on the state of the blockchain that is presented to the en-

clave. For example, if the TEE is presented with a forked blockchain,

then the enclave output would only be valid on that fork.We achieve

this using “life signal” transactions with time-based opcodes.

4.1 System model and trust assumptions
In this section we setup the formal model in which we specify the

protocol, and discuss trust assumptions.

SGX and attested execution. Throughout the paper, we use SGX
as a building block, although the protocol can be realized by any

TEE capable of attested execution.

In our formal specification, we adopt the (local) ideal function-

ality F SGX based on Pass et al [60] to model TEEs with attested

execution. Informally, a party first loads a program prog
encl

into an

SGX enclave with a install message. On a resume call, the program
is run on the given input inp, generating an output along with an

attestation σSGX = ΣSGX.Sig(skatt, (progencl, outp)), a signature un-
der the hardware key skatt. The public key pk

att
is can be obtained

from F SGX.getpk(). We refer readers to [60] for details.

An ideal blockchain. Our protocol uses an ideal blockchain de-

fined in Fig. 7 as a censorship-resistant stateful channel.F
chain
[succ]

generalizes the bulletin board model because it also captures the no-

tion of item validity. succ(history, item) → {0, 1} is a function that

specifies the criteria for a new item to be appended to history. We

retain the append-only property of blockchains but abstract away

the inclusion of items in blocks. As reflected in F
chain

, we assume

items are timestamped when added. In practice, block numbers can

serve as such timestamps.

Trust assumptions. Our protocol relies on TEE with attestation

that protects the confidentiality and integrity of computation, and

an censorship-resistant stateful channel. Concretely, we assume

SGX is correctly implemented and that the Bitcoin blockchain is

secure and available to all parties. Let us stress that the trust as-

sumptions in SGX is local, i.e., only the parties in the protocol will

be affected should SGX properties be broken. We discuss ways to

minimize trust in SGX in Section 4.4.

4.2 Protocol details
We denote our DASS for Bitcoin by ΠSGX. ΠSGX is formally spec-

ified in Fig. 8 and Fig. 9. We give text descriptions below of the

steps involved in ΠSGX, so formal protocol or ideal-functionality

specifications are not required for understanding.

Recall that we use N to denote the number of players at the start

of ΠSGX, and Pi for i ∈ {1, 2, . . . ,N } to denote each player. Each Pi
is associated with a Bitcoin public key pki , whose corresponding
secret key is only known to Pi . For simplicity, {Pi } is used to refer

to the complete set of all players.

Initialization. To start the protocol, some honest party needs to

load an SGX instance with prog
encl

(Fig. 9) and invoke the init pro-
cedure. For now we assume a single SGX available to all honest

6

Paralysis Proofs: Secure Dynamic Access Structures for Cryptocurrency Custody and More

parties; thus any honest party can initiate the enclave (once ini-

tialized, sequential initialization will be ignored). In Section 4.4 we

present an expanded distributed setup procedure that avoids this

assumption and provides stronger guarantees.

After the setup procedure is completed, the parties send a small

fund of δB (e.g. δ = 0.00001) to a new output that can be spent

by pk
SGX

. Then the parties launch the protocol by sending their

unspent output of V coins (denoted UTXO
fund

) to a new output of

V coins with a script spendable by

{
pki

}N
i=1 or pkSGX.

Spending funds. There are two ways to spend the funds that are

managed in ΠSGX. At any time, the players can spend the money

via a Bitcoin transaction that embeds their N signatures (per ϕ
all

in

Fig. 8). Hence, even in the case that all N SGX CPUs are destroyed,

the players are still able to spend the funds just as they could before

the execution of ΠSGX. However, a better way to spend the funds

is by sending N requests to an enclave, letting the enclave create a

Bitcoin transaction with a single signature (signed by skSGX). This
reduces the on-chain complexity and the transaction fee.

Migrating to another access structure. The migrate procedure
of ΠSGX resolves system paralysis by letting the live sharehold-

ers spend the money if one or more shareholders is incapacitated.

Intuitively, the role of SGX is to be an arbitrator: when any share-

holder alleges that the money is stuck due to an unresponsive

party, SGX first gives the accused party ∆ time to appeal. The set

of shareholders that controls the fund will be reduced only if no

appeal is observed on the blockchain within this sufficiently large

∆ (meaning that such an appeal did not occur, assuming censorship

resistance [31] holds on the underlying blockchain).

The core idea of implementing an “appeal” in Bitcoin is to use

what we call life signals. A life signal for party Pk is a UTXO of neg-

ligible Bitcoin amount εB, that can be spent either by Pk—thereby
signaling her liveness—or by pk

SGX
, but only after a delay. ΠSGX

makes use of life signals to securely migrate to remove a party from

the current access structure. Specifically, suppose the current set of

shareholders is P = {Pi }
N
i=1, to (propose to) remove party Pk from P ,

any live players can send a message (migrate,UTXO
fund
, P \ {Pk })

to prog
encl

. Then prog
encl

will generate two signed transactions, t1
and t2 (defined in Fig. 9 and illustrated in Fig. 3), as follows:

• t1: a life signal for Pk .
• t2: spends both the life signal UTXO

lifesignal
in t1 and the es-

crowed fund UTXO
fund

to a script that is spendable without

Pk (i.e., by (
{
pki

}N
i=1 \

{
pkk

}
) ∨ pk

SGX
).

The SGX enclave gives both t1 and t2 together as output. If t1
is sent to the Bitcoin blockchain, Pk can cancel her removal by

spending t1. Otherwise, t2 will become valid after the ∆ delay and

can be sent to the blockchain, thereby removing Pk ’s control over
the fund. Fig. 3 demonstrates an example with three players.

Notice that prog
encl

parses UTXO
fund

and obtains the list of

current shareholders, so that prog
encl

does not have to keep track

of current live shareholders locally, nor does it need to have an

up-to-date view of the blockchain. As we will discuss shortly, this

is an important security feature.

Init:

t1:

t2:

5000 BTC

pk
1
∧ pk

2
∧ pk

3

5000 BTC

(pk
1
∧ pk

2
∧ pk

3
) ∨ pk

SGX

0.00001 BTC

pk
SGX

0.00001 BTC

pk
1
∨ (pkR ∧ (CSV ≥ 144))

5000 BTC

(pk
2
∧ pk

3
) ∨ pk

SGX

UTXO
fund

UTXO
lifesignal

UTXO
fund

UTXO
lifesignal

Figure 3: Example of ΠSGX with three players and P1 accused
of being incapacitated. Note that pkR is a fresh ephemeral
key generated for each life signal.

4.3 Security of ΠSGX

Intuitively, the security of ΠSGX stems from the use of SGX and the

relative timeout feature of Bitcoin. We discuss the security of ΠSGX

informally, then present a formal proof.

4.3.1 Security arguments. The core security property of ΠSGX is

that a live party cannot be falsely removed from the access structure,

no matter how many of parties are malicious. This is achieved by

the use of the relative timeout feature of Bitcoin [20] in the fresh

t1, and the atomicity of the signed transaction t2.
To elaborate, t2 will be valid only if the witness of both inputs

(UTXO
fund

and UTXO
lifesignal

) is correct. The witness that the SGX

enclave produced for spending the UTXO
fund

is immediately valid,

but the witness for spendingUTXO
lifesignal

becomes valid only after

t1 has been incorporated into a Bitcoin block that has been extended
by ∆ additional blocks (due to the CSV condition). The shareholder

Pi that accused Pk of being incapacitated should therefore broadcast

t1 to the Bitcoin network, wait until t1 is added to the blockchain,

then wait for the next ∆ blocks, and then broadcast t2 to the Bitcoin
network. However, while these ∆ blocks are being generated, Pk
has the opportunity to appeal by spending t1 with the secret key

skk that is known only to her (the script of t1 does not require the
CSV condition for spending with skk). ∆ is set to a large enough

value for two purposes: (1) to give Pk enough time to respond, and

(2) to ensure that it is infeasible for an attacker to create a secretive

chain of ∆ blocks faster than the Bitcoin miners, and then broadcast

this chain (in which t2 is valid) to overtake the public blockchain.

A fresh, ephemeral key pair (skR , pkR) is generated for each life

signal to ensure that t1 is unique and hence does not already reside

on the blockchain (e.g., Pk may have failed to respond to an earlier

life signal but luckily another shareholder Pj was removed at that

time). The SGX enclave does not need to store ephemeral keys, as

they are consumed right after generation.

4.3.2 Strawman attacks. To illustrate the security properties of

ΠSGX, we discuss a few strawman attacks in which N − 1malicious

players (collectively referred to as the attacker) attempt to remove

the N th player (i.e., PN) from the access structure and why they

7

Fan Zhang, Philip Daian, Iddo Bentov, Ian Miers, and Ari Juels

are prevented by ΠSGX. The attacker’s goal is to somehow get t2—
the transaction that changes the access structure—included in the

blockchain. Recall that we assume players can reliable connect to

the blockchain (while the enclave may not.)

Withholding transactions. Clearly, withholding t2 is only to the

disadvantage of the attacker. On the other hand, withholding t1
doesn’t gain the attacker any advantage either. Due to the relative

timeout in t1, PN always gets the ∆ blocks worth of time to respond

regardless when t1 is included in the blockchain.

Manipulating the I/O of the enclave. In ΠSGX, the enclave re-

ceives as input (migrate,UTXO
fund
, P \ {PN }) and outputs signed

transactions (t1, t2) as specified. The enclave doesn’t (and generally
can’t) check the validity of the input UTXO, nor does it check that

the output transactions are sent to the blockchain correctly. This is,

however, not a security problem.

The attacker may feed the enclave with an invalid (e.g., spent

or non-existent) UTXO. However, since the output transaction t2
spends UTXO

fund
, providing the enclave with an invalid UTXO

fund

would result in an invalid t2 that can’t change the access structure,
making the attack a no-op.

The attacker may also send the output transactions to secretive

forks as opposed to the main chain. Note that since t2 spends t1,
in order for t2 to be valid, both must be in the same fork. If both

are sent to the main chain, then PN would notice and respond

normally. However, if both are sent to a secretive fork, the access

structure would indeed be changed on that fork. Nonetheless, unless
the attacker can overtake the main chain with that fork, which is at

least as difficult as double spending attack assuming a large enough

∆, the fund on the main chain remains intact.

4.3.3 Security proofs. The security of ΠSGX is proven using the

framework developed in Section 3, as summarized in Theorem 1.

See Appendix B for a proof sketch.

Theorem 1 (The Security of ΠSGX). Assume F SGX’s attesta-
tion scheme and the digital signature used in ΠSGX are existentially
unforgeable under chosen message attacks (EU-CMA). ThenΠSGX UC-
realizes FDASS[sP0 ,R,S,M] in the (F SGX,F chain)-hybrid model,
for static adversaries.

4.4 Minimizing trust in TEEs
We now briefly consider some ways to minimize the trust placed in

the TEE employed in our protocol.

Avoiding a single point of failure. Trusted hardware in general

cannot ensure availability. In the case of SGX, a malicious host can

terminate enclaves, and even an honest host could lose enclaves to

outages. To avoid reliance on a centralized SGX server, each party

in ΠSGX can run her own SGX enclave with an identical program.

This way, any individual party (or set of parties) can always use all

the capabilities of the protocol without being dependent on others.

Specifically, the initialization procedure of ΠSGX can be replaced

with the following procedure that distributes the master key skSGX
across multiple hosts. First, each enclave first generates a fresh key

pair (pk
SGXi
, skSGXi) and outputs pk

SGXi
while keeping skSGXi

secret. Then, each player uses her identity Pi to endorse pk
SGXi

,

and all the players reach agreement on the list of SGX identities

{
pk

SGXi
}N
i=1. Finally, the enclaves then use

{
pk

SGXi
}N
i=1 to estab-

lish secure channels (TLS) with each other, and create a fresh shared

secret key skSGX that is associated with

{
pk

SGXi
}N
i=1 (i.e., another

invocation of the setup procedure will generate a different shared

key). Given use of the secure hardware random number generator

(RDRAND), secret keys generated by SGX are known only to the

enclaves, not to any of the players. From now on, no inter-enclave

communication is needed in the course of the protocol. Each enclave

then seals its state (which mainly consists of skSGX) by encrypting

it using the hardware key (unique to each CPU) and storing the

ciphertext to persistent storage. Hence, the enclave program does

not have to run persistently, and each players can run the backup

on-demand when needed.

Side-channel resistance. Although SGX aims to provide confi-

dentiality, recent work has uncovered data leakage via side-channel

attacks (e.g. [76, 80]). Admittedly ΠSGX is not side-channel-free, but

it has a relatively small and controlled attack surface. The only se-

cret in SGX is skSGX and only operation involving skSGX is signature

generation (besides key generation)—this makes ΠSGX amenable

to software-level side-channel mitigations, such as constant-time

ECDSA implementation (e.g. [28]).

A more powerful and somewhat more interesting approach is

to design side-channel-free Paralysis Proofs. We claim that no

side-channel-free construction of Paralysis Proofs exists given the

current trust assumptions. However, if we relax the assumptions

slightly, for example, by assuming a trusted relative clock in SGX

(which is not available now [1]), or assuming certain stationarity

properties of the blockchain (e.g. difficulty), a side-channel-free

Paralysis Proofs can be constructed by establishing an up-to-date

view of blockchain in SGX (e.g., using techniques in [24]). Specifi-

cally, SGX will only be activated when paralysis happens (which

requires an up-to-date view of the blockchain to detect), and will

generate a new key skSGX for every new UTXO
fund

. Since the en-

clave secret is used only once, such a construction is side-channel-

free.

Least-privileged SGX. In ΠSGX and the examples above the fund

can be spent by pk
SGX

alone, but it’s important to note that is not

the only option. In fact, one can tune the knob between security

and paralysis-tolerance to the best fit their needs. Specifically, for a

desired level of paralysis-tolerance, one can design a DASP such that

the SGX is least-privileged. For example, if the three shareholders

only desire to tolerate up to one missing key share, what they can

do is to move the funds into 3-out-of-4multisig wallet where the 4th

share is only known to the SGX enclave. If all of the parties are alive,

then they can spend without use of the SGX node. If one of them is

incapacitated, the enclave will release its share upon presentation

of a Paralysis Proof. Therefore, even if the secret state of the SGX

node (i.e., the fourth share) is leaked via a successful side-channel

attack, the attacker cannot spend the fund unless two malicious

parties collude. It can be shown that the SGX in the above DASP

is least-privileged, in the sense that compromise of its secret state

imparts minimal capabilities to an adversary. Intuitively, since we

want to retain access even one player is incapacitated, the enclave

must store a credential equivalent to that of the lost player. We

leave formal specification of least-privileged SGXs for future work.

8

Paralysis Proofs: Secure Dynamic Access Structures for Cryptocurrency Custody and More

0 100 200 300 400 500

0

10

20

30

Number of users

T
i
m
e
(
m
s
)

Figure 4: Execution time of P2W when accusing one user.

4.5 Implementation
4.5.1 Paralysis Proofs for Bitcoin. We implemented ΠSGX as a

Paralysis-Proof Wallet (called P2W) for Bitcoin based on Intel SGX

SDK and Bitcoin Core. The source code of P2W is published at [2].

The same code works for Bitcoin and compatible systems, e.g.,

Litecoin.

To minimize the Trusted Computing Base (TCB), we ported only

the necessary part of Bitcoin Core v0.14.0 to SGX, resulting in

only using ∼9.5% of it. The entire TCB includes 734 lines of C++

code written by us, ∼9.5% of the Bitcoin Core and its Elliptic Curve

library (libsecp256k1).

In the normal case, P2W is essentially a (N ,N)-multisig wal-

let. Users can spend the coins by either send N signatures to the

blockchain, or to P2Wwhich then generates a single signature. The

latter method reduces the transaction size and saves transaction

fees, while the former ensures the availability of the fund. When

a user is suspected to be unavailable, others can accuse her using

P2W, which sends transactions t1 and t2 (c.f. Section 4.2) to the

blockchain. The accused user can appeal by spending the life signal

UTXO in t1 (a standard P2PKH output) using P2W or any standard

Bitcoin wallet.

We evaluated P2W’s performance by simulating N users and

measuring the execution time of accusing one of them . As sum-

marized in Fig. 4, P2W is very fast. For example, for 100 users, it

only takes about 10 ms to generate accusation transactions. t1 is
of constant size (224 bytes) which means the cost of a malicious

accusation is about as high as dismissing it. t2 is roughly (443+34N)
bytes. With a suggested fee rate of 20 Satoshi/byte

1
at the time of

writing, the transaction fee of t2 would be about $0.02N , which is

a very reasonable cost for such an infrequent and security-critical

operation.

We validated P2W’s compatibility with Bitcoin by deploying it on

the testnet. We set ∆ = 144 blocks (roughly 24 hours in Bitcoin) and

simulated the following two scenarios: a) a user is falsely accused,

but she appeals within ∆ and maintains the ownership of the wallet,

and b) a disappeared user is challenged and removed from the

wallet after ∆. Accepted Bitcoin transactions can be found at [5,

6] (for scenario A) and [7, 8] (for scenario B). Note that in the

latter scenario, t2 is not accepted until 24 hours after t1 is included,
enforced by the CSV opcode.

1
See, e.g., https://statoshi.info/dashboard/db/fee-estimates

4.5.2 Paralysis Proofs for Ethereum. For assets that can be con-

trolled by smart contracts, an implementation of the ideal func-

tionality FDASS is straightforward. Our reference implementation

of a paralysis-free multisig wallet for Ethereum [78] consists of

156 lines of commented Solidity code. Fully tested contract code,

including logic for pruning incapacitated signers and updating the

signature threshold is at [3].

This implementation differs from the ideal functionality only in

minor engineering changes and optimizations. There is no way to

asynchronously prune keyholders that fail to respond to a challenge

in time in Ethereum, where all contract calls must be initiated by

some user. We instead check and prune any signers that did not

respond to a challenge at the beginning of each on-chain operation

that requires checking or manipulating only valid signers. This

ensures that the state of unparalyzed signers is correct, reflecting

Lt in FDASS, before any contract action is processed.

A final caveat is that block timestamps are used to measure time;

while this can be trivially replaced with block numbers, which are

less susceptible to miner manipulation (timestamps are miner set),

the bounded degree of manipulation and monotonically increasing

timestamp constraints on Ethereum provide some assurance that

the timestamps are reasonably accurate for our purposes.

One useful property of the Ethereum-based realization is that

the multisignature key holders need not necessarily run archival

nodes: because a log is emitted whenever a user is accused, users

can simply watch transaction receipts for an accusation against

them, using any Ethereum full or lite client to respond by calling

the respond function (guaranteed to work as long as an adversary

cannot censor a user’s connection to the blockchain, given that

the user accepts the relevant trust assumptions surrounding their

choice of node software, hardware, and connectivity).

5 EXTENDED PARALYSIS PROOFS: THE CASE
OF CUSTODIAN PARALYSIS

5.1 Motivation
A (digital asset) custodian is a centralized service that secures or

helps secure a user’s digital asset (or other key-controlled resource).

Use of custodians is common as they offer better usability and

security, compared to having end users managing secrets on their

own. Coinbase recently indicated that it was holding 10% of all

Bitcoin in circulation [12].

An obvious concern with centralized custodians is theft, in which

a custodian (or hacker that has compromised a custodian) steals

funds from users’ accounts. In addition to theft, Denial-of-Service

(DoS) is another major concern. If a custodian refuses to respond

to a user’s transaction requests, the user effectively loses her funds.

In this section, we show how DASSes enable an interesting new

architecture for digital assets custodians—a hybrid custodian—to

address both concerns.

To achieve these properties, we refine the definition of paralysis.

In addition to unavailability, a party (i.e., a custodian here) is con-

sidered paralyzed if it exhibits a certain behavior (e.g., maliciously

rejects users’ withdrawal requests). This definition refines the pre-
vious ones, as it such cases, the custodian may be “available” in the

sense of responding to clients, but exhibits paralysis by failing to

process certain legitimate transaction requests.

9

https://statoshi.info/dashboard/db/fee-estimates

Fan Zhang, Philip Daian, Iddo Bentov, Ian Miers, and Ari Juels

In addition to realizing a new and appealing custody architecture,

this example also illustrates how Paralysis Proofs can embody rich

and precise conditions beyond mere unavailability. Specifically,

we show that a publicly verifiable proof can be constructed if a

custodian rejects valid authentication attempts. Generally, Paralysis

Proofs can be a condition predicated on user and/or system secrets

(passwords and/or keys for two-factor authentication), in addition

to mere absence of response.

5.2 Protocol
Setup. In our hybrid custodian scheme, a user stores her funds

in a (2, 2)-paralysis-proof-multisig wallet (using techniques in Sec-

tion 4), of which one key is held by a TEE operated by the centralized

custodian. The custodian is responsible for authenticating the user

(e.g., via a password, SMS code, etc.) before authorizing a transac-

tion. Both signatures from the user and the custodian are required

to spend funds.

Such a setup has two security benefits. First, it prevents the

custodian from stealing the funds, as the custodian only possesses

one of the secret keys. Second, it offers the user stronger security

than if she managed her own keys, given the general weakness

of endpoint security and the fact that an institutional custodian

is usually much better at managing and securing keys than an

ordinary user is.

Dealing with malicious DoS. As mentioned, we add additional

rules to basic Paralysis Proofs so that a party (i.e., the custodian) is

considered paralyzed unless a predicate ϕ is met. In other words,

when the custodian is accused (see Section 4 for terminology), it

can only appeal if ϕ is true.

Specifically, ϕ will ensure an “appeal” is issued if and only if

the custodian’s TEE faithfully attempted and failed to authenticate

the user (e.g., the user inputs a wrong password). In other words,

the custodian is honest but the accusation is invalid. Without this

predicate, amalicious custodian can always appeal to dismiss honest

users’ accusations. With the predicate, however, the custodian can

only appeal against invalid accusations. Thus, we reduce the case

of a malicious custodian actively refusing to accept authenticated

transactions to that of a simple paralyzed party who cannot appeal.

Fig. 5 illustrates the idea of conditioning the issuance of response

on the predicate of “the challenge contains valid authentication

information.” The exact details of this predicate can vary depending

on the authentication mechanism, as explored by example below.

Example: Password-based authentication. Consider a simple

scenario where the user authenticates to the custodian with a pass-

word. The user submits her password (encrypted under the TEE’s

public key) alongwith a partially signed transaction, and a signature

over her full request. The custodian’s TEE verifies the signature on

the request and checks if the password is correct. If so, it signs the

transaction with its key. Otherwise, the request is discarded. If the

signature is correct but the password is wrong, then the custodian

may advance a counter which can be used to trigger rate limiting

or lock the account. Here the custodian’s role would be to store a

hashed version of the password securely, check it against the sub-

mitted password, and rate limit password attempts. Assuming that

rollback attacks against TEEs are prevented using, e.g., distributed

state [48], authenticating the password request with a signature

prevents the custodian itself from submitting false authentication

attempts in an effort to deny service by locking a user’s account.

If the custodian is available but refuses to accept the password,

we can now enter into an on-chain dispute resolution process, as

shown in Fig. 5. The user posts a challenge containing the encryp-

tion of her password under a key known to the custodian’s TEE.

If the custodian doesn’t respond within ∆, the standard Paralysis

Proofs mechanism can kick in and remove the custodian from the

access structure. To appeal with a response, the custodian’s TEE

must decrypt the submitted password and test if it is correct. If the

password is correct, the TEE refuses to issue a response, which is

equivalent to the first case where no response is issued.

5.3 Extensions
For the ease of exposition the above protocol description uses simple

password-based authentication. Various extensions are discussed

below, including authentication via a third party (e.g., 2FA), user

account recovery, and a general approach to use any interactive

authentication protocol.

Third-party authentication. Another option is for the TEE to

contact third parties directly to provide a primary or secondary au-

thentication factor. Town Crier [82] demonstrated that it is possible

to make a TLS request from an enclave to a third-party service and

condition behavior on the response. Combined with input from the

user via the blockchain, this can be used to directly authenticate

a user, to provide a second factor via services such as Authy or

Twillo, or to ensure that a user still has an account with some ser-

vice. Many of these mechanisms depend on trusting a third party,

but in the case of established and widely used services this may

be more palatable than trusting any specific custodian. Multiple

services can of course be combined to further distribute trust—with

a trade-off against availability.

User account recovery. Using the same mechanisms for interac-

tive protocols or authenticating via third parties, the custodian can

provide a mechanism for account recovery in the case of lost creden-

tials. Given a Paralysis Proof for the user, control can be transferred

to a fresh multisig address. Indeed, if the custodian relies on third

parties for authentication, then it inherits the account recovery

mechanism automatically. This is, of course, a double-edged sword:

the same mechanisms that are used for account recovery can be

used to hijack the account. We are not limited, however, to simple

password recovery mechanisms. If the custodian only controls one

of two keys necessary to spend the funds, we can realize account

recovery by requiring a Paralysis Proof against the user to migrate

access control to another key.

More complex protocols. Following the techniques of [39], any
interactive authentication protocol can be realized by posting en-

crypted messages between the client and the custodian to the

blockchain. A Paralysis Proof then is simply an on-chain execution

of the protocol where messages are delivered and logged via the

blockchain. Indeed, the password example is a simple one-round

version of this. The same idea can be applied to n-round proto-

cols through repetition and extended to, for example, integrating

federated authentication protocols or challenge-response-based

two-factor authentication.

10

Paralysis Proofs: Secure Dynamic Access Structures for Cryptocurrency Custody and More

U ∧C U

“The custodian

refuses service”

(a) The DASP in the custodian paralysis example. “U” denotes

the user, and “C” denotes the custodian.

User

Blockchain

Custodian TEE

if X has valid authentication info then
output an appeal to X

else
output ⊥

end if

challenge

X =“Here is

my signed trans-

action request” response

(b) Extended Paralysis Proofs: the accused party can appeal only if a predicate is met. Read Section 5.2

for details.

Figure 5: An example of custodian paralysis and migration.

6 PARALYSIS WITHIN SMART CONTRACTS
6.1 Motivation
We’ve explored the use of smart contracts in Paralysis Proofs in Sec-

tion 4. In the broader smart contract community, it is well known

that paralysis can occur within smart contracts themselves. A clas-

sic example is the second of two well-publicized and related Parity

multisignature vulnerabilities [18] [67] which permanently and

irrevocably froze hundreds of millions of US dollars in smart con-

tracts. The Parity multisignature vulnerabilities are far from the

only high-profile failures that resulted in paralysis; early analysis of

Ethereum smart contract vulnerabilities [22] enumerated a number

of vulnerable contracts with stuck funds and DoS vulnerabilities.

Some vulnerabilities are subtle, involving low-level platform details

like the “gas" model for pricing computation [78].

Most smart contract vulnerabilities, despite their different mani-

festations, have a fundamental commonality: in each case, a smart

contract was operating as intended until some unexpected change

to the state of the contract, the network, or the computation model

under which the contract was operating. These changes then caused

subsequent executions of previously working functionality to fail,

leaving the funds in a contract potentially “paralyzed," and stuck

indefinitely. This problem is so widespread and severe on Ethereum,

that hard-fork-based manual remediation of affected contracts has

been suggested as a major governance issue and debate [21] [34].

We find a natural way to capture to this class of failure in Paral-

ysis Proofs using software engineering tradition. When integrating

various system components which may potentially be faulty, devel-

opers often create and run integration tests [38], often continuously

as software is developed, in a process known as “continuous inte-

gration" [29, 69]. We can naturally extend Paralysis Proofs using

continuous integration: if a full integration test suite is available,

a provable test failure constitutes a Paralysis Proof and triggers a

“downgrading of access control", authorizing transfer of funds to a

simpler recovery contract.

6.2 Protocols
Smart-contract based implementation. Two variant implemen-

tations of this idea are possible. The first is smart-contract based,

with a protocol specification for the smart contract given in Fig. 6.

(We omit user entry points from this specification.) In this protocol,

there is a static, hardcoded set of tests T , with each test τi con-
taining some storage locations to initialize that are required for

correct operation of the test. (These locations are not necessarily

comprehensive; tests can and should can pull storage variables from

Program for Smart Contract Paralysis Proofs (progci)
1 : Hardcoded: T = {(π1, σ1, ω1), ..., (πn, σn, ωn) } // test set

2 : // test πi should run in state σi for expected output ωi

3 : where σi =
{
(s1, v1), ..., (sj , vj)

}
// test setup

4 : hnow // the latest height,

5 : H, // mapping from block hash to height,

6 : ∆, // maximum time to construct a proof, in blocks

7 : C = [CP , CR] // addresses of main and recovery contract

8 : On input (access, d):

9 : ReturnC[0](d, msg.sender)

10 : On input (migrate, (i, p =
{
(s1, v1, p1), ..., (sk , vk , pk)

}
)):

11 : Assert {pi } are all from the block (i.e. have the same Merkle root)

12 : Assert hnow − H [p1 .merkle_root] ≤ ∆ // Ensure proof is fresh

13 : Σ := ∅ // Initialize state (location to value map) for test to run in

14 : For each (sj , vj , pj) ∈ p :

15 : Assert is_valid((sj , vj , pj)) // Ensure Merkle proofs are valid

16 : Σ[sj] = vj // Initialize storage from environment

17 : For each (sj , vj) ∈ σi :

18 : Σ[sj] = vj // Initialize static per-test storage

19 : If πi (Σ) , ωi : // if test output differs from expected

20 : C = C \C[0]; T = ∅

Figure 6: An example implementation of Paralysis Proofs
for smart contracts.

the environment.) For example, static state σi might contain an ini-

tialization of a special testing account with some balance available

to be transferred that is not present in the real token contract, with

the remainder of state required for the test sourced from the global

stateful environment.

If a smart contract is paralyzed, it must be failing some unit test

i at block b. A user who notices this submits a proof by sending

migrate, including Merkle proofs-of-inclusion for all state items

consumed by the test from the environment at block b in the global

Ethereum state trie [78]. The implementation prog
ci
checks that

submitted Merkle proofs are all from the same block, that the block

is recent (to prevent DoS via stale proofs), and that all proofs are

valid.

For this check, prog
ci
instantiates a temporary state. First all

the validated state entries from the environment are added, then

updated with the hardcoded static initialization state in σi . If ob-
served test output differs from expected, paralysis is detected and

prog
ci
migrates any access to a recovery contract that returns user

11

Fan Zhang, Philip Daian, Iddo Bentov, Ian Miers, and Ari Juels

funds, preventing paralysis of contract funds (assuming the test set

is sufficiently rich and recovery operational). The test set is nulled

to prevent further migrations.

Both users of the target contract and companies interested in

maintaining availability of the contract (like the developers, for

example Parity Technologies in [59]) are strongly incentivized to

submit such proofs when they detect paralysis. Contracts desiring

economic robustness can also incentivize a market of test executors

by adding a substantial cryptocurrency bounty, paid to any user

who successfully executes migrate.
The smart-contract based scheme has important advantages. Pri-

marily, any user can prove paralysis using only on-chain data at

any time, minimizing the trust surface required to just the code

governing proof verification and recovery (and excluding com-

plex attestation schemes and trust in enclave confidentiality). The

scheme is also practical and optimistically efficient. We tested an

example implementation provided at [44] of a Merkle-Patricia state

item proof checker in a smart contract, usable for the is_valid
function referenced in prog

ci
. In the optimistic case where funds are

not paralyzed, our scheme adds no on-chain overhead or additional

cost to contract operation. In the exceptional case of paralysis, our

scheme’s cost is justified by the potential recovery of funds. Our

initial exploration suggests a cost of about 1.36 million gas per

invocation of the functionality required by is_valid; this is ap-
proximately 1/6 of a full Ethereum block, or $12 per storage location

proof at the time of writing: expensive but not prohibitive.

SGX-based implementation. Several issues are however present
with this SGX-free smart contract scheme. The on-chain Merkle

proof verification is still somewhat costly, and a transaction/test

can potentially access many storage locations. This may be accept-

able in smart contract form, as tests can be potentially broken up

into small/short pieces. This scheme financially incentivizes short

tests, however, which may limit expressiveness of developers’ tests.

Developers may choose to optimize against worst-case verification

cost, which is difficult in a volatile and unpredictable transaction

fee market. By making the cost of executing a test less dependent

on the size of the test using SGX and off-chain computation, longer

and more expressive tests become tractable. Such a scheme can

optionally be operated in the Sealed-Glass Proof model in [72],

enabling resilience against unbounded side channel leakage and

removing confidentiality requirements, relying only on attestations

for security.

An SGX-based solution can also leverage attestations and confi-

dential execution. For example, if any off-chain or legacy systems

are required in the integration test (e.g., when an oracle such as

Town Crier [82] is used), they can be queried or emulated by SGX,

or can use a trusted off-chain oracle. Also, confidential tests may

be useful for some contracts. While unsuitable in a public network

due to their ability to hide backdoors, one could imagine a contract

between parties with neutrally-agreed-on third parties or arbiters

responsible for maintaining independent anti-paralysis test suites.

This approach can also be applied within a modified version

of N-of-N version programming (NNVP) as described in the Hy-

dra framework [19]. To reduce on-chain gas costs, one or more

heads can be executed off-chain within an enclave, which can issue

an attestation when a bug (divergence in component outputs) is

identified. Unfortunately, off-chain execution does not harmonize

well with the Hydra bug-bounty system, as it leaves on-chain logic

exposed to exploitation. But it does provide an objective means for

identifying vulnerabilities, creating a Paralysis Proof and triggering

fault logic within a paralyzed smart contract.

7 RELATEDWORK
Static access-structures for cryptocurrencies.Bitcoin had built-
in support for threshold signatures at launch, and access-structure

scripts for Bitcoin have been discussed since at least 2012 (e.g.

[61]). However the built-in implementation (CHECKMULTISIG) sim-

ply takes a list of individual signatures and check if the threshold

are met, which increases the on-chain verification complexity (this

is undesirable, cf. [45]).

[33] presented a novel ECDSA threshold signature construction

that reduces on-chain complexity. However, this construction re-

quires a rather complex setup using ZK proofs, and does not support

arbitrary access structures. Threshold Schnorr signatures are far

more efficient [68], with support planned for Bitcoin [79].

Ethereum wallets such as Mist [52] and Gnosis [77] support

multi-signature access structures, along with other features such as

daily limits. However, these wallets are implemented via on-chain

code, which implies that users will incur higher costs when the

complexity of the access structure is greater. New versions of the

Gnosis wallet [51] allow for arbitrary, unrestricted challenge-based

policy migration, but do not formalize security or suggest secure

policies.

Access-control policies with dynamic access-structures. Se-
cret sharing schemes with revocation support do not provide the

same guarantees as a Paralysis Proof system, since such schemes

require actions by at least a threshold of players to update the access

structure (see [27, 81]). By contrast, a Paralysis Proof system enables

any player to remove incapacitated players. Privacy-preserving

cloud services can allow remote administrators to modify access-

control policies dynamically, via cryptographic constructions (see,

e.g., [36, 40]). Dynamic access-control policies for a non-confidential

cloud service may also benefit from dynamic access-control poli-

cies [54]. All of these constructions requires a static set of adminis-

trator set authorized to perform modifications.

Credential-recovery. Password systems allow recovery from se-

cret loss but require a TTP. See [16] for a survey.

8 PARALYSIS PROOF SYSTEMS BEYOND
CRYPTOCURRENCIES

The techniques we have introduced for Paralysis Proof Systems in

combining SGX with blockchains can be applied to settings other

than Paralysis Proofs and even to settings other than cryptocurren-

cies. We give some examples here:

Daily spending limits. It is possible to enforce limits on the

amount of BTC that set of players can spend in a given interval of

time. For example, players might be able to spend no more than 0.5

BTC per day. We explore this objective, and technical limitations

in efficient solutions in Appendix F.

Decryption.The credentials controlled by a Paralysis Proof System
need not be signing keys, but instead can be decryption keys. It

12

Paralysis Proofs: Secure Dynamic Access Structures for Cryptocurrency Custody and More

is possible then, for example, to create a deadman’s switch. For

example, a document can be decrypted by any of a set of journalists

should its author be incapacitated.

Event-driven policies. Using an oracle, e.g., [82], it is possible to

condition access-control policies on real-world events. For example,

daily spending limits might be denominated in USD by accessing

oracle feeds on exchange rates. Similarly, decryption credentials

for a document might be released for situations other than incapac-

itation, e.g., if a document’s author is prosecuted by a government.

(This latter example would in all likelihood require natural language

processing, but this is not beyond the capabilities of an enclaved

application.)

The last example involving prosecution does not require use of

a blockchain, of course. Many interesting SGX-enforceable access-

control policies do not. But use of a blockchain as a censorship-

resistant stateful channel can help ensure that policies are enforced.

For example, release of a decryption keymight be entangledwith the
spending of cryptocurrency. A certain amount of cryptocurrency,

say, 10 BTC, might be spendable on condition that an oracle is

recently queried and the result consumed by an enclave application.

This approach provides an economic assurance of a censorship-

resistant stateful channel from the blockchain to the enclave.

9 CONCLUSION
We have shown how Paralysis Proofs can enrich existing access-

control policies in a way that was previously unachievable without

a trusted third party. By leveraging Paralysis Proofs, DASSes allow

an access structure to be securelymigrated—typically downgraded—

given the incapacitation of a player, the inability of a set of players

to act in concert, or the functional paralysis of a smart contract.

Our formalisms include a formal DASP framework, and security

and functionality definitions for DASSes and DASPs, as well as

UC-type ideal functionality for a DASS. Our ideal functionality

suggests a natural proof sketch for security.

Paralysis Proofs and DASSes can be applied in many settings,

and we showcase three in the paper: cryptocurrency key loss, cryp-

tocurrency custody failures, and smart contract failures, proposing

practical schemes for all three. We report on a simple DASS for

cryptocurrency key loss in Ethereum, and on a detailed exploration

concluding that DASS for Bitcoin is only practical using a TEE.

In summary, we believe that the combination of the advent of two

pivotal technologies, blockchains and trusted hardware (specifically

SGX), is a powerful one. It enables a powerful new range of access-

control regimes without the need for trusted third parties and, we

believe, will stimulate exploration of a broad spectrum of other

novel capabilities with applications beyond cryptocurrencies.

ACKNOWLEDGEMENTS
This work is funded in part by NSF grants CNS-1330599, CNS-

1514163, CNS-1564102, and CNS-1704615, as well as ARO grant

W911NF-16-1-0145.

REFERENCES
[1] 2017. sgx_get_trusted_time. https://github.com/intel/linux-sgx/issues/161.

[2] 2018. Paralysis Proofs Implementation (Bitcoin and SGX). https://s3.amazonaws.

com/anonymous-code/pp.tar.gz.

[3] 2018. Paralysis Proofs Implementation (Ethereum). https://s3.amazonaws.com/

anonymous-code/Paralysis.sol.

[4] 2018. R3C3: Cryptographically-secure Censorship Resistant Rendezvous using

Cryptocurrencies. Preprint.

[5] 2018. Scenario A: the appeal transaction that spends t1 . https://tbtc.bitaps.com/

9f512c103dad80c012ea63212a173e939193e67716e6456a44ee45946cc5c6ad.

[6] 2018. Scenario A: the life signal transaction t1 . https://tbtc.bitaps.com/

3adb9a9048695b1a6684b5803e43c8aaa79b603589c627a19dbba89b8c64f4ba.

[7] 2018. Scenario A: the migration transaction t2 . https://tbtc.bitaps.com/

a75e045b9c74a3f803787087e3958d6345236d77c8507b0ed0796d47bb6c91b6.

[8] 2018. Scenario B: the life signal transaction t1 . https://tbtc.bitaps.com/

eb9588aad0b080dc3ba836ab19c358306f9d508b81ea78335eafac5a76b71656.

[9] Syed Taha Ali, Patrick McCorry, Peter Hyun-Jeen Lee, and Feng Hao. 2015. Zom-

bieCoin: Powering Next-Generation Botnets with Bitcoin. In BITCOIN Workshop
at Financial Cryptography and Data Security (FC 2015). Springer.

[10] Ittai Anati, Shay Gueron, Simon Johnson, and Vincent Scarlata. 2013. Innovative

Technology for CPU Based Attestation and Sealing. In HASP.
[11] Gavin Andresen. [n.d.]. P2SH. https://github.com/bitcoin/bips/blob/master/bip-

0016.mediawiki.

[12] Brian Armstrong. Feb. 25, 2018. Coinbase is not a wallet. https://blog.coinbase.

com/coinbase-is-not-a-wallet-b5b9293ca0e7.

[13] Bellare and Neven. 2006. Multi-Signatures in the Plain Public-Key Model and a

General Forking Lemma. In 13th CCS. ACM SIGSAC.

[14] Iddo Bentov, Yan Ji, Fan Zhang, Yunqi Li, Xeuyuan Zhao, Lorenz Breidenbach,

Philip Daian, and Ari Juels. 2017. Tesseract: Real-Time Cryptocurrency Exchange

using Trusted Hardware. https://eprint.iacr.org/2017/1153.

[15] Nirupama Devi Bhaskar and David LEE Kuo Chuen. 2015. Bitcoin exchanges. In

Handbook of Digital Currency. Elsevier, 559–573.
[16] Joseph Bonneau, Cormac Herley, Paul C. van Oorschot, and Frank Stajano. 2012.

The Quest to Replace Passwords: A Framework for Comparative Evaluation of

Web Authentication Schemes. In IEEE Symposium on Security and Privacy (S&P).
[17] Xavier Boyen. 2007. Mesh Signatures. In EUROCRYPT (Lecture Notes in Computer

Science), Moni Naor (Ed.), Vol. 4515. Springer, 210–227.

[18] Lorenz Breidenbach, Phil Daian, Ari Juels, and Emin Gün Sirer. 2017. An In-Depth

Look at the Parity Multisig Bug. http://hackingdistributed.com/2017/07/22/deep-

dive-parity-bug/.

[19] Lorenz Breindenbach, Phil Daian, Florian Tramèr, and Ari Juels. 2018. Enter the

Hydra: Towards Principled Bug Bounties and Exploit-Resistant Smart Contracts.

In USENIX Security.
[20] BtcDrak, Mark Friedenbach, and Eric Lombrozo. 2015. BIP 112: CHECKSE-

QUENCEVERIFY.
[21] Vitalik Buterin. 2016. Reclaiming of ether in common classes of stuck accounts

(EIP #156). https://github.com/ethereum/EIPs/issues/156.

[22] Vitalik Buterin. 2016. Thinking About Smart Contract Security. https://blog.

ethereum.org/2016/06/19/thinking-smart-contract-security/.

[23] Ran Canetti. 2000. Universally Composable Security: A New Paradigm for

Cryptographic Protocols. Cryptology ePrint Archive, Report 2000/067. https:

//eprint.iacr.org/2000/067.

[24] Raymond Cheng, Fan Zhang, Jernej Kos, Warren He, Nicholas Hynes, Noah M.

Johnson, Ari Juels, Andrew Miller, and Dawn Song. 2019. Ekiden: A Platform

for Confidentiality-Preserving, Trustworthy, and Performant Smart Contract

Execution. In EuroS&P.
[25] Arka Rai Choudhuri, Matthew Green, Abhishek Jain, Gabriel Kaptchuk, and Ian

Miers. 2017. Fairness in an Unfair World: Fair Multiparty Computation from

Public Bulletin Boards. In CCS.
[26] Frank Chung. 2017. “Don’t tell my wife”: Melbourne man cries over lost bitcoins

as price surges past $10,000. http://www.news.com.au/finance/money/investing/

dont-tell-my-wife-melbourne-man-cries-over-lost-bitcoins-as-price-surges-

past-us10000/news-story/bd18b6f6aa123dca017f9cc75544fd01.

[27] Yvo Desmedt and Sushil Jajodia. 2009. Redistributing Secret Shares to New Access
Structures and Its Applications. Technical Report.

[28] Bitcoin devlopers. 2018. Optimized C library for EC operations on curve

secp256k1. https://github.com/bitcoin-core/secp256k1/.

[29] Paul M Duvall, Steve Matyas, and Andrew Glover. 2007. Continuous integration:
improving software quality and reducing risk. Pearson Education.

[30] Pieter Wuille Eric Lombrozo, Johnson Lau. 2015. Segregated Witness. BIP 141,

https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki.

[31] Ittay Eyal, Adem Efe Gencer, Emin Gün Sirer, and Robbert Van Renesse. 2016.

Bitcoin-NG: A Scalable Blockchain Protocol. In NSDI.
[32] Ben A. Fisch, Dhinakaran Vinayagamurthy, Dan Boneh, and Sergey Gorbunov.

2017. Iron: Functional Encryption using Intel SGX. https://eprint.iacr.org/2016/

1071.

[33] Rosario Gennaro, Steven Goldfeder, and Arvind Narayanan. 2016. Threshold-

Optimal DSA/ECDSA Signatures and an Application to Bitcoin Wallet Security.

In Applied Cryptography and Network Security (ACNS).
[34] Yoichi Hirai. 2018. Who can recover stuck funds on Ethereum? https://medium.

com/@pirapira/who-can-recover-stuck-funds-on-ethereum-345ba7566c9c.

13

https://github.com/intel/linux-sgx/issues/161
https://s3.amazonaws.com/anonymous-code/pp.tar.gz
https://s3.amazonaws.com/anonymous-code/pp.tar.gz
https://s3.amazonaws.com/anonymous-code/Paralysis.sol
https://s3.amazonaws.com/anonymous-code/Paralysis.sol
https://tbtc.bitaps.com/9f512c103dad80c012ea63212a173e939193e67716e6456a44ee45946cc5c6ad
https://tbtc.bitaps.com/9f512c103dad80c012ea63212a173e939193e67716e6456a44ee45946cc5c6ad
https://tbtc.bitaps.com/3adb9a9048695b1a6684b5803e43c8aaa79b603589c627a19dbba89b8c64f4ba
https://tbtc.bitaps.com/3adb9a9048695b1a6684b5803e43c8aaa79b603589c627a19dbba89b8c64f4ba
https://tbtc.bitaps.com/a75e045b9c74a3f803787087e3958d6345236d77c8507b0ed0796d47bb6c91b6
https://tbtc.bitaps.com/a75e045b9c74a3f803787087e3958d6345236d77c8507b0ed0796d47bb6c91b6
https://tbtc.bitaps.com/eb9588aad0b080dc3ba836ab19c358306f9d508b81ea78335eafac5a76b71656
https://tbtc.bitaps.com/eb9588aad0b080dc3ba836ab19c358306f9d508b81ea78335eafac5a76b71656
https://github.com/bitcoin/bips/blob/master/bip-0016.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0016.mediawiki
https://blog.coinbase.com/coinbase-is-not-a-wallet-b5b9293ca0e7
https://blog.coinbase.com/coinbase-is-not-a-wallet-b5b9293ca0e7
https://eprint.iacr.org/2017/1153
http://hackingdistributed.com/2017/07/22/deep-dive-parity-bug/
http://hackingdistributed.com/2017/07/22/deep-dive-parity-bug/
https://github.com/ethereum/EIPs/issues/156
https://blog.ethereum.org/2016/06/19/thinking-smart-contract-security/
https://blog.ethereum.org/2016/06/19/thinking-smart-contract-security/
https://eprint.iacr.org/2000/067
https://eprint.iacr.org/2000/067
http://www.news.com.au/finance/money/investing/dont-tell-my-wife-melbourne-man-cries-over-lost-bitcoins-as-price-surges-past-us10000/news-story/bd18b6f6aa123dca017f9cc75544fd01
http://www.news.com.au/finance/money/investing/dont-tell-my-wife-melbourne-man-cries-over-lost-bitcoins-as-price-surges-past-us10000/news-story/bd18b6f6aa123dca017f9cc75544fd01
http://www.news.com.au/finance/money/investing/dont-tell-my-wife-melbourne-man-cries-over-lost-bitcoins-as-price-surges-past-us10000/news-story/bd18b6f6aa123dca017f9cc75544fd01
https://github.com/bitcoin/bips/blob/master/bip-0141.mediawiki
https://eprint.iacr.org/2016/1071
https://eprint.iacr.org/2016/1071
https://medium.com/@pirapira/who-can-recover-stuck-funds-on-ethereum-345ba7566c9c
https://medium.com/@pirapira/who-can-recover-stuck-funds-on-ethereum-345ba7566c9c

Fan Zhang, Philip Daian, Iddo Bentov, Ian Miers, and Ari Juels

[35] Matthew Hoekstra, Reshma Lal, Pradeep Pappachan, Vinay Phegade, and Juan

Del Cuvillo. 2013. Using innovative instructions to create trustworthy software

solutions. In HASP.
[36] William C. Garrison III, Adam Shull, Steven Myers, and Adam J. Lee. 2016. On

the Practicality of Cryptographically Enforcing Dynamic Access Control Policies

in the Cloud. In IEEE Symposium on Security and Privacy (S&P).
[37] Mitsuru Ito, Akira Saito, and Takao Nishizeki. 1989. Secret sharing scheme

realizing general access structure. Electronics and Communications in Japan (Part
III: Fundamental Electronic Science) 72, 9 (1989), 56–64.

[38] Syed Roohullah Jan, Syed Tauhid Ullah Shah, Zia Ullah Johar, Yasin Shah, and

Fazlullah Khan. 2016. An Innovative Approach to Investigate Various Software

Testing Techniques and Strategies. International Journal of Scientific Research in
Science, Engineering and Technology (IJSRSET), Print ISSN (2016), 2395–1990.

[39] Gabriel Kaptchuk, Ian Miers, and Matthew Green. 2017. Giving State to the

Stateless: Augmenting Trustworthy Computation with Ledgers. Cryptology

ePrint Archive, Report 2017/201. https://eprint.iacr.org/2017/201.

[40] Jongkil Kim and Surya Nepal. 2016. A Cryptographically Enforced Access Control

with a Flexible User Revocation on Untrusted Cloud Storage. Data Science and
Engineering 1, 3 (2016), 149–160.

[41] Johnson Lau. 2017. BIP 114. https://github.com/bitcoin/bips/blob/master/bip-

0114.mediawiki.

[42] Johnson Lau. 2017. P2WPK. https://github.com/jl2012/bips/blob/vault/bip-0VVV.

mediawiki.

[43] Johnson Lau. 2017. PUSHTXDATA. https://github.com/jl2012/bips/blob/vault/

bip-0ZZZ.mediawiki.

[44] Loi Luu and Nate Rush. 2017. PeaceRelay Merkle-Patricia Trie

Proof Verification. https://github.com/loiluu/peacerelay/blob/

48cab51e6638a6614c86299f1b880698631f8738/contracts/PeaceRelay.sol.

[45] Loi Luu, Jason Teutsch, Raghav Kulkarni, and Prateek Saxena. 2015. Demystifying

Incentives in the Consensus Computer. In ACM Conference on Computer and
Communications Security. ACM, 706–719.

[46] Hemanta K. Maji, Manoj Prabhakaran, and Mike Rosulek. 2011. Attribute-Based

Signatures. In CT-RSA (Lecture Notes in Computer Science), Aggelos Kiayias (Ed.),
Vol. 6558. Springer, 376–392.

[47] Bill Marino and Ari Juels. 2016. Setting standards for altering and undoing smart

contracts. In International Symposium on Rules and Rule Markup Languages for
the Semantic Web. Springer, 151–166.

[48] Sinisa Matetic, Mansoor Ahmed, Kari Kostiainen, Aritra Dhar, David Sommer,

Arthur Gervais, Ari Juels, and Srdjan Capkun. 2017. ROTE: Rollback Protection

for Trusted Execution. http://eprint.iacr.org/2017/048.pdf.

[49] Gregory Maxwell. 2013. CoinCovenants using SCIP signatures, an amusingly

bad idea. https://bitcointalk.org/index.php?topic=278122.0.

[50] FrankMcKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V. Rozas, Hisham Shafi,

Vedvyas Shanbhogue, and Uday R. Savagaonkar. 2013. Innovative instructions

and software model for isolated execution. In HASP.
[51] Richard Meissner. 2018. https://github.com/gnosis/safe-contracts/

blob/48185fcac93e73a9a6b556648f60ea59f517435d/contracts/extensions/

SingleAccountRecoveryExtension.sol.

[52] Mist. [n.d.]. https://github.com/ethereum/mist.

[53] Malte Möser, Ittay Eyal, and Emin Gün Sirer. 2016. Bitcoin Covenants. In Financial
Cryptography Bitcoin Workshop.

[54] Prasad Naldurg and Roy H. Campbell. 2003. Dynamic access control: preserving

safety and trust for network defense operations. In Proceedings of the Eighth ACM
Symposium on Access Control Models and Technologies (SACMAT-03). ACM Press,

New York, 231–237.

[55] John P. Njui. 2018. Coinbase Custody Service Secures Major Institutional Investor

Worth $20 Billion. https://ethereumworldnews.com/coinbase-custody-service-

secures-major-institutional-investor-worth-20-billion/. Ethereum World News
(2018).

[56] Russell O’Connor and Marta Piekarska. 2017. Enhancing Bitcoin Transactions

with Covenants. In Financial Cryptography Bitcoin Workshop.
[57] Ouriel Ohayon. 2018. The sad state of crypto custody. https://techcrunch.com/

2018/02/01/the-sad-state-of-crypto-custody/.

[58] Nick Ortega. 2017. ‘I Forgot My PIN’: An Epic Tale of Losing $30,000 in Bit-

coin. https://www.wired.com/story/i-forgot-my-pin-an-epic-tale-of-losing-

dollar30000-in-bitcoin/.

[59] Charlie Osborne. 16 November 2017. Parity shakes up wallet audits, but funds

remain frozen. ZDNet (16 November 2017).

[60] Rafael Pass, Elaine Shi, and Florian Tramèr. 2017. Formal Abstractions for Attested

Execution Secure Processors. In EUROCRYPT.
[61] Alan Reiner. 2012. New wallet file ideas. https://bitcointalk.to/index.php?topic=

128119.0.

[62] Reuters. 2017. Cryptocurrency Exchanges Are Increasingly Roiled With These

Problems. http://fortune.com/2017/09/29/cryptocurrency-exchanges-hackings-

chaos/

[63] Jeff John Roberts and Nicolas Rapp. 2017. Exclusive: Nearly 4 Million Bitcoins

Lost Forever, New Study Says. http://fortune.com/2017/11/25/lost-bitcoins/

F chain[succ]
1 : Parameter: validity succ : {0, 1}∗ × {0, 1}∗ → {0, 1}, and ∆.

2 : On receiving∗ (init, genesis): storage := genesis

3 : On receiving (read): output storage

4 : On receiving (write, inp) from P :

5 : send (write, inp, P) to A and start a timer of ∆

6 : block until A acknowledges or the timer fires

7 : if succ(storage, inp) = 1 then

8 : t = clock(); storage := storage ∥ (t, P, inp);

9 : output (receipt, inp)

10 : else output (reject, inp)

Figure 7: Ideal blockchain. The entry point marked with ∗
is only executed once. The parameter succ defines the valid-
ity of new items. A new item can only be appended to the
storage if the evaluation of succ outputs 1.

[64] Jeremy Rubin, Manali Naik, and Nitya Subramanian. 2014. Merkelized Abstract

Syntax Tree. http://www.mit.edu/~jlrubin/public/pdfs/858report.pdf.

[65] Eric Schlosser. 2014. Always / Never. The New Yorker (Jan. 2014). https:

//www.newyorker.com/news/news-desk/always-never

[66] Adi Shamir. 1979. How to share a secret. Commun. ACM 22, 11 (1979), 612–613.

[67] Jutta Steiner. 2017. Security is a process: A Postmortem on the Parity Multi-Sig Li-

brary Self-Destruct. https://blog.ethcore.io/security-is-a-process-a-postmortem-

on-the-parity-multi-sig-library-self-destruct/.

[68] Douglas R. Stinson and Reto Strobl. 2001. Provably Secure Distributed Schnorr

Signatures and a (t, n) Threshold Scheme for Implicit Certificates. In ACISP.
[69] Sean Stolberg. 2009. Enabling agile testing through continuous integration. In

Agile Conference.
[70] Paul Syverson, R Dingledine, and NMathewson. 2004. Tor: the Second Generation

Onion Router. In USENIX Security.
[71] Peter Todd. 2014. Checklocktimeverify. https://github.com/petertodd/bips/

blob/checklocktimeverify/bip-checklocktimeverify.mediawiki.

[72] Florian Tramèr, Fan Zhang, Huang Lin, Jean-Pierre Hubaux, Ari Juels, and Elaine

Shi. 2017. Sealed-Glass Proofs: Using Transparent Enclaves to Prove and Sell

Knowledge. In EuroS&P.
[73] Ruth Umoh. 2017. 3 of the craziest things people are doing to recover their lost

bitcoin. https://www.cnbc.com/2017/12/21/3-crazy-things-people-are-doing-to-

recover-lost-bitcoin.html.

[74] https://github.com/dedis/doc/issues/1. [n.d.].

[75] https://medium.com/@ConsenSys/thoughts-on-utxo-by-vitalik-buterin-

2bb782c67e53. [n.d.].

[76] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank

Piessens, Mark Silberstein, Thomas F Wenisch, Yuval Yarom, and Raoul Strackx.

2018. Foreshadow: Extracting the keys to the Intel SGX kingdom with transient

out-of-order execution. In USENIX Security.
[77] Gnosis Multisig Wallet. [n.d.]. https://github.com/gnosis/MultiSigWallet.

[78] Gavin Wood. 2014. Ethereum: A secure decentralised generalised transaction

ledger. http://yellowpaper.io/

[79] Pieter Wuille et al. 2017. Schnorr signatures and signature aggregation. https:

//bitcoincore.org/en/2017/03/23/schnorr-signature-aggregation/.

[80] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. 2015. Controlled-Channel

Attacks: Deterministic Side Channels for Untrusted Operating Systems. In IEEE
Symposium on Security and Privacy (S&P).

[81] Jia Yu, Fanyu Kong, Xiangguo Cheng, and Rong Hao. 2011. Two Protocols for

Member Revocation in Secret Sharing Schemes. In Intelligence and Security Infor-
matics - Pacific AsiaWorkshop, PAISI 2011, Beijing, China, July 9, 2011. Proceedings.

[82] Fan Zhang, Ethan Cecchetti, Kyle Croman, Ari Juels, and Elaine Shi. 2016. Town

Crier: An Authenticated Data Feed for Smart Contracts. In ACM CCS.
[83] Fan Zhang, Philip Daian, Iddo Bentov, and Ari Juels. 2019. Paralysis Proofs: Safe

Access-Structure Updates for Cryptocurrencies and More. In ACM ATF.

A ADDITIONAL FORMALISM
Fig. 7 defines the ideal blockchain used in FDASS. Note that F chain

is more than a standard bulletin board because it captures the notion

of transaction validity (by the succ function). Figs. 8 and 9 formally

specify ΠSGX in Section 4.

14

https://eprint.iacr.org/2017/201
https://github.com/bitcoin/bips/blob/master/bip-0114.mediawiki
https://github.com/bitcoin/bips/blob/master/bip-0114.mediawiki
https://github.com/jl2012/bips/blob/vault/bip-0VVV.mediawiki
https://github.com/jl2012/bips/blob/vault/bip-0VVV.mediawiki
https://github.com/jl2012/bips/blob/vault/bip-0ZZZ.mediawiki
https://github.com/jl2012/bips/blob/vault/bip-0ZZZ.mediawiki
https://github.com/loiluu/peacerelay/blob/48cab51e6638a6614c86299f1b880698631f8738/contracts/PeaceRelay.sol
https://github.com/loiluu/peacerelay/blob/48cab51e6638a6614c86299f1b880698631f8738/contracts/PeaceRelay.sol
http://eprint.iacr.org/2017/048.pdf
https://bitcointalk.org/index.php?topic=278122.0
https://github.com/gnosis/safe-contracts/blob/48185fcac93e73a9a6b556648f60ea59f517435d/contracts/extensions/SingleAccountRecoveryExtension.sol
https://github.com/gnosis/safe-contracts/blob/48185fcac93e73a9a6b556648f60ea59f517435d/contracts/extensions/SingleAccountRecoveryExtension.sol
https://github.com/gnosis/safe-contracts/blob/48185fcac93e73a9a6b556648f60ea59f517435d/contracts/extensions/SingleAccountRecoveryExtension.sol
https://github.com/ethereum/mist
https://ethereumworldnews.com/coinbase-custody-service-secures-major-institutional-investor-worth-20-billion/
https://ethereumworldnews.com/coinbase-custody-service-secures-major-institutional-investor-worth-20-billion/
https://techcrunch.com/2018/02/01/the-sad-state-of-crypto-custody/
https://techcrunch.com/2018/02/01/the-sad-state-of-crypto-custody/
https://www.wired.com/story/i-forgot-my-pin-an-epic-tale-of-losing-dollar30000-in-bitcoin/
https://www.wired.com/story/i-forgot-my-pin-an-epic-tale-of-losing-dollar30000-in-bitcoin/
https://bitcointalk.to/index.php?topic=128119.0
https://bitcointalk.to/index.php?topic=128119.0
http://fortune.com/2017/09/29/cryptocurrency-exchanges-hackings-chaos/
http://fortune.com/2017/09/29/cryptocurrency-exchanges-hackings-chaos/
http://fortune.com/2017/11/25/lost-bitcoins/
http://www.mit.edu/~jlrubin/public/pdfs/858report.pdf
https://www.newyorker.com/news/news-desk/always-never
https://www.newyorker.com/news/news-desk/always-never
https://blog.ethcore.io/security-is-a-process-a-postmortem-on-the-parity-multi-sig-library-self-destruct/
https://blog.ethcore.io/security-is-a-process-a-postmortem-on-the-parity-multi-sig-library-self-destruct/
https://github.com/petertodd/bips/blob/checklocktimeverify/bip-checklocktimeverify.mediawiki
https://github.com/petertodd/bips/blob/checklocktimeverify/bip-checklocktimeverify.mediawiki
https://www.cnbc.com/2017/12/21/3-crazy-things-people-are-doing-to-recover-lost-bitcoin.html
https://www.cnbc.com/2017/12/21/3-crazy-things-people-are-doing-to-recover-lost-bitcoin.html
https://github.com/dedis/doc/issues/1
https://medium.com/@ConsenSys/thoughts-on-utxo-by-vitalik-buterin-2bb782c67e53
https://medium.com/@ConsenSys/thoughts-on-utxo-by-vitalik-buterin-2bb782c67e53
https://github.com/gnosis/MultiSigWallet
http://yellowpaper.io/
https://bitcoincore.org/en/2017/03/23/schnorr-signature-aggregation/
https://bitcoincore.org/en/2017/03/23/schnorr-signature-aggregation/

Paralysis Proofs: Secure Dynamic Access Structures for Cryptocurrency Custody and More

Protocol ΠSGX with P1, . . . , PN
1 : Hardcoded: δ (e.g. 10

−4
), network latency ∆

2 : For any party Pi :

3 : On receiving (init) from environment Z:

4 : (pki , ski) ←$KGen(1n); publish pki

5 : wait to receive

{
pkj

}
j,i

from other parties

6 : send (install, prog
encl
) to F

SGX
and wait to receive eid

7 : send (eid, resume, init,
{
pki

}N
i=1) to FSGX and publish pk

SGX

8 : send (init, ((δ, pk
SGX
), (V , (all pk ∈

{
pki

}N
i=1) ∨ pkSGX)) to Fchain

9 : if F
chain

is not properly initialized: broadcast abort

10 : else broadcast ok
11 : wait to receive ok from others and abort if a abort is received

12 : On receiving (access, addrnew) from environment Z:

13 : obtain UTXO
fund

from F
chain

14 : compute σ = Sig(ski , (UTXOfund
, addrnew))

15 : send (resume, (spend, σ , UTXO
fund

, addrnew)) to FSGX

16 : On receiving (migrate, P ′) from environment Z :

17 : assert P ′ ⊆
{
pki

}N
i=1

18 : obtain UTXO
fund

from F
chain

19 : send (resume, (migrate, UTXO
fund

, P ′)) to F
SGX

and wait for t1, t2
20 : send t1, t2 to F

chain
// t2 will be accepted ∆ time after t1

Figure 8: An SGX based protocol for Paralysis Proofs.

Program for the SGX Enclave (progencl)
1 : Hardcoded: δ , ε , network latency ∆, access grace period Ta
2 : On input∗ (init, P0):

3 : Parties := P0

4 : (skSGX, pkSGX) ←$KGen(1n) and output pk
SGX

5 : On input (spend, σ , UTXO
fund

, addrnew)

6 : parse UTXO
fund

as (V , (all pk ∈ P) ∨ pk
SGX
) or abort

7 : if received |P | requests for (UTXO
fund

, addrnew) within Ta :

8 : assert Vf(σi , pki) for all 1 ≤ i ≤ n

9 : sign transaction t := ⟨UTXO
fund
→ addrnew ⟩ with skSGX

10 : send t to F
chain

11 : else store σ and wait for more requests

12 : On input (migrate, UTXO
fund

, P ′):

13 : parse UTXO
fund

as (V , (all pk ∈ P) ∨ pk
SGX
) or abort

14 : (pkr , skr) ←$KGen(1n)

15 : ϕ
lifesignal

:= ((any pk ∈ P \ P ′) ∨ (pkr ∧ (CSV ≥ ∆)))

16 : sign transitions t1, t2 with sk
SGX

and pkr :

17 : t1 := ⟨(δ, pk
SGX
) → (ε, ϕ

lifesignal
), (δ − ε, pk

SGX
)⟩

18 : t2 := ⟨(ε, ϕ
lifesignal

), (V , (all pk ∈ P) ∨ pk
SGX
) → (V , (all pk ∈ P ′) ∨ pk

SGX
)⟩

19 : output t1 and t2

Figure 9: The Paralysis Proof Enclave. The entry point
marked with ∗ is only executed once.

B SECURITY PROOFS
The security of ΠSGX is formally analyzed using the framework

developed in Section 3. Specifically, we formulate the security goal

of ΠSGX as a DASP, and then prove in the University Composability

(UC) framework that ΠSGX securely realizes the ideal functionality

that implements the same DASP.

Specification of the DASP.
The resource being managed by the ΠSGX is access to an oracle

R(·) that produces valid signatures authorizing Bitcoin expendi-

tures. Initially, a Bitcoin fund is controlled by a set of N parties,

denoted by P0. ΠSGX aims to implement the following DASP speci-

fication:

S := {sP (·) = IP (·) : ∀p ∈ P(P0)} and
M :=

{
msA,sB (·) = IB (·) : A,B ⊆ P0,B ⊊ A

}
.

We prove that ΠSGX realizes (formally, UC-realizes) the ideal

functionality FDASS[sP0 ,R,S,M] that enforces this DASP. In par-

ticular, we prove Theorem 1.

Proof. See Appendix B for a proof sketch. □

For simplicity, we write FDASS[sP0 ,R,S,M] as FDASS from

now on. To prove Theorem 1, it suffices to show that for the “dummy

adversary” A, there exists a PPT adversary Sim such that for any

PPT environmentZ

EXECΠSGX,A,Z ≈ EXECFDASS,Sim,Z . (1)

Basically, the dummy adversary simply relays messages between

the environmentZ and parties. In particular, A corrupts parties

when instructed by Z and passes all gathered information to Z.

We refer readers to Section 4.4.1 of [23] for details on emulation

with respect to the dummy adversary.

We first present the construction of Sim, then we show that Sim
satisfies Eq. (1).

B.1 Construction of Sim.
Sim generally proceeds as follows: if a message is sent by an honest

party to FDASS, Sim emulates the appropriate real world “network

traffic” forZ using the information obtained from FDASS. If a mes-

sage is sent to F
chain

or F SGX by a corrupted party, Sim intercepts

the input and interact with A with the help of FDASS. We provide

further details on the processing of specific messages.

Initialization.. For an honest party Ph , Sim faithfully emulates

ΠSGX as if Ph is called with a init message. In particular, Sim gen-

erates the key pair and simulates the initialization of F SGX and

F
chain

, if not already initialized. If a malicious party Pm sends init
with corrupted parameters (i.e. different from those of FDASS), Sim
aborts after simulating a abort message to all parties.

Access.. For an honest party Ph calling FDASS with (access, inp),
Sim computes a signature σ over UTXO

fund
and inp (using the

secret key generated in the initialization phase) and simulates F SGX

faithfully.

If F SGX (simulated by Sim) is activated a malicious party Pc with
input (spend,σ ,UTXO

fund
, addrnew), Sim checks that 1) the signa-

ture is valid against the public key (distributed in the initialization

phase) and 2) UTXO
fund

is indeed unspent on F
chain

.

• If both checks pass, Sim proceeds as if Pc is honest.
• If the first check fails, Sim aborts.

• If the second check fails, ΠSGX will proceed normally since

F SGX doesn’t have an up-to-date view of the blockchain.

15

Fan Zhang, Philip Daian, Iddo Bentov, Ian Miers, and Ari Juels

Therefore Sim simulates F SGX faithfully, but without send-

ing any message to FDASS.

Migration from SP to SP ′ .. Without loss of generality, we only

consider the cases where P = P ′ ∪
{
pkk

}
, namely the migrations

that remove Pk from the access structure. Other cases can be ana-

lyzed similarly.

IfFDASS is activated by an honest party Ph with input (migrate, P ′)
that removes Pk from the current access structure, Sim proceeds as

follows:

• If Pk is honest or paralyzed, Sim emulates Pi ’s part of ΠSGX

by computing t1 and t2. If FDASS authorizes the migration

(indicated by a public ok output), Sim delay the output for ∆
time, put t2 on the blockchain, and then permits FDASS to de-

liver the output to all parties. If FDASS rejects the migration,

Sim spends the life signal on Pk ’s behalf.
• If Pi is malicious, Sim waits until FDASS asks whether Pk
chooses to pretend to be paralyzed. Sim generates t1, t2 and
sends t1 to F chain

. If A spends the output on behalf of Pk
within ∆, Sim responds “yes” to FDASS. If not, Sim sends

“no” to FDASS and put t2 to F chain
.

If F SGX (simulated by Sim) is activated by a corrupted party

Pc with input (migrate,UTXO
fund
, P ′) that removes Pk from the

current access structure, Sim computes t1, t2 and send both to A

as if from F
chain

, and then proceeds as follows:

• If Pk is honest and alive: IfA sends t1 to F chain
, Sim spends

t1 on Pk ’s behalf, and send (migrate, sP ′) to FDASS on Pc ’s
behalf at the same time.

• If Pk is paralyzed: If A sends both t1 and t2 to F chain
, Sim

sends (migrate, sP ′) to FDASS on Pc ’s behalf.
• If Pk ismalicious: IfA sends both t1 and t2 to F chain

, andA

doesn’t spend t1, then Sim sends (migrate, sP ′) to FDASS on

Pc ’s behalf, and sends “no” to FDASS when asked whether

Pk chooses to be paralyzed.

B.2 Validity of Sim.
We show that no environment can distinguish an interaction with

A and ΠSGX from one with Sim and FDASS by hybrid arguments.

Consider a sequence of hybrids, starting with the real-world execu-

tion of ΠSGX. H1 lets Sim to emulate F SGX and F
chain

. H2 filters

out the forgery attacks against ΣSGX and H3 filters out the forgery

attacks against the signature scheme.

Hybrid H1 proceeds as in the real world protocol, except that Sim
emulates F SGX and F

chain
. Specially, Sim generates a key

pair (pk
att
, skatt) for ΣSGX and publishes pk

att
. WheneverA

wants to communicate with F SGX, Sim records A’s mes-

sages and faithfully emulates F SGX’s behavior. Similarly,

Sim emulates F
chain

by storing items internally.

AsA’s view in H1 is perfectly simulated as in the real world,

noZ can distinguish between H1 and the real execution.

Hybrid H2 proceeds as in H1, except for the following modifica-

tions. IfA invokedF SGX with a correctmessage (install, prog
encl
),

then for all sequential resume calls, Sim records a tuple

(outp,σSGX)where outp is the output of progencl andσSGX is

an attestation under skatt. Let Ω denote the set of all such tu-

ples. WheneverA sends an attested output (outp,σSGX) < Ω
to Sim or an honest party, Sim aborts.

The indistinguishability between H1 and H2 can be shown

by the following reduction to the the EU-CMA property of

ΣSGX: In H1, ifA sends forged attestations to Sim, signature

verification will fail with all but negligible probability. IfZ

can distinguish H2 from H1, Z and A can be used to win

the game of signature forgery.

Hybrid H3 proceeds as in H2, except for the following modifica-

tions. Suppose the set of public keys belonging to corrupted

parties is

{
pki

}N
i=1. IfA sends (spend,σ , _, _) and σ verifies

under a public key pk <
{
pki

}N
i=1, Sim aborts.

Similarly, the indistinguishability between H2 and H3 can be

shown by a reduction to the EU-CMA property of signature

scheme.

It remains to observe that H3 is identical to the ideal protocol

with Sim.

C PARALYSIS PROOFS FOR BITCOIN VIA
COVENANTS

In the context of Bitcoin scripts, the notion of a covenant allows to
put restrictions on the way that an output can be spent. Covenants

were introduced by Moser, Eyal and Sirer [53], following an early

idea by Maxwell [49]. Another generic method for covenants was

given by O’Connor and Piekarska [56], and an efficient implementa-

tion of covenants (OP_PUSHTXDATA) was created by Lau [43]. So far,

covenants support has not been enabled on the Bitcoin mainnet.

The mechanism of [53] supports a recursive covenant by letting

the interpreter replace the Pattern keyword with the covenant

itself. The recursion is required in our paralysis use-case, because

the funds must be restored back to the original covenant whenever

an accusation attempt fails. However, the single Pattern capabil-
ity of [53] is inadequate for the paralysis covenant, because we

wish to move the funds between different covenants that depend

on the subset of remaining shareholders. Fortunately, the imple-

mentation of [43] supports multiple recursive patterns, by hashing

fixed and variable data and then comparing the result to the output

P2SH address [11] or the SegWit P2WPKH/P2WSH [42] (as well as

Merkelized syntax trees [41, 64]).

An exemplary paralysis covenant is illustrated in Fig. 10, using

syntax that is similar to that of [53]. In this example, three share-

holders can spend the entire amount Vwith no restrictions, by using
the 3-out-of-3 multisig condition of the Pattern123 covenant. Any
two shareholders can accuse the third shareholder of being par-

alyzed, by moving the entire fund of V coins into an PatternIJ
covenant that lets them spend the coins after a relative timeout

of 150 blocks. While the 150 blocks are still being created, the

third shareholder can move the funds back into the initial covenant

Pattern123. Similarly, any single shareholder can accuse the two

other shareholders of being paralyzed, by moving the V coins into

the PatternI covenant.
Note that the covenants PatternIJ and PatternI must be dis-

tinct for different values of I, J, in order to avoid collusion attacks.

For example, if PatternIJ allowed any 2-out-of-3 to spend the

V funds after the timeout, then two malicious shareholders P2, P3
16

Paralysis Proofs: Secure Dynamic Access Structures for Cryptocurrency Custody and More

Basic paralysis covenants for three shareholders
1 : Pattern123

2 : IF

3 : 3 ⟨pk
1
⟩ ⟨pk

2
⟩ ⟨pk

2
⟩3 CheckMultiSig

4 : ELSE IF

5 : ⟨V⟩ ⟨Pattern12⟩ CheckOutputVerify 2 ⟨pk
1
⟩ ⟨pk

2
⟩ 2 CheckMultiSig

6 : ELSE IF

7 : ⟨V⟩ ⟨Pattern13⟩ CheckOutputVerify 2 ⟨pk
1
⟩ ⟨pk

2
⟩ 2 CheckMultiSig

8 : ELSE IF

9 : ⟨V⟩ ⟨Pattern23⟩ CheckOutputVerify 2 ⟨pk
2
⟩ ⟨pk

2
⟩ 2 CheckMultiSig

10 : ELSE IF

11 : ⟨V⟩ ⟨Pattern1⟩ CheckOutputVerify ⟨pk
1
⟩ CheckSig

12 : ELSE IF

13 : ⟨V⟩ ⟨Pattern2⟩ CheckOutputVerify ⟨pk
2
⟩ CheckSig

14 : ELSE IF

15 : ⟨V⟩ ⟨Pattern3⟩ CheckOutputVerify ⟨pk
2
⟩ CheckSig

16 : ENDIF ENDIF ENDIF ENDIF ENDIF ENDIF ENDIF

17 : PatternIJ for (I, J) ∈ {(1, 2), (1, 3), (2, 3)}

18 : IF

19 : ⟨150⟩ CheckSequenceVerify 2 ⟨pkI ⟩ ⟨pkJ ⟩ 2 CheckMultiSig

20 : ELSE IF

21 : ⟨V⟩ ⟨Pattern123⟩ CheckOutputVerify 1 ⟨pk
1
⟩ ⟨pk

2
⟩ ⟨pk

2
⟩ 3 CheckMultiSig

22 : ENDIF ENDIF

23 : PatternI for I ∈ {1, 2, 3}

24 : IF

25 : ⟨150⟩ CheckSequenceVerify ⟨pkI ⟩ CheckSig

26 : ELSE IF

27 : ⟨V⟩ ⟨Pattern123⟩ CheckOutputVerify 1 ⟨pk
1
⟩ ⟨pk

2
⟩ ⟨pk

2
⟩ 3 CheckMultiSig

28 : ENDIF ENDIF

Figure 10: Basic paralysis covenants for three shareholders.

could pretend that P3 is paralysed, so that P1, P2 would accuse

P3, and after the 150 blocks timeout P2, P3 will spend the funds

arbitrarily (without the consent of the honest P1).
There is certain similarity between the SGX protocol of Fig. 8

and the covenants implementation of Fig. 10. The main differ-

ence is that the pkI, pkJ multisig replaces pk
SGX

in the condition

(pk
SGX
∧ CSV ≥ ∆). Hence, by taking the paralysis use-case as

an example, it can be inferred that the complexity of the covenants
approach is significantly higher than that of an SGX implementa-
tion (in terms of conceptual as well as on-chain complexity, see

also Appendix E). As there have been recent proposals to support

stateless covenants in Ethereum (for better scalability, cf. [75]), the

comparative advantages of our SGX-based design may prove useful

in other contexts too.

D PURELY SCRIPT-BASED PARALYSIS
PROOFS FOR BITCOIN

A Paralysis Proof mechanism can also be implemented without

SGX (on the current Bitcoin mainnet), albeit with subpar security

and more than exponential overhead.

Our construction utilizes the “life signal” method of Section 4. In

the initial setup phase, each player Pi will prepare unsigned trans-

actions

{
ti, j,k

}
j ∈[N]\{i },k ∈[K] that accuse Pj (these transactions

0.00001 BTC

pki

0.00001 BTC

pkj ∨ (pki ∧ (CSV ≥ 144))

5000 BTC∧
n,j

pkn

5000 BTC∧
n∈[N]

pkn

UTXOj
life-signal

UTXOj
life-signal

ti, j,k :

t ′i, j,k :

Figure 11: Bitcoin-based Paralysis Proofs with N players
(with public keys

{
pkn

}
n∈[N]). Each player Pi will prepare

unsigned transactions
{
ti, j,k

}
j ∈[N]\{i },k ∈[K]. All players will

sign transactions t ′i, j,k .

are similar to t1), and all players will sign transactions t ′i, j,k that

take UTXO0 and the output of ti, j,k as inputs (these transactions

are similar to t2). K is a security parameter specifying the num-

ber of accusation attempts that can be made. Fig. 11 illustrates the

transactions in the aforementioned scheme.

This scheme can be implemented post-SegWit [30], where trans-

action hash (txid) excludes the ScriptSig witness. In particular,

SegWit allows one to prepare t ′i, j,k and condition its validity on

that of unsigned ti, j,k .
After every player receives all the signed transactions, the play-

ers will move the high-value fund into UTXO0. This guarantees

atomicity: either every player will have the ability to eliminate all

the incapacitated player, or none of the player will have this ability.

The output of ti, j,k requires a signature from Pj before the CSV
timeout and a signature from Pi after the CSV timeout, and Pi may

embed this signature into t ′i, j,k after Pj failed to spend the output

of ti, j,k on the blockchain. Since UTXO0 requires the signatures of

all parties, the only way to eliminate an incapacitated player is by

using the signed transactions t ′i, j,k that were prepared in advance.

The parameter K specifies the number of accusation attempts

that can be made; hence a malicious player that pretends to be

incapacitated more than K times will break this scheme. The SGX

scheme does not exhibit this deficiency, because any player can

send a fresh small amount of bitcoins to the enclave and thereby

create an accusation transaction.

Furthermore, in order to support sequences of ℓ > 1 incapac-

itated players, the N players will need to prepare in advance ad-

ditional transactions that spend the outputs of t ′i, j,k in order to

eliminate another player, and so on. The scheme offers the most

safety when ℓ = N − 1, as this implies that any lone active player

(i.e., all other players became incapacitated) will be able to gain

control over the fund. The number of signed transactions that need

to be prepared in advance is

f (ℓ,N ,K) ≜ KN (N − 1) · K(N − 1)(N − 2) · · ·

K(N − ℓ + 1)(N − ℓ) ≥ Ω(KℓN ℓ).

Thus, ℓ = N −1 implies that f (ℓ,N ,K) grows faster than д(N) =
2
N
.

17

Fan Zhang, Philip Daian, Iddo Bentov, Ian Miers, and Ari Juels

E THE COMPLEXITY OF ACCESS
STRUCTURE REALIZATIONS

The ideal functionality of Section 4 is threshold predicates that

require consent from µN of the N live shareholders in order to

spend the funds. (µ = 1 would mean unanimous consent.)

However, it is also possible to consider an extended function-

ality that requires signatures according to a more complex access

structure. E.g., any subset of 35 out of {P1, P2, . . . , P40} can spend

the funds, otherwise the funds can be spent with the consent of all

shareholders in the privileged set {P1, P2, P3, P4}, or otherwise the
privileged P1, P35, P36, P37, P38, P39, P40 can spend the funds.

Such an access structure can be accomplished using crypto-

graphic constructions, in particularmesh signatures [17] and attribute-

based signatures [46]. However, these schemes involve bilinear

pairings and are rather complex, which entails that the on-chain

verification of such schemes will be impractical or costly.

Recently, the use of SGX has been suggested for functional en-

cryption that is far more efficient in comparison to a standard

cryptographic variant [32]. In a similar fashion, the use of SGX

for an access structure based signature scheme implies substantial

efficiency gains too. Thus, the improved efficiency applies both

to the off-chain protocol that produces signatures, and to the on-

chain cost of verifying the signature (i.e., the on-chain complexity is

reduced to just one ordinary signature verification against pk
SGX

).

The ideal functionality of Section 4 can therefore be replacedwith

an extended functionality that supports an access structure, and

the Bitcoin protocol of Fig. 8 will essentially remain the same. This

is because the off-chain complexity of creating the signature will

be handled by the SGX enclave code, and the on-chain complexity

will be absorbed into a verification against pk
SGX

.

It is worth considering whether it is inherently that case that

the high efficiency requires SGX, or whether it is possible to design

a cryptocurrency with built-in support to access structure based

signatures. In fact, certain support is offered via the use of Merkl-

ized Abstract Syntax Trees [41, 64] and Schnorr aggregate signa-

tures [79]. As in the “Large multi-signature constructs” of [41], we

can for example have a Merkle tree with 2+
(
40

35

)
−
(
36

31

)
−
(
33

28

)
+
(
30

25

)
<

2
18

leaves, such that all but two of the leaf nodes require a mul-

tisig by a specific subset of {P1, P2, . . . , P40} of size 35 (excluding
subsets that already include the privileged sets {P1, P2, P3, P4} and
{P1, P35, P36, P37, P38, P39, P40}, without double counting), put only
the root hash on the blockchain, and expect a valid Merkle authen-

tication path to spend the coins. Further, the script of the leaf can

use a single aggregated public key that is created from the public

keys of the 35 signers (using delinearization [13, 74]), so that the

on-chain complexity is on par with that of verifying one ordinary

signature. Regarding the total on-chain complexity, we have that

transaction that spends the funds consists of one aggregated signa-

ture for the leaf node and a Merkle authentication path of 18 sibling

hashes.

However, per the discussion of OP_EVAL in [41], the use of a

Merklized Abstract Syntax Trees becomes significantly more chal-

lenging for a predicate that involves a more complex relation than

a logical OR among the leaves. For instance, if the access structure

specified that P1, P2, P3 must consent, and either P4, P5 or P6, P7

must also consent, then this cannot be handled by the implementa-

tion of [41]. By contrast, SGX can handle this instance just as easily

as the previous example.

As the above discussion illustrates, harnessing SGX to spend

funds according to an access structure can be highly useful even

for a cryptocurrency with a Turing-complete scripting language

(such as Ethereum). Let us point out that as long as [79] is not

yet operational, it can be quite beneficial to employ SGX even for

threshold signatures, since an ECDSA threshold scheme (without a

trusted dealer) is rather complex, cf. [33].

The use of access structures in a cryptocurrency can also incor-

porate a notion of time, which in turn can help to avoid system

paralysis that is caused by disagreement together with the disap-

pearance of some players. For instance, the functionality can require

75% of the active players to agree on how to spend the funds, but

require only 50% of the active players after one year, and only 20%

after three years. In the UTXO model of Bitcoin, this can be accom-

plished via trusted hardware: whenever the players agree to spend

the funds they will specify absolute timeouts for the 50% and 20%

cutoffs (using CLTV [71]), and whenever the SGX enclave is asked

to remove an incapacitated player it will create a transaction whose

output hardcodes the same absolute timeouts as the input that is

being spent. If the access structures for the different points in time

are complex, the trusted hardware based implementation will be

particularly beneficial (otherwise covenants could be used).

F DAILY WITHDRAWAL LIMIT USING SGX
Let us consider a functionality F

daily
that allows N shareholders

to spend the funds if at least µN of them reach an agreement (for

µ ≤ 1), and allows each individual shareholder to spend a small

portion of the funds (e.g., 0.1%) each day.Moreover, the functionality

allows ρN shareholders to disable the daily spending of funds by

individual shareholders (for ρ ≤ µ, which is useful in the case that

some shareholders appear to spend too much). By using ρ < µ, it is
easier to block the daily withdrawals than to reach consensus on a

large expenditure.

It may be quite useful to combine F
daily

with a functionality for

paralysis proofs, but for simplicity we focus in this section on a bare

implementation of just F
daily

itself. Given an expressive enough

covenants support for Bitcoin (such as [43]), it is possible — though

quite complex — to implement F
daily

using similar methods to the

ones that we describe in Appendix C. However, let us present here

the more efficient implementation that relies on trusted hardware,

and can be deployed on the current Bitcoin mainnet.

The SGX-based protocol Π
daily

that implements F
daily

is given

in Fig. 12.

Since Bitcoin outputs must be fully consumed, Π
daily

does not

realize F
daily

exactly, but instead lets each one of the shareholders

perform a daily withdrawal, in sequential order. Thus, the first

shareholder has the privilege to withdraw a small amount on the

first day, the second shareholder can withdraw a small amount on

the second day, the third shareholder on the third day, and so on. If

for example the third shareholder did not withdraw, then on the

forth day any single shareholder can withdraw a small amount (on

a first come first served basis), but on the fifth day the sequential

18

Paralysis Proofs: Secure Dynamic Access Structures for Cryptocurrency Custody and More

Protocol Πdaily
1 : Hardcoded:

{
pki

}N
i=1 , µ, ρ, Vmax, ∆, ∆

′

2 : Init:

3 :

Setup: securely generate and share (sk
SGX

, pk
SGX
), (sk

SGX
0
, pk

SGX
0

) and{
(sk

SGXk , pkSGXk)
}N
k=1

among the enclaves.

4 : Let ϕµ ≜ [µN -out-of-N multisig among pk
1
, pk

2
, . . . , pkN].

5 : For j ∈ [N], letψj ≜ [ϕall ∨ pkSGX ∨ (pkSGX
0

∧ (CSV ≥ ∆)) ∨ (pk
SGXj ∧ (CSV ≥ ∆′))].

6 : {Pi } escrow UTXO
fund

by publishing ⟨UTXO
fund
→ (V , ψ1)⟩.

7 : Spend:

8 : {Pi } send µN signatures, the escrowed (V , ψcurr), and Tnew to the enclave.

9 : The enclave returns a signed transaction t = ⟨(V , ψcurr) → Tnew ⟩.

10 : Daily withdrawal:

11 : Pk sends a signed request with the escrowed (V , ψcurr) and (V ′, T ′) to the enclave.

12 : The enclave verifies thatV ′ ≤ Vmax .

13 : The enclave fetches curr by parsingψcurr .

14 : If k = curr then sk := sk
SGXk else sk := sk

SGX
0
.

15 : If k < N then ℓ := k + 1 else ℓ := 1.

16 : The enclave uses sk to create the signed transaction

17 : t = ⟨(V , ϕcurr) → (V −V ′, ψℓ), (V ′, T ′)⟩, and returns t .

18 : Disallow daily withdrawals:

19 : {Pi } send ρN signatures and the escrowed (V , ψcurr) to the enclave.

20 : The enclave returns a signed transaction t = ⟨(V , ψcurr) → (V , [ϕ
all
∨ pk

SGX
])⟩.

Figure 12: An SGX-based realization of Fdaily.

order resumes and the forth shareholder will have the privilege to

withdraw.

It should be noted that in a cryptocurrency that uses the accounts

model rather than the UTXO model (e.g., Ethereum), a more expres-

sive realization of F
daily

is possible. E.g., multiple shareholders can

withdraw small amounts as long as the daily limit has not yet been

reached.

The gist of Π
daily

is an embedding of a public key pk
SGXj

into

the spending transaction, corresponding to the shareholder Pj who
currently has the daily withdrawal privilege. Since the secret key

skSGXj is known only to the SGX enclave, Pj cannot spend the

funds arbitrarily, but instead has to submit to enclave a request to

spend a small amount V ′ of the V coins to an arbitrary destination

T ′. The enclave will thus also produce a new output for the rest of

the V −V ′ funds, with pk
SGXj+1

embedded into it.

Since Pj may not necessarily wish to withdraw, the output that

the enclaves produces also allows spending of a small amount with

a special master public key pk
SGX0

, but only after a relative timeout

of ∆ blocks (since Bitcoin blocks are created once every 10 minutes

on average,∆ = 144 blocks implies≈ 1 day). Hence, any shareholder

who submitted a request to withdraw from the current funds will

be able to spend the signed transaction that the enclave produced

for her, but only after ∆ blocks so that Pj has the opportunity to

spend first.

In case µN shareholders wish to spend an arbitrary amount, or in

case ρN shareholders wish to disable the daily withdrawal feature,

they can submit their µN (or ρN) signatures to the enclave and

receive a signed transaction that takes precedence over any daily

withdrawal transaction. This is accomplished by using a small rela-

tive timeout ∆′ in the condition that allows the current privileged

shareholder to perform a daily withdrawal, so that the transaction

that was agreed upon by µN (or ρN) shareholders can be incorpo-

rated into the blockchain earlier (e.g., ∆′ = 3 is reasonable).

Other parts of the Π
daily

protocol (in particular the setup proce-

dure) are identical to ΠSGX, see Section 4 for details.

19

	Abstract
	1 Introduction
	1.1 Our work
	1.2 Approach overview and challenges
	1.3 Improved digital asset custody with DASS
	1.4 Contributions

	2 Background
	2.1 Trusted Execution Environments and SGX
	2.2 Bitcoin
	2.3 Smart contracts
	2.4 Censorship-resistant stateful channels

	3 Dynamic Access Structure Systems
	3.1 Policy specification
	3.2 Security definitions for a DASS

	4 Paralysis Proofs for Cryptocurrencies
	4.1 System model and trust assumptions
	4.2 Protocol details
	4.3 Security of SGX
	4.4 Minimizing trust in TEEs
	4.5 Implementation

	5 Extended Paralysis Proofs: the case of custodian paralysis
	5.1 Motivation
	5.2 Protocol
	5.3 Extensions

	6 Paralysis within Smart Contracts
	6.1 Motivation
	6.2 Protocols

	7 Related Work
	8 Paralysis Proof Systems Beyond Cryptocurrencies
	9 Conclusion
	References
	A Additional Formalism
	B Security proofs
	B.1 Construction of Sim.
	B.2 Validity of Sim.

	C Paralysis Proofs for Bitcoin via Covenants
	D Purely script-based Paralysis Proofs for Bitcoin
	E The complexity of access structure realizations
	F Daily withdrawal limit using SGX

