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1 Introduction 

In 2007, Harold Edwards [5] proposed a new normal form for elliptic curves. By 

generalizing an example originally from Euler and Gauss, Edwards introduced a 

new addition law for the curves �� + �� = ��(1 + ����) defined over a non-

binary field �. Although the paper of Edwards did not focus on applying this 

normal form of elliptic curves in cryptography, but gradually, with subsequent 

studies, this form has shown desirable and useful cryptographic properties by 

comparison with Weierstrass normal form. 

Following this work, in [1, 2, 3, 4] Bernstein et al. generalized Edwards's 

study to generality of curves given by an equation of the form ��� + �� = 1 +

����� with � ≠ �,�,� ∈ �\{0}. They combined the Edwards's idea of  addition 

formula and dual addition law which was proposed by Hisil et al. in [6] to propose 

the unique formula for both addition and doubling laws. This is essential proposal 

to result a group structure for a set of points on twisted Edwards curves in general, 

and Edwards curves in particular. This unique formula is a basic concept to use the 

normal form of Edwards in cryptography to be against channel attacks that exploits 

a power difference in computation between addition and doubling formulae. 
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The use of addition law, Bernstein et al. [2] showed a parameterization 

method of Edwards curves so that they have torsion subgroups given on the 

rational field ℚ. However, authors only presented the parameterization for two 

case of torsion subgroups ℤ 12ℤ⁄  and ℤ 2ℤ⁄ × ℤ 8ℤ⁄ . In this paper, we present this 

method for remaining of torsion subgroups which are ℤ 4ℤ⁄ , ℤ 8ℤ⁄ , and ℤ 2ℤ⁄ ×

ℤ 4ℤ⁄ . 

The rest of paper is constructed as follow. The section II presents basic 

concepts of the normal form of Edwards curves, i.e. Edwards and twisted Edwards 

curves. The next section presents the parameterization of Edwards curves to have 

torsion subgroups given on ℚ. In the section IV, we summarize the main results of 

paper. 

2 Edwards normal form 

2.1 Definitions 

In this section, we present Edwards curves and twisted Edwards curves from the 

general form of Bernstein et al. [1]. 

Definition 1 ([1]). Let � be a field whose characteristic is not 2, and an element 

� ∈ �\{0,1}. The Edwards curve with coefficient �, called ��,� , is a curve given 

by an equation 

��,�:�
� + �� = 1 + �����. 

A Twisted Edwards curve with coefficients �,�, called ��,�,�, is a curve given by 

an equation  

��,�,�:��
� + �� = 1 + �����, 

where �,� ∈ �\{0},� ≠ �. 

Definition 2 ([1]). Assuming that � is a curve over �. A quadratic twist of � is a 

curve �′ that is isomorphic to � on the Galois field �/� with [�:�]= 2. 

It can be easily seen that the twisted Edwards curve ��,�,�:��
� + �� = 1 +

����� is  a quadratic twist of the Edwards curve ��,�/�:�
� + �� = 1 +

(�/�)����. The map (�,�)⟼ ��√�,�� = (�,�) is an isomorphism from ��,�,�  

to ��,�/�  over the Galois field ��√��. Therefore, if � is a square in � then ��,�,�  is 

isomorphic to ��,�/�  on �. 
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Here is a definition of Montgomery elliptic curve that is necessary for results 

represented in next sections. 

Definition 3 ([1]). The Montgomery curve, �� ,�,� , defined over a field � is a curve 

given by an equation 

�� ,�,�:��
� = �� + ��� + �, 

where � ∈ �\{−2,2} and � ∈ �\{0}. 

Due to � ∈ �\{0}, we can divide two sides of this equations by ��, and get 
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Set � =
�

�
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�
, we get an equation of Weierstrass form 

�� = �� +
�

�
�� +

1

��
�. 

Therefore, a map (�,�)⟼ �
�

�
,
�

�
� transforms a curve of Montgomery to a 

Weierstrass form. In other words, a Montgomery curve is a particular case of 

elliptic curves with general Weierstrass form. 

The next lemma gives a relationship between a twisted Edward curve and a 

Montgomery curve. 

Lemma 4 ([1, Theo.3.2]) Every twisted Edwards curve ��,�,�  over � is 

birationally equivalent to a Montgomery curve �� ,�,�:��
� = �� + ��� + �, 

where � = 2(� + �) (� − �)⁄  and � = 4 (� − �)⁄ . 

2.2 Addition Laws 

Bernstein et al. [1] constructed the addition law on twisted Edwards curve which is 

a generality of the addition formula of Edwards presented in [5]. 

Definition 5 ([1]). Let � be a field with �ℎ��(�)≠ 2, and ��,�,�:��
� + �� = 1 +

�����, with �,� ∈ �, ��(� − �)≠ 0 is a twisted Edwards curve over �. Let 

(��,��),(��,��) be two points on ��,�,� . Then the sum of these points over ��,�,�  

is defined by 

(��,��)= (��,��)+ (��,��)			 = �
���� + ����
1 + ���������

,
���� − �����
1 − ���������

�. 
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The neutral element is (0,1), and the negative of (��,��) is �– ��,���. 

As it was shown by authors in [1], the addition law in Definition 5 is correct 

and complete if � is a square in � and � is a nonsquare in �, i.e. the addition law is 

well-defined on every pair of points on twisted Edwards curve ��,�,� . Moreover, 

this law works for doubling, i.e. the case in which (��,��)= (��,��). However, 

there is a case in which this addition is not well-defined, i.e. denominators in the 

above formula equal 0, in other words ��������� ∈ {−1,1}. The following lemma 

shows particular cases of the exception. 

Lemma 6. Let ��,�,�  be a twisted Edwards curve over �. Assuming there exists 

�,� ∈ � such that �� = �,�� = �. Given two arbitrary points (��,��),(��,��) on 

the curve. Then, ��������� ∈ {−1,1} if and only if (��,��)∈ � in which � is a set 

of points �
�
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Proof. Necessity: Assume that ��������� ∈ {1,−1}. Then, ��,��,��,�� ≠ 0, and 

if we fix ��,��, then ��,�� are roots of the system of equations 

�
(1 − ���������)(1 + ���������)= 0

���
� + ��

� = 1 + ���
���

�.
 

By solving the system of equations above, we get (��,��) being points given by 

the statement of the lemma. 

Sufficiency: Conversely, by substituting the points of � for (��,��), we compute 

and get directly results from the lemma. 

It can be easily seen that the addition law in Definition 5 contains two 

coefficients �,� of the curve. By a requirement to reduce a dependence on these 

coefficients when computing the addition law, Hisil, Carter, Wong, and Dawson in 

[6] built a new addition law, called Dual Addition as follows: 

(��,��)= (��,��)+ (��,��)= �
���� + ����
���� + �����

,
���� − ����
���� − ����

�. 

This addition formula only depends on a unique coefficient � of the curve. The 

authors in [6] have shown that, this formula and the addition law in Definition 5 

have the same results when the both are defined. However, there is a weakness of 
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the Dual addition that it does not work for doubling computation: if (��,��)=

(��,��) the computation of second coordinate (���� − ����) (���� − ����)⁄  

results 0/0. Despite of this weakness, the well-defined of dual addition have 

advantages on an efficient of computation [6]. 

Similar to the addition in Definition 5, we indicate exception cases of the 

dual addition on the twisted Edwards curve when �,� are squares on �. 

Lemma 7 ([6, Theo.2]). With an assumption similar to Lemma 6, then (���� +

�����)(���� − ����)= 0 if and only if (��,��)∈ �′, where �′ is a set containing 

points (��,��), (−��,−��), �
��

�
,− ����, �

���

�
,����, �

�

���
,
�

���
�, �

��

���
,
��

���
�, 

�
�

����
,
��

���
�, �

��

����
,
�

���
� if they are well-defined. 

2.3 A complete addition formula 

In the previous subsection, we represent two addition formulas on the twisted 

Edwards curve. However, as seen on Lemmas 6 and 7, both of these formulas have 

drawbacks that exists exception cases to not make the addition work. It means that 

they are not a well-defined operation on a set of points, called ��,�,�(�), of twisted 

Edwards curve ��,�,�  with �,� ∈ �\{0},� ≠ � arbitrary. To overcome this 

drawback and construct a binary operation on the whole set of points of the twisted 

Edwards curves, D.J. Bernstein and T. Lange [4] provide a solution as follows. 

They embed the set of twisted Edwards curve ��,�,�  into in ℙ� × ℙ�, and indicate 

cases in which the addition law in Definition 5 does not work to use the formulae 

of  Dual addition and vice versa. Then the addition law is really a binary operation 

on the whole set of points of the twisted Edwards curves. 

Fixed a twisted Edwards curve, ��,�,� , defined by an equation  

��,�,�:��
� + �� = 1 + ����� 

over the field � whose characteristic is not 2, �,� ∈ �\{0}, � ≠ �. The projective 

closure of ��,�,�  in ℙ�
� × ℙ�

�  is  

���,�,�(�)= �
�(�:�),(�:�)� ∈ ℙ�

� × ℙ�
�:

����� + ���� = ���� + �����
�. 

Each point (�,�) on affine curve ��,�,� , embedded as usual into ℙ�
� × ℙ�

�  by 

(�,�)⟼ �(�:1),(�:1)�. Conversely, a point �(�:�),(�:�)� ∈ ���,�,�(�) with 
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�� ≠ 0 is corresponding to a point of coordinate (� �⁄ ,� �⁄ ) on affine curve 

��,�,� .  

For �� = 0, we consider two cases (�:�)= (1:0) or (�:�)= (1:0). 

If (�:�)= (1:0) the equation of the curve becomes ��� = ���. Then, we 

have two points �(�:�),(�:�)� = �(1:0),�±��/�:1��, and these points are 

defined over the extension field ����/��. The authors in [4] shows that these 

points correspond to (1:0:0) in projective closure of ��,�,�  in ℙ�. 

If (�:�)= (1:0), then the equation of the curve becomes �� = ���. Then, 

we also have two points �(�:�),(�:�)� = ��1:±√��,(1:0)�, and these points 

are defined over the extension field ��√��. The authors in [4] also shows that 

these points correspond to (0:1:0) in projective closure of ��,�,�  in ℙ�. 

 By using the represent of coordinating points, the authors [4] proved the 

following results to construct a complete addition law over twisted Edwards 

curves. 

Theorem 8 ([4, Theo.6.1]). Let ��,�,�  be a twisted Edwards curve defined over �. 

Assuming ��,�� ∈ ���,�,�(�) with �� = �(��:��),(��:��)� and 

�� = �(��:��),(��:��)�. We define 

�� = �������� + �������� 

�� = �������� + ��������� 

�� = �������� − ��������� 

�� = �������� − ���������; 

and  

��
� = �������� + �������� 

��
� = ��������� + �������� 

��
� = �������� − �������� 

��
� = �������� − ��������. 

Then, ����
� = ��

��� and ����
� = ��

���. Moreover, at least one of following case are 
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hold: 

 (��,��)≠ (0,0) and (��,��)≠ (0,0), 

 (��
�,��

�)≠ (0,0) and (��
�,��

�)≠ (0,0). 

By the above theorem, an addition law over twisted Edwards curve is 

constructed as follow. 

Theorem 9 ([4, Theo.6.2]). Let ��,�,�  be a twisted Edwards curve and define 

��,��,��,��,��,��,��
�,��

�, ��
�,��

� as in Theorem 8. Define �� = �� + �� as follow: 

 �� = �(��:��),(��:��)� if (��,��)≠ (0,0) and (��,��)≠ (0,0); 

 �� = �(��
�:��

�),(��
�:��

�)� if (��
�,��

�)≠ (0,0) and (��
�,��

�)≠ (0,0); 

 If both cases are applicable, then �� is defined arbitrarily by one of the 

above definitions. 

Then �� ∈ ���,�,�(�). 

Then, we have a fact on the set of points over twisted Edwards curve. 

Theorem 10 ([4, Theo.7.1, 7.2]). By the addition law defined as in the Theorem 9, 

the set of points ���,�,�(�) is an Abel group whose neutral element is 

�(0:1),(1:1)� and the negative of �� = �(��:��),(��:��)� is 

�(−��:��),(��:��)�. Moreover, the group ���,�,�(�) is isomorphic to ��� ,�,�(�), 

where  

��� ,�,�(�)= �
(�:�:�)∈ ℙ�

�:

���� = �� + ���� + ���
� 

is the projective closure in ℙ�
�  of the Montgomery curve 

�� ,�,�:��
� = �� + ��� + �, 

with � = 2(� + �) (� − �)⁄  and � = 4 (� − �)⁄ . 

 By a directive way of computation, we can determine particular points of 

low order in the group ���,�,�(�) of a twisted Edwards curve. 

Theorem 11 ([2, Theo.3.1, 3.2, 3.3]). Assume that ��,�,�:��
� + �� = 1 + ����� 

is a twisted Edwards curve over � whose �ℎ��(�)≠ 2. Then: 

1. The point of order 1 or the neutral element in ���,�,�(�) is �(0:1),(1:1)�. 



8 
 

2. The points of order 2 in ���,�,�(�) are: 

 �(0:1),(−1:1)�. 

 �(1:0),�±��/�:1�� if �/� = ��,� ∈ �. 

3. The points of order 4 in ���,�,�(�) are: 

 ��1:±√��,(0:1)� if � = ��,� ∈ �. 

 ��1:±√��,(1:0)� if � = ��,� ∈ �. 

 ��±�− � �⁄ :1�,�±√�:1�� if � �⁄ = ��, � and − � �⁄  are squares in �, 

where the signs may be chosen independently. 

4. The points of order 8 in ���,�,�(�) doubling to ��1:±√��,(1:0)� are: 

 �(�:1),(±��:1)� with �� = �, � ∈ �, satisfied ���� − 2��� + 1 = 0. 

5. The points of order 8 in ���,�,�(�) doubling to ��1:±√��,(1:0)� are: 

 �(�:1),(1:±��)� with �� = �, � ∈ � satisfied ���� − 2��� + 1 = 0. 

6. The points of order 3 in ���,�,�(�) are: 

 �(�:1),(�:1)� with �,� ∈ �\{0} satisfied ��� + �� = 1 + ����� =

−2�. 

3 Parameterization of Edwards curves with torsion subgroups given over 

 rational field ℚ 

Assuming that ℰ is an elliptic curve over the rational field ℚ, and notate ℰ(ℚ) be a 

group of points of this curve. According to the Mordell-Weil theorem ([7, 

Theo.8.17]), we have ℰ(ℚ) to be a finitely generated abelian group. In particular, 

using the theorem on structure of a finitely generated abelian group ([7, 

Theo.B.4]), it can be shown that  

ℰ(ℚ)≅ ℰ���(ℚ)⊕ ℤ�, 

in which ℰ���(ℚ) notates a finite subgroup, called torsion subgroup of the elliptic 

curve ℰ over ℚ, and �≥ 0 is an integer, called the rank of ℰ(ℚ). In a simple way, 
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it can be called that ℰ���(ℚ) is the torsion part and ℤ� is the free part of the 

group of points on elliptic curve ℰ(ℚ). Therefore, to determine the group of points 

of elliptic curves over ℚ, we must identify the torsion subgroup ℰ���(ℚ) and the 

free rank �. In this section, we consider the  torsion subgroup of curves of Edwards 

forms. 

 Related to the structure of torsion subgroups on elliptic curves over the field 

ℚ, the following classical theorem, called Mazur Theorem, indicates that 

Theorem 12 (Mazur Theorem [7, Theo.8.11]). Let ℰ be an elliptic curve defined 

over ℚ. Then the torsion subgroup, ℰ���(ℚ), of ℰ(ℚ) is isomorphic to one of the 

following: 

ℰ���(ℚ)≅ �
ℤ �ℤ⁄ ,���ℎ	1 ≤ � ≤ 10	��		� = 12
ℤ 2ℤ⁄ × ℤ 2�ℤ⁄ ,			���ℎ		1 ≤ � ≤ 4.

 

 Now, we consider a case of Edwards � defined over the field � = ℚ with 

� ∈ ℚ\{0,1}. We consider following note. 

Note 13. Asssume that �:�� + �� = 1 + ����� is an Edwards curve defined over 

ℚ with � ≠ 0,1. Then, from Theorem 10, the point group of  � is isomorphic to the 

point group of the elliptic curve  

�� ,�,�:��
� = �� + ��� + �, 

where � = 2(1 + �) (1 − �)⁄  and � = 4 (1 − �)⁄ . The map (�,�)⟼ (�,�)=

�
�

�
,
�

�
� transform �� ,�,�  into an elliptic curve of Weierstrass form.  

ℰ:�� = �� +
�

�
�� +

1

��
�, 

or 

ℰ:�� = �� +
1 + �

2
�� +

(1 − �)�

16
�. 

Then, we have an isomorphism 

����(ℚ)≅ ℰ���(ℚ). 

According to the Case 3 of Theorem 11, the Edwards curve � always has a point of 

order 4 that is (1,0), in other words, it is �(1:1),(0:1)�, so from Mazur’s 

Theorem, it follows that, the torsion subgroup ����(ℚ) of � can only be 
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isomorphic to one of groups ℤ 4ℤ⁄ , ℤ 8ℤ⁄ , ℤ 12ℤ⁄ , ℤ 2ℤ⁄ × ℤ 4ℤ⁄  or ℤ 2ℤ⁄ ×

ℤ 8ℤ⁄ . 

Mazur’s Theorem and Note 13 give us the possibility of torsion subgroup 

����(ℚ) of Edwards curve defined over ℚ without knowing of what parameters to 

provide that torsion subgroup. To solve this, in [2] the authors point out the 

parameterization of Edwards curves whose torsion subgroups are ℤ 12ℤ⁄  and 

ℤ 2ℤ⁄ × ℤ 8ℤ⁄ , respectively. The following theorems provides of particular results. 

Theorem 14 ([2, Theo.6.4]). The Edwards curve �:�� + �� = 1 + ����� defined 

over ℚ has a point of order 3, or equivalently, the torsion subgroup ����(ℚ) of � 

is isomorphic to ℤ 12ℤ⁄   if and only if 

� =
(1 + ��)�(1 − 4� + ��)

(1 − �)�(1 + �)�
,					∀� ∈ ℚ\{0,±1}. 

Theorem 15 ([2, Theo.6.9]). The Edwards curve �:�� + �� = 1 + ����� defined 

over ℚ has torsion subgroup ����(ℚ) isomorphic to ℤ 2ℤ⁄ × ℤ 8ℤ⁄  and has points 

of order 8 doubling to (±1,0) if and only if  

� =
(�� − 2)�(�� + 4� + 2)�

(�� + 2� + 2)�
,∀� ∈ ℚ\{−2,−1,0}. 

 For the remaining of paper, we present the parameterization of Edwards 

curves defined over ℚ whose torsion subgroups are ℤ 4ℤ⁄ , ℤ 8ℤ⁄  or ℤ 2ℤ⁄ × ℤ 4ℤ⁄ , 

respectively. 

Theorem 16. The Edwards curve �:�� + �� = 1 + �����, � ∈ ℚ\{0,1} has 

torsion subgroup ����(ℚ) isomorphic to ℤ 8ℤ⁄  if and only if � is not square in ℚ 

and � = (2�� − 1) ��⁄  where � ∈ ℚ\{0,±1}. 

Proof. Necessity: Assume that an Edwards curve �:�� + �� = 1 + ����� defined 

over ℚ such that  

����(ℚ)≅ ℤ 8ℤ⁄ . 

Due to ℤ 8ℤ⁄  has only a point of order 2, so the group of points of � are the same. 

By the second case of Theorem 11, � has a point of order 2 which is (0,−1), it 

means the point �(0:1),(−1:1)�, and it is a unique point of order 2 on � if and 

only if � is not a square. In addition, with this value of �, � has only two points of 

order 4 by the third case of Theorem 11 which are (1,0) and (−1,0). Now, we 
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assume � be a point of order 8 of �. Following the fourth case of Theorem 11, we 

have � = (�,±�) where � ∈ ℚ\{0} satisfying the equation ��� − 2�� + 1 = 0. 

Due to � is a point on �, so we must have � ≠ ±1, because if it is not, it leads to 

� = 1, that is against the assumption of � ≠ 1. Moreover, the curve equation 

results to � = (2�� − 1) ��⁄  and ��� +
�

��
= 2. We rewrite ��� − 2�� + 1 =

��� − ���� +
�

��
��� + 1 = ���(� − �)(� + �)−

(���)(���)

��
= (� − �)(� +

�)���� −
�

��
�. Because � is not a square, so that ��� −

�

��
≠ 0 in ℚ. So, the 

equation ��� − 2�� + 1 = 0 has only two roots � and – �, and by the Theorem 

11, � has only four points of order 8: (�,�), (�,−�), (−�,−�) and (−�,�). 

 Therefore, if ����(ℚ)≅ ℤ 8ℤ⁄ , � must satisfy to be not a square in ℚ and 

� = (2�� − 1) ��⁄  with � ∈ ℚ\{0,±1}.  

Sufficiency: Conversely, if � = (2�� − 1) ��⁄  for � ∈ ℚ\{0,±1} and � is not a 

square. So � ≠ 0,1. Then the Edwards curve defined over ℚ 

�:�� + �� = 1 + ����� 

has only a point of order 2 and two points of order 4 because of Theorem 11. 

Moreover, by assumption � = (2�� − 1) ��⁄  leads to � satisfies the equation 

��� − 2�� + 1 = 0 so, by the Theorem 11, it implies that (�,±�) are points of 

order 8 on �. Due to � is not a square, the equation ��� − 2�� + 1 = 0 has only 

two roots of � and – � in ℚ. Therefore, all of points of order 8 of � are (�,�), 

(−�,−�), (�,−�), and �–�,��. Lastly, we use the Mazur's theorem to get 

����(ℚ)≅ ℤ 8ℤ⁄ . 

 

Theorem 17. The Edwards curve �:�� + �� = 1 + ����� defined over ℚ has the 

torsion subgroup ����(ℚ) isomorphic to ℤ 2ℤ⁄ × ℤ 4ℤ⁄  if and only if � = �� where 

� ∈ ℚ\{0} such as (���� − 2�� + 1)(���� − 2���� + 1)≠ 0 for all � ∈ ℚ. 

Proof. Necessity: Assume an Edwards curve � has a torsion subgroup ����(ℚ)≅

ℤ 2ℤ⁄ × ℤ 4ℤ⁄ . Then, due to ℤ 2ℤ⁄ × ℤ 4ℤ⁄  has only three points of order 2, four of 

order 4, and no points of order 8, it is the same for �. According to Theorem 11, 

this case appears if and only if � ≠ 0 is a square in ℚ, i.e � = �� with � ∈ ℚ\{0}. 
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Moreover, due to � does not have a point of order 8, so the equation (���� −

2�� + 1)(���� − 2���� + 1)= 0 does not have any roots on ℚ by Theorem 11. 

Sufficiency: Conversely, we have an Edwards curve �:�� + �� = 1 + ����� 

defined over ℚ in which � satisfies conditions from the theorem. Then, use of 

Theorem 11 to compute directly, we conclude the Edwards curve � to contain only 

three points of order 2, four of order 4, and no point of order 8. Therefore, by the 

theorem of Mazur, we obtain  

����(ℚ)≅ ℤ 2ℤ⁄ × ℤ 4ℤ⁄ . 

 

From the above results, we have a consequence on parameterization of 

Edwards curve over ℚ with given torsion subgroups. 

Corollary 18. Given � ∈ ℚ\{0,1}. An Edwards curve � defined over ℚ by an 

equation 

�:�� + �� = 1 + ����� 

has a torsion subgroup ����(ℚ) which is isomorphic to ℤ 4ℤ⁄  if and only if � does 

not held any conditions shown in above Theorems 14, 15, 16, 17. 

Proof. We conclude the corollary by the use of Note 13 and Theorems 14, 15, 16, 

17. 

4 Conclusion 

In this paper, we represented basic concepts on the generality of Edwards curves 

called twisted Edwards curve, and the addition law from the set of their points. The 

paper focuses on the parameterization of Edwards curves having the given torsion 

subgroup over the rational field ℚ. The main results are presented in the Theorems 

16, 17 and Corollary 18. 

 Studying the parameterization of Edwards curves to be useful in 

construction a family of Edwards curves which are suitable to cryptographic 

applications. In [2], the authors use the parameterization of Edwards curves to 

construct the suitable curves for applying in the Elliptic Curve Method (ECM) to 

factor in factorization of integer numbers.  

 However, the parameterization in this paper is considered only for the 
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Edwards curves, not for the case of twisted Edwards curves. The ability in 

cryptography application from these curves are also not mentioned. These 

problems are clearly interesting with many practical meanings that needs to further 

investigations.  
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