
Protecting Block Ciphers against Differential Fault
Attacks without Re-keying

– EXTENDED VERSION –

Anubhab Baksi1, Shivam Bhasin2, Jakub Breier2, Mustafa Khairallah3, Thomas Peyrin1,2,3

1School of Computer Science and Engineering
2Temasek Laboratories

3School of Physical and Mathematical Sciences
Nanyang Technological University, Singapore

anubhab001@e.ntu.edu.sg, sbhasin@ntu.edu.sg, jbreier@ntu.edu.sg,
mustafam001@e.ntu.edu.sg, thomas.peyrin@ntu.edu.sg

Abstract—In this article, we propose a new method to protect
block cipher implementations against Differential Fault Attacks
(DFA). Our strategy, so-called “Tweak-in-Plaintext”, ensures that
an uncontrolled value (‘tweak-in’) is inserted into some part
of the block cipher plaintext, thus effectively rendering DFA
much harder to perform. Our method is extremely simple yet
presents many advantages when compared to previous solutions
proposed at AFRICACRYPT 2010 or CARDIS 2015. Firstly,
we do not need any Tweakable block cipher, nor any related-
key security assumption (we do not perform any re-keying).
Moreover, performance for lightweight applications is improved,
and we do not need to send any extra data. Finally, our scheme
can be directly used with standard block ciphers such as AES
or PRESENT. Experimental results show that the throughput
overheads, for incorporating our scheme into AES-128, range
between ≈ 5% to ≈ 26.9% for software, and between ≈ 3.1% to
≈ 25% for hardware implementations; depending on the tweak-
in size.

I. INTRODUCTION

Physical attacks on cryptographic implementations are a
relatively new paradigm of research for the last two decades.
These attacks have achieved a huge popularity, mainly due
to their effectiveness, wide applicability and possibility of
exploiting real life vulnerabilities. Unlike classical attacks,
which rely on finding mathematical/statistical weaknesses of a
cipher, these attacks target a device performing a cryptographic
operation.

One type of physical attack, referred to as the Fault Attack
or Fault Analysis (FA) assumes more power for the attacker.
Here, Eve can tamper with the device using methods; such
as voltage glitch, LASER beam etc. This can effectively lead
the device to malfunction, thereby disturbing the execution of
the cipher. The resulting faulty output is later analyzed, which
often reveals information regarding the secret key of the cipher.

This is an extended version of the paper with same title accepted in IEEE
International Symposium on Hardware Oriented Security and Trust (HOST),
2018. This work is partly supported by the Singapore National Research
Foundation Fellowship 2012 (NRF-NRFF2012-06).

Differential Fault Attack/Analysis (DFA) is usually used
against symmetric key ciphers. It was introduced by Biham
and Shamir at CRYPTO’97 [5], and the basic idea is depicted
in Figure 1. The attacker normally injects a disturbance (fault)
near the end of a cipher execution. Then, she analyzes the
XOR difference between a non-faulty and the corresponding
faulty output, which are produced by keeping all cipher inputs
fixed. Depending on the context, she may need a few such
pairs, so she injects multiple faults while keeping the inputs
fixed. The faults are usually composed of flipping one/a few
particular bits in the cipher. Because of its immense popularity
among the research community, one can find works exploiting
DFA aimed at all major ciphers.

Round1 Roundi Roundn
Non-faulty
Ciphertext

Plaintext Comparison

Round1 Roundi Roundn
Faulty

Ciphertext

Fault

�

FIG. 1: Schematic view of Differential Fault Analysis

With the rapid advancement of fault injection techniques
and methodologies, fault attacks are considered a serious threat
to sensitive applications. This threat has motivated a chain
of research for countermeasures. However, there is no DFA
resistant cipher in existence so far; which means that the
security of the cryptosystem remains dependent on the physical
implementation of the cipher. The DFA countermeasures are
generally classified into two categories: hardware-based and
software-based. Hardware-based countermeasures can be either
detection (e.g., sensors to detect any physical stress which
could potentially result in fault injection [17], [19], [41])
or prevention (e.g., usage of a shield that blocks outside
disturbance [2]). Software-based countermeasures can be
classified into detection, infection, prevention and re-keying
methods; which are described next.

http://www.hostsymposium.org/
http://www.hostsymposium.org/

a) Detection

Fault detection aims at detecting anomalies and then
launching a defined recovery procedure. Initially, detection
countermeasures came from communication theory; based on
concurrent error detection, such as linear parity [25], non-
linear [n, k] codes [28], etc. Such codes exploit information
redundancy and are easy to implement, requiring limited
overhead. However, the protection is limited to very specific
fault models and can be broken by other easily reproducible
fault models [18]. Other detection countermeasures are based
on operation level redundancy [24]. A typical example of such
protection is duplicated computation, followed by a comparison.
The duplication can be in either space or time and thus results
in at least 100% overhead in either area or performance.

b) Infection

A typical problem with detection-based countermeasure is
that the output comparison part can be subjected to a fault
attack as well. In this case, regardless of whether they match
or not, the attacker can bypass the comparison step, forcing the
device to produce the faulty output. To overcome this situation,
infective countermeasures have been proposed in [40] for public
key cryptosystems. Several works follow this paradigm in both
public and private key systems, e.g., [14], [15], [27], [37], [39].
The main principle of the fault infection involves diffusion of
faulty value in the cipher state to prevent fault analysis. Use of
randomization has also been proposed to boost the security of
fault detection countermeasures [31]. In summary, this method
takes the difference between two computations (∆) of the
same cipher. This difference is passed to another function, τ ,
such that τ(0) = 0 and τ(∆) is a random value if ∆ 6= 0.
The output from τ is then used to mask one output. Thus, if
the outputs are identical, it is communicated. If not, the faulty
output is XORed by a random mask, so that the attacker cannot
get any information for the fault injection. However, recent
studies [1], [3], [38] show that this approach is not mature yet.

c) Prevention

Preventive countermeasures require strict design modifica-
tions to resist injected faults. They can be used to prevent
instruction skip attacks in microcontrollers. They rely on insert-
ing idempotent instructions, so that skipping one instruction
does not alter the normal flow of operation [33].

d) Re-keying

In this protocol level approach, it is assumed that a portion
of the device can be protected, whereas the rest of it is still
vulnerable to fault attack. This assumption is practical, if the
protected portion takes up a relatively small area. This concept
was first presented by Medwed et al. at AFRICACRYPT’10
[32]. The authors construct a function, g (called, re-keying
function), which takes the (fixed) master key K and a random
nonce (for every session) as input and outputs a fresh session
key K∗i for each session i. This session key is later used in
a block cipher E with plaintext Pi as: Ci = EK∗

i
(Pi). This g

does not take any additional material, is stateless and has a

low hardware footprint. The authors claim that even if g is not
cryptographically secure, this scheme is capable of thwarting
DFA and side-channel attacks.

However, this scheme has one important issue – it can only
provide birthday-bound security, being prone to collision-based
key recovery attack due to the frequent re-keying. This was
pointed out by Dobraunig et al. at CARDIS’14 [10] (discussed
in Section II-A). As an improvement, they later proposed to
replace the re-keying function with a tweakable block cipher,
with a block counter acting as a tweakable input [11] at
CARDIS’15. This work extends the security of fresh re-keying
scheme beyond birthday-bound security against side-channel
attacks. In another work, it is independently demonstrated that
a tweakable block cipher with a random (unknown) tweak
can prevent side-channel and fault attacks [34]. However, as
we point out in Section II-B tweakable block cipher based
techniques have a few drawbacks.

Research on fault protection has been rather limited. Most
common examples of fault prevention are for public key en-
cryption schemes where prevention exploits arithmetic structure
of the algorithm [12].

Our Contributions

We present a new scheme that provides a safeguard against
DFA for any block cipher (including already proposed ones) at
the expense of under utilization of bandwidth. We show that
for linear reduction of bandwidth, we gain a (sub-)exponential
safeguard against DFA. As opposed to tweakable block ciphers,
no synchronization is required between the sender (Alice) and
the recipient (Bob). Also, this construction can be used for error
detection at the recipient’s (Bob) side. Finally, it does not incur
much overhead to existing platforms (software and hardware),
and is suitable for lightweight applications. Our scheme does
not suffer from birthday bound on key size, if the tweak-in
generation functions proposed in this paper, m-sequences, are
used. To utilize the birthday bound on key size, one (with high
probability) has to repeat encryption/computation multiplied
by a sub-(exponential) factor on tweak-in size.

The rest of the document is organized as follows. Section II
gives the overall context of our scheme. Then, Section III
formally describes the scheme; followed by Section IV where
the we analyze it in details. Finally, Section V concludes the
paper.

II. BACKGROUND

A. Birthday Bound for Fresh Re-keying Schemes

In this part, we briefly describe the birthday bound for fresh
re-keying scheme [32] which is reported in CARDIS’14 [10].

The attack is done in two phases. In the first (off-line) phase,
Eve builds a table with the same plaintext P, and stores the
pairs

(Ci = EK∗
i
(P),K∗i)

in a list L, where K∗i was chosen by her. Once enough
(ciphertext, plaintext) pairs have been stored; she moves to
the next (on-line) phase. In this phase, she queries multiple

2

encryptions of the same plaintext P. As the session key K∗i
changes at every invocation, the response C′i from the block
cipher will be different each time with a high probability.
Now, if she can find one C′i matching one Ci in L; then she
recovers the corresponding session key K∗i . Because of the
birthday paradox, one can expect to find such a collision with
a significant probability if L contains 2k/2 entries with the
number of on-line queries are 2k/2; (the attack complexity
being 2 · 2k/2) where k = size of K∗i .

This attack is generic, and will anyway work, disregarding
the choice of the re-keying function g. If g is not judiciously
chosen, it may further be possible to find out the master key
from K∗i with a high probability (which was the case for [32]).

B. Tweakable Block Cipher Based Solution

The CARDIS’15 paper by Dobraunig et al. [11] attempts
to achieve beyond birthday bound security by proposing a
tweakable block cipher-based solution. The security claim by
this work depends on the existence of an ideal tweakable block
cipher.

There is a recent trend in developing tweakable block cipher
in the community (such as the XTS construction [36] or
the TWEAKEY framework [22]). The concept of tweakable
block cipher is not so old [30] and therefore, there is no
tweakable block cipher standard at the moment, which brings
up the question of which cipher to choose to simulate an ideal
primitive. Moreover, a tweakable block cipher is in general
less efficient than a classical block cipher (XTS mode involves
multiple encryptions; DEOXYS [23] ad-hoc tweakable block
cipher follows the TWEAKEY framework and requires more
rounds than its closest cipher AES).

Finally, a tweakable block cipher will likely require more
resources than a classical block cipher due to the extra tweak
input. Thus, a tweakable block cipher might not be a perfect
choice for tightly constrained devices like Wireless Sensor
Networks (WSNs) which are indeed vulnerable to side-channel
and fault attacks. Therefore, if possible, it would be more
interesting to have a protection from a classical and well studied
block cipher only. In other words, we would like to have a
protection that works for worldwide standards such as AES or
PRESENT.

C. Our Approach: Tweaking the Plaintext

The work from Dobraunig et al. [11] only deals with
resistance against side-channel attacks, although they speculate
that their method can “probably be used to rule out” DFA. Our
scheme can be thought of as a modification for any conventional
block cipher as an external add-on that can provide a safeguard
against existing DFA attacks. This scheme is easily portable
to almost any existing hardware and software with minimal
alteration. Although it could be interesting; we keep implication
of our method with respect to side-channel analysis out of scope
for this work.

Our technique, which we will refer to as the Tweak-
in-Plaintext scheme from now on, incorporates ideas from
detection (Section I). A basic requirement of DFA is to obtain

faulty and non-faulty ciphertext, corresponding to a fixed
plaintext. The plaintext is not required to be known or chosen,
but it should be kept unchanged for two encryption calls.
Tweakable block cipher based countermeasures, so far, thwart
this by modifying the key with a different tweak, each time.
Instead of doing that, we use the idea of tweaking the plaintext
(by using a ‘tweak-in’). We use the term ‘tweak-in’ instead of
the common term, ‘tweak’, so as to distinguish the use cases.

All the hardware and software detection countermeasures
rely on redundancy in one of the following parameters: area
(e.g., circuit is duplicated), power (sensors are used to detect
presence of an active fault injecting device), throughput (one
circuit is used twice). In contrast to all these existing detection
techniques, we use part of the bandwidth as a protection against
DFA, which was not studied before. We show that, with a linear
decrease in bandwidth utilization, our scheme offers safeguard
of (sub-)exponential order against DFA, depending on the
tweak-in generation mechanism.

The security of our scheme against DFA depends on two
assumptions:

(i) the underlying block cipher is an ideal block cipher,
(ii) the attacker is unable to control the tweak-in value, even

by resetting the device.
The tweak generation circuit, T , has to be small, as it was

the case for g in the re-keying scheme [32].

D. Block Cipher Modes

The employment strategy as well as the effectiveness of our
scheme depends on the corresponding block cipher mode of
operation. From our perspective, the block cipher modes of
operations can be divided into two classes, depending on how
the plaintext is processed by the sender (Alice) and recipient
(Bob). We conveniently call them non-symmetric modes and
symmetric modes respectively. The basic concepts are shown in
Figure 2: Figure 2(A) for non-symmetric modes and Figure 2(B)
for symmetric modes.

Key Key

Plaintext encrypt decrypt Plaintext
Ciphertext

(A) Operation in Non-symmetric modes

Key Key

Counter encrypt Counter encrypt

Plaintext
⊕ ⊕

Plaintext
Ciphertext

(B) Operation in Symmetric modes

FIG. 2: Two types of block cipher modes

1) Non-symmetric Modes

For the modes under this class, the plaintext is used as an
input to the actual block cipher; e.g., Electronic Codebook
(ECB), Cipher Block Chaining (CBC). Alice and Bob use
different functions: Alice uses the encrypt function for the

3

plaintext, and Bob uses decrypt function for the ciphertext.
Additionally, PMAC-like modes [8] also fall under this type,
although the same function is used at both ends.

2) Symmetric Modes

The block cipher modes where plaintext-ciphertext are used
like stream cipher belong to this class, where both Alice and
Bob use same function (both use the block cipher encrypt
function). Here the plaintext is XORed with the output of the
block cipher encrypt function. The actual input to the block
cipher is either a predetermined value or a value that depends on
plaintext history (previous blocks). Examples include Counter
(CTR), Output Feedback (OFB) and Cipher Feedback (CFB)
modes. As pointed out in [29, Section 7.1], these modes posses
inherent properties that can thwart DFA.

The scheme proposed in our paper is particularly useful when
used with non-symmetric modes, as described in Section IV-A
— IV-E. For symmetric modes, we discuss the similarities
and differences between them and the proposed scheme in
Section IV-F.

III. DESCRIPTION OF TWEAK-IN-PLAINTEXT SCHEME

As already mentioned in Section II-C, we use the concept
of tweaking the plaintext. The security claim against DFA here
depends on the assumption that a part of the plaintext (which
will be encrypted with a block cipher) is not controllable by
the attacker. Thus a tweak-in, together with the actual plaintext
(to be communicated) is used as the ‘plaintext’ input for the
underlying block cipher. The k-bit key K used in the block
cipher is not affected by the tweak-in. The basic work-flow is
shown in Figure 3. Next, we formally describe the terms.

Plaintext (P) Key (K)

Tweaked
plaintext

(TP = P ||T)
Encrypt

Tweaked
ciphertext

(TC)

Tweak-in (T)

Key (K) Plaintext (P)

Decrypt
Tweaked
plaintext

(TP)

Tweak-in (T)

/
p

/
t

/k

/
p+ t

/k

/
p

/
t

FIG. 3: Work-flow for Tweak-in-Plaintext scheme

• Tweak-in. A t-bit tweak-in T is generated from a circuit
T independently to actual plaintext to be communicated.
The attacker cannot control T .
The tweak-in value will change from one invocation of the
encryption function to another. This will guarantee that
the inputs to the block cipher are (very likely) different for
two consecutive invocations, thus making DFA impossible
to mount.
The size t of the tweak-in is public, it can be fixed depend-
ing on the desired level of security against DFA. Note that

choosing a very large value for t would be impractical as
it would result in an inefficient communication bandwidth.

• Plaintext. The p-bit ‘plaintext’, denoted by P , is the
actual message to be communicated (that Alice wants to
send to Bob).

• Tweaked plaintext. Our scheme requires the plaintext
to be concatenated with the tweak-in. This concatenated
plaintext is referred to as tweaked plaintext and is denoted
by TP (= P ||T). The size of TP (= t+ p) is equal to
that of the plaintext input size for the underlying block
cipher. The tweaked plaintext is then used as the plaintext
input for the underlying block cipher, and encrypted with
a secret key. For example, if a 16-bit tweak-in is chosen
for AES-128; then t = 16, |TP | = t+ p = 128.

• Tweaked ciphertext. The corresponding ciphertext ob-
tained from the underlying block cipher after encrypting
TP is termed as the tweaked ciphertext and is denoted
by TC (|TC| = t + p). Tweaked ciphertext is then
communicated to Bob. Upon receiving TC, Bob decrypts
it; and learns both the ‘plaintext’ P and the tweak-in T .

One similar, but different concept is proposed in [16, Algo-
rithm 1], which masks the ‘plaintext’ with a random number
r, encrypts it, and communicates r along with the ciphertext
to Bob. So, this scheme keeps the plaintext bandwidth intact
(1× utilization) but reduces communication bandwidth (12×
utilization); in contrast, our scheme typically utilizes 31

32×
to 3

4× of plaintext bandwidth (see Section IV-C) and 1×
communication bandwidth.

A. Advantages

Our scheme comes with many advantages when compared
to existing DFA countermeasures:

1) No re-keying is needed

Our proposed countermeasure does not depend on the key.
So, the re-keying concept is no longer required. Based on that
feature:

a) No need for related-key security of the internal cipher

The internal block cipher is used as is, without re-keying.
Thus, we do not need the internal cipher to resist attacks in
much stronger security models such as the related-key model.
This is particularly important as many ciphers have shown
weaknesses in the related-key model (for example, AES-192
and AES-256 are known to have weakness [6], [7]).

b) No need to recompute the key schedule every time

Our scheme offers faster performance compared to re-keying
based solution. With every re-keying, the key schedule must be
recomputed, which can have non-negligible cost. For example,
in the case of AES, the cost of the key schedule represents
about 30% of the total encryption cost [4] in software.

c) Allows implementations with wired-in key

Our scheme works fine with a fixed key and thus can be
directly used with a wired-in key. In other schemes [11], [32],

4

Base station

Protected from attackerAttacker's area of control

Sensor
node

Attacker

FIG. 4: Typical practical use case for Tweak-in-Plaintext scheme

[34], a part of the key has to be changed in every encryption,
and thus a wired-in key can not be used in this situation.

d) No need for a tweakable block cipher

As already explained (Section II-B), tweakable block cipher
might not be the perfect choice for devices. In practice, these
devices actually stand vulnerable to hardware implementation
attacks. In contrast, our method is applicable to any block
cipher; thereby giving a choice of using a common block
cipher which is well studied and standardized (like AES).

2) No need to send any extra data/ No synchronization is
required

The tweak-in is sent to the decryption party as an inherent
part of the ciphertext. As a result, we do not need to send any
other data. This is in contrast with tweak based designs, where
the tweak is to be communicated separately/synchronized.

3) Almost readily portable in existing devices

Unlike other schemes, this proposal needs minimal alter-
ations to an existing architecture from a cipher designer’s point
of view. So, as a design, it can be ported in almost all devices
without much difficulty. However, as the bandwidth utilization
is reduced, some modification at the protocol level will likely
be required.

4) Suitable for lightweight applications

Implementation of our scheme can be done with very
small overhead. Therefore, it is well suitable in lightweight
applications.

5) Can be (optionally) used for error detection

It is not needed for the tweak-in to be synchronized for
our scheme to work. However, the tweak-in can be used
for error detection at the recipient’s side, by monitoring its
values and ensuring they are generated correctly. Consider a
situation, where the recipient (Bob) gets a tweak-in T from
the sender (Alice). Now, upon receiving the ciphertext from
Alice, Bob decrypts and finds out the tweak-in T ∗ embedded
within the plaintext. If T 6= T ∗, then Bob detects an error in
the communication, which could be caused by an attacker. This
is further elaborated in Section IV-D.

B. Limitations

There are, however, a few limitations with our scheme. These
are presented below.

1) Only encryption can be protected

Our scheme can only protect the encryption circuit. Once
the ciphertext is received by the recipient, it is not within the
purview of our scheme to ascertain any protection. In other
words, we assume that the sender (Alice) only is susceptible
to fault attack, whereas the attacker (Eve) has no access to
recipient’s (Bob) end.

At a first glance this might seem to be a major drawback
for our scheme, but as we explain here, this configuration
seems to be the case in most real life scenarios. Let’s consider,
for example, the case of wireless sensor networks: a bunch
of sensors are deployed in remote areas (which she is able
to get hold of) from where they are communicating with the
base station. However, the base station is located in a secure
premises, which is off limit to the attacker. This means, she is
not able to perform any attack at Bob’s end. Refer to Figure 4
for a depiction of this scenario.

It is to be noted that our scheme can still be used with
repeaters placed in between the sensor and the base station.
Most of the repeaters are only responsible for restoring the
digital signal from its physical modulated signal and do not
perform decryption, as the routing addresses are not encrypted.
However, even if the decryption-re-encryption function is
performed, to have a successful attack, the attacker needs access
to the output of the decryption function, which is not possible
in this model. Otherwise, attacking the decryption circuit is
similar to a classical differential attack on the encryption circuit.

2) Ciphertext from the block cipher is bigger than actual
plaintext under communication

Here we are deviating a little from the classical notion of
encryption-and-decryption, where the plaintext (to be commu-
nicated) and ciphertext (which is actually communicated) are
of equal size. Under this mode, plaintext (before feeding to
the block cipher) size is smaller than that of ciphertext.

3) Not the entire bandwidth is used

A part of the information communicated is the tweak-in.
This leads to under utilization of the bandwidth. Yet, we argue
that this little performance penalty is largely compensated by
other performance (no need to compute the key schedule every
encryption for example), security, and simplicity gains.

4) Limited to DFA protection only

The proposed scheme, in its current form, addresses DFA
only. Other advanced fault attacks like biased fault attacks [9]
or ciphertext-only fault attacks [13] which do not require an
unchanged plaintext for faulty and non-faulty cipher execution,
cannot be protected by this scheme.

IV. ANALYSIS OF THE SCHEME

A. Fault Complexity Analysis

The proposed mode provides a safeguard against DFA.
In other words, it increases the number of encryptions and
comparisons required by multiplicative factor Gµ(t) and Hµ(t),
respectively, where t is the tweak-in size, µ is the number of

5

faults required for the DFA and Gµ(·) and Hµ(·) depend on
how the tweak-in is generated and on the encryption mode
used. To analyze different tweak-in generation methods, we
assume that the attacker tries to perform a conventional DFA
attack on the underlying block cipher, and to find a collision
on the tweak-in value. We also assume that the attacker can
insert faults during the block cipher execution but not during
the tweak-in generation and is limited to at most one fault per-
execution (single-fault model). The attacker finds a collision
on the tweak-in value by checking the ciphertext value and
finding a pair that is partially identical, except for the faulty
bits.

For non-symmetric modes, there are two possible models
for generating the tweak-in and the corresponding factors. In
order to attack any of them, the goal is to find µ collisions
over the tweak, which is the motivation behind the attack on
each of them.

1) Pseudo-random tweak-ins. The tweak-ins are generated
using a Pseudo-Random Function (PRF). In this model,
the user chooses a random t-bit string as the tweak-
in, every time the encryption algorithm is invoked. The
attacker’s goal is to generate a pair of faulty and non-faulty
ciphertexts, with the same tweak-in and plaintext. Due to
the birthday paradox, the average number of collisions
after n trials is approximately n2

2t . Therefore, after µ
1
2 2

t
2

encryptions, it is expected that µ collisions have occurred.
If one half of the encryptions are faulty, then, with
probability 2−µ, these collisions lead to meaningful pairs
of faulty and non-faulty ciphertexts. Overall, Gµ(t) =
µ

1
2 2µ+

t
2 encryptions are required, on average, for the

attack. For the analysis part of the attack, each non-faulty
block needs to be compared to µ

1
2 2µ+

t
2−1 faulty blocks,

leading to an overall Hµ(t) = µ22µ+t−2 comparisons.
To sum up, the attack complexity is O

(
µ

1
2 2µ+t/2

)

encryptions and O
(
µ22µ+t

)
comparisons.

2) Pseudo-random sequence of tweak-ins. The tweak-ins
are generated using a Pseudo-Random Sequence (PRS).
In this model, the attack procedure is simpler to describe.
The attacker runs 2t non-faulty encryptions to cover the
whole tweak-in space. Afterwards, the attacker runs µ
faulty encryptions that collide with the first µ non-faulty
encryptions. Overall, Gµ(t) = 2t + µ and Hµ(t) = µ.
Additionally, as long as the tweak-in does not cycle, the
attacker in this model does not learn any information.

The 1st model provides a sub-exponential safeguard in terms
of encryptions and an exponential safe-guard in terms of
comparisons; as opposed to exponential and constant safeguards
in case of the 2nd model, respectively. Hence, depending on
the underlying cipher and implementation, there is a trade-off
to be made between the first two models. It seems that the
2nd model requires more encryptions. However, the 1st model
requires higher number of comparisons and sup-exponentially
more faults.

Table I summarizes the security gains achieved in both types
with different tweak-in generation models.

TABLE I: Comparison between the Security Gains for Different
Types of Encryption Modes and Tweak-in Generation Models

Tweak-in generation
model

Required #
of faults

Required #
of encryptions

Analysis
complexity

PRF (1) O
(
µ

1
2 2µ+t/2

)
O
(
µ

1
2 2µ+t/2

)
O
(
µ22µ+t

)
PRS (2) µ O

(
2t + µ

)
µ

Security against multiple fault attacks

Independent two stage attacks, which perform DFA against
the tweak-in generation function, followed by DFA against the
underlying block cipher are not applicable. The reason is that
to launch such attacks the attacker need access to the output
of the tweak-in generation function in the first stage. However,
what the attacker sees is an encrypted version of the tweak-in
generation function output, after it passes through the block
cipher.

On the other hand, a more interesting attack is a modified
DFA attack on the block cipher itself, where instead of
generating a pair of faulty/non-faulty ciphertexts, the attacker
generates two faulty ciphertexts as follows:

1) When the tweak value is t0, the attacker injects a fault δ
in the first round of the block cipher, such that t0⊕δ = t1,
where t1 is the next tweak value. She observes the output
EK(p|t1).

2) The attacker then generates the next ciphertext EK(p|t1)
while performing the conventional fault injection required
for DFA against the block cipher without tweak-in. We
call that EfK(p|t1).

3) Using the pair (EK(p|t1), EfK(p|t1)), DFA can be per-
formed.

The success probability of this attack depends on the success
probability of the attacker to predict δ when t0 is secret. In
case the tweak generation function is a PRF (stream-cipher),
the probability should be 2−t, where t is the tweak-in bit size.
This means that such attack has no advantage over the collision
attack described in Section IV-A.

B. Tweak-ins Generation

It is to be noted that the generation of tweak-ins is the only
overhead of the proposed differential fault resistance scheme.
To keep the scheme lightweight, it is recommended to use
lightweight solutions for tweak-in generation.

Recall that the 1st model requires a PRF as a tweak-in
generator. Here, we propose several possible candidates in
this context. Generally, stream ciphers are the default choice
when it comes to lightweight PRF. Naturally, we propose a few
stream ciphers which are suitable for our scheme. Depending
on the type of platform (hardware/software), the particular
stream cipher can be chosen. For example, as the finalists of
eSTREAM project [35], HC-128, RABBIT, SALSA20/12
and SOSEMANUK are recommended for software platforms;
as these stream ciphers are well-suited for software. On the
other hand; GRAINv1, MICKEY2.0 and TRIVIUM are more
suited for hardware targets. Further, on-chip random number
generators can be also used for tweak-in generation.

6

As for the 2nd model, the requirements are slightly different.
This model requires the tweak-in to be derived from a pseudo-
random sequence. To be exact, the properties needed are:

1) Non-recurrence

All the possible values have to be generated before values
are reused, which is the only property used in the analysis in
Section IV-A.

2) Balanced Differences

The differences between every two consecutive values have
to be somewhat balanced. In other words, if the attacker does
not know the current value, she should only be able to make
a guess on the difference between the current value and next
value with probability less than ε · 2−t, where ε is small. This
property is required in order to prevent multiple fault attacks
on the tweak-in and block cipher, simultaneously, as will be
shown later. This property is also inherently fulfilled in case
of a PRF. This property can also be defined as the two-level
auto-correlation of the PRS at a phase difference of 1.

However, using a stream cipher (PRF) to generate tweak-ins
can be costly, let alone using a PRP to generate the PRS. The
good news is that there exists a simpler family of functions that
satisfies both the non-recurrence (so no birthday bound) and
balanced differences properties at a very low cost compared to
a strem cipher, at the expense of having a sequence length of
2t − 1 as opposed to 2t. This family is the Maximal Length
LFSRs, or m-sequences [21]. m-sequences satisfy Golomb’s
Randomness Postulates [20] for PRS. Among these properties,
the two-level autocorrelation is the most important.

To conclude, there is a security trade-off in the tweak-in
generation. Using a stream cipher to generate the tweak-in
provides higher DFA computational cost, but suffers from the
birthday bound over the tweak-in size and the costly stream
cipher computation. On the other hand, the birthday bound can
be removed by using a maximal length LFSR, which has much
lower cost, but the DFA computational cost will be smaller.
The last problem can be removed by reseeding the LFSR once
every 2t − 1 blocks.

C. Performance Analysis and Implementation Results

1) Hardware Implementation

In order to demonstrate the performance/area vs. security
trade-off in hardware implementations, an FPGA implementa-
tion of AES-128 with the proposed countermeasure has been
implemented, for various values of t. The AES circuit used is
the round-based multi-stream circuit described in [26]. Eight
values of t has been selected; 4, 8, 12, 16, 20, 24, 28, 32. The
tweak-in generation function is selected to be an m-sequence,
in order to minimize the implementation overhead and remove
the birthday bound on security. Hence, for every value of t,
a maximal length LFSR with minimum number of taps is
used. The design is synthesized for Virtex 6 FPGA families.
The synthesis constraints have been adjusted towards low area
implementations. All the LFSRs used can be implemented
using only 1 ∼ 3 XOR gates. Hence, they have no effect on

0 4 8 16 32
Tweak-in size t (bits)→

0

5

10

15

20

25

T
hr

ou
gh

pu
to

ve
rh

ea
d

(%
)→

Hardware
Software

FIG. 5: Throughput overhead percentage vs. Tweak-in size (t) based
on maximal length LFSRs with minimum number of taps for hardware
and software

the operating frequency and the area overhead is mainly due
to the Flip-Flops. The results show that the area overhead is
1 LUT for the combinational part of the LFSR and t Flip
Flops for storage. The area overhead increases linearly with
the tweak-in size. Table II shows the throughput/area overhead
vs. the tweak-in size. The efficiency drop is linear with respect
to the tweak-in size and the slope is not steep. On the other
hand, the number of blocks that can be encrypted between two
reseeding operations is 2t − 1. Compared to the exponential
security gain, the proposed countermeasure is considered a
lightweight countermeasure.

2) Software Implementation

The scheme has been tested on an AES-128 encryption
module running on an Atmel ATmega328P microcontroller
at operating frequency of 16 MHz, with 1 KB EEPROM, 32
KB Flash, and 2 KB SRAM. It was used to encrypt a 7 Gbit
file, using different sizes for the tweak-in: 4, 8, 16, 32. The
performance results are shown in Table III. A speed-optimized
unprotected implementation takes ≈ 100.9× 109 clock cycles
for the encryption. This includes 756 clock cycles for the initial
key expansion and 1718 per block encryption. When protected
using the 2nd, i.e., non-recurring pseudo-random sequence,
encrypting the same block takes between 106.1 × 109 and
138.3×109 clock cycles (the respective overhead is ≈ 5% to ≈
26.9%), for tweak-in sizes between 4 and 32 bits, respectively.

Figure 5 shows a comparison between the overhead of the
proposed scheme for both hardware and software. The overhead
in case of software is slightly higher, as the LFSR operation is
more costly and time consuming, while in case of hardware,
it is computed in parallel to the encryption itself.

D. Fault Detection

While the proposed construction does not require the
knowledge of the tweak-in at the recipient side, the value is
sent implicitly in an encrypted form. If the sender (Alice) and
recipient (Bob) parties share the knowledge about the tweak-in
generation method, the recipient (Bob) can compare the two
values associated with each two consecutive blocks and detect

7

TABLE II: FPGA Performance Results

Tweak-in size t (bits) 0 4 8 12 16 20 24 28 32

of blocks before reseeding — 15 63 4095 216 − 1 220 − 1 224 − 1 228 − 1 232 − 1

Virtex 6
LUT-FF pairs 589 595 599 603 607 611 615 619 623

Throughput (Gbps) 5.312 5.146 4.98 4.814 4.648 4.482 4.316 4.15 3.984

Throughput/Area (Mbps/LUT) 9.01 8.65 8.31 7.90 7.66 7.34 7.02 6.70 6.40

TABLE III: Software Performance Results

t (bits) # of encryptions # of cycles Throughput (Mbps)
0 58.7× 106 100.9× 109 1.19

4 60.6× 106 106.1× 109 1.13

8 62.6× 106 110.6× 109 1.09

16 67.1× 106 118.5× 109 1.01

32 78.2× 106 138.3× 109 0.87

whether these values conform to the pre-determined generation
method. For example, if the tweak-in is generated using an
LFSR, ∀ blocks i the associated tweak-in is Ti, and Ti+1 must
conform to lfsr(Ti) . It increases the work required by the
attacker (Eve) during fault insertion, as she has to block the
communication channel between the sender and the recipient.
Otherwise, the recipient, e.g., the base station in case of a
WSN, can easily detect the anomaly and perform necessary
countermeasures. These countermeasures may include, for
example, fixing the faulty unit or take it out of the system and
update the secret keys.

E. Security Analysis

In this section, we discuss the security of the proposed
construction regarding classical attacks, as opposed to DFAs
discussed earlier. The security relies heavily on the security of
the underlying block cipher. We discuss three security notions
below. We assume the tweak-in is known by the attacker, but
not controllable.

a) Known Plaintext Attacks (KPA)

Assuming the attacker knows the tweak-in value, a KPA
reduces to a KPA of the underlying block cipher, as the attacker
knows the whole plaintext block.

b) Chosen Plaintext Attacks (CPA)

Assuming the attacker knows the tweak-in value, a CPA
gives the attacker a partial control over the plaintext block.
This is stronger than the KPA and weaker than the CPA against
the underlying block cipher. Therefore, the security is at least
the security of the underlying cipher against CPA.

c) Chosen Ciphertext Attacks (CCA)

The CCA does not provide meaningful information regarding
the encryption side. Hence, the security against CCA relies
entirely on the security of the underlying block cipher.

F. Comparison to CTR and Other Symmetric Modes

At first, our proposed construction seems similar to the
conventional counter (CTR) mode. In this section we explain
the differences between the two constructions, which are also

applicable to symmetric modes. Despite these differences, we
acknowledge that the proposed construction is more suited
towards non-symmetric modes, where both the encrypt and
decrypt functions are used.

1) The symmetric modes require synchronization of the
initialization vector (IV) between the sender and recipient
sides, while in our construction, the tweak-in value is
mixed with the plaintext and sent to the recipient side in
an encrypted form.

2) Most of the protocols that use symmetric mode require the
IV /counter value not to be repeated for the same key. If
such requirement is fulfilled, they behave in the same way
as our construction with respect to DFA. However, this
criterion depends on the security of the synchronization
process. The attacker can try to deceive the sender into
using the same (K, IV) pair, generating a pair of faulty
and non-faulty ciphertexts. In our construction, since the
synchronization step is removed, the attacker has to rely
on the collision attacks described in Section IV-A.

V. CONCLUSION

In this paper, we propose a new scheme which acts as a
safeguard against Differential Fault Attacks (DFA). We change
a part of the plaintext (‘tweak-in’) input to the underlying block
cipher at any two consecutive encryption calls. This scheme
is very easy to implement on a common block cipher (in
both hardware and software implementation) and lightweight.
We analyze this scheme in details under two different models
for generating the tweak-in. An interesting follow-up work
could be to observe how this kind of scheme can be used as a
protection against side-channel attacks.

REFERENCES

[1] Banik, S., Bogdanov, A.: Cryptanalysis of two fault countermeasure
schemes. In: Progress in Cryptology - INDOCRYPT 2015 - 16th
International Conference on Cryptology in India, Bangalore, India,
December 6-9, 2015, Proceedings. (2015) 241–252

[2] Bar-El, H., Choukri, H., Naccache, D., Tunstall, M., Whelan, C.: The
sorcerer’s apprentice guide to fault attacks. IACR Cryptology ePrint
Archive 2004 (2004) 100

[3] Battistello, A., Giraud, C.: A note on the security of CHES 2014
symmetric infective countermeasure. In: Constructive Side-Channel
Analysis and Secure Design - 7th International Workshop, COSADE
2016, Graz, Austria, April 14-15, 2016, Revised Selected Papers. (2016)
144–159

[4] Bertoni, G., Breveglieri, L., Fragneto, P., Macchetti, M., Marchesin, S.:
Efficient software implementation of aes on 32-bit platforms. In Kaliski,
B.S., Koç, ç.K., Paar, C., eds.: Cryptographic Hardware and Embedded
Systems - CHES 2002: 4th International Workshop Redwood Shores, CA,
USA, August 13–15, 2002 Revised Papers, Berlin, Heidelberg, Springer
Berlin Heidelberg (2003) 159–171

[5] Biham, E., Shamir, A.: Differential Fault Analysis of Secret Key
Cryptosystems. In Kaliski, BurtonS., J., ed.: Advances in Cryptology

8

- CRYPTO ’97. Volume 1294 of Lecture Notes in Computer Science.
Springer Berlin Heidelberg (1997) 513–525

[6] Biryukov, A., Khovratovich, D.: Related-key cryptanalysis of the full
AES-192 and AES-256. In: Advances in Cryptology - ASIACRYPT
2009, 15th International Conference on the Theory and Application of
Cryptology and Information Security, Tokyo, Japan, December 6-10,
2009. Proceedings. (2009) 1–18

[7] Biryukov, A., Khovratovich, D., Nikolic, I.: Distinguisher and related-key
attack on the full AES-256. In: Advances in Cryptology - CRYPTO
2009, 29th Annual International Cryptology Conference, Santa Barbara,
CA, USA, August 16-20, 2009. Proceedings. (2009) 231–249

[8] Black, J., Rogaway, P.: A block-cipher mode of operation for paralleliz-
able message authentication. In: Advances in Cryptology - EUROCRYPT
2002, International Conference on the Theory and Applications of
Cryptographic Techniques, Amsterdam, The Netherlands, April 28 -
May 2, 2002, Proceedings. (2002) 384–397

[9] Dobraunig, C., Eichlseder, M., Korak, T., Lomné, V., Mendel, F.:
Statistical fault attacks on nonce-based authenticated encryption schemes.
In: Advances in Cryptology–ASIACRYPT 2016: 22nd International
Conference on the Theory and Application of Cryptology and Information
Security, Hanoi, Vietnam, December 4-8, 2016, Proceedings, Part I 22,
Springer (2016) 369–395

[10] Dobraunig, C., Eichlseder, M., Mangard, S., Mendel, F.: On the security
of fresh re-keying to counteract side-channel and fault attacks. In:
Smart Card Research and Advanced Applications - 13th International
Conference, CARDIS 2014, Paris, France, November 5-7, 2014. Revised
Selected Papers. (2014) 233–244

[11] Dobraunig, C., Koeune, F., Mangard, S., Mendel, F., Standaert, F.:
Towards fresh and hybrid re-keying schemes with beyond birthday
security. In: Smart Card Research and Advanced Applications - 14th
International Conference, CARDIS 2015, Bochum, Germany, November
4-6, 2015. Revised Selected Papers. (2015) 225–241

[12] Fouque, P.A., Lercier, R., Réal, D., Valette, F.: Fault attack on elliptic
curve montgomery ladder implementation. In: Fault Diagnosis and
Tolerance in Cryptography, 2008. FDTC’08. 5th Workshop on, IEEE
(2008) 92–98

[13] Fuhr, T., Jaulmes, E., Lomné, V., Thillard, A.: Fault attacks on aes with
faulty ciphertexts only. In: Fault Diagnosis and Tolerance in Cryptography
(FDTC), 2013 Workshop on, IEEE (2013) 108–118

[14] Ghosh, S., Saha, D., Sengupta, A., Chowdhury, D.R.: Preventing
fault attacks using fault randomization with a case study on AES. In:
Information Security and Privacy - 20th Australasian Conference, ACISP
2015, Brisbane, QLD, Australia, June 29 - July 1, 2015, Proceedings.
(2015) 343–355

[15] Gierlichs, B., Schmidt, J., Tunstall, M.: Infective computation and dummy
rounds: Fault protection for block ciphers without check-before-output.
In: Progress in Cryptology - LATINCRYPT 2012 - 2nd International
Conference on Cryptology and Information Security in Latin America,
Santiago, Chile, October 7-10, 2012. Proceedings. (2012) 305–321

[16] Guilley, S., Sauvage, L., Danger, J., Selmane, N.: Fault injection resilience.
In: 2010 Workshop on Fault Diagnosis and Tolerance in Cryptography,
FDTC 2010, Santa Barbara, California, USA, 21 August 2010. (2010)
51–65

[17] He, W., Breier, J., Bhasin, S.: Cheap and cheerful: A low-cost digital
sensor for detecting laser fault injection attacks. In: Security, Privacy,
and Applied Cryptography Engineering - 6th International Conference,
SPACE 2016, Hyderabad, India, December 14-18, 2016, Proceedings.
(2016) 27–46

[18] He, W., Breier, J., Bhasin, S., Chattopadhyay, A.: Bypassing parity
protected cryptography using laser fault injection in cyber-physical system.
In: Proceedings of the 2nd ACM International Workshop on Cyber-
Physical System Security, ACM (2016) 15–21

[19] He, W., Breier, J., Bhasin, S., Miura, N., Nagata, M.: Ring oscillator
under laser: Potential of pll-based countermeasure against laser fault
injection. In: Fault Diagnosis and Tolerance in Cryptography (FDTC),
2016 Workshop on, IEEE (2016) 102–113

[20] Helleseth, T.: Golombs randomness postulates. In: Encyclopedia of
Cryptography and Security. Springer (2011) 516–517

[21] Helleseth, T.: Maximal-length sequences. In: Encyclopedia of Cryptog-
raphy and Security. Springer (2011) 763–766

[22] Jean, J., Nikolic, I., Peyrin, T.: Tweaks and keys for block ciphers: The
TWEAKEY framework. In: Advances in Cryptology - ASIACRYPT
2014 - 20th International Conference on the Theory and Application

of Cryptology and Information Security, Kaoshiung, Taiwan, R.O.C.,
December 7-11, 2014, Proceedings, Part II. (2014) 274–288

[23] Jean, J., Nikolic, I., Peyrin, T., Seurin, Y.: Deoxys v1.4 Submission to
CAESAR.

[24] Joye, M., Manet, P., Rigaud, J.B.: Strengthening hardware aes imple-
mentations against fault attacks. IET Information Security 1(3) (2007)
106

[25] Karri, R., Kuznetsov, G., Gössel, M.: Parity-based concurrent error
detection of substitution-permutation network block ciphers. In: Crypto-
graphic Hardware and Embedded Systems - CHES 2003, 5th International
Workshop, Cologne, Germany, September 8-10, 2003, Proceedings.
(2003) 113–124

[26] Khairallah, M., Chattopadhyay, A., Peyrin, T.: Looting the LUTs : FPGA
Optimization of AES and AES-like Ciphers for Authenticated Encryption.
The 18th International Conference on Cryptology in India - IndoCrypt
(2017)

[27] Kim, C.H., Quisquater, J.: Fault attacks for CRT based RSA: new attacks,
new results, and new countermeasures. In: Information Security Theory
and Practices. Smart Cards, Mobile and Ubiquitous Computing Systems,
First IFIP TC6 / WG 8.8 / WG 11.2 International Workshop, WISTP
2007, Heraklion, Crete, Greece, May 9-11, 2007, Proceedings. (2007)
215–228

[28] Kulikowski, K., Karpovsky, M., Taubin, A.: Robust codes for fault attack
resistant cryptographic hardware. In: Fault Diagnosis and Tolerance in
Cryptography, 2nd International Workshop, Citeseer (2005) 1–12

[29] Lac, B., Canteaut, A., Fournier, J., Sirdey, R. In: DFA on LS-Designs
with a Practical Implementation on SCREAM. Springer International
Publishing, Cham (2017) 223–247

[30] Liskov, M., Rivest, R.L., Wagner, D.A.: Tweakable block ciphers. In:
Advances in Cryptology - CRYPTO 2002, 22nd Annual International
Cryptology Conference, Santa Barbara, California, USA, August 18-22,
2002, Proceedings. (2002) 31–46

[31] Lomné, V., Roche, T., Thillard, A.: On the need of randomness in
fault attack countermeasures - application to AES. In: 2012 Workshop
on Fault Diagnosis and Tolerance in Cryptography, Leuven, Belgium,
September 9, 2012. (2012) 85–94

[32] Medwed, M., Standaert, F., Großschädl, J., Regazzoni, F.: Fresh re-keying:
Security against side-channel and fault attacks for low-cost devices. In:
Progress in Cryptology - AFRICACRYPT 2010, Third International
Conference on Cryptology in Africa, Stellenbosch, South Africa, May
3-6, 2010. Proceedings. (2010) 279–296

[33] Moro, N., Heydemann, K., Encrenaz, E., Robisson, B.: Formal verification
of a software countermeasure against instruction skip attacks. J.
Cryptographic Engineering 4(3) (2014) 145–156

[34] Patranabis, S., Roy, D.B., Mukhopadhyay, D.: Using tweaks to design
fault resistant ciphers. In: VLSI Design and 2016 15th International
Conference on Embedded Systems (VLSID), 2016 29th International
Conference on, IEEE (2016) 585–586

[35] Robshaw, M., Billet, O.: New stream cipher designs: the eSTREAM
finalists. Volume 4986. Springer (2008)

[36] Rogaway, P.: Efficient instantiations of tweakable blockciphers and
refinements to modes OCB and PMAC. In: Advances in Cryptology -
ASIACRYPT 2004, 10th International Conference on the Theory and
Application of Cryptology and Information Security, Jeju Island, Korea,
December 5-9, 2004, Proceedings. (2004) 16–31

[37] Selmane, N., Bhasin, S., Guilley, S., Graba, T., Danger, J.: WDDL is
protected against setup time violation attacks. In: Sixth International
Workshop on Fault Diagnosis and Tolerance in Cryptography, FDTC
2009, Lausanne, Switzerland, 6 September 2009. (2009) 73–83

[38] Selmke, B., Heyszl, J., Sigl, G.: Attack on a DFA protected AES by
simultaneous laser fault injections. In: 2016 Workshop on Fault Diagnosis
and Tolerance in Cryptography, FDTC 2016, Santa Barbara, CA, USA,
August 16, 2016. (2016) 36–46

[39] Tupsamudre, H., Bisht, S., Mukhopadhyay, D.: Destroying fault invariant
with randomization. In: International Workshop on Cryptographic
Hardware and Embedded Systems, Springer (2014) 93–111

[40] Yen, S., Joye, M.: Checking before output may not be enough against
fault-based cryptanalysis. IEEE Trans. Computers 49(9) (2000) 967–970

[41] Zussa, L., Dehbaoui, A., Tobich, K., Dutertre, J.M., Maurine, P.,
Guillaume-Sage, L., Clediere, J., Tria, A.: Efficiency of a glitch detector
against electromagnetic fault injection. In: Design, Automation and Test
in Europe Conference and Exhibition (DATE), 2014, IEEE (2014) 1–6

9

	Introduction
	Background
	Birthday Bound for Fresh Re-keying Schemes
	Tweakable Block Cipher Based Solution
	Our Approach: Tweaking the Plaintext
	Block Cipher Modes
	Non-symmetric Modes
	Symmetric Modes

	Description of Tweak-in-Plaintext Scheme
	Advantages
	No re-keying is needed
	No need to send any extra data/ No synchronization is required
	Almost readily portable in existing devices
	Suitable for lightweight applications
	Can be (optionally) used for error detection

	Limitations
	Only encryption can be protected
	Ciphertext from the block cipher is bigger than actual plaintext under communication
	Not the entire bandwidth is used
	Limited to DFA protection only

	Analysis of the Scheme
	Fault Complexity Analysis
	Tweak-ins Generation
	Non-recurrence
	Balanced Differences

	Performance Analysis and Implementation Results
	Hardware Implementation
	Software Implementation

	Fault Detection
	Security Analysis
	Comparison to CTR and Other Symmetric Modes

	Conclusion
	References

