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Abstract: Generally ciphers project a fixed measure of security, defined by the com-
plexity of their algorithms. Alas, threat is variable, and should be met with matching
security. It is useless to project insu�cient security, and it is wasteful and burden-
some to over-secure data. BitFlip comes with threat-adjustable flexibility, established
via: (i) smart decoy strategy, (ii) parallel encryption, (iii) uniform letter frequency
adjustment – tools which enable the BitFlip user to (a) adjust its ciphertexts to
match the appraised threat, and (b) sustain security levels for aging keys. The use
of these threat-adjusting tools may be automated to allow (1) AI engines to enhance
the security service of the cipher, and (2) to enable remote hard-to-access IoT devices
to keep aging keys useful, and preserve precious energy by matching security to the
ad-hoc threat level. BitFlip may also be operated in a zero-leakage mode where no
attributes of a conversation are disclosed, up to full steganographic levels. BitFlip se-
curity is two-dimensional: intractability and equivocation, both may be conveniently
increased to meet quantum cryptanalytic attacks.

1 Introduction

BitFlip is a modern cipher representing an alternative crypto strategy, which gen-
erates security through lavish use of high quality randomness, as opposed to con-
structing ever more complex computational puzzles to frustrate the cryptanalyst.
Intractability-complexity algorithms o↵er a fixed measure of security, and so by def-
inition they over-encrypt against a low threat, and under-encrypt against a high
threat, (”dumb ciphers”). Making them wasteful and burdensome for the first case,
and useless for the latter. By contrast randomness-based ciphers, ( ’smart ciphers’),
generally can adjust the security they project by adjusting the amount of randomness
they employ, and by deploying various procedures that provide added security.
The fundamental reason for this distinction of BitFlip (as applied to most others
randomness-rich ciphers) is that this class of ciphers protects its data payload with
two security concepts, rather than the customary one. Regular ciphers generate se-
curity through mathematical intractability – the assumed di�culty to compute the
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reverse-encrypt algorithm. This, generally unproven, intractability has a finite life-
time beyond which it surrenders to faster computers and smarter math. BitFlip and
its ilk challenge the intractability-resolving cryptanalyst with a second security fence:
equivocation, the built in indeterminism which one of two or more plausible messages
was encrypted into the ciphertext. BitFlip like other randomness rich ciphers may
adjust this level of equivocation and hence adjust the level of de-facto security. See
Fig.-1.
These features renders BitFlip into a smart cipher that can be well managed by an
AI engine to dynamically meet the appraised threat head-on and e�ciently.
In this presentation we shall (i) present the ’naive mode’ for operation BitFlip, then
(ii) present how to adjust security to threat level, and (iii) how to extract indefinite
amount of security from an aging cipher key.

2 The ‘Näıve’ Mode

BitFlip is a polyalphabetic cipher described in [Samid, Popov 2017]. It operates on
plaintext messages written in letters drawn from alphabet A: {a1, a2,,,...at} comprised
of t letters. Each letter, a

i

, is associated with a unique ”letter key”, k
i

: an n-bits
bit string: a

i

! k
i

for i=1,2,...t. And is also associated with a positive integer f
i

(associated with a
i

), called ’flip ratio’, where 0  f
i

 n for i=1,2,...t.
The t letter keys and the t flip ratios comprise the secret BitFlip key, K.
The BitFlip cipher may be viewed as a forward function associating as input bit
string called ’plaintext message’ m, and an output bit string called a ’ciphertext’, c:
c = BFE(m,K); m = BFD(c,K)
Where BFE and BFD stand for BitFlip encryption and BitFlip decryption respec-
tively.
BitFlip may be implemented in a naive mode, and advanced mode.
BitFlip Naive Mode: The plaintext m is comprised of a string of letters drawn
from the alphabet A:
m = m1 || m2 || ....... || m

q

, where m
i

2 A, for i=1,2,...q
The ciphertext C is comprised of qn bits, where q is the number of letters in m. The
q n-bits long substrings are marked by order c1, c2,...cq:
C = c1 || c2 || ..... || c

q

The BitFlip cipher associates m
i

with c
i

for i=1,2,...q.
The association is defined through the ”BitFlip Encryption Rules”:

(i): a
j

= I(m
i

)
(ii): H(c

i

, k
j

) = f
j

(iii): H(c
i

, k
l

) 6= f
l

.........for all l 6= j
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where a
j

= I(m
i

) is the identity function that identifies m
i

as a particular letter a
j

2 A. And where H(x,y) is the Hamming distance between two equal size bit strings
x and y.
It is clear from this definition that the BitFlip function is not a bijection. While
every c

i

points to a single m
i

, the reverse is not true. Every m
i

may be encrypted to

✓
i

= n!/f

i

!(n-f

i

)! - �
i

distinct c
i

, where �
i

reflects the strings that fail the inequality part of the BitFlip
definition. (i=1,2,...q). It is this gross asymmetry that gives BitFlip its power.
The value of ✓

i

is maximized for f
i

=n/2, and minimized for f
i

=0, or f
i

=n. One would
tend then to choose flip ratios close to n/2, and to maximize the resultant equivoca-
tion by opting to satisfy:

1

t

i=tX

i=1

f
i

=
n

2

The BitFlip transmitter of m will encrypt m letter by letter. For each m
i

, the
transmitter would identify a

j

= I(m
i

), then it would select any of the ✓
i

substrings
as c

i

, and so on, for i=1,2,...q. The resultant c
i

strings will be concatenated to form
the ciphertext c which is transmitted to the intended recipient.
The intended recipient of the message will break c to its substrings: c = c1 || c2 ||
..... || c

q

and for each c
i

, it will rotate through the letters in A to find m
i

according
to the BitFlip Encryption Rules
The cryptanalyst is assumed to know everything about BitFlip except the value of
the key, K, namely the identities of the strings k1, k2,.... kt and f1, f2, ..... ft.
To cryptanalyze the message m from c, the cryptanalyst will have to either write a
system of multi-variate equations expressing the knowledge of c, or ”brute force” test
all the possible key values, and check for each such value whether c will evaluate into a
valid m. There are (n + log(n))t bits to identify. The q multi-variate equations express
(n+2)t string variables, accounting for flip ratios and the letter-identity function.
The nature of the BitFlip Encryption Rules impose a formidable complexity on the
algebraic approach because of how polyalphabetic BitFlip is, and because of the
inequality condition. In particular, the letter identity function a

j

= I(m
i

) represents
a t! variety. Namely, any key {k1, k2,....kt, f1, f2, ..... f

t

} will reflect t! distinct
mapping of c to m.
On the other hand, trying all keys appears open ended. Today AES is considered
secure because to test all possible 2128 key options for the smallest size key is consid-
ered out of reach. Much more so for keys comprised of 256 bits or higher. AES, being
complexity-based cannot readily increase its key size because it will slow its opera-
tion too much. By contrast, a normal BitFlip cipher operating with Hex (16 letters,
t=16), and key size n=256 bits will be comprised of (n+log(n))t = (256+8)16 = 4224
bits – an order of magnitude higher. Any mapping of c to an m will have correlated
t!=16!=2*1023 keys, representing the t! permutations between the key strings k1, k2,
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...k
t

and a1, a2,....at. So either the algebraic attack, or the brute force key testing
attack may be made prohibitively intractable. And what’s more, BitFlip processing
is linear with the size of the key letter, n, which will allow its user to increase the
size of the key without any meaningful increased computational burden.
The above cryptanalysis refers to the standard ’known ciphertext ’ attack. Being a
polynomial alphabet BitFlip is inherently vulnerable to ’chosen plaintext attack ’. In
the ’naive mode’ such an attack will encrypt any letter repeatedly. After ↵ times,
encrypting a

i

, the attacker will posses ↵ n-bits strings, and be able to write ↵ equa-
tions: f

i

= H(c
j

, k
i

), where j=1,2,.... ↵ and for a su�ciently large ↵, the attacker will
be able to solve for f

i

and k
i

for all i values. This is the Achilles Heel of the BitFlip
cipher. One would be careful with this ’naive mode’ in a situation where the attacker
may launch such a ’chosen plaintext’ attack ’. This vulnerability is the impetus for
the non-naive modes discussed ahead.
The underlying premise of the BitFlip cipher is that there is no mathematical short-
cut more e�cient than the above-described options to cracking the BitFlip cipher.
It figures then that the BitFlip user, controlling the values of n and t will control the
computational intractability defense for this cipher.
The BitFlip Arbitrary Decryption Theorem: Given an arbitrary bit string
(length, and content), R, there exists a BitFlip key, K, that decrypts R into a non-
empty plaintext message m written with a given alphabet A.
Proof : Let f1 be a non-negative integer where 0  f1  r, where r=|R| the size of
R. Let S be any string such that H(S,R)=f1. Namely S logs a Hamming distance of
f1 from R. Let k1 = S. Let k

i

be an arbitrary string such that k
i

6= k1 for i=2,3,...t.
Let f

i

for i=2,3,...t be any non-negative integer such that: 0  f
i

 n, and such
that H(k

i

,S) 6= f
i

. This fully defines a BitFlip key, K1 , which decrypts R to a1. We
can now calculate the respective key space |K1|. The number of possible S strings
is combinatorially determined to be n!/(f1!(n-f1)!). For all other (t-1) letters in A,
every combination of the total of 2n strings will do, except the n!/(f1!(n-f1)!) strings
for which H(S,k

j

)=f1,j=2,3,..t. We further account for the fact that f1 can vary from
0 to n, and all other flip ratios can also vary from 0 to n, except for the f

i

value that
represents the Hamming distance between the chosen k

i

and S. Furthermore, for all
those combinations there are t! possible assignments of the letters keys to specific
keys in A, therefore we can write:

��K1(n)
�� = t!n(n� 1)t�1

f1=nX

f1=0

n!

f1! (n� f1)!
(2n � n!

f1! (n� f1)!
)t�1

This proof by construction may be extended as follows: let w be a positive integer
that divides R: n’=|R|/w. We can then view R as a concatenation of w substrings of
size n’ bits each. Each of those substrings may be treated as the arbitrary string R
was treated above.
In fact there are |K1| keys that do the same, per each of the w substrings. Therefore
it should be highly likely to find overlapping among the sections. We can compute
the chance that a single key, K, will fit to decrypt an arbitrary bit string R to a
BitFlip plaintext, comprised of w letters (P

w

).
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The number of keys per section is given above as |K1(n’)|. The chance P
n

0 that a
randomly selected key for alphabet A, and letter key size n’ will be one that matches
the decryption of a given section of R to a proper BitFlip letter is:

P
n

0 =
|K1 �n0� |
(2n

0
+ n0)t

And the chance that an arbitrary key will be fitting for all w sections is:
P
w

= (P
n

0)w

Clearly: P
w

! 0 for w ! 1 which implies that for increasingly large random bit
strings the smallest size key, K, that would decrypt them to a proper BitFlip plaintext
is increasingly large. But it is always possible.
Taken from the opposite side: given a BitFlip cipher with a fixed alphabet, and a
fixed letter key size; and given a confidence level P

w

, there is a high limit of an
arbitrary bit string that would be associated with a BitFlip key that would decrypt
it to proper BitFlip plaintext.
We will combine this conclusion with the following lemma:
The Factorial Lemma : If there exists a key, K that decrypts an arbitrary bit string
R to a proper BitFlip plaintext, then there are corresponding t! keys, representing
the t! permutations of assigning t letters keys to t letters.
Proof: The key K matches the bits in R with the bits in each of the t n-size letter-
key strings. The letter key strings are then matched each to a letter in the BitFlip
alphabet. This matching can be done in t! ways, and therefore where there is one
key that works there are corresponding t! keys that work as well.
This lemma leads to the fundamental conclusion of the ”naive mode” of operating
BitFlip: Every key has a computable R

equivocation

ciphertext size (and a matching
plaintext size) such that any plaintext of smaller size is protected not just by the
intractability of the cipher, but also by the expected equivocation thereto. (Note: in
some publications equivocation is known through unicity distance).
This equivocation may be attacked with circumstantial knowledge, but not by further
cryptanalysis of the captured ciphertext.
The second part of the fundamental conclusion of the naive mode of operation is that
R

equivocation

may be increased by increasing the size of the key – indefinitely!
This latter conclusion suggests a key-reservoir strategy, whereby the communicating
parties share a key-reservoir, and the transmitter, aware of the threat associated with
a particular message will decide how large the active key should be for that message.
It also suggests that the parties should aim to keep the size of their key secret, so that
their attacker will never know whether the captured ciphertext is in the equivocation
zone or outside it.
The other lesson from the above is that the naive mode of operation should be
upgraded to more secure versions. Ahead we discuss three upgrading possibilities:
(i) the letter frequency defense, (ii) parallel equivocation, and (iii) decoy strategy.
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3 The Letter Frequency Defense

The ”factorial lemma” above stated that if there is one key that decrypts a BitFlip
ciphertext to its corresponding plaintext then there are t! corresponding keys that
also decrypt the same ciphertext to a proper BitFlip plaintext, where t is the number
of letters in the BitFlip alphabet. This is serious source of equivocation. For an
alphabet defined by Base64 symbols, the existence of a single BitFlip key will explode
to: 64! = 1.27*1089 proper keys.
Facing the ”naive mode” an attacker will readily apply the historically well-known
letter frequency cryptanalysis and very quickly resolve this equivocation. It is for
that reason that the BitFlip user may opt to apply the ”letter frequency defense”
and safeguard this equivocation. It works as follows:
Given a BitFlip alphabet A comprised of t letters a1, a2,.....at, the user will add
another letter, written as a0 and regard it as the ”separator letter”. The separator
letter will not be used to express the normal English or native language in which
the plaintext is written. It will be applied on the plaintext written in the A
alphabet by separating any repetition of the same letter. Say:

...a
i

a
i

..... ! ..a
i

a0 a
i

.... for i=1,2,...t

So applied for the entire plaintext, it will “kill all occurrences of letter repetition” and
generate a ”frequency ready” plaintext: M ! M

f

. M
f

will have no letter repetition.
The frequency-ready plaintext will be preprocessed by a ”frequency equalizer” by
adding repetition to build a ”frequency upgraded” plaintext where the frequency of
all the letters is the same. Say:
a
i

! a
i

a
i

....a
i

for i=1,2,...t such that count(a
i

) = count(a
j

) for all i,j=0,1,2.....n
where count(x) is the number of occurrences of x in the frequency upgrades plaintext.
The distribution of the repetition is also subject to randomization.
The ”frequency upgraded” plaintext will then be forwarded to the BitFlip cipher to
generate the corresponding ciphertext. Clearly the cryptanalyst of that plaintext will
not draw any benefit from applying any frequency analysis since all the encrypted
letters appear with the same frequency.
The intended recipient, on his part, will use the key to decrypt the ciphertext to the
’frequency upgraded’ plaintext. It will feed it to the counter pre processor, (“the
frequency eliminator”) that would simply shrink all the letter repetition present in
the input plaintext to generate the ’frequency ready’ plaintext, and then the recipient
would remove all the occurrences of letter a0, (“the a0-eliminator”) to generate the
original plaintext expressed in the A alphabet.
Even with even frequency of all letters in A, there is some leakage of knowledge, by
the pattern of the letters. Low frequency letters that would be repeated su�cient
times to equalize their distribution would tend to show up in clusters. To eliminate
this leakage the cipher designer may add an ultimate transposition cipher (UTC)
as a post processor of the output of the BitFlip cipher and thereby destroy the
information-leaking pattern. See [Samid 2015] for a UTC. See Fig-2.
For short messages there may be letters of A which are not part of the message, and
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hence cannot be directly repeated. To handle this situation the parties may agree
that in an agreed position in the message there would be a special substring that
carries no information, but rather lists all the letters absent in the message, so each
letter can be duplicated su�cient time to insure equal distribution of all the letters
in A. One can readily see how this strategy will totally eliminate the vulnerability
to ‘chosen plaintext’ attack. Regardless of how many times, a given letter will be
sent for encryption, the ciphertext will show all the letters in the alphabet in the
same frequency.

Illustration:
Let a transmitter wish to transmit the message m

h

=”Hey”. Let the English letters
be represented via an alphabet A defined as {a1=X, a2=Y, a3=Z}, as follows: ”H”
= ’XXY’, ”e”=’YZZ’, ”y”=’XYX’. Accordingly, the English word ”Hey”(m

h

) would
be written as: m

a

=’XXYYZZXYX’. We now eliminate all the letter repetition using
the letter a0=’W’, and construct the no-repetition plaintext: m0 =
‘XWXYWYZWZXYX’. m0 counts 4 letters X, 3 letters Y, 2 letters Z, 3 letters W.
We now equalize the frequency of all the letters: adding 1 Y, 2 Z, 1 W: m

e

=
‘XWWXYWYZZZWZXYYX’, where all the letters appear in the same frequency.
We could submit M

e

to be BitFlip encrypted. Or, for extra security we could
transpose m

e

using the UTC algorithm [Samid 2015] with transposition key k
t

=
211 and generate m

t

=WXYZYXWZXYXWWZYZ. m
t

will be BitFlip encrypted to
generate the corresponding ciphertext c. On the receiving end c will be decrypted
to m

t

, which will be reverse transposed to m
e

. All the repetitions in m
e

will be
eliminated to generate m0. Next, all the a0=’W’ letters will be removed to generate
m

a

, which will readily be converted to m
h

= ”Hey”.

4 Parallel Equivocation Strategy

An alphabet comprised of two letters is su�cient to express any message of any size.
Therefore a BitFlip cipher with an alphabet A defined with t � 4 letters may be
used to deliver two or more messages in parallel. Namely:
C=BFe(M1(t1), M2(t2), ..... Mp

(t
p

), K)
Where C is the BitFlip ciphertext, t

i

is the subset of the t letters of the BitFlip
alphabet that are used to encrypt message M

i

, for i=1,2,...p, and where t = |t1| +
|t2| +.... |t

p

|. Given the BitFlip key, K, one would decrypt the ciphertext to all its
constituent messages:
M

i

= BFd(C,K) for i=1,2,...p
This parallel encryption is of great interest because the key, K, is respectfully com-
prised of sub-keys: K1, K2,....Kp

, where each key K
i

will be comprised of the letter-
keys for the letters in the subset t

i

, and their respective flip ratios f
i

– the set of flip
ratios for the letters in subset t

i

. We can say:
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K = K1 + K2 + ..... K
p

and the ”parallel decryption algorithm”:
M

i

= BFd(C,K
i

)
fori=1,2,...p

This Parallel Decryption Algorithm formula is the basis for a variety of
applications: (i) key switching procedure, (ii) terminal cryptanalytic equivocation,
and (iii) document management.

4.1 Key Switching Procedure

The shared key, K, being comprised of p separable keys K1, K2, ....Kp

can be used
with a switching schedule, accordingly the parties will switch from some K

i

to
another key K

j

i 6= j, per time lapsed, per shared event, per quantity of plaintext
processed, per ad-hoc signal from transmitter to receiver, or a combination thereto.
This will add a considerable cryptanalytic burden for the attacker. It is especially
potent if used in combination with the terminal equivocation strategy.

4.2 Terminal Cryptanalytic Equivocation

Let M1 be the secret message to be exchanged using BitFlip. Let M2, M3,.... Mp

be
defined as a set of decoy messages such that M

i

6= M
j

for all i 6= j. i,j,=1,2,...p. Let
E0 represent the entropy associated with the transmitted secret message M1, as seen
by an observer unaware of M1. Let E1 be the same entropy associated by an observer
who is aware of M1. Let’s calibrate and agree that E1 = 0.
Let E

p

be the above entropy as seen by an observer with knowledge of the set M1,
M2,....Mp

, but with no indication whatsoever which of these p messages was the one
actually transmitted.
The message transmitter would seek to identify (p-1) decoy messages: M2, M3,.....Mp

such that E
p

will be maximized.
Illustration: Let M1 = ”will meet you tomorrow at the bank”. If the two decoy
messages are: M2 = ”the sky is blue” and M3 = ”the grass is green”, then the
entropy associated with this set will be quite low, the probability of either decoy
message to be the sent-message is small. Albeit if: M2 = ”if I see you tomorrow at
the bank, the deal is o↵.” and M3 = ”I think our code has been cracked, will find
out tomorrow”, then the relevant entropy is high. Each of the three messages would
reasonably be the true one.
Once a good set of decoy messages has been identified, the transmitter would use them
in the following protocol. (i) exchange an arbitrary subkey K

i

as the communication
key. (ii) select values for all other keys K1, K2,...Ki�1, Ki+1, ....Kp

, (iii) Re-denote
the p messages such that the true message M1 is denoted as M

i

(M1 ! M
i

); encrypt
M

j

with K
j

, for j=1,2,..p, to generate the combined ciphertext C, which is to be
transmitted.
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The intended recipient of C would use K
i

to read the intended message M
i

, and
summarily ignore all other messages. The attacker may be held back by the in-
tractability burden of cracking the messages, but if she is strong enough to negotiate
the intractability defense, she will face the irreducible equivocation as to the identity
of M

i

among the p contenders.
The e↵ectiveness of this strategy is proportional to E

p

- E1 = E
p

.
This strategy has two important features: (i) the selection of the decoy (p-1) keys
and the (p-1) decoy messages is done unilaterally. The transmitter does not need to
coordinate it with the recipient; (ii) the decoy messages may be of any desired length,
each regardless of the length of the secret message.
There are several ways by which a transmitter may select ’good decoys’ – that max-
imize E

p

. It may be context-driven or context-free.
Context Free decoy selection: There are several entropy infusing generic possibil-
ities of note. For example: ”This is a joke”, ”All the messages herein are nonsensical,
it’s a game”, ”all the numbers mentioned in these messages are false”, ”all the state-
ments here are the opposite of what they are” or a di↵erent class ”Alice loves Bob”,
”I predict an earthquake in San Francisco next year” etc.
Context Drive selection These can be derived manually by a person familiar with
the situation at hand, or these can be derived using artificial intelligence tools that
use the secret message as input and work out entropy-generating decoys.
To increase the e�ciency of this strategy, the parties may combine this terminal
equivocation procedure with key-switching. Accordingly the true key will be
switched among the p possibilities according to some agreed schedule. This will
prevent the attacker from learning, which is the right key by cumulatively analyzing
the message tra�c over the same key K.

4.3 Document Management

Document management is described in [Samid 2017], here it is in brief. The objective
addressed by this method is as follows: A single document D, includes Data D0,
which is in the open, namely intended to be readable by any member of the class
R0 of readers, where R0 is non-restrictive, everyone can be included. It also includes
data D1 which is restricted to a class R1 of intended readers, and also data D2, which
is restricted to readers of class R2 which is a subset of R1: R2 ⇢ R1. Similarly the
document D includes data D

i

which is intended to be read by members of the reading
class R

i

where R
i

is a subset of R
i�1: Ri

⇢ R
i�1. for i=1,2,...p, and where the most

restricted class of readers is R
p

.
D can be encrypted using the Parallel Equivocation Method, by encrypting data D

i

by using key K
i

for a p-parallel messaging BitFlip cipher. Members of reading class
R1 will be given key K1, members of reading class R2 will be given K1, and K2, and
in general for i=1,2,..p, members of reading class R

i

will be given keys K1, K2,.... ki.
The above procedure will create a single version of the document D, kept and
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transmitted in its encrypted form, D
ciphertext

. This single document will be exposed
to each of its intended readers exactly according to their reading credentials. Each
reader will be able to add and attach to this document, or write independently any
document that is readable in a selective way by all the more restricted reading
classes. It would be the writer of each add-on piece to the circulating document D
who will decide for each part of his written document, what is its secrecy
classification, and accordingly decide which of the keys in her possession K1,
K2,...Ki

, should be used to encrypt which part of the document she writes.

5 The Decoy Strategy

The BitFlip cipher has the property of allowing the transmitter to unilaterally mix the
transmitted message (the payload) with misleading information designed for no other
purpose than to defeat a cryptanalyst (decoy). Decoy strategy may be regimented as
we have seen with the parallel equivocation method but it can also be ’wild’. Namely,
arbitrarily or randomly, to mix the message bits with decoy bits. The recipient of
the combined stream will readily discard all ’letters’ (bit string counting n bits, the
size of the BitFlip letter keys), which don’t satisfy the BitFlip interpretation terms,
identified above. There are two possibilities of such failure to evaluate to a letter of
the agreed upon alphabet. The substring either has not the right flip ratio f

i

relative
to any letter of the alphabet: a1, a2,..ai,.. at, or it has a proper flip ratio to more than
one letter in the alphabet. In both cases the incoming substring will be discarded.
The transmitter decides unilaterally how many decoys to mix his message with, and
how to carry out the mixing.
Decoys as such are not new. Rivest in 1998 [Rivest 1998] has published his “Winnow-
ing and Cha�ng” paper with similar strategy. The di↵erence though is in speed and
versatility. The BitFlip reader “winnows” much faster. Also, the BitFlip decoys may
amount to a parallel message, or several of them. BitFlip decoys are at the letter by
letter resolution.
With regard to the ‘Näıve Mode’ we have seen above that given an arbitrary bit
string R, and a BitFlip key size |K(t,n)| = |K|, there is a computable probability
Pr[|R|,|K|] that a BitFlip key K would be found such that R would be decrypted to a
proper plaintext M. Let the BitFlip key be of known size, |K|, then for an arbitrary
bit-string U, of size |U|=un bits, there is a probability Pr[|K|,|U|] for the existence
of a key K that will decrypt U to a proper BitFlip plaintext M

u

6= ‘’. (n is the size
of the BitFlip letter key). For a given key, K, one can make U su�ciently short to
increase Pr[|K|,|U|] to exceed any threshold probability ⇣

u

.  Pr[|K|,|U|].
The same analysis applies to any other size of plaintext message M’

u

’ 6= M
u

. And
hence the “Näıve mode” BitFlip user will be able to answer the question what is the
probability that for a given BitFlip key size, a random bit string R will decrypt to a
proper plaintext message between the size of u’ and u”?
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Operationally this implies that a BitFlip message transmitter can unilaterally deter-
mine how many random bits to mix her message with, to create a target probability
for decoy messages to arise and create a terminal cryptanalytic equivocation.
Managing Aging keys: A BitFlip message transmitter may consider the ’worst
case scenario’ where an attacker follows and records all the messages transmitted
with a given key, assuming the attacker knows that the key was not changed. The
transmitter then may accumulate all the messages issued with the same key, M

a

,
and practice a decoy injection strategy that would (i) increase the intractability of
cryptanalysis, and (ii) would generate su�cient equivocation.
Given an aging key, K, and a projection to have transmitted an accumulated plaintext
of size M

a

at some future time ✓ , (M
a

(✓ ) ) then the transmitter would decide to
inject decoy bits to insure an arbitrary chance ⇣

equivocation

. The number of decoy
letters, d that would generate that chance for equivocation is computable: d = d(⇣

equivocation

, |K|, |M
a

(✓ )|). M
a

will determine the size of the payload letters (|M
a

|),
and the size of the combined BitFlip output string will be: |R| = |M

a

| + d.
With time, as the BitFlip key ages, M

a

keeps growing, and the value of d keeps
growing too. Say then that aging BitFlip keys, in order to maintain the security of
their output, will have to pay with a growing and growing dilution. The more the key
ages the larger the ratio between the equivocation required decoy letters d

equivocation

,
and the size of the accumulated message M

a

. d
equivocation

/M
a

(✓ ) ! 1 for ✓ ! 1.
Yet, there is no clear cuto↵. Say then that a single BitFlip key may serve forever
without any deterioration of its security, just paying with an ever larger dilution.
This analysis points one’s attention to various key rotations and other
key-switching techniques that would reduce the message dilution.

5.1 Encrypting Fingerprinted Data

Input in the form of fingerprinted data is most readily encrypted using a secret and
large number of decoys. [Samid 2017B]. And if the bit identities are randomized then
the increased decoy count with aging strategy will insure a Vernam-grade mathemat-
ical secrecy.
Let’s analyze a simple case where a field sensor using a BitFlip cipher is sending
o↵ a specific measurement, ranges from a lower limit L to a higher limit H. The
measurement data, x (L  x  H) is expressed via bit count, with the identities
of the bits randomized. It will make no sense to encrypt this message using the
”Naive Mode” because the size of the message will betray the value of x, regardless
of the identities of the bits. However, adding a randomized number of decoys, or
alternatively adding decoys so that the total size of the message would be a target
size, T. With su�cient decoys the attacker will face full equivocation, x may assume
any value between L and H.
It will be similar if the plaintext is combination of fingerprinted data and regularly
expressed data. To perfect the equivocation the parties may agree on a ultimate
transposition cipher as a BitFlip preprocessor.
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5.2 Security Analysis of the Open-Ended Decoy Strategy

Intuitively one could maintain the security level of an aging BitFlip key by increased
dilution. The more decoys surround and protect the message, the greater the security.
This creates a ’deal’ where security level is bought for the price of handling lot’s of
extraneous data. We now wish to formally analyze this intuition.
The ultimate security standard is the Vernam cipher, for which Claude Shannon
proved that the message entropy facing a cryptanalyst who knows only the size |c|
of a ciphertext c, is the same as the entropy facing a cryptanalyst knowing the full
identity of c. This is clearly not the case with BitFlip. Albeit, with enough decoys,
the holder of a captured ciphertext c, will face a message entropy that is as large as
the BitFlip key (which generally is much larger than a typical crypto key). This is the
critical advantage of the decoy strategy over the ’naive mode’ where as the ciphertext
increases in size it wipes away any equivocation, and only the intractability defense
remains. The decoy strategy can be extended to keep the message equivocation equal
to the (large) size of the BitFlip key. Of course circumstantial evidence will decrease
this ciphertext-based equivocation dramatically, but will not eliminate it. These
results substantiate the intuitive sense that an aging BitFlip cipher will maintain its
projected security indefinitely, using the extended decoy strategy.
We shall now prove the above assertions:
A ”blind” cryptanalyst aware that a BitFlip cipher operated over a known alphabet
A comprised of t letter, and of known key size |K|, has issued a ciphertext c of known
size |c| but unknown content| will face a set M

b

of possible messages, expressed as
the ”blind message space”:
|M

b

|= tq + tq�1 + ....+ t
where the ciphertext c, optionally padded with zeros so that |c|=qt, where n is the
size of the BitFlip letter key, and q is the number of letters that comprise c.
Proof: Let’s consider an arbitrary message m comprised of p ’payload’ letters, p
 q: m: m1, m2,.... m

p

. Encrypted with the decoys strategy, the BitFlip cipher
adds some d decoys to create a ciphertext c of size |c|/t=q=p+d. We shall now
show that there exists a combination of a key K (of the known size |K|), and a
ciphertext c such that m = BFD(c,K), and hence: c=BFE(m,K). (BFE and BFD are
the BitFlip encryption and decryption algorithms respectively). This implies that all
the messages of length 1 letter to length of q letters can be the encrypted message
into an unknown ciphertext of size |c|, which is exactly what the ”blind message
space” expression claims.
To show the above we first select an arbitrary key K, and then we set c as follows.
For the first p letters we set: c

i

: H(c
i

, k
j

)=f
j

, and insure that H(c
i

, k
l

) 6= f
l

for l 6=
j, where k

j

is the letter key for letter a
j

, which is indicated by m
i

: a
j

=I(m
i

). The
remaining |c|-p letter we populate with c

i

: H(c
i

, k
j

) 6= f
j

for j=1,2,...t, and i=p+1,
p+2,...p+d. Note that if there does not exist a cipher letter c

i

that meets the above
demands then K is not a proper key.
Such construction will establish a ciphertext c of size |c| that decrypts to the arbitrary
message m. And since the key was arbitrarily picked, it will work with every proper
key. And since m is an arbitrary message m of size p letters where p  q, it follows
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that the ”blind message space” expression represents number of possible plaintext
messages that satisfy the requirement that the size of the ciphertext will be |c|.
We shall now analyze the entropy facing an analyst who knows the content of cipher-
text c.
We first introduce the ”Random Decryption Lemma”: given a BitFlip cipher
with a key K(t,n) and an arbitrary bit string R, such that n divides R (R=nq), then
there exists a plaintext message m written in the BitFlip cipher alphabet, such that
m = BFD(R,K).
Proof: Every substring of R comprised of n bits will either evaluate to a certain
letter in alphabet A, or not. If not then it will be discarded, otherwise it will be
concatenated to the growing decrypted list, m, comprised by order from the properly
decrypted letters. When R is fully processed, the resultant m will constitute a proper
plaintext message.
We now introduce the ”Decryption Space Lemma:”. Any arbitrary bit string R

can be BitFlip decrypted to up to |K| plaintext messages, where, |K| is the size of the

BitFlip cipher.

Proof: Let M
r

be the set of all possible messages to which R can be BitFlip de-
crypted. No two such distinct messages can be decrypted using the same key K
because, unlike the BitFlip encryption, the BitFlip decryption is a proper injective
function. And since there are no more than |K| distinct keys we must conclude that
M

r

 |K|, which is what the lemma says.
To summarize, a ”blind’ cryptanalyst aware that a BitFlip ciphertext issued a ci-
phertext c, but aware only of |c|, not of c, will face a message space M

b

(q,t), while a
”non-blind” cryptanalyst, aware of the content of c will face plaintext message space
M

c

(t,n), where q=c/n. For some threshold value of q, and above we have:
M

b

� M
c

tq + tq�1 + ....+ t � (2n + n)t

which implies that for ciphertext of a certain size and above, the blind cryptana-
lyst faces a greater entropy than the non-blind cryptanalyst. Or say, with BitFlip
knowledge of the contents of the ciphertext has a clear cryptanalytic advantage, over
just knowing its size. And hence, no matter how many decoys will be deployed, the
projected security of the BitFlip ciphertext will not rise to the Vernam grade.
Nonetheless, we shall now prove that for a su�ciently long ciphertext (enough decoys)
the corresponding message space facing the non-blind cryptanalyst is no less than the
BitFlip key size, |K|. And since the BitFlip key size is enormous, this high message
entropy will not be totally eliminated by any reasonable circumstantial evidence.
What’s more: there is little computational and cost penalty for increasing the size of
the BitFlip key, to foster the equivocation at will. So while the BitFlip cipher does
not rise to claim Vernam security, it does allow its user to upgrade its security with
no preset sub-Vernam limit. In practice it implies that aging BitFlip keys can project
a target security, and paying for it with increased message dilution.
We shall now prove this assertion, with the ”Complete Decryption Theorem”.
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5.3 The Complete Decryption Theorem

A BitFlip cipher with a key K(t,n) is being used with the decoys strategy to generate
a ciphertext c of size |c|. A cryptanalyst unaware of the contents of the key, only
of its size |K| may opt for the brute force approach and try every possible key to
decrypt the captured ciphertext c. The Decryption Space Lemma guarantees for the
cryptanalyst that the number of message candidates so computed will be no more
than |K|. But it is not clear how much smaller will this set of possible messages M

c

be compared to |K|. The smaller it is, the lower the entropy to be resolved.
We address this question with the ’complete decryption theorem’ which states that
for su�ciently long arbitrary bit string R the set of possible plaintext messages to
which R can decrypt, M

r,

will be the size of the key: |M
r

| = |K| for |R| ! 1.
Proof: Let K1 and K2 be two distinct BitFlip keys such that:
BFD(R, K1) = BFD(R, K2), for K1 6= K2

In that case we will have |M
r

| < |K|. However, if we allow R to increase in size, and
add n bits. The the new ciphertext letter c

q+1, will likely interpret to two di↵erent
letters for K1 and K2. If so then the two plaintext messages will no longer be the
same:
BFD(R||c

q+1, K1) 6= BFD(R||c
q+1, K2).

And if by chance the two plaintext messages are still the same than by adding another
ciphertext letter (n more random bits) to R, or two more, the plaintext messages will
be diverge. In other words after adding jn bits to R, we will have:
BFD(R||c

q+1||....cq+j

, K1) 6= BFD(R||c
q+1||....cq+j

, K2)
This strategy of ”addition until diversion” can be practiced until the two formerly
identical plaintext messages each has a di↵erent terminal letter. This fact will guar-
antee that however larger R will become these two messages will never be identical
again.
The same applies to any pair of identical plaintext messages. It is possible that such
adding of bits to R will create new similar pairs of plaintext messages. But should this
happen then, adding yet more random bits to R will ’cure’ this identity as described
above. And since any two ”cured” pair of identities will never be identical again
no matter how many more random bits are added, then it is clear that the finite
plaintext messages, M

r

will eventually all be distinct and we will have |M
r

|=|K| as
claimed.
This proof supports the claim that an extended application of the BitFlip decoy
strategy would insure a message space of candidates messages that is as large the
BitFlip key.

5.4 Message Size Distribution

Given a BitFlip cipher, and a bit string R comprised of r=nq bits, where n is the
letter-key bit size, one could decrypt R with any one of the keys in the key space |K|.
Some p letters in R will decrypt to particular letters of the BitFlip alphabet, and the
rest d=q-p will be discarded. We have seen that for su�ciently large R there will
be |K| distinct plaintext messages resulting from this procedure. In general |K| >>
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q, and hence one would necessary expect a distribution, there will be h(p) plaintext
messages of size p letters, such that:

M
r

=
i=qX

i=1

h(i)  |K|

This distribution will identify the most popular message lengths in this set. These
are the messages that are most likely to supply the terminally equivocated results
because they will include many highly plausible messages (especially the shorter
ones). The real message may fit the most popular size. This serves as a user guide
to determine how many decoys are needed to secure a given plaintext message. See
Fig.-3

6 General Security Considerations

We complete the security analysis with some special considerations:

6.1 Post Quantum Status

BitFlip threat adjustability endows it with a good defense status vis-à-vis a quantum
cryptanalyst. Its equivocation defense is immunized to quantum attack, and its
intractability defense is easily upgraded by simply increasing the BitFlip key size.
It is an increase, which is carried out with little penalty in terms of computational
burden and execution cost. BitFlip security is not based on complex algorithms where
quantum computers dissolve their complexity. It is based on the new technology of
quantum grade randomness. Using BitFlip one fights quantum with quantum.

Side Channel Attacks: BitFlip encryption and decryption computation is equally
distributed among the various letters that are being encrypted or decrypted. And
as such it does surrender to side channel attack the way complex arithmetic ciphers
do.
Takeover Threat: The simplicity of BitFlip processing invites a dedicated
bit-count and bit-flip hardware design. The resultant chip will be tightly tailored to
its purpose and unfit for the increasingly common takeovers su↵ered by general
purpose computing devices.

6.2 AI Readiness

We present here a novel approach to cryptographic strategy: a new flexibility. The
communicating parties share a reservoir of randomness, the ”Key Reservoir,” the
allocation of which is left for subsequent algorithmic dynamic decision in response to
the prevailing threat. The parties also share several alphabets of various sizes, and
also share operational primitives: the BitFlip encryption and decryption modules, a
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transposition module, letter-frequency defense modules, and parallel-encryption mod-
ules. These resources are governed by a cryptographic security controller. Another
critical resource for each party is the unshared high-quality randomness generator.
All the shared resources can be dynamically refreshed, except the shared randomness
reservoir, which is limited to what was a-priori shared between the parties. In par-
ticular the cryptographic controller will be upgraded with the latest AI capabilities
applied to optimal tailoring of the projected security to the threat at hand, and to
smart selection of decoy messaging.
The concept of threat-adjusting security, exercised through smarter and smarter AI,
is a foundation of a broad scope of applications and operational flexibility. For
example, some secure communications may have a short lifespan, namely exposing
them a while later is of no harm. As is the case, with some money transfers. Such
communications can be carried out via ad-hoc keys that were exchanged at proper
level of security on the basis of the shared key reservoir.

6.3 Zero-Leakage Communication

Two communication parties may enter into a zero-leakage mode as follows. Each
party will use the BitFlip cipher to send the other a fixed rate stream of decoys
(rate of r bits/sec). The two counter streams will keep sending random bits one to
the other without any content communication. The recipient party will evaluate the
incoming stream, find all the data to be decoy, and will discard it. At a given point
of time one party may develop a need to send a message m to the other. In that
case the transmitter would randomly spread the message letters (in their ciphertext
mode) within the random bits, while maintaining the r bits/sec output flow. In
essence it means to replace decoy letters with proper letters. The response will be
sent in the same mode, using the counterflow of random bits. That way the parties
will be communicating with each other while leaking no information as to the extent
and the characteristics of their communication (frequency, message length, dialogue
v. monologue, etc.). They will not even leak the fact that they communicate at all.
The limit of the communication in terms of rate is determined by the random flow
rate of r bits/sec, but that rate is set at will.
This mode is especially important in situations where the starting of a conversation
is very indicative to an adversary. One side-e↵ect of this zero-leakage mode is that it
overloads and exhausts the cryptanalytic capacity of the adversary who is spinning
its wheels, so to speak, trying to crack pure randomness.
It is the ability to fast discriminate between proper data and decoys that powers
this zero leakage operational mode. See Fig.-11.
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7 Communication Architecture

We outline here the construction of the BitFlip setup that exploits the threat-
adjustability described herein.
The elements to deal with are (i) the transmitter, (ii) the recipient, (iii) the message
to be transmitted, and (iv) the threat that drives the entire security apparatus. In
reality the communicating parties will run a dialogue and the role of transmitter and
recipient will beswitchable.
Before the parties enter into a threat sphere, they conduct a priming operation, in a
secure mode in which they exchange (i) a key reservoir, and (ii) a set of shared pa-
rameters, which include (a) a list of possible alphabets, (b) transposition parameters
for optional use of transposition module. See Fig.-4
The key reservoir is comprised of a rather large quantity of highly randomized bits.
The allocation of these bits to key letters and flip-ratios, and to replacement keys is
left to be determined by the parties as they operate under a dynamic threat.
Once the priming is concluded, the parties enter into the threat-driven secure com-
munication mode. While there, at some arbitrary time, the transmitter generates
a need to securely communicate some message m to the recipient. To do that the
transmitter conducts a ’threat evaluation’. The details and the nature of this eval-
uation is an extraneous matter to our concern here. We need to be able to respond
to various levels of threat as determined by this threat-evaluation stage. The idea of
this construction is to plan a matching security that would be adjusted to meet the
perceived threat. The determined threat level is fed into the BitFlip Security Plan-
ning functional block. This function takes as input (i) the threat assessment, and (ii)
the message sensitivity. This is an assessment of the damage to be sustained if this
message is compromised. These two parameters lead the built-in smart software to
plan a fitting security. This planning involves coordinated parameters and unilateral
parameters.
The coordinated parameters include (i) identification of one or more alphabets to
be used for this message. A message is comprised of some very sensitive and some
less sensitive parts that may be encrypted using two di↵erent alphabets. The parties
must coordinate which alphabet is used for which part of the message. They must
also coordinate how to allocate the randomness in the shared key-reservoir for the
purpose of this message. In addition the parties must agree on using add-on features
like the letter frequency defense, and the transposition module.
One of the strong attributes of BitFlip is that a great deal of the projected security
can be determined unilaterally by the transmitter, without any prior coordination
with the recipient. In particular the transmitter will come up with a proper decoy
strategy that matches the prevailing threat and the message sensitivity. This strategy
will determine (i) whether to use randomized decoys or (ii) use a full decoy message by
applying the parallel encryption procedure. In case of randomized decoys, their count
and distribution will have to be determined either deterministically or through the
local randomness source. The basic idea is a trade-o↵ between security and message
dilution. We have shown that the transmitter has the power to maintain a desired
high level security of the encrypted messages by simply mixing in more and more
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decoys. This creates a greater and greater dilution, namely a lower ratio between
content and bit flow volume. It is up to the transmitter unilaterally to determine the
desired trade o↵.
The recipient will simply pass the incoming ciphertext via the decryption function.
Using the same alphabet and same key, the recipient will discard all the ciphertext
bits that don’t evaluate to a single letter in the used alphabet, and sequentially log
the bits strings that do evaluate to a proper letter. When the ciphertext is fully
processed, the transmitted plaintext message is ready to be read.
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BitFlip (Drawings) 
 

Fig.-1: BitFlip Security (double layer) 

 
 

 

Fig. 2:  Letter Frequency Defense Mode 

 

 



 

Fig.-3 BitFlip Message Size Distribution 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.-4: The BitFlip Communication Architecture:. 

 

 

 

 

 

 

 

 

 

 

 



Fig.-5: Transmission Functions:  

 

 

 

 

 

 

 

 

 

Fig.-6: Planning Coordinated Parameters:  

 

 

 

 

 

 



 

Fig.-7: Universal Security Planning and Encryption:  

 

 

 

 

 

 

 

 

 

 

 

Fig.-8: BitFlip 

Decryption:  

 

 

 



 

Fig.-9: BitFlip Message Dilution and Message Security Trade-Off:. 

 

 

 

 

 

 

 

 

 

 

 

Fig.-10 BitFlip Key 

Switching:  

 

 

 



Fig.-11  BitFlip Zero Leakage Mode:  
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