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Abstract. In this paper, we point out flaws in an existing verifiably
multiplicative secret sharing (VMSS) scheme. Namely, we show that a
scheme proposed by Yoshida and Obana presented at ICITS 2017 is
insecure against an adversary who corrupts a single player. We then show
that in the model of ICITS 2017 which restricts the decoder additive, the
error-free verification is impossible. We further show that by allowing a
general class of decoders which include a linear one, the scheme is error-
free.

1 Introduction

A secret sharing (SS) scheme is a method of sharing a secret among a set of
n players so that some predefined authorized subsets of the players are able to
recover the secret. The notion of threshold SS was introduced by Shamir [8] and
Blakley [5] independently where the cardinality of any authorized set is larger
than a given threshold. Later, Ito et al. [7] generalized this notion to a setting
where the authorized subsets are an arbitrary family of subsets of the players,
called access structures.

SS is now used as a central building block in many cryptographic and dis-
tributed applications such as unconditionally secure multiparty computation
(MPC) [4, 6, 1, 2]. In addition, for natural application to unconditionally secure
MPC [4, 6], the multiplicative property of SS is essential.

Motivated by open problems in the area of MPC such as unconditionally se-
cure MPC with minimal interaction, Barkol et al. [3] introduced d-multiplicative
SS and studied the type of access structures for which such secret sharing schemes
exist. A secret sharing scheme is d-multiplicative if the scheme allows the players
to multiply shared d (rather than two) secrets by locally converting their shares
into an additive sharing of the product. That is, the decoder is additive in the
sense that it computes the output as the sum of elements in F. They proved that
d-multiplicative schemes exist if and only if no d unauthorized sets of players
cover the whole set of players (type Qd).

To improve the usefulness of d-multiplicative SS (MSS) in the context of
MPC in the presence of malicious adversaries, Yoshida and Obana [9] introduced
verifiably d-multiplicative SS, which keeps the additive property of decoding, and
studied the type of access structures for which such secret sharing schemes exist.



Specifically, in [9], a scheme against the access structures of type Qd+1 and one
against the access structures of type Qd are presented.

In this paper, we show that the former scheme proposed in [9], constructed
against the access structures of type Qd+1, is insecure. Namely, we showed that
an adversary corrupting a single player can forge a proof for any incorrect value
that is always accepted. We then show that in the model of ICITS 2017 which
restricts the decoder additive, the error-free verification is impossible. We then
show that by allowing a general class of decoders which include a linear one, the
scheme is error-free.

The rest of the paper is organized as follows. In Section 2, we briefly review
the definitions of secret sharing in [3, 9]. In Section 3, we present an attack
against the scheme given in [9]. In Section 4, we discuss some (im)possibilities
on error-free verifiably multiplicative secret sharing. In Section 5, we summarize
our work.

2 Preliminaries

A secret sharing scheme involves a dealer and n players P1, . . . , Pn, and specifies
a randomized mapping from the secret s to an n-tuple of shares (s1, . . . , sn),
where the share si is given to player Pi. It is assumed that the secret is taken
from a finite field F. It is also assumed that all shares si are taken from a finite
share domain S. Let D denote a discrete probability distribution from which
the dealer’s randomness is chosen. To share a secret s ∈ F, the dealer chooses a
random element r ∈ D and applies a sharing function SHARE : F ×D → Sn to
compute SHARE(s, r) = (s1, . . . , sn). For T ⊆ [n], let SHARE(s, r)T denote the
restriction of SHARE(s, r) to its T -entries.

In contrast to traditional secret sharing specifying a collection of authorized
player sets, the complementary notion of an adversary structure, specifying a
collection of unauthorized sets, is used for convenience in [3, 9].

Definition 1 (Adversary structure [3]). An n-player adversary structure is
a collection of sets T ⊆ 2[n] that is closed under subsets; that is, if T ∈ T and
T ′ ⊆ T then T ′ ∈ T . Let T̂ be the collection of maximal sets in T (namely those
that are not contained in any other set from T ).

Definition 2 (Adversary structure of type Qd [3]). Let n, d be positive
integers and T be an n-player adversary structure. We say that T is of type Qd

if for every d sets T1, . . . , Td ∈ T we have T1 ∪ · · · ∪ Td ⊂ [n]. That is, no d
unauthorized sets cover the entire set of players.

Definition 3 (T -Private secret sharing [3]). Let T be an n-player adver-
sary structure. A secret sharing scheme is said to be T -private if every pair
of secret s, s′ ∈ F and every T ∈ T , the random variables SHARE(s, r)T and
SHARE(s′, r)T induced by a random choice of r ∈ D are identically distributed. A
T -private secret sharing scheme is said to be t-private if T = {T ⊆ [n] | |T | ≤ t}.



The multiplicative property requires each player to locally generate an addi-
tive sharing of the product of d secrets. In addition, the decoder is additive in
the sense that it computes the output as the sum of elements in F. We refer to
such an MSS scheme as an additive MSS.

Definition 4 (d-Multiplicative secret sharing [3]). We call a secret sharing
scheme d-multiplicative if it satisfies the following d-multiplicative property. Let
s(1), . . . , s(d) ∈ F be d secrets, and r(1), . . . , r(d) ∈ D be d elements in the support
of D. For 1 ≤ j ≤ d, let (s(j)

1 , . . . , s
(j)
n ) = SHARE(s(j), r(j)). We require the

existence of a function MULT : [n] × Sd → F such that for all possible s(j) and
r(j) as above,

∑n
i=1 MULT(i, s(1)

i , . . ., s
(d)
i ) =

∏d
j=1 s(j).

The verifiable multiplication further requires each player to locally generate
an additive sharing of not only the product of d secrets but also a proof that the
value is indeed correct [9]. That is, the decoder remains additive and we refer to
such an VMSS scheme as an additive VMSS.

Definition 5 ((ϵ, d)-Verifiably multiplicative secret sharing (VMSS) [9]).
Let c be a positive integer. A T -private secret sharing scheme is said to be
(ϵ, d)-verifiably multiplicative if it is d-multiplicative and there are two functions
PROOF : [n] × Sd → Fc and VER : F × Fc → {1, 0} that satisfy the following
properties.

– Correctness: For s(j) ∈ F and r(j) ∈ D with 1 ≤ j ≤ d, let (s(j)
1 , . . . , s

(j)
n ) =

SHARE(s(j), r(j)), m =
∑n

i=1 MULT(i, s(1)
i , . . . , s

(d)
i ), and σ =

∑n
i=1 PROOF(i,

s
(1)
i , . . . , s

(d)
i ). Then, VER(m,σ) = 1.

– Verifiability: An adversary that modifies any additive shares for any T ∈ T
can cause a wrong value to be accepted with probability at most ϵ. More for-
mally, the experiment Exp(s(1), . . . , s(d), T, Adv) with d secrets s(1), . . . , s(d) ∈
F, unauthorized set T ∈ T , and interactive adversary Adv is defined.
Exp(s(1), . . . , s(d), T, Adv):

1. For each j with 1 ≤ j ≤ d, sample r(j) ← D and generate (s(j)
1 , . . .,

s
(j)
n ) = SHARE(s(j), r(j)).

2. Give {(s(1)
i , . . . , s

(d)
i )|i ∈ T} to Adv.

3. Adv outputs modified additive shares m′
i ∈ F and σ′

i ∈ Fc with i ∈ T . For
i ̸∈ T , we define m′

i = MULT(i, s(1)
i , . . . , s

(d)
i ) and σ′

i = PROOF(i, s
(1)
i ,

. . ., s
(d)
i ).

4. Compute m′ =
∑n

i=1 m′
i and σ′ =

∑n
i=1 σ′

i.
5. If m′ ̸= s(1) · · · s(d) and VER(m′, σ′) = 1, then output 1 else 0.

Then, it is required that for any d secrets s(1), . . . , s(d) ∈ F, any unauthorized
set T ∈ T , and any unbounded adversary Adv,

Pr[Exp(s(1), . . . , s(d), T, Adv) = 1] ≤ ϵ.



3 An Attack against a Scheme in [9]

In this section, we present an attack against the scheme presented by Yoshida
and Obana in the proof of Theorem 2 of [9]. The scheme is designed to ensure
the (0, d)-verifiably multiplicative property against any adversary structure T of
type Qd+1.

The scheme is based on the CNF scheme proposed by Ito et al. [7] as follows:
for every set of malicious players T ∈ T̂ , generates additive shares of the product
among the other players [n] \ T and check the equality of all recovered values.
Specifically, the target scheme is constructed as follows.

The Target Scheme in [9]:

– SHARE of the CNF scheme: to share a given secret s, for T ∈ T̂ , rT is
randomly chosen from F subject to the restriction that

∑
T∈T̂ rT = s. Each

share si is the set {rT |i ̸∈ T}.
– MULT is given in [3] and omitted here.
– PROOF: The subsets in T̂ is numbered from 1 to |T̂ |. Let s(1), . . . , s(d) be

secrets. For 1 ≤ j ≤ d, let r
(j)
T with T ∈ T̂ denote the additive parts of s(j).

The product s(1) · · · s(d) = (
∑

T∈T̂ r
(1)
T ) · · · (

∑
T∈T̂ r

(d)
T ) is written as the sum

of the |T̂ |d monomials of the form r
(1)
Tj1

· · · r(d)
Tjd

. For each Tl ∈ T̂ , we partition
the monomials into n − |Tl| disjoint sets Xl,i such that i ∈ [n] \ Tl and all
monomials in set Xl,i is obtained from si. The possibility of partition follows
from the fact that every monomial as above can be assigned to a set Xl,i

such that i ̸∈ Tj1 ∪ · · · ∪ Tjd
∪ Tl. The existence of such i follows from the

assumption that T is of type Qd+1. For each 1 ≤ i ≤ n, PROOF(i, ·) outputs
σi = (σi,1, . . . , σi,|T̂ |) ∈ F|T̂ | where σi,l is the sum of the monomials in Xl,i

if i ̸∈ Tl, and otherwise 0. If all players follow the scheme, then σ =
∑

σi is
the vector with all components being s(1) · · · s(d).

– VER(m,σ) = 1 if and only if σ = (m, . . . ,m) holds.

Any set of malicious players is contained by some T ∈ T̂ . In [9], it is claimed
that the value recovered from shares for [n] \T would be correct, and the equal-
ity of all recovered values could guarantee that the error-probability is zero.
However, from the restriction of the additive VMSS, the above technique does
not work because the adversary Adv corrupting any T can modifies all values
recovered from shares so that VER outputs 1 with probability ϵ = 1.

An Attack against the Scheme: Without loss of generality, we can assume the
player P1 is corrupted, i.e., 1 ∈ T . In Step 3 of Exp,

– Adv randomly generates ∆ ̸= 0 ∈ F.
– For i ∈ T , Adv generates mi = MULT(i, s(1)

i , . . . , s
(d)
i ) and σi = PROOF(i,

s
(1)
i , . . ., s

(d)
i ).

– For i ∈ T , Adv defines m′
i = mi + ∆ and σ′

i = σi + (∆, . . . ,∆) if i = 1, and
otherwise m′

i = mi and σ′
i = σi.



– Adv outputs m′
i ∈ F and σ′

i ∈ Fc with i ∈ T .

From the correctness of the CNF scheme, it holds that m′ = s(1) · · · s(d) +∆ and
σ′ = (m′, . . . ,m′). Thus, for m′ ̸= s(1) · · · s(d) +∆, it holds that VER(m′, σ′) = 1.
Thus, for any d secrets s(1), . . . , s(d) ∈ F, any unauthorized set T ∈ T , and any
unbounded adversary Adv,

Pr[Exp(s(1), . . . , s(d), T, Adv) = 1] = 1.

It is obvious that the above attack works even if T is a singleton. Thus, the
scheme is not verifiably multiplicative against any adversary structure T not
only of type Qd+1 but also of any type as long as T contains a non-empty set.

4 (Im)possibilities of Error-free VMSS

In a similar way to the attack in the previous section, we can prove that there is
no (0, d)-verifiably multiplicative scheme by showing an adversary who corrupts
a single player and causes an positive error probability ϵ = 1/|F|c > 0 for any
additive VMSS scheme.

Thus, to achieve ϵ = 0, we need to allow a more general class of decoders.
In fact, the scheme in [9] can be a (0, d)-verifiably multiplicative secret sharing
scheme if we use more general decoders such as a selective decoder which removes
all l-th elements of σi with i ∈ Tl and computes the sum of the remaining values,
and a linear decoder which uses a (c + 1) × n matrix D = [dl,i]0≤l≤c,1≤i≤n ∈
F(c+1)×n by d0,i = 1 with 1 ≤ i ≤ n and dl,i = 0 if i ∈ Tl and otherwise
dl,i = 0. The value of dl,i specifies which players’ shares should be added. Let M
be the n × (c + 1) matrix of which i-th row is (mi, σi). The decoder computes
(m,σ) = D×M . We note that these two decoders can be used for the motivating
applications of both verifiably and standard multiplicative secret sharing in [3,
9].

5 Conclusion

In this paper, we have pointed out flaws in an existing verifiably multiplicative
secret sharing (VMSS) scheme. Namely, we have shown that a scheme proposed
by Yoshida and Obana presented at ICITS 2017 is insecure even against an
adversary who corrupts a single player. Then, we have shown that in the model
of ICITS 2017 which restricts the decoder additive, the error-free verification is
impossible. In addition, we have shown that the above scheme can be error-free
by allowing a general class of decoders which include a linear one.
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6. D. Chaum, C. Crèpeau, and I. Damg̊ard, “Multiparty Unconditionally Secure
Protocols,” The 20th Annual ACM Symposium on Theory of Computing, STOC
’88, pp. 11–19, 1988.

7. M. Ito, A. Saito, and T. Nishizeki, “Secret Sharing Scheme Realizing General
Access Structure,” IEEE Global Telecommunications Conference, Globecom ’87,
pp. 99–102, 1987.

8. A. Shamir, “How to Share a Secret,” Comm. of the ACM, vol. 22, no. 11, pp. 612–
613, 1979.

9. M. Yoshida and S. Obana, “Verifiably Multiplicative Secret Sharing,” The 10th In-
ternational Conference on Information Theoretic Security ICITS2017, in Lecture
Notes in Comput. Sci., vol. 10681, pp. 73–82, 2017.


