
How to validate the secret of a Ring Learning with Errors
(RLWE) key

Jintai Ding1, Saraswathy RV1, Saed Alsayigh1, and Crystal Clough1

University of Cincinnati

Abstract. We use the signal function from the RLWE key exchange in [26] to derive an
efficient zero knowledge authentication protocol to validate an RLWE key p = as + e
with secret s and error e in the Random Oracle Model (ROM). With this protocol, a
verifier can validate that a key p presented to him by a prover P is of the form p =
as + e with s, e small and that the prover knows s. We accompany the description of
the protocol with proof to show that it has negligible soundness and completeness error.
The soundness of our protocol relies directly on the hardness of the RLWE problem.
The protocol is applicable for both LWE and RLWE but we focus on the RLWE based
protocol for efficiency and practicality. We also present a variant of the main protocol
with a commitment scheme to avoid using the ROM.
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1 Introduction

Lattice-based cryptographic primitives are promising for use as a post-quantum alternative
for existing cryptosystems that are based on classical hard problems. The search for quantum-
resistant primitives has become intense in the recent year after the NSA announced its plan to
transition to quantum resistant ciphersuites and NIST is calling for proposals of post-quantum
primitives [50]. Due to its appealing properties like provable security, efficiency and versatil-
ity, most of the recent lattice-based schemes designed are based on the Ring-Learning with
Errors (RLWE) problem. However, one of the challenges with RLWE, as pointed out in [37],
[29], [25] is that, in an interaction with a malicious user not following the instructions of a
protocol, the malicious user could pretend to use a RLWE key while actually using a differ-
ent form to extract our secret key. This is due to the indistinguishability of RLWE samples
from uniform ones. To avoid this, we need an efficient and secure authentication technique
that can validate such keys to be of the correct form and that the user presenting the key
knows the corresponding secret. The need for such validation protocols was also reiterated in
PQCrypto2017 in the invited talk by Lyubashevsky [45]. The protocol presented in this work
aims to contribute towards such a key validation technique for RLWE using simple operations
in the ring. Some of the other related work includes [10, 46, 63, 42, 7]. Our protocol has a
simpler structure and better adaptability for a KE protocol with key reuse, without using any
additional techniques such as rejection sampling.

Authentication plays a vital role in security and can also be used to verify the identity of
a process, server or network device. In the process of authentication, it is also important for
a malicious verifier to not gain information about the secret of the prover that he can use to
impersonate.

Zero-knowledge: The concept of zero knowledge was introduced by Goldwasser, Micali,
and Rackoff [57]. A zero knowledge protocol allows a prover to convince a verifier about a
statement involving a secret, without leaking any information about the secret, even if the ver-
ifier is malicious. Usually such a protocol involves a series of challenge/responses exchanges.
The main properties of a zero knowledge protocol are Completeness, Soundness and Zero
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knowledge. Informally, Completeness means that with overwhelming probability, an honest
prover is able to successfully make a proof to the verifier. Soundness means that the proba-
bility that a malicious prover (without the secret) can make a valid proof is negligible. Zero
knowledge is shown by the ability to construct a simulator that creates transcripts of the proof
that are indistinguishable from a real transcript between a prover and verifier. More details and
formal mathematical definitions for these properties are included in the preliminaries section
of the paper.

1.1 Previous Work

There are some lattice-based Identification (ID) schemes that has its security based on Witness
Indistinguishability. Lyubashevsky in [43] introduced an ID scheme based on the hardness of
SIS (Shortest Integer Solutions) problem. This scheme was shown to be witness indistin-
guishable and used this to prove security under the active attack model. The drawback of
this scheme however, is to be able to implement the scheme for practical parameter choices
retaining security of the protocol. Another work in [44] presented an ID scheme with lower
communication complexity based on hardness of approximate shortest vector problem in lat-
tices. This work also described a way to convert the ID scheme into a signature in the Random
oracle model using the Fiat-Shamir transform [1].

[36] describes a variant of the ID scheme proposed by [58] in the lattice setting and proves
its security under concurrent attacks. A zero knowledge proof for commitments from RLWE
was described in [11] that verifies that the commitments are from the ring defined in RLWE
problem but does not verify that a sample is of RLWE form or the secret of a RLWE sam-
ple.This is a generalization of the protocol from Xie et al. [63] improving its knowledge error.
A previous work on group signatures [10] also proposes a zero knowledge proof for LWE
samples of the form y = as + e to prove the knowledge of secret s. An advantage with
this protocol is a reduced soundness error of 1/2n, however this protocol relies on rejection
sampling to ensure that s and e follows the Discrete Gaussian distribution that leads to lower
efficiency and increased completeness error.

Key leakage was pointed out by Kirkwood et al. in [37], which discusses about elliptic
point off the curve attack [12] that results in key leakage and using public key validation to
avoid such attacks by checking that the public key is a valid point on the specified curve. They
also discuss about the unavailability of such validation in the case of lattice-based key ex-
change. For RLWE-based Key agreement, they proposed an indirect key validation technique
using the Fujisaki-Okamoto transformation. The transformation derives a hybrid IND-CCA
(Indistinguishability Chosen Cipherext Attack) secure scheme from weakly secure symmetric
and asymmetric encryption schemes. This is adapted in [54] to derive an actively secure KEM
(Key Encapsulation Mechanism) but with efficiency limitations in the implementation. The
indirect validation is also more complicated and limits the ability of the party being authenti-
cated to choose a public key since it has to be generated from the private key derived from the
seed. Another disadvantage with indirect validation is that it does not allow key reuse since
the private key of the party being authenticated is revealed during the validation. In [20], a
cut and choose protocol for RLWE is proposed. The protocol involves generating N ≈ 32
samples for each RLWE instantiation and revealing at random all but one of the instances to
the verifier. So the provers probability of convincing the verifier is at most 1/N if the prover
doesnt know the secret.

Other notable works in the area include [46, 42, 7]. A one shot verifiable encryption pro-
tocol (proving that the ciphertext is correctly formed and the knowledge of the plaintext) was
described by Lyubashevsky et al. in Eurocrypt 2017 [46]. The protocol is secure in the ran-
dom oracle model and is based on the hardness of RLWE problem. The protocol achieves
negligible soundness error with only one execution of the protocol. However, the protocol
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does not apply to the exact relation to be verified. Let B ∈ Rl×kq be a matrix with the rela-
tion Bm = u mod q, where m ∈ Rkq is secret, and let (v, w) ∈ Rkq × Rkq be a ciphertext
of m obtained using an RLWE encryption scheme. Then, the protocol verifies that the ci-
phertext decrypts to a m̄, c̄ such that Bm̄ = c̄u mod q. In order to recover m̄, the idea is
to guess values for c̄ from a defined challenge space. This also uses rejection sampling in
the protocol. A statistical zero knowledge argument of knowledge for message-signature pair,
that can be applied to group signatures is proposed in [42]. The protocol verifies the knowl-
edge of a pair (d, z) ∈ {0, 1}l × Z2m that satisfies ‖z‖∞ ≤ β, and A(d)z = u mod q,
where A(d) = [A|A0 +

∑l
i=1 diAi] ∈ Zn×2mq . Here, uniformly random (A,A0, . . . Al, u),

where each Ai ∈ Zn×mq and u ∈ Znq form the verification key of Boyen’s signature scheme.
This protocol has a communication complexity of (O(lm)log β + O(k2)log b)log q (where
n is the security parameter, l is the message length, m ≥ 2nlog q, σ = Ω(

√
lnlog qlog n),

β = σω(
√
log m), k2, b are parameters of underlying encryption scheme), with a soundness

error of 2/3 and perfect completeness. The work in [7] discusses a zero knowledge proof for
the preimage of a ivOWF(one way function over integer vectors). This proof can be applied to
the context of learning with errors considering the encryption function as a ivOWF. This ZK
protocol is honest verifier computational ZK and uses rejection sampling and cut and choose
technique for its proof.

1.2 Our Contributions

The main contributions of this paper are the design and analysis of an efficient zero knowledge
authentication protocol that can be used to validate a sample p to be of the form as + e with
s, e small and the knowledge of s of the party presenting the sample. This is accomplished by
making use of the signal function defined in the key exchange protocol using RLWE [26]. The
Sig function has a significant role in the key exchange protocol, since it allows us to extract a
shared key material from approximately equivalent keys and can be leveraged to derive other
applications as in this work with respect to the RLWE-based key exchange. In this authenti-
cation protocol, the prover uses a challenge/response interactive proof to prove to the verifier
that he has the secret s and the verification is done with the help of the Sig function. We show
that the soundness error of the protocol is 1/2 and we can achieve negligible soundness error
by sequentially running the protocol enough number of times.

The relevance of this protocol comes from the observation that key reuse can be exploited
in RLWE-based key exchange [29],[25] when implemented in practice. This aims to serve
as a simple and direct key validation technique for RLWE keys and helps to protect against
active attacks in RLWE-based key exchange with malformed keys. The advantage of using this
direct validation of RLWE key over the indirect key validation using the Fujisako-Okamoto
transformation is the simplicity and efficiency of the protocol and the ability to build more
efficient systems and reuse keys in practice. In section 5, we provide a variant of the protocol
that does not rely on the ROM for its zero knowledge, by including a commitment scheme.
We also remark that when a key p is validated with this protocol, p is verified to be of the form
p = as + e with s, e small but does not verify to be from the Discrete Gaussian distribution.
But this seems to be sufficient for the applications of our protocol since a malicious user does
not have significant gain over choosing small s, e from a distribution that is different from the
Discrete Gaussian. This protocol is also more simple and efficient than the cut and choose
protocol in [20] that requires many RLWE samples generated and all but one of the samples
revealed to the verifier, resulting in increased computation and communication complexity.
Our protocol is efficient since the operations involved are only multiplication of ring elements
and this idea can be used to design a new key exchange protocol that allows key reuse. The
soundness of our protocol also directly relies on the hardness of the RLWE problem. Although
the main motivation of our protocol is in the context of key exchange, we note that this can
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be applied to RLWE verifiable encryption and can also be used to obtain efficient signatures
using the Fiat Shamir transform.

2 Preliminaries

The Learning with Errors (LWE) problem was first introduced by Regev in 2005 along with a
quantum reduction from solving hard lattice problems in the worst case to solving LWE in the
average case. Since the introduction of LWE and the reduction, it has allowed the design of
many versatile applications in Key Exchange, Digital Signatures , FHE (Fully Homomorphic
Encryption) schemes [15], Identity Based Encryption (IBE) schemes [2] and more. LWE is
a generalization of the parity-learning problem in computer science. In 2009, Peikert showed
a classical reduction from variants of the shortest vector problem to corresponding versions
of LWE [53]. The decision version of the LWE problem is to distinguish the following two
distributions given poly(n) samples: (a, a.s + e) and (a, b), where a, s, b ∈ Znq uniformly at
random and e is sampled from an error distribution on Zq . The search version of the problem
is to solve for s given (a, a.s + e). The Ring-LWE problem was designed by Lyubashevsky et
al. in [47] where the efficiency limitations of LWE are overcome by defining the cryptographic
operations over a ring R = Z[x]/φ(x), (analogously Rq = Zq[x]/φ(x)) where φ(x) is the
m-th cyclotomic polynomial. In practice, we often use the 2-power cyclotomics for efficiency
and controlling the noise. By considering polynomials from the ringRq , one sample a, a.s+e
by choosing a, s uniformly from Rq and e from an error distribution of Rq provides n LWE
samples corresponding to each coefficient of the polynomial.

We provide the definition of the Discrete Gaussian distribution (error distribution) here:

Discrete Gaussian Distribution

Definition 1. [64] For any positive real α ∈ R, and vectors c ∈ Rn, the continuous Gaussian
distribution over Rn with parameter α centered at c is defined by the probability function
ρα,c(x) = ( 1

α )nexp(−π‖x−c‖
2

α2 ). For integer vectors c ∈ Rn, let ρα,c(Zn) =
∑
x∈Zn ρα,c(x).

Then, we define the discrete Gaussian distribution over Zn as DZn,α,c(x) =
ρα,c(x)
ρα,c(Zn) , where

x ∈ Zn. The subscripts α and c are taken to be 1 and 0 (respectively) when omitted.

For a vector v = (v0, . . . , vn−1) in Rn or Cn and p ∈ [1,∞), we define the `p norm as
‖v‖p = (

∑n−1
i=0 |vi|p)1/p and the `∞ norm as ‖v‖∞ = maxi∈[n]|vi|. The `2 norm corresponds

to the `p norm with p = 2 and is denoted as ‖.‖ in this paper. In applying the norms, we assume
the coefficient embedding of elements from R to Rn. For any element s =

∑n−1
i=0 six

i of R,
we can embed this element into Rn as the vector (s0, . . . sn−1).

We recall two useful lemmas here:

Lemma 1 ([64]). Let f(x) and R be defined as above. Then, for any s, t ∈ R, we have
‖s · t‖ ≤

√
n · ‖s‖ · ‖t‖ and ‖s · t‖∞ ≤ n · ‖s‖∞ · ‖t‖∞.

Lemma 2 ([48, 30]). For any real number α = ω(
√

log n), we have Prx←χα [‖x‖ > α
√
n] ≤

2−n+1.

The Hermite Normal Form (HNF)-LWE is a reduction of the LWE problem in which the
secret s is also derived from the error distribution. It has also been shown that solving HNF-
LWE problem has the same reduction to solving hard lattice problems in the worst case [4]
and hence can be safely used in cryptographic applications.

Let s ← Rq be a uniformly chosen element of the ring Rq , as defined above. We define
As,χα to be the distribution of the pair (a, as + e) ∈ Rq × Rq , where a ← Rq is uniformly
chosen and e← χα is independent of a.
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Definition 2 (Ring-LWE Assumption). Let Rq, χα be defined as above, and let s ← Rq be
uniformly chosen. The (special case) ring-LWE assumption RLWEq,α states that it is hard
for any PPT (Probabilistic Polynomial Time)algorithm to distinguish As,χα from the uniform
distribution on Rq ×Rq with only polynomially many samples.

The search version of RLWE is to modify the above definition by requiring the PPT algo-
rithm to find s rather than distinguish the two distributions. For certain parameter choices, the
two forms are polynomially equivalent [47].

Proposition 1 ([47]). Let n be a power of 2, let α be a real number in (0, 1), and q a prime
such that q mod 2n = 1 and αq > ω(

√
log n). Define R = Z[x]/〈xn + 1〉 as above. Then

there exists a polynomial time quantum reduction from Õ(
√
n/α)-SIVP (Short Independent

Vectors Problem) in the worst case to average-case RLWEq,β with ` samples, where β =
αq · (n`/ log(n`))1/4.

It has been proven that the RLWE assumption still holds even if the secret s is chosen
according to the error distribution χα rather than uniformly [4, 47]. This variant is known as
the normal form, and is preferable for controlling the size of the error term [16, 14].

2.1 Zero Knowledge definitions

We focus here on the interactive proof system with zero knowledge. Let P and V denote the
honest prover and verifier respectively. P ∗ and V ∗ are usually used to denote the cheating
prover and verifier respectively.

Definition 3. [35] (P, V ) is an Interactive Proof System (IPS) for a language L, and security
parameter k if:

1. Completeness : ∀x ∈ L, Pr[OutV (P ↔ V )[x] = accept] ≥ 1− negl(k).
2. Soundness : ∀x /∈ L, ∀P ∗, Pr[OutV (P ∗ ↔ V )[x] = accept] ≤ negl(k).

Here negl() denotes a negligible function and OutV (P ↔ V )[x] is the final output (ac-
cept/reject) of the verifier on interaction with the prover.

The Statistical distance is defined for two random variables X,Y of a discrete distribution
as

∆(X,Y ) =
1

2

∑
x

|Pr[X = x]− Pr[Y = x]|

Let X = {Xn}n∈N and Y = {Yn}n∈N be sequences of probability distributions, called
ensembles. We say that X and Y are statistically indistinguishable, if ∆(Xn, Yn) = negl(n).

An interactive proof system needs to satisfy an additional property to be considered zero
knowledge.

Definition 4. [6] An interactive proof system (P, V ) for a language L is (statistical) zero-
knowledge (SZK) if for any PPT verifier V ∗, there exists an expected PPT simulator S such
that for every valid public input x and private input w, the statistical distance of the following
two random variables is negligible:

– V iewV ∗ < Px,w, V
∗ >

– S(x). (Note that S can be probabilistic and so this is a random variable).

That is, S only gets the public input and has no interaction with P , but still manages to
output something indistinguishable from whatever V ∗ learned in the interaction. Here, the
notation V iewA < B,A > denotes the view of A during the interaction with B: all the
messages sent and received.
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An NP-relation R ⊆ {0, 1}∗ × {0, 1}∗ is given by a deterministic algorithm W (, ) that
runs in time polynomial in the length of its first input. The relation is R = {(x,w) : W (x,w)
accepts}. The associated NP-languageLR = {x : ∃w such thatW (x,w) accepts}. The witness
set for an x ∈ {0, 1}∗ is R(x) = {w : W (x,w) = 1}.

2.2 Notation

Let the integer n be a power of 2, and define f(x) = xn + 1 and consider the ring R :=
Z[x]/〈f(x)〉. For any positive integer q, we define the ring Rq := Zq[x]/〈f(x)〉 analogously,
where the ring of polynomials over Z (respectively Zq := Z/qZ) we denote by Z[x] (respec-
tively Zq[x]). For any polynomial y(x) in R (or Rq), we identify y with its coefficient vector
in Zn (or Znq ). Let χα denote the discrete Gaussian distribution on Rq with parameter α. The
norm of y is computed as the norm of its coefficient vector. We say a function f(κ) is neg-
ligible if for every c>0, there exists an N ∈ N such that f(κ)<1/κc for all κ>N . We use
negl(κ) to denote a negligible function of κ, and we say a probability is overwhelming if it is
1−negl(κ). Let H : Rq → {0, 1}τ be a hash function where τ is the bit length of the output.

2.3 Pseudorandomness

Lemma 3. If x1 is sampled from the uniform distribution on Rq , then x̄ = x1 + x is uniform
over Rq even if x follows an arbitrary probability distribution.

Proof. Refer to Appendix A

We can show that x̄ is statistically pseudorandom assuming that x1 is statistically pseu-
dorandom and x follows arbitrary distribution, when x, x1 are distributed independently. For
more details, refer to Appendix. Statistical indistinguishability implies computational indis-
tinguishability but it can also be shown directly here as follows.

Lemma 4. x̄ = x1 + x is almost uniform (computationally pseudorandom) in Rq if x1 is
computationally pseudorandom in Rq and x follows an arbitrary probability distribution φ.

Proof. Refer to Appendix B

3 Random Oracle Model (ROM)

The random oracle model was introduced by Bellare and Rogaway in 1993 to bridge the gap
between theoretical security and practical cryptography. Protocols using ROM to prove secu-
rity, model hash functions as public random oracles [9]. This allows for more efficient pro-
tocols with security proofs, compared to the standard model (referring to protocols not using
random oracles or Common Reference Strings (CRS)). The approach of ROM as described in
their work is as follows:

Let
∏

be a protocol problem. Suppose P is a protocol for problem
∏

.

1. Define problem
∏

under the computational model that allows all parties in the protocol to
access a random public oracleR.

2. Devise an efficient protocol P for
∏

in this random oracle model.
3. Prove that P satisfies the definition for

∏
.

4. Replace oracle accesses toR by computation of a hash function h.
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There has been a lot of serious discussion about the actual security of protocols using
ROM. Some of the related work include [40, 39] in favor of ROM and [8, 19] against its
use. But it has been widely used for building efficient protocols with provable security. We
also present a variant of our protocol without using the random oracle model. With respect to
Zero knowledge protocols, the random oracle model changes the deniability property of these
protocols. Deniability is the property that guarantees that the transcript of the zero knowledge
proof does not leave any evidence of the interaction. Thus, Zero knowledge protocols that does
not have the deniability property may no longer be zero knowledge under sequential execution.
This stems from the fact that the simulator is allowed to choose the random oracle and can
reuse the output, thus violating the assumption that a verifier interacting with the prover learns
nothing more than his interaction with the simulator. However, we can still achieve deniable
zero knowledge proofs by adopting a weaker simulator, that is no longer allowed to choose the
random oracle, but should be able to perform the simulation for all but a negligible fraction of
random oracles. We adopt this same approach for our protocol in this work in restricting the
simulator. For more details, please refer to [52], [62].

Definition 5. An interactive proof system (P, V ) for a language L is (statistical) deniable
zero-knowledge in the random oracle model if for any PPT verifier V ∗, there exists an expected
PPT simulator S such that for every valid public input x and private input w, the statistical
distance of the following two ensembles is negligible:

– {RO, V iewV ∗RO < PROx,w , V
∗RO >}

– {RO,SRO(x)}. (Note that S can be probabilistic and so this is a random variable).

Here, RO is a uniformly distributed random variable corresponding to the random oracle.
By including RO variable in the ensemble, it is possible to verify that the simulator uses the
pre-specified public random oracle for its execution.

4 The Protocol

4.1 Signal Function

Given Zq = {− q−12 , . . . , q−12 } and the middle subset E := {−b q4c, . . . , b
q
4e}, we define Ŝig

as the characteristic function of the complement of E: Ŝig(v) = 0 if v ∈ E and 1 otherwise.
In order to avoid any bias in the Sig function, we use the randomized signal function in

the following way. We define two functions Ŝig0, Ŝig1 : Zq → {0, 1} as follows:

Ŝig0(v) =

{
0 v ∈ [−b q4c, b

q
4e],

1 otherwise.

Ŝig1(v) =

{
0 v ∈ [−b q4c+ 1, b q4e+ 1],

1 otherwise.

Note that Ŝig0 is defined to be the same function as Ŝig above, while Ŝig1 is a slightly
shifted variant. By definition, Sig0 causes a bias in the final shared key derived. This bias
is balanced by the function Sig1. Thus, we combine these into a randomized function Ŝig∗,
where Ŝig∗(v) is found by randomly sampling b← {0, 1} and returning Ŝigb(v).

Now, we can extend the function Ŝig∗ to Rq by applying the function coordinate-wise.
For ring element v = (v0, v1, . . . , vn−1) ∈ Rq , we define the function Sig∗ : Rq → {0, 1}n,
Sig∗(v) = (Ŝig∗(v0), Ŝig∗(v1), . . . , Ŝig∗(vn−1)).
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4.2 The Protocol Itself

As a first step in the protocol, P chooses a ← Rq uniformly and s, e ← χα and computes
p = as + e. P then publishes (a, p) as its public key. P also publishes its parameter choice
n, q, α. The secret of P is s and the protocol lets P prove to a verifier that p is of the form as+e
and that P knows s corresponding to p published. This set up is assuming that P is honest. If
P is malicious, then p need not be of the form p = as+ e and the verifier accepts the prover
in the protocol with only negligible probability. Let M denote the set {−b q8c, . . . , b

q
8e} ∪

{−b 3q8 c, . . . , b
3q
8 e} (refer Figure 1).

Fig. 1. The region M used for verifying the signal sent by the prover.

The interactive zero knowledge protocol is described as follows:
Let H1 : Rq → χα be a hash function modeled as a random oracleH1.

P : P computes p1 = as1 + e1 where s1, e1 ← χα and reveals p1 to the verifier V .
V : On receiving p1 from P , the verifier now generates an RLWE sample x as x = as′ + e′

where s′, e′ ← χα and randomly chooses a challenge bit b ∈ {−1, 1}. V sends b, x to the
prover P .

P : In order to complete the proof, the prover computes s′1 = H1(x). Prover sets x̄ = as′1 +
e′1 + x, where e′1 ← χα. Then computes kp = (s1 + bs)(x̄) + gp where gp ← χ√2α and
σ = Sig(kp). P sends σ to V . Here, the error gp is sampled from error distribution with
parameter

√
2α to have the same standard deviation as the secret s′+s′1. Since each secret

s′ and s′1 are sampled from the error distribution (Discrete Gaussian) with parameter α,
the sum follows the same error distribution with parameter

√
2α.

V : The verifier V computes s′1 = H1(x) and kv = (s′1+s′)(p1+bp)+gv where gv ← χ√2α.
The proof is accepted by V if the signal σ is verified to be correct using the computed
value kv and rejected if the signal is incorrect. The verifier only checks the indexes i
of σ for which kv[i] ∈ M . If kv[i] ∈ {−b q8c, . . . , b

q
8e}, then σ[i] is expected to be

0 and if kv[i] ∈ {−b 3q8 c, . . . , b
3q
8 e}, σ[i] is expected to be 1. Since for any d ∈ Zq ,

Pr(d ∈ M) = 1/2, there are enough number of σ[i] for the verifier to validate the
correctness.

The idea behind using x̄ for computing kp is to avoid leaking information about s through
the signal to a malicious verifier V ∗ since it uses information from both the prover and verifier
to perform the computation. If V ∗ is malicious and chooses an x deviating from the protocol,
by using x̄, we ensure kp has the form of an RLWE sample, which is indistinguishable from
uniform samples and so P does not leak information by sending the signal σ. The soundness
and zero knowledge property for this protocol are proven in the random oracle model with
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Prover (P) Verifier (V)

Sample s, e← χα
Secret Key: s ∈ Rq
Public Key: p = as+ e ∈ Rq , a
Sample s1, e1 ← χα
Compute p1 = as1 + e1

Sample s′, e′ ← χα
Set: x = as′ + e′ ∈ Rq
Random Challenge bit b← {−1, 1}

Sample e′1 ← χα, gp ← χ√
2α

Compute s′1 = H1(x)← χα
Set x̄ = x+ as′1 + e′1
Compute kp = (s1 + bs)x̄+ gp
σ = Sig(kp)

Sample gv ← χ√
2α

compute s′1 = H1(x) Compute
kv = (p1 + bp)(s′1 + s′) + gv
Verify σ using the value of kv

p1

x, b

σ

Fig. 2. Authentication Protocol

H1(x) modeled as a random oracle. Random oracle queries are answered in the usual way:
new queries are answered with uniformly random values, and previously made queries are
answered identically to the past response.

Lemma 5. Let q be an odd prime such that q = 1 mod 2n and q > 80α2n3/2. Then the
probability of an honest verifier accepting a signal σ from an honest prover P is at least
1− 2−n+1.

Proof. We see the following relation between kv and kp

kp − kv = (s1 + bs)x̄+ gp − ((p1 + bp)(s′1 + s′) + gv)

= as′1s1 + bass′1 + as′s1 + bas′s+ bse′ + e′s1 + e′1s1 + bse′1 + gp

− (as1s
′
1 + bass′1 + as′s1 + bas′s+ bes′1 + bes′ + e1s

′
1 + e1s

′ + gv)

= e′s1 + be′s+ e′1s1 + bse′1 − bes′1 − bes′ − e1s′1 − e1s′ + gp − gv = ek

Here, ek is used to denote the value e′s1+be′s+e′1s1+bse′1−bes′1−bes′−e1s′1−e1s′+gp−gv .
Since the challenge bit b is either −1 or 1, we have |b| = 1. So, ‖ek‖ ≤ ‖e′s1‖ + ‖e′s‖ +
‖e′1s1‖+ ‖se′1‖+ ‖es′1‖+ ‖es′‖+ ‖e1s′1‖+ ‖e1s′‖+ ‖gp‖+ ‖gv‖. Then, using Lemma 2,
each error term has norm less than α

√
n with overwhelming probability. Combining this with

lemma 1, we get |ek| ≤ 10α2n3/2<q/8 with probability 1− 2−n+1.
Since we know that ‖ek‖∞ ≤ ‖ek‖, we have ‖ek‖∞<q/8 with the same probability. So,

we have ek[i]<q/8, for each i in 0, . . . n− 1. Then from the analysis above, we can see that if
the verifier’s computation kv[i] for the ith coefficient is in M , then σ[i] is accepted using the
value of kv[i] with probability 1− 2−n+1.

We now prove that the protocol described in Figure 2 satisfies the following properties of
a zero knowledge protocol.

Completeness: Let q be an odd prime such that q = 1 mod 2n and q > 80α2n3/2. For every
honest P with knowledge of s for an RLWE sample p = as + e, Pr[OutV (P ↔ V ) =
accept] ≥ 1− 2−n+1.

Proof. This follows from Lemma 5.
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Computational Soundness: 1 Computational Soundness means that if a PPT malicious
prover P ∗ does not know the secret s corresponding to p, then regardless of what P ∗ does,
the verifier will accept the proof with probability at most 1/2 + negl(n). This is equivalent to
saying that the advantage of P ∗ in making the proof is negligible with advantage defined as
follows:
AdvP∗ = Pr[OutV (P ↔ V ) = accept|b′ ← {0, 1} : b′ 6= b]− 1/2

Proof. The soundness of the protocol is proven in the random oracle model. If P ∗ can guess
the challenge bit of the verifier correctly, then P ∗ can send p1 + p (resp. p1 − p) instead of
an honest p1 if the guess of the challenge bit is −1 (resp. 1). This is explained and used in
the construction of the simulator in the zero knowledge part. Since P ∗ can only guess this
challenge bit with probability 1/2, the probability of success for P ∗ is at least 1/2. Assuming
P ∗ to be a malicious prover that can make a valid proof without the knowledge of s with non-
negligible advantage, we consider P ∗ as an oracle that gives valid proof with non-negligible
advantage, irrespective of whether P ∗ knows the corresponding s or not, when p is of the form
p = as+ e, with s, e small.

The signal σ sent by a prover is accepted by an honest verifier when the noise terms are small
so that the difference between the verifier’s computation kv and the prover’s computation kp
is small (the error bounded by q/8 in the `2 norm). Thus, P ∗ gives valid proof for RLWE
samples with non-negligible advantage since RLWE samples are of the form p = as+ e with
s, e small, usually sampled from the discrete gaussian distribution. We define games Game0
through Game2 that can played between a cheating prover P ∗ and a verifier and use them to
show that if P ∗ can make a valid proof with success probability 1/2 + AdvP∗ with AdvP∗

non-negligible, then P ∗ can be used to build an RLWE distinguisher with the same advantage
as P ∗. On interaction with the prover, the verifier’s acceptance decision can be regarded as the
decision bit 0 or 1 for rejection or acceptance respectively. Every game is played between the
prover strategy P ∗ and a verifier oracle that honestly performs the verifier side of the protocol.

Game0 This is the original protocol in which p has the form p = as+ e and p1 = as1 + e1
according to the protocol. The transcript of the protocol is generated as p1, x, b, σ and
output is the decision bit bd of the verifier. This decision bit bd is 1 if the verifier accepts
the proof and 0 if he rejects.

Game1 : This game is identical to Game0 except that p is chosen uniformly over Rq .
Game2 : The game is identical to Game1 except that x is chosen uniformly.

Lemma 6. If P ∗ can make a valid proof for an RLWE sample p = as + e with s, e ← χα
without the knowledge of s to an honest verifier V with non-negligible advantage, then there
is a distinguisher for RLWE samples from uniform with the same advantage.

Proof. Let B be the RLWE distinguisher that we will construct using the prover strategy P ∗.
On receiving the challenge (a, p) from the RLWE challenger, B sends the challenge to P ∗.
Here, B performs the role of the honest verifier. If p is an RLWE sample p = as + e, the
interaction between P ∗ and B is exactly Game0 and B then outputs 1 since by assumption,
P ∗ is capable of making valid proofs for any RLWE sample p. If p is uniform, then the
interaction between P ∗ and B is exactly Game1 (Assuming that P ∗ cannot make valid proofs
for uniform p except with negligible advantage, which we will prove later). Thus, an output
of 1 concludes that p is RLWE and the game played is game0; an output of 0 concludes that
p is uniform and the game played is Game1.

1 Computationally sound interactive proofs are also referred to as Interactive argument systems [17].
We restrict to a PPT prover since the soundness of our protocol relies on the hardness of RLWE.
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Suppose P ∗ can also make valid proofs for uniform p with non-negligible advantage,
then the distinguisher as defined above would not be successful. We claim that this cannot
be the case unless P ∗ can solve the search version of the RLWE problem with the same
advantage. Suppose P ∗ can generate a signal σ that is accepted by the verifier for any p
without the knowledge of corresponding s. Here, the key computation of the verifier is kv =
(p1+bp)(s′+s′1)+gv = (p1+bp)s′+(p1+bp)s′1+gv , in which (p1+bp)s′1 can be computed
by the malicious prover himself. Also, since the verifier accepts the signal σ, it implies that
P ∗ is able to generate the signal for (p1 + bp)(s′ + s′1) + ep for any p, where ep = gv − ek
and ek = kv−kp from lemma 5. Now, we recall the signal function attack in [25]. This attack
allows an adversary to initiate multiple key exchange sessions with a party with a fixed public
key p = as+ 2e and gain information about the secret from the signal by creating malformed
public keys of the form pA = asA + k, where k ranges through all values of Zq . The number
of signal changes as k varies over values of Zq is exactly 2s[i] for every coefficient i of the
secret s.
Setup: If P ∗ can generate the signal of (p1 + bp)(s′ + s′1) + ep, then he can initiate multiple
key exchange sessions such that he plays both the initiator and the responder roles of the KE
protocol. Let P ∗I and P ∗R denote the initiator and responder role played by P ∗ respectively. P ∗R
queries the random oracleH1 with input x to obtain s′1 and fixes his public key as x+ as′1 =
a(s′ + s′1) + e′. Note that this is possible since a, x are known to P ∗. P ∗I creates his public
key as pI = p1 + bp where p1 is malformed as p1 = as1 + ke1, so pI = as1 + k + bp with
e1 = 1 ∈ Rq and initiates a key exchange session with P ∗R. Since P ∗R is capable of generating
the signal of (pIs

′ + ep), he responds with x, σR, where σR = Sig(pI(s
′ + s′1) + ep) =

Sig((p1 + bp)(s′+ s′1) + ep) = Sig(k(s′+ s′1) + as1(s′+ s′1) + bps′+ ep). The initiator P ∗I
can choose to drop the session at this stage or continue to create an unsuccessful KE session.
P ∗I repeats this process q times varying k through 0 to q− 1 and recovers s′+ s′1 as described
in the attack in [25] by looking at the number of signal changes for each coefficient. The
process is repeated for varying k fixing b = 1 or −1 and P ∗ can compute σR for both values
of b. Here, as1(s′ + s′1) + bps′ is fixed for each coefficient across all q queries for varying k
if we fix b = 1 or −1. Also, since P ∗ can obtain s′1 from x by querying the random oracle
H1, he can recover s′ from s′ + s′1. Thus, given an RLWE sample x = as′ + e′, P ∗ can solve
for s′, thus solving the search version of the RLWE problem with the same advantage that he
has in generating the signal corresponding to a uniform p that is accepted by a verifier in the
authentication protocol.

Note that if both p and the verifier’s choice of x is uniform, then the verification of the
signal is no longer valid. Thus, Game2 is never played between the cheating prover and the
verifier in the course of the proof.

This shows that the soundness error of the protocol is 1/2 +negl(n). We can use the trick
in [31], explained in [59], page 69 to slightly modify the protocol to obtain a soundness error
of 1/2. The soundness error becomes negligible as the protocol is executed n times.

Zero knowledge: We first show that the proposed protocol is Honest Verifier Statistical Zero
knowledge (HVSZK) and construct a probabilistic polynomial time simulator S that has black
box oracle access to an honest verifier V and outputs transcripts that are statistically close
to the transcripts between the real prover and verifier. We also assume that the simulator
has access to the random oracle H1, proving zero knowledge in the random oracle model.
Later, using [22], we transform the HVSZK into a general SZK protocol. Let V iewV RO <
PROp,s , V

RO > and SRO(p) denote the view of the honest verifier V in an interaction with a
real prover P and the simulator’s output respectively, with access to the random oracle H1.
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The idea behind the construction of a simulator is to show that a verifier can simulate the
interaction it has with a real prover by itself, thereby establishing that the prover does not
leak any useful information by performing a proof with the verifier. The simulator S for our
authentication protocol described in Figure 2 is constructed as follows:

1. Input: a, p such that a ← Rq and p = as + e where s, e ← χα. However, the simulator
does not get the value of s, e.

2. Choose b′ ← {−1, 1}.
3. Choose p̂1 as p̂1 = as1 + e1 where s1, e1 ← χα. Set p1 = p̂1 − b′p.
4. Invoke V from the state in step 2 on the message p1 to obtain a challenge bit b and x.
5. If b = b′, query the random oracleH1 with input x to obtain s′1 and output σ = Sig((s1)(as′1+

e′1 + x), otherwise go to step 2.

In the construction, the simulator throws away the instances when the predicted random
challenge bit of the simulator does not match the random challenge bit received by invoking
the verifier oracle. When b = b′ = 1, the verifier’s computation kv = (s′1 + s′)(p1 + p) =
(s′1 + s′)(p̂1), and kv still has <q/8 difference from kp, preserving the acceptance probability
and hence the distribution that V views. The same applies to the case when b = b′ = −1.
Here, the message p1 is an RLWE sample irrespective of whether b′ = 1 or b′ = −1. So,
the distribution is the same as in the case of the interaction with a real prover, regardless of
whether b′ = 1 or b′ = −1. Also, the challenge bit b and x are independent of b′ and follow
the same distribution as in the protocol with Pr[b = b′] = 1/2. The difference here comes
from the final step of the simulator as we repeat the protocol when the challenge bits do not
match. If we set the simulator to stop after n tries to match b, b′ and output a random uniform
σ after that, to obtain a strict polynomial time simulator, then the distribution of the simulator
is at a statistical distance of at most 2−n from the distribution of the real interaction.

In order to prove zero knowledge with respect to any arbitrary verifier (including cheating
verifiers that deviate from the protocol), we use the results from section 2.3 on x̄ in the proto-
col. We observe that irrespective of the distribution of x, x̄ is pseudorandom in Rq due to the
addition of as′1 + e′1 which is an RLWE sample and is pseudorandom in Rq . So, kp has the
RLWE form kp = x̄(s1 + bs) + gp since s1 + bs, gp ← χ√2α and so is pseudorandom.

Thus, the key kp computed by P has the RLWE form and is pseudorandom, resulting in
a uniform signal σ that does not leak information about s to an arbitrary cheating verifier by
running the protocol. To ensure zero knowledge and to provide a more rigorous analysis, we
can use the second transform in [22] to adapt the above simulator to one for SZK with an
arbitrary verifier that preserves negligible completeness and soundness error of the protocol.
The transform ensures that the challenge bit b from the verifier is uniform using a commitment
protocol. For x sent by the verifier, we don’t require this since the prover’s computation of kp
uses x̄ as already mentioned.

Even though technically the cheating verifier knows the value of s′1 and can compute x̄
himself, he cannot create an x to exploit this because of the commitment scheme. Thus, even
if x is formed deviating from the protocol, the honest prover uses x̄ which is indistinguishable
from uniform to perform its computations and hence does not leak information about the secret
s.

5 Variant of the authentication protocol

We present a variant of the protocol described above with a commitment scheme, but still
preserving the zero knowledge and other desirable properties of the protocol and eliminating
the need for the Random Oracle Model. The initial phase of the protocol is the commitment
phase. A hash function H is used for the commitment between the prover and the verifier. We
describe the protocol here (the notations and parameters are the same as the protocol above):
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P : P generates an s′1 ← χα and sends comp = H(s′1) to the verifier V .
V : On receivingH(s′1) from P , the verifier now generates an RLWE sample x as x = as′+e′

where s′, e′ ← χα. V sends comv = H(x) to the prover P .
P : P computes p1 = as1 + e1 where s1, e1 ← χα and reveals p1, s′1 to the verifier V .
V : On receiving s′1, p1 from P , the verifier checks ifH(s′1) = comp else, aborts the protocol.

The verifier now randomly chooses a challenge bit b ∈ {−1, 1} and reveals the RLWE
sample x as x = as′ + e′ generated before and the challenge bit b to the prover P .

P : The prover checks if x matches with the hash commitment sent by the verifier in the
previous step, H(x) = comv else aborts the protocol. In order to complete the proof,
the prover computes x̄ = x + as′1 + e′1, where e′1 ← χα and then computes kp =
(s1 + bs)(x̄) + gp where gp ← χ√2α and σ = Sig(kp). P sends σ to V .

V : The verifier V computes kv = (s′1 + s′)(p1 + bp) + gv where gv ← χ√2α. The proof
is accepted by V if the signal σ is verified to be correct using the computed value kv and
rejected if the signal is incorrect. Similar to the main protocol, the verifier only checks the
indexes i of σ for which kv[i] ∈ M . If kv[i] ∈ {−b q8c, . . . , b

q
8e}, then σ[i] is expected to

be 0 and if kv[i] ∈ {−b 3q8 c, . . . , b
3q
8 e}, σ[i] is expected to be 1.

Prover (P) Verifier (V)

Sample s, e← χα
Secret Key: s ∈ Rq
Public Key: p = as+ e ∈ Rq , a
Sample s′1 ← χα
Compute comp = H(s′1)

Sample s′, e′ ← χα
Set: x = as′ + e′ ∈ Rq
Compute comv = H(x)

Sample s1, e1 ← χα
Compute p1 = as1 + e1

Verify if H(s′1) = comp else abort
Random Challenge bit b← {−1, 1}

Verify if H(x) = comv else abort
Sample e′1 ← χα, gp ← χ√

2α

Compute x̄ = x+as′1 +e′1 Compute
kp = (s1 + bs)x̄+ gp
σ = Sig(kp)

Sample gv ← χ√
2α

Compute kv = (p1 + bp)(s′ + s′1) +
gv
Verify σ using the value of kv

comp

comv

s′1, p1

x, b

σ

Fig. 3. Authentication Protocol - Variant

The above protocol has the same structure as the protocol in Figure 2 with the difference
being that H1(x) required in the protocol to establish zero knowledge is replaced with a com-
mitment s′1 that performs the same functionality of randomizing x, thus preserving the zero
knowledge in this variant. In order to prove zero knowledge and soundness, we require that
the commitment scheme is statistically hiding and computationally binding which ensures
the integrity of the commitments. We only require computational binding since we focus on
Probabilistic Polynomial Time (PPT) prover and statistical hiding to ensure statistical zero
knowledge in the protocol. Forcing the verifier V to commit to a message x before receiv-
ing the value of s′1 from the prover helps with zero knowledge of the protocol, and forcing
the prover to commit to an s′1 before seeing x ensures soundness of the protocol. The com-
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pleteness, soundness and zero knowledge properties of this variant can be replicated from the
above proofs replacing H1(x) with s′1.

5.1 Commitment Scheme:

In order to establish the zero knowledge and soundness properties of our variant protocol
(Figure 3), the commitment scheme plays an important role. Note that the commitment of the
prover and verifier in the first two message exchanged in the protocol uses standard hash func-
tions on the committed value. The hiding property ensures zero knowledge since otherwise a
malicious verifier can gain the knowledge of s′1 from the commitment and from x accordingly.
The binding property restricts the malicious prover to the use of the committed value s′1 in the
proof. The commitment scheme can be separately executed to agree on s′1 and x values before
running the validation part of the protocol and thus can be replaced with a secure commitment
scheme that satisfies the required binding and hiding properties. We use Hash function H for
the presentation of the commitment scheme for simplicity. Assuming one way functions and
collision intractable functions exist, many commitment schemes with the required properties
have been proposed [23, 34, 33].

5.2 Communication Complexity:

The communication complexity of a single execution of the first protocol, involves the mes-
sages x, p1, b, σ exchanged between the prover and the verifier. This amounts to 2nlog q+n+1
bits of data exchanged. This does not include the complexity of the messages exchanges when
we apply the transform in [22] to derive a uniform challenge bit b. The commitment scheme in
the variant presented would add a complexity of 2τ +O(nlog α) bits of the data exchanged.

6 Protocol for LWE

We also present a general authentication protocol for LWE form keys here for completeness
of this work. Generate public parameters n, q, α. Let DZn,α denote the Discrete Gaussian
distribution over Zn. Let S∗ be the signal function defined analogous to Sig as S∗ : Znq →
{0, 1}n, S∗(v) = (Ŝig∗(v0), Ŝig∗(v1), . . . , Ŝig∗(vn−1)). We choose a uniform matrix A ←
Zn×nq instead of the public a ∈ Rq in the case of the RLWE based protocol. We use the
Hermite Normal Form (HNF) - LWE to ensure that the secret and error of p = As+e is small
for security and correctness of the protocol. In the HNF-LWE problem, both s, e are sampled
according to DZn,α. The protocol is described as follows:

P : P generates an s′1 ← DZn,α and sends comp = H(s′1) to the verifier V .
V : On receiving H(s′1) from P , the verifier now generates an RLWE sample x as x =

AT s′ + e′ mod q where s′, e′ ← DZn,α. V sends comv = H(x) to the prover P .
P : P computes p1 = As1 + e1 mod q where s1, e1 ← DZn,α and reveals p1, s′1 to the

verifier V .
V : On receiving s′1, p1 from P , the verifier checks ifH(s′1) = comp else, aborts the protocol.

The verifier now randomly chooses a challenge bit b ∈ {−1, 1} and reveals the RLWE
sample x as x = AT s′+e′ mod qs generated before and the challenge bit b to the prover
P .

P : The prover checks if x matches with the hash commitment sent by the verifier in the
previous step, H(x) = comv else aborts the protocol. In order to complete the proof, the
prover computes x̄ = x + AT s′1 + e′1 mod q, where e′1 ← DZn,α and then computes
kp = (s1 + bs)T x̄+ gp mod q where gp ← DZ,

√
2α and σ = S∗(kp). P sends σ to V .
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Prover (P) Verifier (V)

Sample s, e← DZn,α
Secret Key: s, e
Public Key: p = As+ e mod q, A
Sample s′1 ← DZn,α
Compute comp = H(s′1)

Sample s′, e′ ← DZn,α
Set: x = AT s′ + e′ mod q
Compute comv = H(x)

Sample s1, e1 ← DZn,α
Compute p1 = As1 + e1 mod q

Verify if H(s′1) = comp else abort
Random Challenge bit b← {−1, 1}

Verify if H(x) = comv else abort
Sample e′1 ← DZn,α, gp ← DZ,

√
2α

Compute x̄ = x+AT s′1+e′1 mod q
Compute kp = (s1 + bs)T x̄ + gp
mod q
σ = Sig(kp)

Sample gv ← DZ,
√

2α

Compute kv = (p1 + bp)T (s′ +
s′1) + gv mod q
Verify σ using the value of kv

comp

comv

s′1, p1

x, b

σ

Fig. 4. Authentication Protocol for LWE

V : The verifier V computes kv = (p1 + bp)T (s′1 + s′) + gv mod q where gv ← DZ,
√
2α.

The proof is accepted by V if the signal σ is verified to be correct using the computed
value kv and rejected if the signal is incorrect.

The zero knowledge, completeness and soundness can be similarly extended to the LWE
case assuming that the HNF-LWE assumption holds and are skipped in this paper.

7 Conclusion

We have introduced a novel application of the Signal function used for reconciliation in key
exchange, to derive a secure authentication protocol. The protocol is shown to be zero knowl-
edge with negligible soundness and completeness errors. The security of the protocol is also
shown to be directly related to the hardness of solving RLWE problem. We note that the Zero
knowledge protocol presented here is against classical verifiers. Zero knowledge against quan-
tum verifiers (honest and dishonest) have been studied in [60], [38], [61]. An open problem
with quantum zero knowledge is with the rewinding technique that is used for constructing a
simulator. In [21], Damgaård et al. proposed three techniques to transform a HVSZK protocol
into a Quantum Zero Knowledge protocol, with one of them in the common reference string
model. Wastrous [61] introduced a quantum rewinding technique to achieve ZK against quan-
tum attacks. Recently, the work in [18] shows that every problem in QMA (Quantum Merlin
Arthur) has a quantum computational zero knowledge proof, assuming the existence of quan-
tum computationally secure commitment schemes. We leave extending the protocol presented
in this paper to quantum zero knowledge as future work. The advantage of this key validation
is that it allows us to reuse keys in RLWE-based key exchange. We derive ideas from this to
also develop a non interactive proof to validate the keys and we design a new key exchange
protocol based on RLWE that utilizes this key validation technique to allow key reuse and
consider it as future work that is a consequence of this validation.
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A Proof of Lemma 3

Proof. Suppose x has an arbitrary distribution, we show that every coordinate of x̄ is uni-
formly distributed over Zq . Here, the choice of x and x1 are independent of each other. Let
X1 denote the random variable with uniform distribution on Zq and X2 denote the random
variable with the distribution of x. Then, we show that the probability of X1 + X2 equals
z ∈ Zq is 1/q, implying that x̄ is uniform.

Pr(X1 +X2 = z) =

q−1
2∑

i=− q−1
2

Pr(X1 = i)Pr(X2 = z − i)

=

q−1
2∑

i=− q−1
2

1

q
Pr(X2 = z − i)

=
1

q

q−1
2∑

i=− q−1
2

Pr(X2 = z − i)

=
1

q

We can show that x̄ is statistically pseudorandom assuming that x is statistically pseudo-
random. Recall that the statistical distance between two distributions with random variables
X,Y is defined as ∆(X,Y ) = 1

2

∑
x |Pr[X = x] − Pr[Y = x]|. Two distributions are

statistically indistinguishable if their statistical distance is negligible. If X1 has a distribution
that is statistically pseudorandom (statistically indistinguishable from uniform) on Zq , for any
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qi ∈ Zq , we have Pr(X1 = qi) = 1/q + ε, where ε is negligible. Let X2 denote the random
variable with the distribution of x. Then, X1, X2 are independent random variables. We show
that for z ∈ Zq , the probability Pr(X1 +X2 = z) ≤ 1

q + ε, where ε is negligible and X2 is a
random variable of an arbitrary distribution.

Pr(X1 +X2 = z) =

q−1
2∑

i=− q−1
2

Pr(X1 = i)Pr(X2 = z − i)

=

q−1
2∑

i=− q−1
2

(
1

q
+ εi)Pr(X2 = z − i)

=
1

q

q−1
2∑

i=− q−1
2

Pr(X2 = z − i) +

q−1
2∑

i=− q−1
2

εiPr(X2 = z − i)

<
1

q
+

q−1
2∑

i=− q−1
2

εi

So, we have Pr(X1 + X2 = z)< 1
q + ε, where ε =

∑ q−1
2

i=− q−1
2

εi is negligible. Here, we
have used a well known fact that the finite sum of negligible functions is negligible. This can
be shown using the definition of negligible function from section 2.2. If we show that the
sum of two negligible functions is negligible, then the result follows by induction. Suppose
ε1 and ε2 are two negligible functions, then let ε12 = ε1 + ε2. Since ε1 and ε2 are negligible
functions, for an arbitrary c > 0, we have c + 1 > 0 and there exists nε1 , nε2 such that
for all n ≥ nε1 , ε1(n) ≤ n−c+1 and for all n ≥ nε2 , ε2(n) ≤ n−c+1. Now if we take
nε12 = max{nε1 , nε2}, we have for all n ≥ nε12 , both ε1(n) ≤ n−c+1 and ε2(n) ≤ n−c+1.
So, ε12(n) = ε1(n) + ε2(n) ≤ 2.n−c+1 ≤ n.n−c+1 = n−c.

We recall the definition of computational pseudorandomness here: A probability distribu-
tion X on Rq is said to be computationally pseudorandom if there exists no efficient distin-
guisher D that distinguishes X from U , the uniform distribution on Rq with non-negligible
advantage. i.e,

|Pr[t← X,D(t) = 1]− Pr[t← U,D(t) = 1]|<ε(n)

for a negligible function ε(n), for all n ∈ N.

B Proof of Lemma 4

Proof. Suppose D is a distinguisher for the distribution of x̄ from uniform on Rq , we can
then use oracle access to D to build a distinguisher D′ for RLWE, hence proving that x̄ is
pseudorandom. D′ is constructed as follows: On receiving an RLWE sample p from a RLWE
challenger, D′ samples x from the distribution φ and computes p̄ = p + x. D′ then invokes
the distinguisher D with input p̄. D′ is then set to output the output of the distinguisher D.
Note that from lemma 3, if p is uniform, then p̄ is uniform. Thus, if D can distinguish p̄ from
uniform with non-negligible advantage AdvD, then D′ can distinguish RLWE sample p from
uniform p with the same advantage.
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