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Abstract Cube-attack-like cryptanalysis was proposed by Dinur et al. at EUROCRYPT 2015, which
recovers the key of Keccak keyed modes in a divide-and-conquer manner. In their attack, one selects cube
variables manually, which leads to more key bits involved in the key-recovery attack, so the complexity is
too high unnecessarily. In this paper, we introduce a new MILP model and make the cube attacks better on
the Keccak keyed modes. Using this new MILP tool, we find the optimal cube variables for Keccak-MAC,
Keyak and Ketje, which makes that a minimum number of key bits are involved in the key-recovery attack.
For example, when the capacity is 256, we find a new 32-dimension cube for Keccak-MAC that involves
only 18 key bits instead of Dinur et al.’s 64 bits and the complexity of the 6-round attack is reduced to
242 from 256. More impressively, using this new tool, we give the very first 7-round key-recovery attack
on Keccak-MAC-512. We get the 8-round key-recovery attacks on Lake Keyak in nonce-respected setting.
In addition, we get the best attacks on Ketje Major/Minor. For Ketje Major, when the length of nonce
is 9 lanes, we could improve the best previous 6-round attack to 7-round. Our attacks do not threaten
the full-round (12) Keyak/Ketje or the full-round (24) Keccak-MAC. When comparing with Huang et al.’s
conditional cube attack, the MILP-aided cube-attack-like cryptanalysis has larger effective range and gets
the best results on the Keccak keyed variants with relatively smaller number of degrees of freedom.
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1 Introduction

As a countermeasure of the collision attacks on MD5 and SHA-1 by Wang et al. [33}[34], the U.S. National
Institute of Standards and Technology (NIST) announced a public contest in 2007 aiming at the selection
of a new standard for a cryptographic hash function (SHA-3). After 5 years of intensive scrutiny, in 2012
NIST selected Keccak as the winner of the SHA-3 competition. As one of the most important cryptographic
standards, Keccak attracts lots of attention from the world wide researchers and engineers. Till now, many
cryptanalysis results [9,10}/17}19/24] and evaluation tools [8,(13,{23] have been proposed, including the recent
impressive collision attacks [26,[28]. However, the cryptanalysis progress of Keccak is still limited.

At EUROCRYPT 2015, Dinur et al. [11] introduced a new cube-attack-like cryptanalysis technique and
gave the security evaluations of the Keccak keyed modes for the first time. At CT-RSA 2015, Dobraunig
et al. [14] evaluated the security of Ascon [15] against the cube-attack-like cryptanalysis. Later, Dong et
al. |[16] applied the cube-like method to Ketje Sr [3]. At EUROCRYPT 2017, Huang et al. [20] introduced
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the conditional cube attack, which takes advantage of the large state freedom of Keccak to find a so-called
conditional cube variable that does not multiply with all the other cube variables (called ordinary cube
variables) in the first round and second round of Keccak. Later, Li et al. [22] applied the conditional cube
attack to Ascon.

Recently, cryptographic communities found many classical cryptanalysis methods could be converted
to mathematical optimization problems which aim to achieve the minimal or maximal value of an ob-
jective function under certain constraints. Mixed-integer Linear Programming (MILP) is the most widely
studied technique to solve these optimization problems. One of the most successful applications of MILP
is to search differential and linear trails. Mouha et al. [25] first applied MILP method to count active
Sboxes of word-based block ciphers. At Asiacrypt 2014, by deriving some linear inequalities through the
H-Representation of the convex hull of all differential patterns of Sbox, Sun et al. [30] extended this tech-
nique to search differential and linear trails. Since then, many more MILP-based automatic cryptanalysis
tools have been introduced, such as searching integral distinguishers [36], differentials of ARX ciphers [18§],
(related-tweak/key) impossible differentials [7}/27}38}39].

At Asiacrypt 2017, Li et al. [21] introduced a new MILP tool to improve conditional cube attacks on
Keccak keyed modes. They found that when the conditional cube variable is given, to find enough ordinary
cube variables is a mathematical optimization problem. They gave the MILP model and improved Huang
et al.’s conditional cube attacks. And most recently, Song et al. [29] introduced a new MILP model to find
better/optimal choices of conditional cubes. These works seem to exhibit a new way to research Keccak
sponge function. The tedious cryptanalytic works become much easier because of MILP model.

1.1 Our Contributions

In this paper, we find Dinur et al.’s [11] cube-attack-like cryptanalysis technique could also be converted
to and improved by a MILP model. In Dinur et al.’s attack, the key point is to select the public variables
as the cube in such a way that the superpolys depend only on a (relatively) small number of key bits. In
detail, at the first round of Keccak, the attacker finds a set of cube variables that are not multiplied with
each other (we denoted it as linear-cube), meanwhile, these cube variables are not multiplied with some
key bits. By taking advantage of the CP-kernel [2], Dinur et al. found 32/64-dimension linear-cubes that
are not multiplied with 64 key bits in Keccak-MAC-128 (with capacity 256).

In this paper, we propose a new MILP model to search optimal linear-cubes that multiply with a
minimum number of key bits in the first round. We model the so-called CP-like-kernel, model the way that
the cube variables are not multiplied with each other in the first round and model the way that the cube
variables are not multiplied with key bits, etc. We construct a linear inequality system. The target object is
the minimum number of key bits which are multiplied with cube variables. Based on this new MILP tool,
we find the optimal cubes that are multiplied with fewest key bits for Keccak-MAC, Keyak and Ketje. All
the results improve Dinur et al.’s attacks.

When comparing with Huang et al.’s conditional cube attack, the advantage of the MILP-aided cube-
attack-like cryptanalysis is that it has larger effective range. The conditional cube attack becomes much
weaker or invalid when the number of degrees of freedom is smalﬂ Hence, the conditional cube attack can
only be applied to 6-round Keccak-MAC-512 and the attacks on Keyak in nonce-respected setting are still
limited, etc. However, MILP-aided cube-attack-like cryptanalysis could not only attack the same number
of rounds with conditional cube attack with the same number of degrees of freedom, but also get better
results on the Keccak keyed variants with relatively smaller number of degrees of freedom. The results are
summarized in Table [I} In addition, we list the source code of the new MILP tools and the verification
programs in a public domairﬁ to help researchers study Keccak. Our main results achieved by the MILP
tools are listed below.

1. When the capacity is 256, we find the optimal 32-dimension linear-cube for Keccak-MAC that only mul-
tiplies with 18 key bits instead of Dinur et al.’s 64 bits. By divide-and-conquer manner, the complexity
of the 6-round attack is only 242 instead of 266. This key-recovery attack is experimentally verified
and the verification programs could be found in the above public domain. We find a new 64-dimension

1 In Keccak-MAC, the capacity is larger, the number of degrees of freedom is smaller; in Keyak and Ketje, the nonce or
size of state is smaller, the number of degrees of freedom is smaller.
2 https://github.com/bivenquan/MILP-aided-Cube-attack-like-cryptanalysis/
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Table 1: Summary of Key Recovery Attacks on Keccak Keyed Modes

Variant Capacity Type ‘%Ziil;e: Time Data | Memory Source
Cube-attack-like 6 206 232 232 ]
Conditional Cube Attack 6 240 232 - |20]
Balanced Divide-and-Conquer 6 245 232 213 137]
MILP-aided Cube-attack-like 6 242 232 29 Sect.
Keccak-MAC-128 256 Cube-attack-like 7 297 204 232 |11]
Conditional Cube Attack 7 272 264 - |20]
Balanced Divide-and-Conquer 7 284 264 267 137]
MILP-aided Cube-attack-like 7 280 264 215 Sect. EI
Conditional Cube Attack 5 224 216 - |20
Conditional Cube Attack 6 2583 232 - 121]
Keccak-MAC-512 1024 Conditional Cube Attack 6 241 232 - 129
MILP-aided Cube-attack-like 7 2112.6 264 247 Sect.
Variant Nonce Type AP:ZT;I(;: Time | Data | Memory Source
Lake Keyak 128 Cube Attack 6 237 232 - ]
Honco Default Conditional Cube Attack 8 271.01 264 -
respected Default MILP-aided Cube-attack-like 7 242‘ 2?2 29
Default | MILP-aided Cube-attack-like 8 279-6 | 964 214
654 Cube-attack-like 7 296 2064 232
Ketje Minor 654 Conditional Cube Attack 7 281 264 -
288 MILP-aided Cube-attack-like 7 2113 264 248
Ketje Major 576 Conditional Cube Attack 6 241 264 - h
576 MILP-aided Cube-attack-like 7 294 264 229 Sect 8.2

linear-cube that only multiplies with 30 key bits instead of Dinur et al.’s 64 bits. Based on it, the

complexity of 7-round cube-attack-like cryptanalysis is reduced by a factor of 2'7.

2. In Keccak sponge function, when the capacity reaches 1024, the number of degrees of freedom is so small
that the cryptanalysis becomes quite hard. Actually, the rounds of the collision attack and preimage
attack on Keccak-512 are only 3 and 4, respectively. For Keccak-MAC-512, the cryptanalysis results are
also the weakest. In fact, at EUROCRYPT 2015, Dinur et al. only gave cube-attack-like cryptanalysis
when the capacity is smaller than 576. At EUROCRYPT 2017, Huang et al. gave the first 5-round
key-recovery attack on Keccak-MAC-512 using conditional cube attack. Then at Asiacrypt 2017, Li et
al. gave a 6-round conditional cube attack. In this paper, using our new MILP tool, we give the first
7-round key-recovery attack on Keccak-MAC-512.

3. Considering Keyak in nonce-respected setting, using our MILP tool, we improve Dinur et al.’s 6-round
key-recovery attack on Lake Keyak to 8-round with the recommended nonce. In addition, we also get
the best attacks on Ketje Major/Minor with nonce reduced settings. For Ketje Major, when nonce
is 9-lane, we improve the best previous 6-round attack to 7-round. We give the first 7-round attacks
on Ketje Minor when the nonce is reduced to 288 bits, while the best previous 7-round attacks need
654-bit nonce.

1.2 Organization of the Paper

Sect. [2] gives some notations, and a brief description on Keccak-permutations, Keccak-MAC, Keyak and
Ketje. Some related works are introduced in Sect. [3] Sect. [ introduces the idea of improvement of Dinur
et al.’s attack. Sect. [5| describes the MILP search model for cube-like-attack. Round-reduced key-recovery
attacks on Keccak-MAC-512 are introduced in Sect.[6] Sect.[7] gives the cryptanalysis results on Lake Keyak
with the nonce-respected setting. Sect. [§] gives the applications to Ketje. Sect. [J] concludes this paper.
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Fig. 1: (a) The Keccak State 2], (b) State A In 2-dimension

Table 2: Rotation constants r[x,y] in Keccak p operation.

x=0 | x=1|x=2 | x=3]|x=4
y=0 0 1 62 28 27
y=1 36 44 6 55 20
y=2 3 10 43 25 39
y=3 41 45 15 21 8
y=4 18 2 61 56 14

2 Preliminaries

2.1 Notations

Si

the intermediate state after i-round of Keccak-p, for example Sp.5 means the intermediate
state before x in the 1st round of Keccak-p,

used in tables: for Keccak-MAC and Keyak, the initial state; for Ketje, the state after 7!
of Keccak-p*

the 32/64-bit word indexed by [i, j, ] of state A, 0<i<4,0<j<4

the bit indexed by [i, j, k] of state A

the ith cube variable

the ith auxiliary variable used in the attack procedure

128-bit key, for Keccak-MAC, K = ko||k1, both ko and k1 are 64-bit; for Ketje Major

and Lake Keyak, K = ko||k1]||k2, ko is 56-bit, k1 is 64-bit, ko is 8-bit; for Ketje Minor,
K= k0‘|k51||/€2||k3”k4, ko is 24-bit, k1,k2 and k3 are 32-bit, k4 is 8-bit

the jth bit of k;

2.2 The Keccak-p permutations

The Keccak-p permutations are derived from the Keccak-f permutations |2] and have a tunable number of
rounds. A Keccak-p permutation is defined by its width b = 25x 2l, with b € {25, 50, 100, 200, 400, 800, 1600},
and its number of rounds n,, denoted as Keccak-p[b]. The round function R consists of five operations:

R=toxomopob

Keccak-p[b] works on a state A of size b, which can be represented as 5 x 5 ——blt lanes, as depicted in

Fig. [1} A[i]]

j] with 4 for the index of column and j for the index of row. In What follows indexes of ¢ and j

are in set {0,1,2,3,4} and they are working in modulo 5 without other specification.

0 : Alxlly] = Alzlly] & X5, (Alz — 1[5] @ (Alz + ][] < 1)),
p: Alz]ly] = Alz]ly] < rlz,y].

7 Aly][2z + 3y] = Alz][y].

x : Alz]ly] = Alz]ly] © ((m Az + 1][y]) A Az + 2][y].

¢+ A[0][0] = A[0][0] ® RC.

In Ketje v2, the twisted permutations, Keccak-p* [b]=mo Keccak-p[b] o m !, are introduced to effectively
re-order the bits in the state. 77! is the inverse of m: 7~ ! : Az + 3y][z] = Alz][y].
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Fig. 2: Construction of Keccak-MAC-n

C1 Cc2
P1 P2
keypack||nonce E E
D D D — Tag
Keccak Keccak Keccak
permutation permutation permutation
capacity capacity
Fig. 3: Construction of Keyak on two blocks
Table 3: Five instances of Keyak
Name b I Main use case 2nd use case

River Keyak 800
Lake Keyak 1600
Sea Keyak 1600
Ocean Keyak 1600
Lunar Keyak 1600

defense-in-depth lightweight

defense-in-depth high performance
defense-in-depth high performance
defense-in-depth high performance
defense-in-depth high performance

0 = N ==

2.3 Keccak-MAC

A MAC mode of Keccak can be obtained by adding key as the prefix of message/nonce. As depicted in
Fig. 2] the input of Keccak-MAC-n is concatenation of key and message, n is half of the capacity length.

2.4 Keyak

Authenticated Encryption cipher Keyak [4] is one of the 16 candidates in the 3rd round CAESAR compe-
tition, whose mode is based on Motorist mode [4], which is sponge-based and supports one or more duplex
instances operating in parallel.

In Keyak, five instances are proposed. For all instances, the round number of Keccak-p[b] is n, = 12,
the capacity ¢ = 256 and the tag length 7 = 128. The primary recommendation is the Lake Keyak. As
shown in Fig. 3] 128-bit key is encoded by a key pack:

keypack(key,l) = encs(l)||key||padl0  [8] — 8](|key]|)

In Lake Keyak, the key pack [ is 40 bytes and 150-byte nonce is recommended. According to the specification
of Keyak, in order to assure confidentiality of data, a user must respect the nonce requirement. Namely, a
nonce cannot be reused, otherwise, confidentiality is not guaranteed. However, for authenticity and integrity
of data, a variable nonce is not required. Readers can refer to [4] for more details.

2.5 Ketje

Ketje [3] is also one of the 16 candidates in the 3rd round CAESAR competition. It is a sponge-like
construction.
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The structure of Ketje is an authenticated encryption mode MonkeyWrap |3|, which is based on Mon-
keyDuplex [5]. It consists of four parts: the Initialization phase, Processing associated data, Processing the
plaintext and Finalization phase. The initialization takes the secret key K, the public nonce N and some
paddings as the initial state. Then nsiart = 12 rounds Keccak-p* is applied. Our attack is applied to the
initialization phase of Ketje.

In Ketje v2, four concrete instances are proposed, shown in Table E[, Nstart = 12, Nstep = 1 and
Nstride = 6. For Ketje Minor and Major, the recommended key length is 128-bit, so the maximal length of
nonce is (800-128-18=)654 and (1600-128-18=)1454 bits.

Table 4: Four Instances in Ketje v2

Name f p Main use case
Ketje Jr Keccak-p*[200] 16 lightweight

Ketje Sr Keccak-p*[400] 32 lightweight

Ketje Minor Keccak-p*[800] 128 lightweight

Ketje Major  Keccak-p*[1600] 256  high performance

3 Related Work
3.1 Cube Attack

At EUROCRYPT 2009, Dinur and Shamir introduced the cube attack [12], in which the output bit of a
symmetric cryptographic scheme can be regarded as a polynomial f(ko, ..., kn—1,v0, ..., Um—1) over GF(2),
ko, ..., kn—1 are the secret variables, vg, ..., vm—1 are the public variables (e.g. IV or nonce bits).

Theorem 1 ( [12] )
f(ko, .o, kn—1,v0, ey Vm—1) =t - P4+ Q(ko, ..., kn—1, 00, -.., Um—1) (1)

t is called mazterm and is a product of certain public variables, for example (vo,...,vs—1), 1 < s < m,
denoted as cube Ct. None of the monomials in Q is divisible by t. P is called superpoly, which does not
contain any variables of Cy. Then the sum of f over all values of the cube Cy (cube sum) is

> F(koy oy k1,0, Vs ooy Um—1) = P (2)

v'=(vg,...,v5-1)EC}

where Cy contains all binary vectors of the length s, vs, ..., vm—1 are fized to constant.

The basic idea is to find enough ¢t whose P is linear and not a constant. This enables the key recovery
through solving a system of linear equations. Recently, the cube-attack technique was improved a lot by
Todo et al. [32] and Wang et al. [35] using division property [31].

3.2 Dinur et al.’s Cube-attack-like Attack

At EUROCRYPT 2015, Dinur et al. [11] launched a cube-attack-like cryptanalysis on Keccak keyed modes.
In the attack on 6-round reduced Keccak-MAC with capacity 256, the 128-bit key is placed in the lane
A[0][0] and A[1][0]. They found if the cube variables are in A[2][2] and A[2][3] which are equal in the same
column, shown in Fig. [4] after 8, p and 7, the cube variables are only multiplied with 64-bit key in A[0][0]
after the first round. The cube sums after 6-round are independent of the key bits in A[1][0].

In addition, Dinur et al. introduced 32 bits auxiliary variables which are assumed to be equal to key bits
in A[0][0] in the same column. Hence, half of A[0][0] (32-bit key) and auxiliary variables are in CP-kernel,
which makes that cube variables do not multiply with those key bits and auxiliary variables in the first
round. So only 32 key bits will multiply with the cube variables after the first round, which means only 32
key bits will affect the cube sums of the output after 6-round.

The whole 6-round attack is as follows. In preprocessing phase, the attacker calculates the cube sums
for each of 32-bit keys which multiply with cube variables and store them in a list L. In the online phase,
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Fig. 4: Dinur et al.’s Work
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Fig. 5: The diffusion of key bits and cube variables in one round

Y =un

Fig. 6: The offset of key bits and cube variables in one round

for 232 values of auxiliary variables, the attacker calculates the cube sums for the output bits and search
them in L, for each match in L return the corresponding 32-bit key as a candidate. Similar attack is applied

to 7-round Keccak-MAC. For more details, please refer to .

4 An Improvement of Dinur et al.’s Idea

In Dinur et al.’s divide-and-conquer strategy, the cube was chosen manually and not optimal. Recently,
Ye et al. introduced a method to choose the cube variables more precisely, then the number of secret
key bits, which multiply with the cube variables in the first round, will decrease and the complexity would
reduce as well, which leads to longer-round attacks sometimes. We call these secret key bits related key bits
(and other secret key bits which do not multiply with cube variables in the first round called unrelated key
bits), we describe this idea as follows.

As shown in Fig. |5} for example, we set the 128-bit secret key in A[0][0] = ko and A[1][0] = ki for
1600-bit-state Keccak-MAC. If we select 32 cube variables as follows:

AL2J[0][3 - i] = vi,
A[2][2)[3 - i] = vit1e, fori=0,1..15 (3)
AJ2][3][3 - ] = vi + vit16

Firstly, we explore that how many lanes with key bits would multiply with the cube variables after the
first round. After 6 operation, these lanes in red are diffused by ko as shown in Fig. [5| and the lanes in

blue are diffused by ki, while the cube variables in green are just added by the key k1, not multiplied with
them. After p and 7w operation, we could see that only three lanes diffused by k¢ will multiply with cube
variables (in green), other lanes especially diffused by k1 would do not multiply with cube variables in the
first round.

Secondly, we explore how many bits in ko (only in 3 lanes) would multiply with these cube variables.
As the p operation rotates a different offset (Table|2)) for different lanes, we use the number in each lane to
denote the rotated offset compared with the initial state, as shown in Fig. [6] In the x operation, the cube
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Table 5: The key bits multiplied with the 32-dimension cube variable

Lane Key bits

A[2} [0] k‘o[2], kO [5]7 kO [8]7 k0[11]7 k0[14}7 kO [17}7 kO [QO]v k0[23]7
kO [26]7 k0[29]7 k0[32}’ kO [35}7 kO [38]7 kO [41]7 ko[ﬁo], kO [63}

A[2} [2] kO[Z]v kO [5]7 kO [8]7 k0[11]7 k0[14}’ kO [17}7 kO [20]7 k0[23]7
kO [26]7 k0[29]7 k0[32}’ kO [35}7 kO [38]7 kO [41]7 kO [44]a kO [63}

A[2} [3] kO [5]7 kO [8} ) kO [11]9 kO [14]7 kO [17]7 kO [20} ) kO [23} ) kO [26]:
kO [29]7 kO [32]7 k0[35}1 kO [38]7 kO [41]7 kO [44]7 kO [47]1 kO [50]

variables in A[2][0] (in the initial state A[2][0]) would multiply with the key bits ko[3 - ¢ + 62 — 2] (mod 64)
for 0 < 4 < 15, the cube variables in A[2][2] would multiply with the key bits ko[3 - ¢ + 43 — 44] (mod 64)
for 0 <4 < 15, and the cube variables in A[2][3] would multiply with the key bits ko[3 - ¢ + 15 — 10] (mod
64) for 0 < 7 < 15, we list the key bits they multiplied in Table [5| for each lane. As we can see that in
different lines in Table [5| each related key bit emerges two or three times corresponding to different lane,
which means that only a few key bits are involved in the cube attacks after diffusion if we choose the cube
variables more precisely.

As a result, the new 32-dimension linear cube just multiplies with only 19-bit key bits instead of Dinur
et al.’s 64 key bits. However, this linear cube is found manually and is not an optimal cube that multiplied
with minimum key bits. Obviously, it is hard to find such optimal 32 or 64 dimension linear cube by hand.
In this paper, we introduce a new MILP method to solve the above optimization problem and then improve
cube-attack-like cryptanalysis on Keccak keyed modes especially when the number of degrees of freedom is
relatively small.

5 MILP Modeling Search Strategy

In this section, we present how to model our search strategy using the MILP method. For any bit A[z][y][z]
in the Keccak-p initial state, we define A[z][y][z] = 1 when it is a cube variable or a related key bit.

Since we need linear cubes in the first round, we need constraints to make the cube variables do not
multiply with each other in the first round, and the following inequalities are sufficient to model this:

Alza]ya][z1] + Alz2][y2][22] <1 (4)

which means if there are two bits A[z1][y1][z1] and A[z2][y2][22] multiply with each other, we choose one
of them as cube variable at most.

In order to control the diffusion of the cube variables, we make use of the CP-like-kernel which was
formalized by Guo et al. [19] and studied by the related work [21]. We keep the sum of the variables within
the same column is constant (usually zero) which makes the following € be identity, hence the diffusion of
the variables is reduced largely. As the number of cube variables in a column is at least 2, the following
inequalities are sufficient to model the CP-like-kernel:

Alx z] — 2d[z][z] > 0
; [2][y][2] [z][z] > 5)

dfall#] — ARl >0 0<i<4
where the auxiliary variable d[z][z] records whether the column [z][z] contains cube variables as illustrated

4
above. The [z][z] column can provide > A[z][y][z] —d[z][z] independent cube variables. As we need enough
=0

y
cube variables for our attack, for example, 64 cube variables for 7-round Keccak-MAC, we sum up the free
bits for cube variables and make it equal to 64. That is,

> Alellyllz] = Y dla][z] = 2", (6)

T,z
i.e. the number of cube variables in free bits.

When a cube variable multiplies with a key bit A[z][y][z], we name this key bit as a related key bit,
and set A[z][y][z] = 1. If one key bit A[z1][y1][z1] multiplies with a cube variable A[x2][y2][z2], we need the
following inequality to constraint a related key bit:

Alza]fyr][z1] — Alz2][yz2][22] = 0 (7
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Fig. 7: The Initial State of Keccak-MAC-128(left) and Keccak-MAC-512(right)

Since we would like to get the minimum number of the related key bits when the round number is given,
We set the objective function as:
Min'S" Alaly]l=] @®
z,y,%
Now we have the objective function and all the inequalities above as constrains, thus we get a complete
MILP model which could be solved by the openly available software Gurobi [1].

6 Applications to round-reduced Keccak-MAC

In this section, we apply our MILP tool to round-reduced Keccak-MAC. In order to get explicit comparison
with previous the cube-attack-like on Keccak-MAC and to verify our key-recovery attack experimentally,
we present the application when the capacity is 256 for Keccak-MAC at first, i.e. Keccak-MAC-128, our
attack is slightly inferior to Huang et al.’s conditional cube attack, but much better than previous cube-like
attack. And then, we give our main result, the application when the capacity is 1024, i.e. Keccak-MAC-512,
our attack is the first 7-round key-recovery attack on Keccak-MAC-512.

6.1 Attack on 6/7-round Keccak-MAC-128

For Keccak-MAC-128 with 1600-bit state, rate occupies 1344 bits, and capacity 256 bits. As shown in Fig.[7]
128-bit key (ko, k1) locates at the first two yellow lanes, then the white bits represent nonce or message
bits, all of which can be selected as cube variables, while the grey ones are initialized with all zero.

According to the modeling search strategy illustrated in Sect. [B] we search for the minimize number of
related key bits. The objective function is

Min > Afally][2)-

y=0,2€{0,1},2€{0,1...63}

With the help of Gurobi , the objective function is optimized under all the constraints in Sect. |5 the
minimum number of related key bits is 18 for 32-dimension linear cubes and 30 for 64-dimension linear
cubes. The cube variables and related bits are listed in Table [f] and Table [7] in Appendix [A]

Attack on 6-round Keccak-MAC-128. The attack includes preprocessing phase and online phase.
The related key bits in the Table [f] are multiplied with the cube variables in the first round, and the cube
variables are not multiplies with other secret key bits, which means that the other secret key bits have no
influence on the cube sums of the 232 different messages. Among these 18 related key bits, we guess the 9
guessed key bits in Table |§| in the preprocessing phase, and for the other related key bits except the guessed
key bits, we set auxiliary variables in the same column for each key bit. When the auxiliary variables are
equal to the key bits in the same column, these bits act as CP-kernel and the diffusion of these key bits is
reduced and they do not multiplied with cube variables so that the cube sums do not depend on these key
bits. We choose the auxiliary variables precisely and examine that their related key bits matched (in the
same column) do not multiply with the cube variables in the first round when the auxiliary variables equal
to their matched related key bits El After recovering these key bits, we just shift the positions of all the
cube variables along the z-direction and there would be another set of key bits involved in the key-recovery
attack because of the translation invariance in the direction of the z axis of Keccak. We present the attack
procedure as follows:

Preprocessing Phase.

3 https://github.com/bivenquan/MILP-aided-Cube-attack-like-cryptanalysis/
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— Set all the state bits except the cube variables to zero (or any other arbitrary constant).

— For each possible value of 9 guessed key bits in Table @ calculate the 23? cube sums after 6 rounds for
all the output bits according to the 32-dimension cube variables in Table [B] Store the cube sums in a

sorted list L with the value of 9-bit guessed key.

In preprocessing phase we calculate 2° cube sums for 32-dimension cube variables, so the time complexity
is 2% x 232 = 2! 6-round Keccak-MAC, and the memory complexity is 2° 128-bit word.
Online Phase.

— For each possible value of 9-bit auxiliary variables listed in Table @, request the outputs of 232 messages
that make up the 32-dimension cube variables.

— Calculate the cube sums for the output bits and search them in list L. For each match in L, regard the
9-bit guessed key and 9-bit auxiliary variables as the candidate for the 18-bit related key in the Table
ol

Once the value of the 9-bit auxiliary variables equal to the 9-bit other related key bits except the 9-bit
guessed key bits, these 9-bit related key with auxiliary variables would have no influence on the cube sums
as they are not multiply with the 32-dimension cube variables any more in the first round. Then only the
9-bit guessed key affects on the cube sums. The memory complexity is 2%, the data complexity is 232, and
total computation of this attack is 2° x 232 x 2 = 2*2, which is less than Dinur et al.’s 26¢.

Attack on 7-round Keccak-MAC-128. We find 30 related key bits with 64-dimension cube variables
which are listed in Table [7| as well as the guessed key bits and auxiliary variables. The attack procedure
is just like the 6-round attack. In the preprocessing phase, we compute 264 cube sums for each value of
15-bit guessed key bits and store them in list L. In the online phase, we compute the cube sums for each
of the 15-bit auxiliary variables. The total time complexity for 7-round attack is 2'5 x 264 x 2 = 280 and

the memory complexity is 2'° 128-bit word.

6.2 Attack on 6/7-round Keccak-MAC-512

For Keccak-MAC-512 with 1600-bit state, rate occupies 576 bits, and capacity 1024 bits. As shown in Fig. 7]
128-bit key (ko, k1) locates at the first two yellow lanes, then the white bits represent nonce bits, but only
white ones highlighted by red thick lines can be selected as cube variables because the other white lanes
do not satisfy the CP-like-kernel and diffuse badly. In fact, we could found enough cube variables in those
lanes highlighted by red trick lines. The grey ones are initialized with all zero.

We use our MILP tools and find 32-dimension cube variables with 52 related key bits and 64-dimension
cube variables with 95 related key bits respectively. The cube variables, related key bits, guessed key bits
and the auxiliary variables for 6/7-round attack are listed in Table |8 and |§| in Appendix [A| respectively.

The attack procedure is the same as the Keccak-MAC-128. We just discuss the complexity here.

Attack on 6-round Keccak-MAC-512. There are 52 related key bits in total and 26 guessed key
bits guessed in the preprocessing phase. The auxiliary variables are also 26-bit, then the time complexity
is both 226 x 232 = 258 for preprocessing phase and online phase, so the time complexity is 259 totally and
the memory complexity is 22¢ 128-bit word.

Attack on 7-round Keccak-MAC-512. There are 95 related key bits. We choose 47-bit as guessed
key bits and find auxiliary variables for the other 48 bits. The time complexity of 7-round attack on
Keccak-MAC-512 is 247 x 264 4 248 x 964 = 2112:6 51 the memory complexity is 27 128-bit word.

7 Attacks on round-reduced Keyak

Authenticated Encryption cipher Keyak is one of the 16 candidates in the 3rd round CAESAR competition,
the cryptanalytic results before such as [6,20] aim at its authenticity only, in other word, nonce is reused.
While if confidentiality and authenticity of data are both required, a nonce can not be reused [4]. In this
section, we present 7/8-round key recovery attacks for Lake Keyak (1600-bit state) with nonce-respected
setting, we use the recommended length of nonce 150 bytes for Lake Keyak, according to the design
documents [4]. Our result on Lake Keyak is the first 8-round key-recovery attack in the nonce-respected
setting as we know, but nearly at the same time, Song et al. [29] provide another result with conditional
cube attack, which is sightly better than ours.
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7.1 Attacks on round-reduced Lake Keyak

For Lake Keyak in the nonce-respected setting, we get 18 related key bits with 32-dimension linear cube and
29 related key bits with 64-dimension linear cube. The related key bits, guessed key bits, auxiliary variables
and cube variables are listed in Table and Table in Appendix [A] for 7-round/8-round key-recovery
attack respectively. We present the 7/8-round key-recovery attack for Lake Keyak with time complexity
242 and 27%°6 respectively as follows.

Attack on 7-round Lake Keyak. We use the 32-dimension cube variables listed in Table as well
as the related key bits, guessed key bits and auxiliary variables.

Preprocessing Phase.

— Set all the state bits except the cube variables to zero (or any other arbitrary constant).

— For each possible value of 9 guessed key bits in Table calculate the output bits after 7 rounds (with
256 capacity, there are 1344-bit output). Then compute the first 10-lane output backward through ¢
and x operations (as the state Se.5 has the same algebraic degree with S7) and compute the cube sums
for the 232 messages according to the 32-dimension cube variables listed in Table Store the 640-bit
cube sums in a sorted list L with the value of 9-bit guessed key.

Online Phase.

— For each possible value of 9-bit auxiliary variables list in Table [I0} request the 7-round River Keyak
outputs of 232 messages that make up the 32 cube variables, then compute the first 10-lane output
backward through ¢ and x operations.

— Calculate the cube sums for the first 10-lane output bits and search them in list L. For each match in
L, regard the 9-bit guessed key and 9-bit auxiliary variables as the candidate for the 18-bit related key
in the Table 10}

We need compute the 32-dimension cube sums for 2° values of guessed key bits in the preprocessing
phase, the time complexity is 29 x 232 = 241 and memory complexity is 29 640-bit word. In the online
phase, we need compute the cube sums for each possible value of 9 auxiliary variables, the time complexity
is also 24, Thus, the time complexity is 2*? and memory complexity is 2° for the whole attack.

Attack on 8-round Lake Keyak. The attack procedure is very similar to the 7-round attack, so
we only introduce the complexity of our attacks in the following. We need compute the cube sums for
2% values of 14 guessed key bits in the preprocessing phase, the time complexity is 24 x 264 = 27 and
memory complexity is 214 640-bit word. In the online phase, we need compute the cube sums for each
possible value of 15 auxiliary variables, the time complexity is 2'° x 264 = 27 Thus, the time complexity
is 278 4+ 279 = 2796 and memory complexity is 214,

8 Applications to round-reduced Initialization of Ketje

At 6 March 2017, the Keccak team announces the Ketje cryptanalysis prize to encourage the cryptanalysis.
In |21], Li et al. present the conditional cube attacks on Ketje. Besides, they explore the resistance of Ketje
against conditional cube attack according to different lengths of nonce. For Ketje Major, they search the
possible cube variables in the instances with different lengths of nonce, and study the borderline length
of nonce to provide enough cube variables for conditional cube attack. As a result, they point out that
one could attack 7-round Ketje Major when its nonce is larger than 704 bits. While for Ketje Minor, it’s
necessary for adversaries to utilize (nearly) full length of nonce. In this section, we use MILP-aided cube-
like-attack to explore the number of degrees of freedom for Ketje. We should point out that the MILP-aided
cube-like-attack could work better when the number of degrees of freedom is smaller. We present our attacks
on Ketje as follows.

8.1 Attacks on round-reduced Initialization of Ketje Minor

Since we would like to explore how smaller the number of degrees of freedom could be when the MILP-aided
cube-like-attack works, we need to search for enough cube variables (64 for 7-round attack) and minimize
the related key bits at the same time. The number of related key bits should be smaller than 128, on the
other side, if the number of related key bits is smaller than 128, we would utilize the smallest length of
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nonce as far as we can. As a result, for Ketje Minor, when the length of nonce is reduced to 288-bit, we
find 64-dimension linear cubes with 96 related key bits which are listed in Table [I2]in Appendix [A] as well
as the auxiliary variables and guessed key bits. With these variables, we could perform cube-attack-like
cryptanalysis just as before. In preprocessing phase, we compute the cube sums over the 64 cube variables
for each possible value of 48 guessed key bits and store them, while in the online phase, we compute the cube
sums for each possible of 48 auxiliary variables, if the cube sums in these two phase are equal, we regard the
combination of 96-bit related key as the right key. The time complexity of this attack is 248 x 264 x 2 = 2113
and the memory complexity is 2*® for our 7-round key-recovery attack.

8.2 Attacks on round-reduced Initialization of Ketje Major

For Ketje Major, we search for 64 cube variables with 58 related key bits when the length of nonce is
reduced to 576 bits. We list the cube variables, related key bits, guessed key bits as well as the auxiliary
variables in Table in Appendix [A] We omit the attack procedure here but present the complexity. In
preprocessing phase, we compute the cube sums over the 64 cube variables for each possible value of 29
guessed key bits and store them, while in the online phase, we compute the cube sums for each possible
of 29 auxiliary variables, if the values of cube sums for these two phase equal, we regard the combination
of 58-bit related key as the right key. The time complexity of this attack is 22 x 264 x 2 = 294 and the
memory complexity is 229 for our 7-round key-recovery attack.

9 Conclusion

In this paper, we give a new MILP-based method to improve Dinur et al.’s cube-attack-like method. We
find the optimal linear-cubes that are multiplied with minimum number of key bits for Keccak-MAC, Lake
Keyak and Ketje. Then, we give the first 7-round key-recovery attack on Keccak-MAC-512. In Lake Keyak,
our attack could work in the nonce-respected setting, while not as good as conditional cube attack. In Ketje
Minor/Major, we get better results than before in aspect of complexity or attacked rounds with smaller
length of nonce.

When comparing with Huang et al.’s conditional cube attack, the advantage of the MILP-aided cube-
attack-like cryptanalysis is that it has larger effective range. In variants with the same number of degrees
of freedom, MILP-aided cube-attack-like cryptanalysis and conditional cube attack could attack the same
rounds. In variants with relatively smaller number of degrees of freedom, MILP-aided cube-attack-like
cryptanalysis could get better results than conditional cube attack.

Currently, the cryptanalysis progress of symmetric-key ciphers heavily depends on automated evaluation
tools. Due to Keccak’s robust design, its cryptanalysis is still hard and limited. In this paper, we provide
a new MILP model to study Keccak. As we put the tedious cryptanalysis work to the MILP solver, the
study of Keccak becomes easier.
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A Parameters set for attack

Table 6: Parameters set for attack on 6-round Keccak-MAC-128

Cube Variables

A[2)[21[91=A[2][3][9)=vo, A[2][0][12]=v1, A[2][2][12]=v2, A[2][3][12]=v1 + vz, A[21[0][15]=v3, A[2][2][15]=va,
A[R][3][15]=vs + va,A[2][0][18]=vs, A[2][2] 18] =vs, A[2][3][18]=v5 + ve, A[2][0][21]=vr,A[2][2][21]=vs,
A[2][3][21]=v7 + vs,A[2][0][24]=vo, A[2][2][24]=v10,A[2][3][24]=ve + v10,A[2][0][27]=v11,A[2][2][27]=v12,
A[2)[3][27)=v11 + v12,A[2][0][30]=v13,A[2][2][30] =v14,A[2][3][30] =v13 + v14, A[2][0][33]=v15,A[2][2][33]=0v16,
A[2][3][33]=v15 + v16,A[2][0][36]=v17,A[2] (2] [36] =v1s, A[2][3][36]=v17 + vis,A[2][0][39]=v10,A[2][2][39]=v20,
A[2][3][39]=v10 + va0, A[2][0][42]=va1,A[2][2][42]=v22, A[2][3][42]=v21 + va2,A[2][0][45]=vas3,A[2][2][45]=va4,
Al (48] =vas, A[2][2] [48] =vac, A[2)[3] [48]=vz5 + vas, A[2][0][51]=var, A[2][2][51]=vas,
[54)=A[2][2][54]=v20, A[2][0][57]=v30,A[2][2][57]=v51,A[2][3][57]=v30 + v31

2] [3] [45]:1123 + U24,A[2} [0] 48
A[2][3][61]=v27 + v2g,A[2][0][54
Related Key Bits
ko [8] 7k0 [11} 7k0 [14] 7k0 [17] 7k0 [20} ’ ko [23] 7k0 [26] 7k0 [29} ka [32] 7k0 [35]7
ko[38],ko[41],ko[44], ko[47],ko[50],ko[53],ko0[56],k0[62]
Guessed Key bits
ko[35],k0[38],ko[41],ko[44], ko[47],ko[50],k0[53],k0[56],k0[62]
Auxiliary Variables
A[0][1][8]=a0,A[0][1][11]=a1,A[0][1][14]=az2,A[0][1][17]=a3,A[0][1][20]=a4, A[0][1][23]=as,A[0][1][26]=as,
A[0][1][29]=a7,A[0][1][32]=as

Table 7: Parameters set for attack on 7-round Keccak-MAC-128

Cube Variables

A[0][1][4]=A[0][3][4]=vo, A[0][1][13]A[0][3][13]=v1,A[0][1][17)=A[0] 2] [L7)=v2, A[0] 2] 18] = A[0][3][18] =v3,

A[0][1][22] A[0][3][22]=v4, A[0][2][24]=A[0][3][24] =vs, A[0] [1] (26]=A[0] 2] [26]=vs, A[0][1][32]A[0][2][32]=vr,
A[0][1][35]=A[0][2)[35]=vs, A[0][1][38)=A[0)[2][38]=vo,A[0][2][39]=A[0]{3] [39] =v10,A[0] [1][41]=A[0][2][41] =1,
A[0][1][44)=A[0][3][44)=v12, A[0][2] 48] = A[0] 3] [48] =v13,A[0] 1][50]=A[0][3][50] =v1s, A[0][1][59)=A[0][3][50]=v15,
Alo][1)[61]=A[0][2][61]=v16,A[2][0][0)=v17, A[2][2][0]=v1s, A[2][3][0]=v17 + v1s,A[2][0][1]=v10,A[2][2][1]=v20,
ALR)[3][1]=v1o + vao, A[2)[0][3]=A[2)[3][3]=va1,A[2][0][4]=A[2] [2][4] =va2, A[2)[0] 7] =va3, A[2] 2] [T} =vas,
A[2][3][7)=v25 + v24, A[2][0][9]=v25, A[2][2] [9]=v2, A[2][3][9]=va5 + vas, A[2][0][12]=A[2][3][12]=var,
A[21[2][15)=A[2][3][15]=v2s, A[2)[0][16]=A[21[3][16]=v20, A[2][0][18]=vs0, A[2][2][18]=vs1,A[2][3][18]=vs0 + vau,
A[2][2][20)=A[2][3][20]=v32, A[2)[0][21]=A[2[2][21]=vs3,A[2][0][24]=A[2)[2][24] =v3a, A[21[0] [25]= A[2][3][25]=v3s,
Al
Al
Al
Al
Al
Al
Al

2][0][29]=A[2][3] [29]=vs6,A[2][0] [34] = A[2][3][34] =vs7,A[2][2][35]=A[2][3][35]=v3s, A[2][0][38]=A[2][3][38]=v39,
2][2][40]=A[2][3][40]=v40,A[2][2][41]=A[2][3][41]=v41, A[2][0][43]=A[2][3][43]=v42,A[2][0][44]=vss,
2][2][44]=v44,A[2][3][44]=v43 + vaa, A[2][2][46]=A[2][3][46]=v45,A[2][0][47]=vas, A[2][2][47]=va7,
2][3][47]=vae + vaz, A[2][0][49]=v48,A[2][2][49]=v49,A[2][3][49]=vas + vag,A[2][0][50]=A[2][2][50]=wv50,
2][0][52]=vs1,A[2][2][52]=vs2,A[2][3][52]=v51 + vs2,A[2][0][53]=v53,A[2][2][53]|=vs54, A[2][3][53]=vs3 + vs4,
2][0][55]=vs5,A[2][2][55]=vs6 ,A[2][3][55]=vs5 + vs6, A[2][0][56]=A[2][3][56]=vs57,A[2][0][58]=vss,A[2][2][58]=v59,
20[3][58] =vss + vso, A[2][2)[59)=A[21[3][59)=vs0, A[2] 0)[61]=A[2] [2)[61]=ve1,A[2] 0][62]=ve2, A[2][2][62]=ves,
A[2][3][62]=ve2 + ves3,

Related Key Bits

ko[0],ko0[3],ko0[5],k0[6],k0[8],k0[12],ko[14],k0[17],k0[19], ko[20],k0[21],k0[23],k0[25],k0[30],k0[34],k0[39],k0[40],

ko[43],ko[45],ko[46],ko[48],ko[49],k0[51],k0[52],ko[54], ko[57],ko[58],ko[60],ko[61],ko[63]

Guessed Key bits

ko[17],ko[40],ko[43],ko[45],k0[46],k0 [48],k0[49],k0[51],k0[52], ko[54],k0[57],k0[58],k0[60],k0[61],k0[63],

Auxiliary Variables

A[0][1][0]=ao, A[0][1][3]=a1,A[0][1][5]=az2,A[0][1][6]=as3,A[0][1][8]=a4, A[0][1][12]=as,A[0][1][14]=as,A[0][1][19]=a7,

A[0][1][20]=as,A[0][1][21]=ao, A[0][1][23]=a10,A[0][1][25]=a11,A[0][1][30]=a12,A[0][1][34]=a13,A[0][1][39]=a14
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Table 8: Parameters set for attack on 6-round KECCAK-MAC-512

Cube Variables
Al2][0)[2]=A[2][1][2]=vo, A[2][0][3]=A[2][1][3]=v1,A[2][0][9]=A[2][1][9]=v2, A[2][0][10]=A[2][1][10]=vs,
Al2][0)[11]=A[2][1][11]=04,A[2][0][17]=A[2][1][17]=vs, A[2][0][19]=A[2][1][19]=ve,A[2][0][20]=A[2][1][20]=v7,
A2][0][26]=A[2][1][26]=vs, A[2][0][28]=A[2][1][28]=v9,A[2][0][29]=A[2][1][29]=v10,A4[2][0][35]=A[2][1][35]=v11,
A[2][0][36]=A[2)[1][36]=v12, A[21[0] [37]=A[2] 1] [37] =v13,A[2][0] [43] = A[2] [L][43]=v1a, A[2][0][45]=A[2][1][45]=v1s,
A[Qno% % —AR|[1][51]=vi6,A[2) 0][52]=A[2][1][52]=v17,
]
]

A[2][0][58]=A[2][1][58]=v18,A[2][0][59]=A[2][1][59]=v10,

A[3][0][0]=A[3][1][0]=v20, A[3][0][7]=A[3][1][7]=v21,A[3][0][25]=A[3][1][25]=v22,A[3][0][32]=A[3][1] [32]=v2s,
A[3][0][40]=A[3][1][40]=v24,A[3][0] [41]=A[3] [1] [41]=v25,A[3][0][47]=A[3][1][47]=v26, A[3][0][48]=A[3][1][48]=va7,
A[3][0][49]=A[3][1][49]=v28,A[3][0][55]=A[3][1][55]=v29, A[3][0][57]=A[3][1][57]=v30,A[3][0][63]=A[3][1][63]=v31
Related Key Bits

ko[0],ko[5],k0[6],k0[7],k0[8],k0[13],ko[14],ko0[15], ko[16],k0[22],k0[24],k0[25],k0[31],k0[32],k0[33],k0[34],k0[39], ko[40],
ko[41],ko[42],ko0[47],k0[48],ko[50],ko [54],ko[55],ko [56], ko[57],ko0[62],k0[63],k1[0],k1[7],k1[8],k1[14],k1[15],k1[16],
k1[18],k1[22],k1[24],k1[25],k1[30],k1[31],k1[33],k1[34],k1[38], k1[40],k1[41],k1[42],k1[48],k1[50],k1[56],k1[57],k1[63]
Guessed Key bits

ko[57],ko[62],ko0[63],k1[0],k1[7],k1[8],k1[14],k1[15],k1[16], k1[18],k1[22],k1[24],k1[25],k1[30],k1[31],k1[33],k1[34],k1[38],
k1[40],k1[41],k1[42],k1[48],k1[50],k1[56],k1[57],k1[63]

Auxiliary Variables

A[0][2][0]=a0,A[0][2][5]=a1,A[0][2][6]=az,A[0][2][7]=as,A[0][2][8]=a4,A[0][2][13]=as5, A[0][2][14]=as,A[0][2][15]=a7,
A[0][2)[16]=as,A[0][2][22]=a0, A[0][2][24]=a10,A[0][2][25]=a11,A[0][2][31]=a12,A[0][2][32]=a13,A[0][2][33]=a14,
A[0][2][34]=a15,A[0][2][39]=a16,A[0][2][40]=a17,A[0] [2][41]=a1s,A[0][2][42]=a19, A[0][2][47]=a20,A[0](2][48]=az1,
A[0][2][50]=az22,A[0][2][54]=a23,A[0][2][55]=a24, A[0][2][56]=az25

2
3
[5
[58
[0
[4

Table 9: Parameters set for attack on 7-round KECCAK-MAC-512

Cube Variables
A2][0][1]=A[2][1][1]=vo,A[2][0][2]=A[2][1][2]=v1,A[2][0][8]=A[2] [1][8]=vz2, A[2][0][9]=A[2][1][9]=vs,
A[2][0][10]=A[2][1][10]=v4,A[2][0][11]=A[2][1][11]=vs, A[2][0][12]=A[2][1][12]=ve,A[2][0][13]=A[2][1][13]=v7,
Al2][0][14]=A[2][1][14]=vs, A[2][0][20]=A[2][1][20]=ve,A[2][0][21]=A[2][1][21]=0v10,A[2][0][22]=A[2][1][22]=v11,
A2][0][23]=A[2][1][23]=v12,A[2][0][24]=A[2][1][24]=v13,A[2][0][25]=A[2][1][25]=v14, A[2][0][26]=A[2][1][26]=v15,
A[2][0][33]=A[2][1][33]=v16,A[2][0] [34]=A[2] [1][34]=v17, A[2][0][35]=A[2][1][35]=v1s,A[2][0][36]=A[2][1][36]=v1,
A[2][0])[37]=A[2][1][37]=v20, A[2][0][38]=A[2][1][38]=v21,A[2][0][41]=A[2][1][41]=v22,A[2][0][46]=A[2][1][46]=v2s,
Al2][0 [47]=A[2%[1]% =v24,A[2][0][48]= A[Z}[ll% 8= v25,A[2][0H49]=A[2H1]}[ 9]=v2s, %2][0][50]=A[2][1H50}=v27,
] ]

]
] 4=
] 23]=
] 33]=
] 37]
] 47]
A[2][0][53]=A[2][1][53]=v2s,A[2][0][54]=A[2][1][54]=v20, A[2][0][59]=A[2][1][59]=v30,A[2][0][60]=A[2][1][60]=vs31,
A[2][0][61]=A[2][1][61]=v32, A[2][0][62]=A[2][1][62]=v33,A[2][0][63]=A[2][1][63]=v34,A[3][0][0]=A[3][1] [0]=v35,
A[3][0)[1]=A[3][1][1]=va6,A[3][0][7]=A[3][1][7]=v37,A[3][0][10]=A[3][1][10]=v3s, A[3][0][11]=A[3][1][11]=v39,
A[3][0][12]=A[3][1][12]=v40,A[3][0][13]=A[3][1][13]=va1, A[3][0][14]=A[3][1][14]=v42,A[3][0][22]=A[3][1][22]=va5,
Af3] [O% [23]=A3][1]
]
]

1(1][23]=v44, A[3][0][24]=A[3][1][24]=v45,A[3][0][25]=A[3][1][25]=vas, A
Af3J[0 [34]:/1[3%[1]%
(1]

[ ]

] ] 3][0][26]=A[3][1][26
v48,A[3][0H35]:A[3H1]% 5]= v49,A[3][0H36]:A[3H1]}[ 6]=vs0, A

] ]

[ [6

=47,
A[3][0][38]=A]3][1]
A[3][0][49]=A]3][1]
A[3][0][58]=A[3][1][
Related Key Bits

ko[O},k‘o[l],k‘o [2],k0[3},k0 [4]7k‘0 [5],k0[6],k0[7}, ko [8],14:0[9],ko[10],]90[13},]&‘0[14],k0[15],k0[16},k‘0[17],/€0[18], ko[lg],k‘o [20},
kO[Ql]ka [22}7k0 [25]7k0[26]7k0 [27}7k0 [28]7k0[29]7 kO[SOLkO [31]7k0[32]7k0[33}7k0 [34]7k0[37]7k0 [38}7k0 [39]7k0[40]7 k0[41]7
ko [42]7k0 [43}7160 [44]7k0 [45]7k0 [46}7k0 [49]7k0[50]7k0 [51}7 ko [52]7k0[53]7k0 [54}7160 [55]7k0[56]7k0 [57}7k0 [58]7k0[59]7k0 [61}7
ko[62], k1[0, k1 [L], 1 [2], k1 [3], k1 [4], k1 [5], k1 (6], k1 [7) k1 [13], k1 [14], K1 [15] k1 [16], k1 [17], k1 [18] k1 [19] k1 [25] k1 [26] k1 [27],
k1[28], k1[29],k1[30],k1[31],k1[32],k1[38],k1[39],k1[40],k1[41],k1[42], k1[43],k1[44],k1[45],k1[46],k1[51],k1[52],k1[53],

ke [54] k1 [55], k1 [56],k1 [57], k1 [58] k1 [59]

Auxiliary Variables

A[0][1][0]=a0,A[0][1][1]=a1,A[0][1][2]=a2,A[0][1][3]=as3,A[0][1][4]=a4,A[0][1][5]=as, A[0][1][6]=as,A[0][1][7]=a7,
Al0][1][8]=as,A[0][1][9]=ay,A[0][1][10]=a10, A[0][1][13]=a11,A[0][1][14]=a12,A[0][1][15]=a13,A[0][1][16]=a14,
A[0][1)[17]=a15, A[0][1][18]=a16,A[0][1][19]=a17,A[0][1][20]=a1s,A[0][1][21]=a19,A[0][1][22]=a20, A[0][1][25]=a21,
A[0][1][26]=az22,A[0][1][27]=azs,A[0][1][28]=az24,A[0] [1][29]=a2s, A[0][1][30]=aze,A[0][1][31]=az7,A[0][1][32]=azs,
A[0][1][33]=az29,A[0][1][34]=a3z0, A[0][1][37]=as1,A[0][1][38]=as32,A[0][1][39]=a33,A[0][1][40]=a34,A[0][1][41]=ass,
A[0][1][42]=as36,A[0][1][43]=a37,A[0][1][44]=a3s,A[0][1][45]=a39,A[0][1][46]=a40, A[0][1][49]=a41,A[0][1][50]=a42,
[52]=a44,A[0][1][53]=a45, A[0][1][54]=a4e,A[0][1][55]=a47

—vs2,A[3][0)[39]=A[3][1]
—vs, A[3][0)[501=A[3][1
—ve0,A[3][0][59)=A[3] 1]

39]=vs3, A[3][0][46]=A[3][1
[50]=vs7,A[3][0][51]=A[3][1
59]=ve1,A[3][0][62]=A[3][1]

=Us9,

]

]
3][01[37]=A[3][1][37]=vs1,

]

]

} =V63

[ ]
[ ]
[46]=vs4,A[3][0][47)= A[3] [1] [47)=vs5,
[51]=vss, A[3][0][52]=A[3][1][52]

2)=vg2, Al ]

3=
4=
8]
9]
8] A[3][0][63]=A[3][1][63

U W W

=V62,

A[0][1][51)=a43,A[0][1]
Guessed Key Bits
ko[56],k0[57],k0[58],k0[59],k0[61], ko[62],k1[0],k1[1],k1[2],k1[3],k1[4],k1[5],k1[6],k1[7],k1[13],k1[14], k1[15],k1[16],
k1 [17]7k1 [18}7161 [19]7k1 [25]7k1 [26}7]61 [27]7k1 [28]7 k1 [29}7161 [30]7k1 [31]7k1 [32}7161 [38]7k1 [39]7k1 [40}7161 [41]7k1 [42]7 k1 [43]7
k1[44],k1[45],k1[46],k1[51],k1[52],k1[53],k1[54],k1[55], k1[56],k1[57],k1[58],k1[59]
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Table 10: Parameters set for attack on 7-round LAKE KEYAK

Cube Variables

AlO][1][2]=A[0][3] 2] =vo, A[0][L][6]=v1,A[0][2)[6]=v2, A[0][3][6]=v1 + vz, A[O][1][12]=A[0][2][12]=vs,
A[0][1][13]=A[0)[3][13]=v4, A[0][1][19]=vs , A[0][2][19]=vs, A[0][3][19]=v5 + v6,A[0][2][57|=A[0][3][57)=v7,
[0][1][59]=A[0][2] [59] =vs, A[0][2][63]=A[0][3][63]=vs, A[2][2][1]=A[2][4][1]=v10,A[2][3][4]=A[2][4][4]=v11,
12](3][51=A[2][4][5]=v12, A[2][2)[10]=v13, A[2][3][10]=v14, A[2] 4] [10]=v15 + v1a, A[2][2)[11]=A[2][4][11]=v1s,
[

[

[

2BI12=ARI[4][12]=016, AR)RI[15]=ARI3][15]=017, AR)R)[16]=01s, AR][3][16]=v10, A[2][4][16] =015 + v1o,
2)2)[18]=A[][4][18]=vz0, A[2)[2)[21]=A[2][3][21]=v21, A[2)2][22]=v2, A[2][3][22] =vas, A[2] [4][22) =25 + vas,
2][3][23]=A[2][4] [23]=v24,A[2][2][27]=A[2][3][27]=v25,A[2][2][29]=v26, A[2][3][29]=v27,A[2][4][29]=v26 + var,
A[2][2][33]=A[2][3][33] =v2s,A[2][2][40] =A[2][3][40] =v29, A[2][2][53]=A[2][3][53]=v30,A[2][2][59]=A[2][3][59]=v31
Related Key Bits

ko [9] ko [10} ko [14] ,ko [15] ko [17} ko [20] ko [21]7 ko [26} ko [27] ,ko [28] ko [32} ko [34] ;Ko [38]7 ko [39} ko [41] ko [45] ko [52} ’
ko[58],

G(‘r)uessed Key bits

ko [28],k0 [32],k0 [34},]430 [38], ko [39],/60[41},]{30 [45],](30[52],’60 [58}

Auxiliary Variables

A[0][1][9]=a0,A[0][1][10]=a1,A[0][1][14]=az,A[0][1][15]=a3, A[0][1][17]=a4, A[0][1][20]=as5,A[0][1][21]=as,
A[0][1][26]=a7,A[0][1][27]=as,

A
A
A
A
A

Table 11: Parameters set for attack on 8-round LAKE KEYAK

Cube Variables

A[0][1][4]=v0,A[0] 2] [4]=v1,A[0][3][4]=v0 + v1,A[0][1][11]=v2,A[0][2][11]=vs3, A[0][3][11]=v2 + vs,A[0][1][18]=v4,
A[0][2][18]=vs,A[0][3][18]=v4 + vs, A[0][2][22]=A[0][3][22]=vs,A[0][1][25]=A[0][3][25]=v7,A[0][2][28]=A[0][3][28] =vs,
A0][1][29]=A[0][3][29]=v9,A[0][1][35]=v10,A[0][2][35]=v11,A[0][3][35]=v10 + v11, A[0][1][42]=A[0][3][42]=v12,
A[0][1][47]=A[0][2][47]=v13,A[0][1][48]=A[0] [2][48]=v14, A[0][1][54]=v15,A[0][2][54]=v16,A[0][3][54]=v15 + v16,
A[0][1][55]=A[0][3][55]=v17, A[0][1][58]=A[0][2][58]=v1s,A[0][1][61]=v19,A[0] [2][61]=v20,A[0][3][61]=v10 + v20,
A[0][2][62]=A[0][3][62]=v21,A[2] [2][0]=v22, A[2] [3][0]=v2s, A[2][4] [0]=v22 + va3, A[2][2][1]=v24,A[2][3][1]=v2s,
A[2][4][1]=v24 + va5,A[2][2][4]=v26,A[2][3][4]=va7, A[2][4][4]=v26 + va7,A[2][2][5]=A[2][3][5]=v2s,A[2][2][7]=v29,
A[2][3][7]=v30, A[2][4][7T]=v20 + v30,A[2][2][10]=A[2][4][10]=v31,A[2][2][11]=A[2][3][11]=v32, A[2][2][13]=A[2][4][13]=vs3,
Al2][3][14]=A[2][4][14]=v34,A[2][2][17]=A[2][4][17]=vs5, A[2][2][18]=A[2][3][18]=v36,A[2][2][20]=A[2][4][20]=v37,
AR2)[2][21)=vss, A[2][3][2L]=vs0,A[2][4][21]=v3s + vs0,A[2][2][24]=va0, A[2][3][24]=va1, A[2][4][24]=va0 + va1,
A[2][2][27]=A[2][4] [27]=vaz,A[2][3][28]=A[2][4] [28]=va3, A[2][2][31]=A[2][3][31]=v44,A[2][2][34]=A[2][4][34]=vas,
A[2][3][35]=A[2][4][35]=vas, A[2][2][38]=A[2][3][38]=var,A[2][3][39]=A[2][4][39]=vas,A[2][2][41]=A[2][4][41]=v49,
A[2][2][45]=vs0,A[2][3][45]=vs1,A[2] [4][45]=vs0 + vs1,A[2][3][46]=A[2][4][46]=vs2, A[2][2][51]=vs3,A[2][3][51]=vs4,
A[2][4][51]=vs3 + vs4,A[2][2][52]=vs5, A[2][4][52]=vs5 + v56,A[2][2][56]=A[2][3][56]=v57,A[2][2][57]=vss,
A2][3][57]=vs0, A[2][3][52]=vs6,A[2][4][57]=v58 + vs9,A[2][2][58]=v60,A[2][3][58]=ve1,

A[2][4][58]=vs0 + ve1,A[2][2][62]=A[2][3][62]=ve2,A[2][2][63]=A[2][3][63]=ve3

Related Key Bits

ko [9],k0[10],/€0[12},ko[16],k0[17],]€0[19],k0[20],k0[23}, ko [26},]% [29],k0[30],/€0 [33},]% [36],14:0[37], ko [40},]4:0 [43],]€0[44],/€0 [50},
ko[51],ko[55], ko[56],ko[57],ko[61],k0[62],k0[63],k2[2], k2[3],k2[4],k2[5],

Guessed Key bits

ko [29} ko [44] ko [50] ko [51} ko [55]7 ko [56] ko [57} ko [61] ko [62] ko [63} k2 [2]7 ko [3] k2 [4} k2 [5]

Auxiliary Variables

A[0][1][9]=a0,A[0][1][10]=a1,A[0][1][12]=az2,A[0][1][16]=a3,A[0][1][17]=a4, A[0][1][19]=as,A[0][1][20]=as,A[0][1][23]=az,
A[0][1][26]=as, A[0][1][30]=a9, A[0][1][33]=a10,A[0][1][36]=a11,A[0][1][37]=a12,A[0][1][40]=a13,A[0][1][43]=a14
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Table 12: Parameters set for attack on 7-round KETJE MINOR

Cube Variables

A[1][0][0]=A[1][3][0]=vo,A[1][0][1]=A[1][3][1]=v1,A[1][0][2]=A[1][3][2] =v2, A[1][0][3]=A[1][3][3]=v3,

[
A[1][0][8]=A[1][3][8]=vs, A[1][0][9]=A[1][3][9]=v9,A[1][0][10]=A[1][3][10]=v10,A[1][0][11]=A[1][3][11]=v11,
Af1][0][12]=A[1][3][12]=v12,A[1][0][13]=A[1][3][13]=v13,A[1][0][14]=A[1][3][14]=v14, A[1][0][15]=A[1][3][15]=v15,
A[1][0][16]=A[1][3][16]=v16,A[1][0][17]=A[1][3][17]=v17, A[1][0][18]=A[1][3][18]=v1s,A[1][0][19]=A[1][3][19]=v19,
A[1][0][20]=A[1][3][20]=v20, A[1][0][21]=A[1][3][21]=v21,A[1][0][22]=A[1][3][22]=v22,A[1][0][23] = A[1] [3][23]=v23,
A[1][0][24]=A[1][3][24]=v24,A[1][0][25]=A[1][3] [25]=vas5,A[1][0] [26] = A[1][3][26] =v26, A[1][0][27]=A[1][3][27]=v27,
A[1][0][28]=A[1][3][28]=v2s,A[1][0][29]=A[1][3][29] =v29, A[1][0][30]=A[1][3][30]=v30,A[1][0][31]=A[1][3][31]=va1,
A[3][0][0]=A[3][2][0]=v32, A[3][0][1]=A[3][2][1]=v33,A[3][0][2]=A[3][2][2]=v34,A[3][0][3]=A[3][2][3]=vss5,
A[3][0][4]=A[3][2][4]=v36,A[3][0] [5]=A[3][2][5]=v37,A[3][0][6]=A[3][2][6] =vss, A[3][0][7]=A[3][2][7T]=v39,
A[3][0][8]=A[3][2][8]=va0,A[3][0][9]=A[3][2][9]=va1, A[3][0][10]=A[3][2][10]=vaz,A[3][0][11]=A[3][2][11]=vas,
A[3][0][12]=A[3][2][12]=vaa, A[3][0][13]=A[3][2][13]=vas5,A[3][0][14]=A[3] [2][14] =v4s, A[3] [0][15]=A[3][2] [15]=va7,
A[3][0][16]=A[3][2][16]=vas,A[3][0] [17]=A[3] [2][17] =va9, A[3] [0] [18] = A[3][2] [18]=v50, A[3
A[3][0][20]=A][3][2][20]=vs2,A[3][0][21]=A[3][2][21]=vs3, A[3][0][22]=A[3][2][22]=v54,A[3
A[3][0][24]=A[3][2][24] =vs6, A[3][0][25]=A[3][2][25]=v57,A[3][0][26]=A[3] [2][26]=v5s,A[3
A[3][0][28]=A[3][2][28]=v60,A[3][0][29]=A[3] [2][29] =ve1,A[3] [0][30] =A[3][2][30]=ve2, A[3

0][19]=A[3][2][19]=vs1,
3][2][23]=vss,
3)[2][27]=vso,

3][2][31]=ves3

[

0][23]=A
[0][27]=A
[0][31]=A

Related Key Bits

ko [8]7k0 [9]7k0[10]7k0[11}7k0[12]7k0[13]7 k0[14}7k0[15]7k0[16]7k0[17}7]60[18]7]90[19]7’{“0 [20}7 ko [21]7k0[22]ak0[23}7k0 [24]7
ko[25],k0[26],k0[27], ko[28],k0[29],k0[30],k0([31],k1[0],k1[1], k1[2],k1[3],k1[4],k1[5],k1[6],k1[7],k1[8], k1[9],k1[10],

ke [11], k1 [12], k1 [13],kr [14], k1 [15], k1 [16], k1 [17) k1 [18], k1 [19], k1 [20], k1 [21], k1 [22], Ko (23,1 [24] k1 [25], k1 [26] k1 [27],
k1[28]7 k1[29]7k1[30]’k1 [31]7k3 [O]uk3[1]7k3[2]7k3[3}) k3 [4]7k3[5}7k3 [6}71{73 [7]7k3 [8]7]‘:3[9})]{:3[10]7 k3[11]7k3[12]7k3[13]7
kJ[14]7k3[15]7k3[16}7163[17]7 k3[18]7k;3[19]7k3 [20]7k3 [21]=k3[22}7k3 [23]7 k3 [24]7k3[25]7k3 [26}7k3 [27]7k3[28]7k3 [29]7
k3[30], k3[31],k4[0],ka[1],k4[2],k4[3],ka[4],k4[5],ka[6],ka[T],

Guessed Key bits

ko [8]7k0 [9]7k0[10]7k0 [11}7]60[12]71‘30[13]’ k0[14}’k0[15]9k‘0[1617k0 [17}»]“0[18]7]90[19]7]{0 [20}7 ko [21}7]60[22]7":0[23}’]“0 [24]9
ko [25]7k0[26]7k0 [27}) ko [28}71‘30 [29]7k0[30]’k0 [31]71‘33[16]71‘:3[17}7 k3[18})k3[19]7k3[20]’k3 [21}7]{:3 [22]7k3[23]a k3[24})
k3 [25],k3[26],k‘3 [27},]&‘3 [28],]93[29],/4:3 [30}, k3 [31],k34[0},k4[1],k‘4 [2],k4[3},k4[4],/€4 [5],164[6],.%4[7}

Auxiliary Variables

A[1][3][0]=a0 + vo,A[1][3][1]=a1 + v1,A[1][3][2]=a2 + v2,A[1][3][3]=a3 + v3, A[1][3][4]=a4 + v4,A[1][3][5]=as5 + vs,
A[1][3][6]=a6 + ve,A[1][3][7]=a7 + v7, A[1][3][8]=as + vs,A[1][3][9]=a9 + v9,A[1][3][10]=a10 + v10,

[1][3][11]=a11 + v11, A[1][3][12]=a12 + vi2,A[1][3][13]=a13 + vi3,A[1][3][14]=a14 + v14,A[1][3][15]=a15 + V15,
[1][3][16]=a16 + vi6,A[1][3][17]=a17 + vi7,A[1][3][18]=a1s + v18,A[1][3][19]=a19 + vig, A[1][3][20]=a20 + v20,
[1][3][21]=a21 + v21,A[1][3][22]=a22 + v22,A[1][3][23]=a23 + v23, A[1][3][24]=a24 + v24,A[1][3][25]=a25 + v2s5,
(1][3][26]=a26 + v26,A[1][3][27]=a27 + va7, A[1][3][28]=a2s + va2s,A[1][3][29]=a29 + v29,A[1][3][30]=a30 + v30,
(1][3][31]=a31 + v31, A[3][0][0]=as2 + v32,A[3][0][1]=as3 + v33,A[3][0][2]=a34 + v34,A[3][0][3]=as5 + v3s5,
[3][0][4]=a36 + v36,A[3][0][5]=asz7 + v37,A[3][0][6]=as3s + v3s,A[3][0][7]=as9 + v39, A[3][0][8]=a40 + v4o0,
[3][0][9]=a41 + v41,A[3][0][10]=a42 + va2,A[3][0][11]=a43 + va3, A[3][0][12]=a44 + va4,A[3][0][13]=a45 + V45,
[

A
A
A
A
A
A
A
A[3][0][14]=a4 + vas,A[3][0][15]=a47 + va7
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Table 13: Parameters set for attack on 7-round KETJE MAJOR

Cube Variables

A[3][0][1]=A[3][3][1]=v0,A[3][0][32]=A[3] [3][32]=v1,A[3][0][58] = A[3][3] [58]=v2, A[3][0][59]=A[3][3][59]=wvs,
A[3][0][60]=A[3][3][60]=v4,A[3][0][61]=A[3][3][61]=vs, A[3][0][62]=A[3][3][62]=v6,A[3][0][63]=A[3][3][63]=v7,
A[4)[1][24]=A[4][4][24] =vs, A[4][1][25]=A[4][4][25]=v9,A[4][1][50]=A[4][4][50]=v10,A[4][1][51]=A[4][4] [51]=v11,
A[4][1][52]=A[4][4] [52]=v12,A[4][1] [53]= A[4] [4][53] =v13, A[4] [1] [54] = A[4][4] [54]=v14, A[4][1][55]=A[4][4][55]=v15,

A[][0][52)=A[1][3][52]=vs6, A[1][0][53]=A[1][3][53]=vs7,A[1][0)[55]=A[1][3][55]=v5s,A[1][0]
AQJ[0][57]=A[1][3][57]=ve0,A[1][0][59]=A[1][3][59]=ve1,A[1] [0][61]=A[1][3][61]=ve2, A[1][O0]

A[1][3][56]=vs9,
A[l] 3] [63]:’063

[

%
A[4][1][56]=A[4][4] [56]=v16,A[4][1][57]=A[4][4][57]=v17, A[4][1][58]=A[4][4][58]=v1s,A[1][0][0]=A[1][3][0]=v19,
A[][0][2]=A[1][3][2]=v20, A[1][0][4]=A[1][3][4]=v21,A[1][0][6]=A[1][3][6]=v22,A[1][0][10]=A[1][3][10] =v23,
A[)[0][13]=A[1][3][13]=v24,A[1][0)[15]=A[1] [3][15]=v25,A[1] [0][17)=A[1][3][17]=v26, A[1][0][18]=A[1][3][18]=v27,
A[1][0][20]=A[1][3][20]=v2s,A[1][0] [22]=A[1] [3][22] =v29, A[1][0][23]=A[1][3][23]=v30,A[1][0][24]=A[1][3][24]=v31,
A[1][0][25]=A[1][3][25]=vs2, A[1][0][26]=A[1][3][26]=v33,A[1][0][27]=A[1][3][27]=v34,A[1][0][28] = A[1] [3][28]=v35,
A[1][0][29]=A[1][3][29]=vs6,A[1][0][30]=A[1][3][30] =va7,A[1][0] [31]=A[1][3][31]=vas, A[1][0][32]=A[1][3][32]=v30,
A[1][0][33]=A[1][3][33]=va0,A[1][0][34]=A[1] [3][34]=va1, A[1][0][35]=A[1][3][35]=vaz2,A[1][0][37]=A[1][3][37]=va3,
A][0][38]=A[1][3][38] =va4, A[1][0][39]=A[1][3][39]=vas5,A[1][0][40]=A[1][3][40]=v4e, A[1][0][41]=A[1][3][41]=va7,
A[1][0][42]=A[1][3][42]=vas, A[1][0][43]=A[1][3][43] =va9, A[1][0][44] = A[1][3][44]=v50, A[1][0][45]=A[1][3][45]=v51,
A[1][0][46]=A[1][3][46]=vs2,A[1][0] [48] =A[1][3][48] =vs3, A[1][0][50]=A[1][3][50]=v54,A[1][0][51]=A[1][3][51]=v55,

[ [ ] ] J[0][56]=A[1]]

[ [ J[0][63]=A[1][

Related Key Bits

ko[8],k0[38],k0[39],k1[0],k1[1],k1[2],k1[3], k1[4],k1[5],k1[6],k1[7],k1[8],k1[9],k1[10], k1[11],k1[12],k1[13],k1[14],k1[15],
Ky [16],k1 [17], k1 [18), k1 [19] k1 [20] k1 [21] k1 [22], k1 [23] k1 [24] k1 [25], k1 [26], k1 [27] k1 (28], k1 [29] k1 [30],k1[32] k1 (33,
k1 [34],k1[35], k1[36],k1[37] k1 [38],k1 [39],k1[40] k1 [41], k1 [43],k1 [45],k1[46] k1 [47] k1 [48] k1 [50], k1 [51],k1[52] k1 [54],
kl [56] 7k1 [58] 7k1 [59] 1k1 [61] 7k1 [63]

Guessed Key bits

ko [8],k0[38],k0 [39],k1[29],k1[30},k‘1 [32],k1[33],k1 [34},]&‘1[35], k1[36],k:1[37],k‘1 [38],k1[39],k1[40},k‘1 [41], l</‘1[43],k;1[45]7
k1[46],k1[47],k1[48],k1[50], k1[51],k1[52],k1[54],k1[56],k1[58],k1[59],k1[61],k1[63]

Auxiliary Variables

A[1)[3][0]=a0 + v19,A[1][3][1]=a1, A[1][3][2]=a2 + va0, A[L][3][3]=as, A[1][3][4]=as + va, A[1][3][5l=as,A[1][3][T]=ar,
A[)[3][6]=a6 + vaz, A[][3][8]=as, A[1][3][9]=as,A[1][3][10]=a10 + vas, A[1][3][11]=a11,A[1][3][13] =015 + vau,
A[1][3][12]=a12,A[1][3][14]=a14,A[1][3][15]=a15 + v2s5,A[1][3][27]=a27 + v34,A[1][3][19]=a19, A[1][3][17]=a17 + v26,
A[1][3][18]=a1s + va27,A[1][3][20]=a20 + va2s, A[1][3][21]=a21,4A[1][3][22]=a22 + v29,A[1][3][23]=a23 + v30,
A[1][3][24]=a24 + v31, A[1][3][25]=a25 + v32,A[1][3][26]=aze + v33,A[1][3][16]=a16,A[1][3][28]=a2s + v35
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