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Abstract

We give a framework for trapdoor-permutation-based sequential aggregate signatures (SAS) that unifies and
simplifies prior work and leads to new results. The framework is based on ideal ciphers over large domains,
which have recently been shown to be realizable in the random oracle model. The basic idea is to replace the
random oracle in the full-domain-hash signature scheme with an ideal cipher. Each signer in sequence applies
the ideal cipher, keyed by the message, to the output of the previous signer, and then inverts the trapdoor
permutation on the result. We obtain different variants of the scheme by varying additional keying material in
the ideal cipher and making different assumptions on the trapdoor permutation. In particular, we obtain the
first scheme with lazy verification and signature size independent of the number of signers that does not rely on
bilinear pairings.

Since existing proofs that ideal ciphers over large domains can be realized in the random oracle model are
lossy, our schemes do not currently permit practical instantiation parameters at a reasonable security level, and
thus we view our contribution as mainly conceptual. However, we are optimistic tighter proofs will be found,
at least in our specific application.

1Cryptography Research Group, Thomas J. Watson Research Center, Yorktown Heights, NY, USA. Email: cbgentry@us.ibm.com.
URL: https://researcher.watson.ibm.com/researcher/view.php?person=us-cbgentry.

2 Department of Computer Science, Georgetown University, 3700 Reservoir Road NW, Washington DC 20057, USA. Email:
adam@cs.georgetown.edu. URL: http://cs.georgetown.edu/adam.

3 Department of Computer Science, Boston University, 111 Cummington St., Boston, MA 02215, USA. Email: reyzin@cs.bu.edu.
URL: http://cs.bu.edu/reyzin.



1 Introduction

Aggregate signatures and their variants. Aggregate signature schemes (AS), introduced by Boneh et al. [6]
(BGLS), allow n signatures on different messages produced by n different signers to be combined by any third party
into a single short signature for greater efficiency, while maintaining the same security as n individual signatures.
In this paper we are concerned with the more restricted sequential aggregate signatures (SAS), introduced by
Lysyanskaya et al. (LMRS) [22] and further studied by [21, 5, 1, 24, 7, 17]. These schemes, while still maintaining
the same security, require signers themselves to compute the aggregated signature in order, with the output of each
signer (so-called “aggregate-so-far”) used as input to the next during the signing process. This restriction turns
out to be acceptable in several important applications of aggregate signatures, such as PKI certification chains and
authenticated network routing protocols (e.g., BGPsec).

TDP-based SAS. Existing SAS constructions are usually based on trapdoor permutations (TDPs) [22, 1, 24, 7]
or bilinear pairings [21, 1, 5, 17]. In this paper, we focus on improving and simplifying TDP-based SAS schemes,
which are all in the random oracle (RO) model. We describe existing constructions below, and illustrate them
in Figure 1.

The first TDP-based SAS scheme, by Lysyanskaya et al. [22] (LMRS), is very similar to the full-domain-hash
(FDH) signature scheme of Bellare and Rogaway [2]. Recall that in FDH, the hash function is modeled as a random
oracle whose range is equal to the domain of the TDP, and the signer simply hashes the message and inverts the
TDP on the hash output. In LMRS, the signer exlcusive-ors the previous signer’s output together with the hash
of the message before inverting the TDP. This procedure enabled the verifier to verify in reverse order of signing,
because exclusive-or could be undone to obtain the previous signer’s (alleged) output.

Unfortunately, this very simple construction is not secure, and two additional checks are used in LMRS to
achieve security: first, each signer must ensure that the public keys of all preceding signers are “certified” — i.e.,
specify permutations; and second, each signer must verify the signature received from the previous signers before
applying the signing operation. These two checks prevented fast signing; ideally, each signer would be able to sign
independently of others, and verify when time permitted (this option is called “lazy verification” and was observed
by Brogle et al. [7] to be crucial in authenticated network routing protocols).

In two successive works by Neven [24] and Brogle et al. [7] (BGR), these two additional checks were removed
(permitting, in particular, lazy verification), but at a cost to simplicity and signature length. Neven’s scheme
eliminated the first check by introducing a Feistel-like structure with two hash functions, at the cost of lengthening
the signature by a single hash value; BGR, building on top of Neven, eliminated the second check by lengthening
the signature further by a short per-signer value. These two schemes were complex and had subtle security proofs.

Our framework. We give a new framework for TDP-based SAS schemes, which unifies and simplifies prior
work as well as leads to improved constructions. We observe that in all three prior TDP-based schemes, the
central design question was how to process the aggregate-so-far together with the message before applying the hard
direction of the TDP; in all three, it was accomplished using some combination of exclusive-or and random-oracle
hash operations which were designed to ensure that the aggregate-so-far could be recovered during verification. In
other words, achieving invertibility in order to enable verification was a major design constraint.

Our idea is to build invertibility explicitly into the scheme. In our scheme, pictured in Figure 1, we process
the aggregate-so-far via a public random permutation (modeled as an ideal cipher), keyed by the message. In
other words, our schemes are in the ideal ideal cipher model, where algorithms have access to a family of random
permutations and their inverses. This model is typically used for blockcipher-based constructions, where a block-
cipher like AES is modeled as an ideal cipher. In our work, the domain of the ideal cipher is that of the trapdoor
permutation, which is usually much larger than the block-length of a typical block cipher like AES. Fortunately, as
shown by a series of works [10, 12, 13, 14] we can replace arbitrary-length ideal ciphers by using 8 rounds of Feistel
network, and obtain the same security in the random oracle as in the ideal cipher model using indifferentiability
arguments [23].

Our Results. Our framework not only simplifies prior work, but gives rise to more efficient aggregate signatures.
Specifically, we obtain:

• A scheme that, like Neven’s, does not require certified TDPs, but may permit shorter signatures than Neven’s
scheme, of length equal to the length of the TDP output.1

1For a comparison at the same security level, one must take into account losses in the security proofs. Unfortunately, the proofs of
[10, 12, 13, 14] are lossy, so currently we have to use a much larger domain size of the ideal cipher than the TDP output. However, we
are optimistic tighter proofs will be found; see open problems below.
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• A scheme that, like BGR, permits lazy verification, but retains constant-size signatures. This scheme is based
on a stronger assumption of adaptive tag-based TDPs [20] instead of plain TDPs.

If one prefers to stay with plain TDPs, we also obtain a scheme that permits lazy verification and, like BGR,
has signatures that grow with the number of signers, but still the signatures have the potential to be shorter than
in BGR (with the same caveat as above). We do not compare computational costs of our scheme vs. Neven’s and
BGR’s because the only difference is the (small) number of additional hashes, which is negligible compared to the
cost of evaluating the TDP.

Main Technique: Chain-to-Zero Lemma. The security proofs for all our schemes are enabled by a lemma we
prove about an ideal cipher keyed by descriptions of functions. We emphasize that the functions are unrelated to
the ideal cipher itself, and that the cipher keyed by a function description results in permutation that is unrelated
to the function. This lemma, which we call ”Chain-to-Zero Lemma,” states the following.

Let πk denote the ideal cipher with key k. Recall that accessing π and π−1 requires querying an oracle. Let f
and g denote functions with the same domain and range as π; the function descriptions will also be used as keys for
π (again, we emphasize that the resulting permutations πf and πg have nothing to do with f and g as functions).
Suppose for some a, πg(a) = b, f(b) = c, and πf (c) = d. We will say that a, b is linked to c, d. In our schemes,
linking corresponds to consecutive steps of the verification algorithm.

A sequence of values in which each pair is linked to the next pair defines a chain. Signature verification will
make sure that the last element of a chain is 0. The Chain-to-Zero Lemma says that if the last element of the chain
is 0, then with overwhelming probability it was formed via queries to π−1 rather than to π. In our security proofs,
this lemma means that we can program the relevant queries to π−1, and therefore a forgery can be used to break
the underlying TDP.

RSA-based instantiations. The schemes we obtain via our framework are proven secure under claw-freeness
of the underlying TDP, or adaptive claw-freeness in the tag-based TDPs case. For plain-TDP-based schemes, this
means that we can use RSA assuming standard one-wayness. For the tag-based TDP scheme, we we can use RSA
under a stronger assumption called the instance-independent RSA assumption [25]. This instantiation hashes to
the exponent (an idea originating from [18]), so verification is more expensive than for standard RSA.

Perspective and open problems. Compared to prior work, our framework pushes much of the complexity of
security proofs to indifferentiability arguments that a Feistel network realizes an ideal cipher, and allows working
with an ideal cipher as a clean abstraction. We point out two interesting directions for future work:

• Known proofs that a Feistel network is indifferentiable from an ideal cipher are lossy in the sense that the
security guarantees obtained are weaker for a fixed domain size. We conjecture that a weaker property suffices
to prove our Chain-to-Zero Lemma and can be realized via a tight proof. We leave proving or disproving this
conjecture as an interesting direction for future work (and perhaps fewer Feistel rounds).

• The RSA-based instantiation of our tag-based TDP scheme has an expensive verification algorithm that
performs a full exponentiation modulo N , and its security relies on a very strong assumption about RSA.
It would be interesting to remove either of these drawbacks. We conjecture that one can actually prove
a negative result here, namely that plain TDPs cannot be used to realize constant-size lazy-verifying SAS
schemes in the RO model, in a black-box way.

Finally, we mention that an open problem is removing the use of ROs in TDP-based SAS schemes, although our
framework does not shed any light on this issue.

2 Preliminaries

2.1 Notation and Conventions

Algorithms. If A is an algorithm then y ← A(x1, . . . , xn; r) means we run A on inputs x1, . . . , xn and coins r
and denote the output by y. By y←$A(x1, . . . , xn) we denote the operation of picking r at random and letting
y ← A(x1, . . . , xn; r). By Pr [ P (x) : . . . ] we denote the probably that P (x) holds after the elided experiment is
executed. Unless otherwise indicated, an algorithm may be randomized. “PPT” stands for “probabilistic polynomial
time” and “PT” stands for “polynomial time.” The security parameter is denoted k ∈ N. If we say that an algorithm
is efficient we mean that it is PPT. All algorithms we consider are efficient unless indicated otherwise.

Strings and vectors.We denote by {0, 1}∗ the set of all (binary) strings, by {0, 1}n the set of all strings of
length n ∈ N , and by {0, 1}≥n the set of all strings of length at least n ∈ N. If a, b are strings then a‖b denotes
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an encoding from which a and b are uniquely recoverable. Vectors are denoted in boldface, for example x. We
sometimes use set notation with vectors, so that the notation x← x ∪ {x} means that the next empty position in
x is assigned x. If X is a random variable over some (finite) probability space then E[X] denotes its expectation.

Tables. We use the term “table” to refer to an associative array implicitly initialized to empty. We use the
pseudocode “Record x = T [y] in the X-table” to mean that x is put at index y in table T . We use the pseudocode
“X-table entry x = T [y]” to refer to x as the value at index y in table T .

Simplifying conventions. We implicitly assume that an honestly generated secret key contains the matching
public key. In experiments, we assume that an adversarially-provided public key can be parsed into the requisite
form, and that if it contains a description of a function f then f is PT. This does not mean we assume public keys
certified by a CA. Indeed, our requirement can be met by running f via inputting it and its input to some PT
algorithm F , say universal machine that executes f on its input for a fixed amount of time; if f halts with some
output then F outputs it as well, otherwise F outputs a default value. For simplicity, we also assume trapdoor
permutations have domain {0, 1}k but discuss RSA-based instantiations in Appendix A and Section 7.

2.2 Claw-Freeness

Claw-free trapdoor permutations. A trapdoor permutation (TDP) generator F on input 1k outputs a pair
(f, f−1, g) describing permutations f, g on {0, 1}k, and f−1 describing the inverse of f . For a claw-finding algorithm
C and every k ∈ N, define its CF-advantage against F as

Advcf
F,C(k) = Pr

[
f(x) = g(x′) : (f, f−1, g)←$F ; (x, x′)←$C(f, g)

]
.

We say that F is a claw-free if Advcf
F,C(·) is negligible for every PPT C.

The permutation g is only used for security proofs. In our constructions, we will ignore g and write (f, f−1)←$F(1k),
corresponding to the standard notion of trapdoor permutations.

(Adaptive) claw-free tag-based TDPs. A tag-based trapdoor permutation (TB-TDP) generator Ftag with
tag-space {0, 1}τ on input 1k outputs a pair (ftag, f

−1
tag, gtag) describing functions of two inputs: t ∈ {0, 1}τ (called

the tag) and x ∈ {0, 1}k. For every tag t ∈ {0, 1}τ , ftag(t, ·), gtag(t, ·) are permutations and f−1tag(t, ·) is the inverse
of ftag(t, ·). For a claw-finding algorithm C and every k ∈ N, define its ACF-advantage against Ftag as

Advacf
F,C(k) = Pr

[
f(t, x) = g(t, x′) : (f, f−1, g)←$Ftag(1k) ; t←$ {0, 1}k ; (x, x′)←$Cf

−1(·,·)(f, g, t)
]

where we require that C does not make a query of the form f−1(t, ·) to its oracle. We say that F is adaptive
claw-free if Advcf

F,C(·) is negligible for every such PPT C.

Intuitively, F is adaptive claw-free if it is hard to find a claw even given access to an inversion oracle for f that
may be called on tags other than the challenge tag. The notion of adaptive claw-freeness is new to this work. It is
an extension of the notion of adaptive one-wayness introduced by Kiltz et al. [20].

Instantiations. Dodis and Reyzin [16] show that any homomorphic or randomly self-reducible trapdoor permu-
tation, in particular RSA [26] is claw-free (with a tight security reduction to one-wayness).

The notion of adaptive one-wayness for trapdoor permutations) (and more generally trapdoor functions) was
introduced by Kiltz et al. [20]. They show that RSA gives rise to an adaptive one-way tag-based TDP under the
instance-independent RSA assumption (II-RSA). In Appendix A we show that the same construction yields an
adaptive claw-free tag-based TDP. In the construction, computing the forward direction is slower than for standard
RSA, as it performs an exponentiation where the exponent is the length of the modulus rather than a small constant.

2.3 Random Oracle Model

In the random oracle model [2] all parties (all algorithms and adversaries) have oracle access to a function (“the
random oracle”) H : {0, 1}∗ → {0, 1}∗ where for every x ∈ {0, 1}∗ the value of H(x) is chosen uniformly at random
of some desired output length. By using standard domain separation, it is equivalent to give all parties oracle
access to an unlimited number of independent random oracles H1, H2, . . . : {0, 1}∗ → {0, 1}∗. It is a well-known
heuristic proposed by [2] to instantiate these oracles in practice via functions constructed appropriately from a
cryptographic hash function.
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2.4 Ideal Cipher Model

In the version of the ideal cipher model [27] we consider, all parties (again, all algorithms and adversaries) have
oracle access to two functions (“the ideal cipher”):

π : {0, 1}∗ × {0, 1}≥k → {0, 1}≥k and π−1 : {0, 1}∗ × {0, 1}≥k → {0, 1}≥k ,
where the first is such that for each K ∈ {0, 1}∗ and each input length n ≥ k, π(K, ·) is an independent random
permutation on {0, 1}n. The second is such that for each K ∈ {0, 1}∗ and each input length n ≥ k, π−1(K, ·) is
the inverse of π(K, ·) on {0, 1}n. Such a model has typically been used to analyze blockcipher-based constructions
in the symmetric-key setting (see, e.g., [4]), where the key length is fixed to the key length of the blockcipher and
the input length is fixed to the block length.

Our constructions are in the public-key setting, the key length will be unbounded, and the input length will be
at least as long as the input length of a trapdoor permutation (say 2048 bits in the case of RSA). To implement such
an ideal cipher in the random oracle model, one can use a Feistel network. Indeed, in their seminal work, Coron
et al. [10] show that a 14-round Feistel network, where the round functions are independent random oracles, is
indifferentiable in the sense of Maurer et al. [23] from a random permutation, which can then be used to implement
the ideal cipher in a straightforward way. Essentially, indifferentiability implies that any reduction using the random
permutation can be translated to one in the random oracle model. A subsequent sequence of works [12, 13, 14] show
that 8 rounds is sufficient; the minimal number of rounds is still open but known to be at least six. Unfortunately,
none of these works are “tight” in the sense that the resulting reduction in the random oracle model will be very
loose. An interesting question for future work is whether a weaker notion than indifferentiability from an ideal
cipher suffices in our constructions.

3 Sequential Aggregate Signatures

Sequential aggregate signatures (SAS) were introduced by Lysyanskaya et al. [22] and were subsequently studied
by [21, 5, 1, 24, 7, 17]. Following the work of Brogle et al. [7] and Fischlin et al. [17] (and in particular using
terminology of the latter) we classify SAS schemes into two types: general and history-free. In a history-free
scheme, the signing algorithm uses only on the current signer’s secret key, the message, and the aggregate-so-far.
In a general scheme, it may also use the public keys and messages of the previous signers.

3.1 The General Case

Syntax. A (general) sequential aggregate signature (SAS) scheme is a tuple SAS = (Kg,AggSign,AggVer) of
algorithms defined as follows. The key-generation algorithm Kg on input 1k outputs a public-key pk and matching
secret-key sk. The aggregate signing algorithm AggSign on inputs a secret key ski, message mi, aggregate-so-far σi−1
and a list of pairs of public keys and messages ((pk1,m1), . . . , (pki−1,mi−1)) outputs a new aggregate signature σi.
The aggregate verification algorithm AggVer on inputs a list of public keys and messages (pk1,m1), . . . , (pki,mi)
and an aggregate signature σi outputs a bit.

Security. The security notion we use is the same as that in [24, 7] and originates from [1], who strengthen the
original notion of [22] to allow repeating public keys (which they call “unrestricted” SAS). To a general SAS scheme
SAS and a forger F we associate for every k ∈ N a (general) SAS-unforgeability experiment Expsas-uf

SAS,F (k) that runs
in three phases:

• Setup: The experiment generates (pk, sk)←$Kg(1k).

• Attack: Next, the experiment runs F on input pk with oracle access to AggSign(sk, ·, ·, ·).
• Forgery: Eventually, F halts with output parsed as (pk1,m1), . . . , (pkn,mn), σ. The experiment outputs 1 iff:

(1) AggVer((pk1,m1), . . . , (pkn,mn), σ) outputs 1, (2) pki∗ = pk for some 1 ≤ i∗ ≤ n, and (3) F did not make
an oracle query of the form AggSign(sk,mi∗ , ((pk1,m1), . . . , (pki∗−1,mi∗−1))).

Define the (general) SAS-unforgeability advantage of F as

Advsas-uf
SAS,F (k) = Pr

[
Expsas-uf

SAS,F (k) outputs 1
]
.

3.2 The History-Free Case

Syntax. A history-free sequential aggregate signature (HF-SAS) scheme is a tuple HF-SAS = (Kg,AggSign,
AggVer) of algorithms defined as follows. The key-generation algorithm Kg on input 1k outputs a public-key pk
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and matching secret-key sk. The history-free aggregate signing algorithm AggSign on inputs sk,m, σ′ outputs a
new aggregate signature σ. The aggregate verification algorithm AggVer on inputs a list of public key and messages
(pk1,m1), . . . , (pki,mi) and aggregate signature σ outputs a bit.

Security. Security in the history-free case is more restrictive on what is considered to be a forgery by the
adversary than in the general case. In particular, we follow Brogle et al. [7] in our formulation of security here but
leave investigation of a stronger security model due to Fischlin et al. [17] for furtur work. (As noted by [7], this
strengthening is not needed in applications such as BGPsec.) To an HF-SAS scheme HF-SAS and a forger F be a
forger we associate for every k ∈ N a history-free SAS unforgeability experiment Exphf-sas-uf

SAS,F (k) that runs in three
phases:

• Setup: The experiment generates (pk, sk)←$Kg(1k).

• Attack: Next, the experiment runs F on input pk with oracle access to AggSign(sk, ·, ·).
• Forgery: Eventually, F halts with output parsed as (pk1,m1), . . . , (pkn,mn), σ. The experiment outputs 1 iff:

(1) AggVer((pk1,m1), . . . , (pkn,mn), σ) outputs 1, (2) pki∗ = pk for some 1 ≤ i∗ ≤ n, and (3) F did not make
an oracle query of the form AggSign(sk,mi∗ , ·).

Define the history-free SAS-unforgeability advantage of F as

Advhf-sas-uf
HF-SAS,F (k) = Pr

[
Exphf-sas-uf

HF-SAS,F (k) outputs 1
]
.

3.3 Message Recovery

We also consider sequential aggregate signature schemes with message recovery, following [3, 24]. The goal is to
save on bandwidth. Here we replace the verification algorithm by a recovery algorithm, which we view as taking as
inputs a list of public keys and an aggregate signature and outputting either a list of messages, with the intended
meaning that the verifier accepts each message as authentic under the respective public key, or ⊥, indicating the
aggregate signature is rejected.

4 Our Basic Schemes

We give three basic schemes: a general scheme (where the signing algorithm uses the public keys and messages
of the previous signers in addition to the current signer’s secret key and message), and two history-free schemes
(where the signing algorithm uses only the current signer’s secret key and message). In this section we only present
the constructions and security theorems. We postpone the proofs since we later give our main lemma that unifies
the proofs.

4.1 SAS1: A General Scheme

Let F be a trapdoor permutation generator. Define SAS1[F ] = (Kg,AggSign,AggVer) in the ideal cipher model
with input length of π and π−1 fixed to k ∈ N, and where Kg(1k) outputs (f, f−1) generated via F(1k) and:

Alg AggSign(f−1i ,mi, σi−1, (f1,m1), . . . , (fi−1,mi−1)) :
//This is for the ith signer in the sequence:
If AggVer((f1,m1), . . . , (fi−1,mi−1), σi−1)

outputs 0 then
Return ⊥

If i = 1 then σi−1 ← 0k

xi−1 ← σi−1 ; Ki ← f1‖m1‖ . . . ‖fi‖mi

yi ← π−1(Ki, xi−1) ; xi ← f−1i (yi) ; σi ← xi
Return σi

Alg AggVer((f1,m1), . . . , (fn,mn), σ) :
xn ← σ
For i = n down to 1 do:

yi ← fi(xi)
K ← f1‖m1‖ . . . ‖fi‖mi

xi−1 ← π(Ki, yi)
If x0 = 0k then return 1
Else return 0

Theorem 4.1 Suppose F is claw-free. Then SAS1[F ] is aggregate-unforgeable in the ideal cipher model. In par-
ticular, suppose there is a forger F against SAS1[F ] making at most qπ ideal cipher queries and at most qS signing
queries. Then there is a claw-finding algorithm C against F such that for every k ∈ N

Advsas-ufcma
SAS1[F ],F (k) ≤

(
1

1/(e(qS + 1))− qπ/2k

)
·Advcf

F,C(k) + q2π/2
k .

The running-time of C is that of F plus minor bookkeeping.
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4.2 SAS2: A History-Free Scheme with Randomized Signing

Let F be a trapdoor permutation generator and ρ = ρ(k) be an integer parameter. Define SAS2[F ] = (Kg,AggSign,AggVer)
where Kg(1k) outputs (f, f−1) generated via F(1k) and:

Algorithm AggSign(f−1i ,mi, σi−1) :
//This is for the ith signer in the sequence:
If i = 1 then x0 ← 0k and r0 ← ε
Else (xi−1, ri−1)← σi−1
ri←$ {0, 1}ρ ; Ki ← fi‖mi‖ri
yi ← π−1(Ki, xi−1)
xi ← f−1i (yi) ; Append ri to ri−1
σi ← (xi, ri)
Return σi

Algorithm AggVer((f1,m1), . . . , (fn,mn), σ) :
(σn, (r1, . . . , rn))← σ
xn ← σn
For i = n down to 1 do:

yi ← fi(xi)
K ← fi‖mi‖ri
xi−1 ← π(Ki, yi)

If x0 = 0k then return 1
Else return 0

Theorem 4.2 Suppose F is claw-free. Then SAS2[F ] is aggregate-unforgeable in the ideal cipher model. In partic-
ular, suppose there is a forger F against SAS2[F ] making at most qH queries to H, at most qπ queries to the ideal
cipher, and at most qS signing queries. Then there is a claw-finding algorithm C against F such that for every
k ∈ N

Advhf-sas-ufcma
SAS2[F ],F (k) ≤ 2ρ+k

(2ρ − q2S)(2k − q2π)
·Advcf

F,C(k) + q2π/2
k .

The running-time of C is that of F plus minor bookkeeping.

4.3 SAS3: A History-Free Scheme with Deterministic Signing

To get intuition, we first sketch how to forge against SAS2[F ] when randomness ri is simply omitted. Let Ki =
fi‖mi be the ideal cipher key that the i-th signer “thinks” it is using. Let K ′i = fi‖m′i be the ideal cipher key
derived from a message m′i that it will be duped into signing, and let x′i−1 be the real aggregate-so-far. We
show how to derive a corresponding fake aggregate-so-far xi−1. Let yi = π−1(Ki, xi−1) be the value that the i-th
signer will apply f−1i to. We want to make yi = π−1(K ′i, x

′
i−1), so that the i-th signer is duped. But this is

easy: In order to force yi = π−1(K ′i, x
′
i−1), we only have to choose π−1(Ki, xi−1) = π−1(K ′i, x

′
i−1) and therefore

xi−1 = π(Ki, π
−1(K ′i, x

′
i−1)). In essence, to solve this issue we make fi depend on mi as well.

Our construction. Let Ftag be a tag-based trapdoor permutation with tag-space {0, 1}τ . Let H : {0, 1}∗ →
{0, 1}τ be a hash function modeled as a random oracle. Define SAS3[F ] = (Kg,AggSign,AggVer) where Kg(1k)
outputs (f, f−1) generated via Ftag(1k) and:

Algorithm AggSign(f−1i ,mi, σi−1) :
//This is for the ith signer in the sequence:
xi−1 ← σi−1
If i = 1 then σi−1 ← 0k

Ki ← fi‖mi

yi ← π−1(Ki, xi−1)
ti ← H(fi‖mi)
xi ← f−1i (ti, yi)
Return σi = xi

Algorithm AggVer((f1,m1), . . . , (fn,mn), σ) :
xn ← σ
For i = n down to 1 do:

ti ← H(fi‖mi)
yi ← fi(tixi)
K ← fi‖mi‖ri
xi−1 ← π(Ki, yi)

If x0 = 0k then return 1
Else return 0

Theorem 4.3 Suppose Ftag is adaptive claw-free. Then SAS3[F ] is aggregate-unforgeable in the ideal cipher and
random oracle models. In particular, suppose there is a forger F against SAS3[F ] making at most qH queries to the
random oracle and at most qπ queries to the ideal cipher. Then there is a claw-finding algorithm C against Ftag
such that for every k ∈ N

Advhf-sas-ufcma
SAS3[F ],F (k) ≤ 2k+τ

(2k − q2π)(2τ − qH)
·Advacf

Ftag,C(k) + q2π/2
k .

The running-time of C is that of F plus minor bookkeeping.

5 The Chain-to-Zero Lemma

Here we give a main lemma that will unify security analyses of our schemes.
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Figure 2: A link between ideal cipher entries.

The setting. Consider an adversary A executing in the ideal cipher model where the input and output length of
the ideal cipher is fixed to k ∈ N, and where a key of the ideal cipher also describes a function f : {0, 1}k → {0, 1}k
unrelated to the function π : f × {0, 1}k → {0, 1}k. That is, A may submit a query to π of the form f, y to receive
a random x ∈ {0, 1}k, or a query f, x to π−1 to receive a random y ∈ {0, 1}k.2 For simplicity, we assume that A
does not make the same query twice or ask redundant queries, i.e., does not ask for π−1[f, x] if it already asked for
π[f, y] for some y and got x in response, or vice versa.

Linking. We say that π-table entry x1 = π[f2, y2] is linked to π-table entry x0 = π[f1, y1] if f1(x1) = y1. For
intuition, one can think of a π-table entry x0 = π[f1, y1] as indicating that f1 applied to something (which in our
constructions correspond to an aggregate-so-far) yielded y1; this entry is linked if the “something” is also stored in
the π-table. See Figure 2 for a depiction. We inductively define a π-table entry x = π[f, y] to be chained to zero
if x = 0k or it is linked to an entry that is chained to zero. The length of the chain is defined naturally, where a
chain consisting of a single entry 0k = π[f1, y1] has length one. We say that π-table entry x = π[f, y] is a forward
query if it is defined upon A making a π query. Similarly, we say that π-table entry x = π[f, y] is a backward query
if it is defined upon A making a π−1 query.

Lemma 5.1 (Chain-to-Zero Lemma) Consider an execution A in which it makes at most q queries. Define
BADπ to be the event that some forward query gets chained to zero. Then Pr [BADπ ] ≤ q2/2k.

In the proof we will make use of the following claims.

Claim 5.2 Let f : {0, 1}k → {0, 1}k. Consider choosing random y1, . . . , yq ∈ {0, 1}k, and let Ymax be the random
variable giving the maximum over i of the size of the pre-image set of f−1(yi). Then E[Ymax] = q.

Proof: Let Yi be the random variable giving the size of the pre-image set of f−1(yi). We compute

E[Ymax] =

∞∑
x=0

Pr[Ymax > x] ≤
∞∑
x=0

q∑
i=1

Pr[Yi > x] =

q∑
i=1

E[Yi] = q .

Above, for the first (in)equality we the fact that for a nonnegative integer-valued random variable X, E[X] =∑∞
x=0 Pr[X > x]. For the second inequality we use a union bound. For the last (in)equality we use that E[Yi] = 1,

because the expectation is simply the sum all pre-image set sizes divided by the total number of points.

Now define Coll1 to be the event that a forward query xi = π[fi+1, yi+1] is such that it is linked to some
already existing backward query xi−1 = π[fi, yi], and Coll2 to be the event that a backward query xi−1 = π[fi, yi]
is such that it is linked to some already existing query xi = π[fi+1, yi+1] (either forward or backward). Define
Coll = Coll1 ∨ Coll2.

Claim 5.3 In an execution A as above in which it makes at most q queries, we have Pr [Coll ] ≤ q2/2k.

Proof: We say that a forward query collides if satisfies the condition for Coll1, and similarly for a backward query
and Coll2. After at most i backward queries have been made, define the random variable Pi to give the the maximum
over all such queries of the size of the pre-image set f−1(y). We claim that after i queries, the probability a forward
query collides is at most i/2k. This is because for such a forward query x = π[f, y], we have

Pr [x = π[f, y] collides ] ≤
∞∑
j=1

j · Pr [Pi = j ] · 2−k = E[Pi] · 2−k ≤ i · 2−k ,

2In the game, we denote by “y” an input to π and by “x” its output for consistency with our constructions in Section 4.
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where the last inequality is by the claim above.

Now if xi−1 = π[fi, yi] is a backward query then yi is random and independent, while for any existing query
xi = π[fi+1, yi+1] we know fi(xi) is already defined before yi is chosen. So the probability fi(xi) = yi is 2−k.

Hence, by a union bound the total probability of collision is at most q2/2k.

We are now ready to prove our main lemma.

Proof: (of Lemma 5.1) By a conditioning argument, we have

Pr [BADπ ] ≤ Pr
[
BADπ | Coll

]
+ Pr [Coll ]

≤ Pr
[
BADπ | Coll

]
+ q2/2k

using Claim 5.3.

Now if BADπ occurs there are two possibilities, either some forward query x = π[f, y] gets chained to zero by a chain
of length i = 1, or it gets chained to zero by a chain of length i > 1. If i = 1 this would mean that x = 0k. Since x
is random and independent, the probability of this is 2−k. Summing over all possible queries, the probability that
any forward query gets chained to zero by a chain of length one is at most q/2k.

Now suppose forward query xi = π[fi+1, yi+1] gets chained to zero by a chain of length i > 1. Then there are two
possibilities: this query is chained to zero immediately when it is defined, or later.

The first possibility would require that there is a π-table entry xi−1 = π[fi, yi] such that fi(xi) = yi and the entry
is already chained to zero by a chain of length i− 1. By induction on i, xi−1 = π[fi, yi] is a backward query, so it
would cause a collision.

For the second possibility, consider a query that completes the chain from xi−1 = π[fi, yi] to zero. At the time it is
asked, all the other entries in the chain are already fixed. That query itself must be chained to zero via a chain of
length j, for some 1 ≤ j ≤ i−1, so let us denote it by xj−1 = π[fj , yj ]. The query number j+ 1 in the chain, which
we denote by xj = π[fj+1, yj+1], must be linked to query number j, i.e., it must hold that fj(xj) = yj . Because
query number j − 1 must be chained to zero, again by (strong) induction on i it must be a backward query, so it
would cause a collision.

This completes the proof.

Remark 5.4 The Chain-to-Zero Lemma can be extended in the following way. Instead of functions f : {0, 1}k →
{0, 1}k we allow functions f : {0, 1}n → {0, 1}n, for any n ≥ k, choose x and y in the game’s pseudocode for
answering A’s queries of length n defined in the query, and define x = π[f, y] to be chained to zero if x = 0kzn−k

for any z ∈ {0, 1}n−k, where n is the input length of f . The statement of the lemma remains unchanged.

6 Proofs for the Basic Schemes

Here we give security proofs of our basic schemes, using the Chain-to-Zero Lemma. To simplify the proofs, we
assume that no query of forger F to the ideal cipher is asked twice (even in reverse direction) and that all queries
needed in a signing query and for verifying the final forgery are already asked.

6.1 Proof of Theorem 4.1

We give a simpler proof that loses a factor qπ in the reduction rather than qS ; the improved reduction can be
obtained via application of Coron’s technique using biased coin flipping [9].

Claw finder. Claw-finding algorithm C is given in Figure 3.

Analysis. Let’s consider executions of the general SAS-unforgeability experiment with F and of the claw-finding
experiment with C over a common set of random coin sequences, where the same coins are used for choices common
across both experiments. Using the terminology of Section 5, in the execution of C in its claw-finding experiment
let BADπ be the event that any forward query is chained to zero and ABORT be the event that C aborts. Let
FORGE be the event that F produces a valid forgery in its general SAS-unforgeability experiment. Then we have

Advcf
F,C(k) ≥ Pr

[
FORGE ∧ ABORT ∧ BADπ

]
= Pr

[
FORGE | ABORT ∧ BADπ

]
· Pr

[
ABORT | BADπ

]
· Pr

[
BADπ

]
.
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The first inequality above is due to the fact that on coin sequences where C does not abort, the execution of F in
its experiment and when run by C is identical. Hence, on such coin sequences F also forges in its execution by C.

Now by the Chain-to-Zero Lemma (Lemma 5.1), we have

Pr
[
BADπ

]
≥ 1− q2π/2k .

Next we claim that

Pr
[
ABORT | BADπ

]
≥ 1/qπ .

To see this, note that there are two places C could abort: answering a signing query, or after receiving the final
forgery. In answering a signing query, we know that the aggregate-so-far must verify (otherwise C returns ⊥),
so π-table entry xi−1 = π[f1‖m1‖ . . . ‖f∗‖mi, yi] is chained to zero, and since we are conditioning on BADπ it
must be a backward query. Similarly, upon receiving the F ’s final output, if it is a valid forgery then π-table
entry x∗i∗−1 = π[f∗1 ‖m∗1‖ . . . ‖f∗‖m∗i∗ , y∗i∗ ] must also be a backward query. So if C chooses ctr∗ to be such that
x∗i∗−1 = π[f∗1 ‖m∗1‖ . . . ‖f∗‖m∗i∗ , y∗i∗ ] was defined on the ctr∗-th query, then C does not abort. This happens with
probability at least 1/qπ since ctr∗ is random and independent.

To complete the proof, we claim that

Pr
[
FORGE | ABORT ∧ BADπ

]
≥ Advsas-ufcma

SAS1[F ],F (k)− q2π/2k .

To see this, first note that ABORT is independent of FORGE because the random choices made by C in determining
whether to abort in its claw-finding experiment do not affect whether F forges in its SAS-unforgeability experiment.
Thus

Pr
[
FORGE | ABORT ∧ BADπ

]
= Pr

[
FORGE | BADπ

]
.

Now

Pr
[
FORGE | BADπ

]
=

Pr [FORGE ]− Pr [ FORGE | BADπ ] · Pr [BADπ ]

Pr
[
BADπ

]
≥ Pr [FORGE ]− Pr [BADπ ]

≥ Pr [FORGE ]− q2π/2k

= Advsas-ufcma
SAS1[F ],F (k)− q2π/2k .

Combining the above, we have

Advcf
F,C(k) ≥

(
Advsas-ufcma

SAS1[F ],F (k)− q2π/2k
)
·
(
1/qπ − qπ/2k

)
and rearranging yields the theorem.

6.2 Proof of Theorem 4.2

Claw finder. Claw-finding algorithm C is given in Figure 4.

Analysis. Again, let’s consider executions of the general SAS-unforgeability experiment with F and of the claw-
finding experiment with C over a common set of random coin sequences with the same coins used for common
choices across both experiments. Using the terminology of Section 5, in the execution of C in its claw-finding
experiment let BADπ be the event that any forward query gets chained to zero. Also in the execution of C in its
experiment, let BADr be the event that π-table entry π[f‖m‖r, y] defined when C answers signing query of F was
previously defined. Let FORGE be the event that F produces a valid forgery in its experiment. We claim that

Advcf
F,C(k) ≥ Pr

[
FORGE ∧ BADr ∧ BADπ

]
= Pr

[
FORGE | BADr ∧ BADπ

]
· Pr

[
BADr | BADπ

]
· Pr

[
BADπ

]
≥ Pr

[
FORGE | BADr ∧ BADπ

]
· Pr

[
BADr | BADπ

]
·
(
1− q2π/2k

)
Above, the first inequality is because on a coin sequences on which F forges in its experiment and on which no
π-table entry defined when C answers a signing query in its experiment was previously defined, the executions of
both experiments are identical. Hence, on such coin sequences F also forges in its execution by C. Moreover, since
the final output of F is a valid forgery, we know that π-table entry x∗i∗−1 = π[f∗‖m∗i∗‖r∗i∗ , yi∗ ] is chained to zero.

Since we are conditioning on BADπ, the query on which the above π-table entry is defined must be a backward
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Algorithm C(f∗, g∗) :
ctr ← 0 ; ctr∗←$ {1, . . . , qπ}
Run F on input f∗, answering its queries as follows:

On π-query f1‖m1‖ . . . ‖fi‖mi, y do:
x←$ {0, 1}k
Record π[f1‖m1‖ . . . ‖fi‖mi, y] = x in the π-table ; Return x

On π−1-query f1‖m1‖ . . . ‖fi‖mi, x do:
If fi = f∗ then

ctr ← ctr + 1
If ctr = ctr∗ then

x′←$ {0, 1}k ; y ← g∗(x′) ; Record g∗[x′] = y in the g∗-table
Record π[f1‖m1‖ . . . ‖fi‖mi, y] = x in the π-table ; Return y

Else
x′←$ {0, 1}k ; y ← f∗(x′) ; Record f∗[x′] = y in the f∗-table
Record π[f1‖m1‖ . . . ‖fi‖mi, y] = x in the π-table ; Return y

On signing query mi, σi−1, (f1,m1), . . . , (fi−1,mi−1) do:
If AggVer((f1,m1), . . . , (fi−1,mi−1), σi−1) outputs 0 then return ⊥
xi−1 ← σi−1 ; yi ← π−1[f1‖m1 . . . fi−1‖mi−1‖f∗‖mi, xi−1]
If yi is not in the f∗-table then abort
Else let xi be the index of yi in the f∗-table
Return σ = xi

Let (f∗1 ,m
∗
1), . . . , (f∗n,m

∗
n), σ∗ be the output of F

If AggVer((f∗1 ,m
∗
1), . . . , (f∗n,m

∗
n), σ∗) outputs 0 then return ⊥

If there does not exist 1 ≤ i∗ ≤ n such that f∗i∗ = f∗ then return ⊥
x∗n ← σ∗

For i = n down to i∗ + 1 do:
y∗i ← f∗i (x∗i )
x∗i−1 ← π[f∗1 ‖m∗1‖ . . . ‖f∗i ‖m∗i , y∗i ]

y∗i∗ ← f∗(x∗i∗)
If y∗i∗ is not in the g∗-table then abort
Else let x′i∗ be the index of y∗i∗ in the g∗-table
Return (x∗i∗ , x

′
i∗)

Figure 3: Claw-finder C for the proof of Theorem 4.1.
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Algorithm C(f∗, g∗) :
Run F on input f∗, answering its queries as follows:

On π-query f‖m‖r, y do:
x←$ {0, 1}k
Record π[f‖m‖r, y] = x in the π-table
Return x

On π−1 query f‖m‖r, x do:
x′←$ {0, 1}k ; y ← g∗(x′)
Record g∗[x′] = y in the g∗-table
Record π[f‖m‖r, y] = x in the π-table
Return y

On signing query m,σ do:
(xi−1, r)← σ ; r←$ {0, 1}ρ
xi←$ {0, 1}k ; yi ← f(x)
Record π[f‖m‖r, xi−1] = yi in the π-table
r← r ∪ {r} ; σ ← (xi, r)
Return σ

Let (f∗1 ,m
∗
1), . . . , (f∗n, ,m

∗
n), σ∗ be the output of F

If AggVer((f∗1 ,m
∗
1), . . . , (f∗n,m

∗
n), σ∗) outputs 0 then return ⊥

If there does not exist 1 ≤ i∗ ≤ n such that f∗i∗ = f∗ then return ⊥
(x∗n, r

∗)← σ∗

For i = n down to i∗ + 1 do:
y∗i ← f∗i (x∗i )
x∗i−1 ← π[f∗i ‖m∗i ‖r∗i , y∗i ]

y∗i∗ ← f∗(x∗i∗)
Let x′i∗ be the index of yi∗ in the g∗-table
Return (x∗i∗ , x

′
i∗)

Figure 4: Claw-finder C for the proof of Theorem 4.2.

query, and since C populates the g∗-table on backwards queries, on such executions it can successfully find a claw.
Finally, the last line is by the Chain-to-Zero Lemma.

Now we claim Pr
[
BADr | BADπ

]
≤ q2S/2

ρ. This is because on each signing query r is chosen independently
at random, in other words BADr and BADπ are independent, and the probability that x = π[(f,m, r), y] is already
defined on a given signing query is at most qS/2

ρ. Summing over all signing queries yields the claim.

Finally, we compute

Pr
[
FORGE | BADr ∧ BADπ

]
=

Pr [FORGE ]− Pr [ FORGE | BADr ∧ BADπ ] · Pr [BADr ∧ BADπ ]

Pr
[
BADr ∧ BADπ

]
≥ Pr [FORGE ]− Pr [BADr ∧ BADπ ]

≥ Pr [FORGE ]− Pr [BADπ ]

= Advsas-ufcma
SAS1[F ],F (k)− q2π/2k .

where the last line uses the Chain-to-Zero Lemma. Combining terms yields the theorem.

6.3 Proof of Theorem 4.3

Claw finder. Claw-finding algorithm C is given in Figure 5.

Analysis. Again, let’s consider executions of the history-free SAS-unforgeability experiment with F and of the
adaptive claw-finding experiment with C over a common set of random coin sequences, where the same coins are
used choices common across both experiments. And, in the execution of C, let BADπ be the event that any forward
query is chained to zero. Let ABORT be the event that C aborts. Let FORGE be the event that F produces a valid
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forgery in its experiment. Then we have

Advacf
F,C(k) ≥ Pr

[
FORGE ∧ ABORT ∧ BADπ

]
= Pr

[
FORGE | ABORT ∧ BADπ

]
· Pr

[
ABORT | BADπ

]
· Pr

[
BADπ

]
.

The first inequality above is due to the fact that on coin sequences where C does not abort and no forward query
made by F gets chained to zero, the execution of F in its experiment and when run by C is identical. Hence, on
such coin sequences F also forges in its execution by C.

Now by the Chain-to-Zero Lemma (Lemma 5.1), we have

Pr
[
BADπ

]
≥ 1− q2π/2k .

Next we claim that

Pr
[
ABORT | BADπ

]
≥ 1/qH · (1− qH/2τ ) .

To see this, note that there are three places C could abort: answering a hash query, answering a signing query,
or after receiving the final forgery. Note that on each hash query where the “Else” is executed, we t = t∗ with
probability 1/2τ since t and t∗ are independent and random. Upon receiving the F ’s final output, if it is a valid
forgery then π-table entry x∗i∗−1 = π[f∗‖m∗i∗ , y∗i∗ ] must be chained to zero and hence be a backward query. So if C
chooses ctr∗ to be such that x∗i∗−1 = π[f∗‖m∗i∗ , y∗i∗ ] was defined on the ctr∗-th query, then C does not abort. This
happens with probability at least 1/qH since ctr∗ is random and independent.

To complete the proof, we claim that

Pr
[
FORGE | ABORT ∧ BADπ

]
≥ Advsas-ufcma

SAS1[F ],F (k)− q2π/2k .

To see this, first note that ABORT is independent of FORGE because the random choices made by C in determining
whether to abort in its claw-finding experiment do not affect whether F forges in its SAS-unforgeability experiment.
Thus

Pr
[
FORGE | ABORT ∧ BADπ

]
= Pr

[
FORGE | BADπ

]
.

Now

Pr
[
FORGE | BADπ

]
=

Pr [FORGE ]− Pr [ FORGE | BADπ ] · Pr [BADπ ]

Pr
[
BADπ

]
≥ Pr [FORGE ]− Pr [BADπ ]

≥ Pr [FORGE ]− q2π/2k

= Advsas-ufcma
SAS1[F ],F (k)− q2π/2k

as claimed. Combining the above, we have

Advcf
F,C(k) ≥

(
Advsas-ufcma

SAS1[F ],F (k)− q2π/2k
)
·
(
1/qH − q2π/2k

)
and rearranging yields the theorem.

7 Extensions

We extend our basic schemes in a few ways. First, we add message recovery to them, so that we save on bandwidth.
Second, we handle non-binary domains, as is needed for RSA-based instantiations.

7.1 Adding Message Recovery

To add message recovery to any of our schemes, the first signer can, instead of using the all-zeros string (of k-bits
in length) as the first “aggregate-so-far,” use n zero bits followed n− k bits of the message for n equal to security
parameter (here we abuse notation and use n as the security parameter, say 128, while k is the length of the
modulus, say 2048). The security proofs are identical except that they use the extension of the Chain-to-Zero
Lemma discussed in Remark 5.4. This gives us only security parameters number of bits of bandwidth overhead
from the signature for sufficiently long messages. One issue is that the public keys of the signers still contribute
to bandwidth overhead. It would be interesting for future work to treat message recovery for sequential aggregate
signatures in the identity-based setting, which avoids public keys, as considered by [5].
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Algorithm Cf
∗
inv(·,·)(f∗, g∗, t∗) :

ctr ← 0 ; ctr∗←$ {1, . . . , qH}
Run F on input f∗ as follows:

On H-query f‖m do:
If f = f∗ then

ctr ← ctr + 1
If ctr = ctr∗ then t← t∗

Else t←$ {0, 1}k ; If t = t∗ then abort
Record H[f‖m] = t in the H-table ; Return t

On π-query f‖m, y do:
x←$ {0, 1}k
Record π[f‖m, y] = x in the π-table ; Return x

On π−1 query f‖m,x do:
x′←$ {0, 1}k ; y ← g∗(t∗, x′)
Record g∗[t∗, x′] = y in the g∗-table
Record π[f‖m, y] = x in the π-table ; Return y

On signing query m,σ do:
If H[f∗‖m] = t∗ then abort
xi−1 ← σ
ti ← H[f∗‖m] ; yi ← π[xi−1] ; xi ← f∗inv(ti, yi)
Return σ = xi

Let (f∗1 ,m
∗
1), . . . , (f∗n,m

∗
n), σ be the output of F

If AggVer((f∗1 ,m
∗
1), . . . , (f∗n,m

∗
n), σ∗) outputs 0 then return ⊥

If there does not exist 1 ≤ i∗ ≤ n such that f∗i∗ = f∗ then return ⊥
x∗n ← σ∗

For i = n down to i∗ + 1 do:
t∗i ← H[f∗i ‖m∗i ]
y∗i ← f∗i (t∗i , x

∗
i )

x∗i−1 ← π[f∗i ‖m∗i , y∗i ]
t∗i∗ ← H[f∗i∗‖m∗i∗ ]
y∗i∗ ← f∗(t∗i∗ , x

∗
i∗)

If y∗i∗ is not in the g∗-table then abort
Let x′i∗ be the index of y∗i∗ in the g∗-table
Return (x∗i∗ , x

′
i∗)

Figure 5: Adaptive Claw-finder C for the proof of Theorem 4.3.

14



7.2 Handling Non-Binary Domains

Our RSA-based instantiations in Appendix A have domain not {0, 1}k but ZN for per-signer N . The problem is
that we may have a signer with modulus Ni and a subsequent signer with modulus Ni+1 such that Ni+1 < Ni. To
handle this, there are two options. The first option is to append the fractional bit to the aggregate-so-far, so that
the aggregate-so-far may grow by a bit per signer. This is quite modest growth, and in many applications such
as S-BGP the number of signers is typically small. For highly bandwidth constrained applications, another option
is to first convert the instantiation into one that does have a binary domain by using the technique of Hayashi,
Okomoto, and Tanaka [19]. The idea is to exponentiate twice, reflecting the intermediate result about N . The
downside is that this increases the cost of verification and signing by a factor of two.
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A RSA-Based Instantiations

We first define a general parameter generation algorithm used in our constructions. An RSA [26] parameter
generation algorithm is an algorithm RSAGen that on input 1k outputs (N, p, q, e, d) where N = pq, p and q are
m/2-bit primes for some m = m(k), and ed = 1 mod φ(N).

RSA trapdoor permutation. An RSA trapdoor permutation generator Frsa on input 1k returns frsa =
(N, e), f−1rsa = (N, d) where (N, e, d, p, q)←$RSAGen(1k). On input x ∈ Z∗N algorithm frsa outputs xe mod N and
on input y ∈ Z∗N algorithm f−1rsa outputs yd mod N . Dodis and Reyzin [16] show that the RSA trapdoor permutation
generator is claw-free under the standard assumption it is one-way.

RSA tag-based trapdoor permutation. An RSA tag-based trapdoor permutation generator from Kiltz et
al. [20] works as follows. Let H : {0, 1}τ → {0, 1}η for some η ∈ N be a hash function. Define the tag-based
trapdoor permutation generator Frsa-tag with tag-space {0, 1}τ that on input 1k outputs

frsa-tag = N ; f−1rsa-tag = (p, q)

for where (N, p, q, e, d)←$RSAGen. On inputs t ∈ {0, 1}τ , x ∈ Z∗N , algorithm frsa-tag outputs xH(t) mod N . On
inputs t ∈ {0, 1}τ , y ∈ Z∗N , algorithm f−1rsa-tag computes d ← H(t)−1 mod φ(N) and outputs yd mod N . Kiltz
et al. [20] show that this tag-based trapdoor permutation generator is adaptive one-way assuming the instance-
independent RSA assumption [25, 8, 20] holds and H is division-intractable [18]. This is plausible if η = m (the
modulus length) [11]. The same proof strategy of Dodis and Reyzin [16] works in the adaptive case and we thus
obtain that this tag-based trapdoor permutation generator is adaptive claw-free under the same assumptions.
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