
Tweaking Generic OTR to Avoid Forgery
Attacks

Hassan Qahur Al Mahri, Leonie Simpson, Harry Bartlett, Ed Dawson, and
Kenneth Koon-Ho Wong

Queensland University of Technology, George St, Brisbane 4000, Australia
hassan.mahri@hdr.qut.edu.au

{lr.simpson,h.bartlett,e.dawson,kk.wong}@qut.edu.au

Abstract. This paper considers the security of the Offset Two-Round
(OTR) authenticated encryption mode [9] with respect to forgery at-
tacks. The current version of OTR gives a security proof for specific
choices of the block size (n) and the primitive polynomial used to con-
struct the finite field F2n . Although the OTR construction is generic, the
security proof is not. For every choice of finite field the distinctness of
masking coefficients must be verified to ensure security. In this paper,
we show that some primitive polynomials result in collisions among the
masking coefficients used in the current instantiation, from which forg-
eries can be constructed. We propose a new way to instantiate OTR so
that the masking coefficients are distinct in every finite field F2n , thus
generalising OTR without reducing the security of OTR.

Keywords: Authenticated encryption, OTR, confidentiality, integrity,
forgery attack, tweakable block cipher, symmetric encryption, AEAD

1 Introduction

Block ciphers are fundamental cryptographic primitives used in many encryp-
tion algorithms and message authentication codes. A conventional block cipher
encryption algorithm E accepts two inputs: a secret and random k-bit key K
and an n-bit input string M . The output is an n-bit string C, so the block cipher
is represented as a map E : K × {0, 1}n → {0, 1}n where K is the key space.

To process large amounts of data, the message is divided into blocks of size n,
and a block cipher has to be used in an appropriate mode of operation. Various
block cipher modes of operation have been suggested, either to provide confi-
dentiality or integrity assurance, or to provide both confidentiality and integrity
assurance in a single design in a notion called Authenticated Encryption (AE).
In Authenticated Encryption with Associated Data (AEAD), some portions of
the message (the associated data) do not require confidentiality but still require
integrity assurance.

TWEAKABLE BLOCK CIPHERS. Liskov, Rivest and Wagner [7] introduced

another notion of block ciphers called tweakable block ciphers Ê. These ciphers

2 H. Al Mahri, L. Simpson, H. Bartlett, E. Dawson, K. Wong

take three inputs: key K, input message M and tweak T . Tweakable block
ciphers can be represented as a map Ê : K × T × {0, 1}n → {0, 1}n where T
is the tweak space. The purpose of the tweak is to differentiate messages and
it should be easier to change the tweak rather than changing the key. Liskov,
Rivest and Wagner suggest two approaches for constructing tweakable block
ciphers that are provably secure as long as the underlying block cipher is secure.
These constructions can be represented as E(∆h⊕E(Mi)) and E(Mi⊕∆h)⊕∆h

where ∆h is a universal hash function operating as the tweak. However, these
constructions need two keys that should be independent of each other.

DOUBLING MASKING TECHNIQUE. Halevi and Rogaway [5] proposed a
tweakable block cipher mode of operation called EME that provides only confi-
dentiality. This mode uses the doubling masking technique, where a secret mask-
ing value is used in processing each block. This secret value is initially obtained
as L = 2E(0n), and then each time a different value is needed the previous value
of L is doubled. This results in a series of masking values: 2L, 22L, 23L, . . . , 2mL.
The multiplication is performed in the finite field F2n by multiplying two input
polynomials and finding the reminder modulo a primitive polynomial.

The doubling masking technique is very fast and efficient. In hardware im-
plementation, the doubling is equivalent to a conditional of either a shift or shift
and XOR operations. When n = 128 and the finite field F2128 is constructed
using the commonly used primitive polynomial f(x) = x128 + x7 + x2 + x + 1,
the doubling is as follows:

2L =

{
L� 1 if MSB(L) = 0

(L� 1)⊕ 012010000111 if MSB(L) = 1

where � is a 1-bit logical left shift operation and MSB stands for the most
significant bit.

XE AND XEX CIPHERS. Using the sequence of masking values 2L, 22L, . . . , 2mL,
Rogaway [11] describes two new approaches for tweakable block ciphers. These

are known as XE and XEX ciphers, and are represented as Ê : E(Mi⊕2i−1L) or

Ê : E(Mi ⊕ 2i−1L)⊕ 2i−1L respectively. Rogaway proves that these designs are
secure up to the birthday bound for a certain range of i values. These designs
use a single key for both the block encryption operation and to initialise the
sequence of masking values used as the tweaks.

When a new value is needed which is outside the range of masking values
2L, 22L,. . . , 2mL, a value 2hugeL is used such that huge is much greater than
m. For the primitive polynomial f(x) = x128 +x7 +x2 +x+ 1, Rogaway chooses
2huge as 3 and shows that this is far away from the offsets 2L, 22L, . . . , 2mL. In
addition, 3 is easy to calculate as 3 = 2⊕ 1; therefore, 3L can be XOR-ed with
the checksum of plaintext blocks to obtain the authentication tag as in OCB1
[11].

Note however that 3 might not be equivalent to 2huge when a different prim-
itive polynomial is used. Collisions between the masks 3L and 2jL can be found

Tweaking Generic OTR to Avoid Forgery Attacks 3

in such cases and lead to simple forgery attacks. Because of this, the choice
of values for 2huge must be investigated for every choice of finite field and its
distinctness from the series of masking values must be verified.

OTR MODE. Several block cipher modes of operation that have been proposed
for AEAD use the doubling masking technique as in XE and XEX ciphers. One
such mode is Offset Two-Round (OTR) [9] proposed by Minematsu and defined
for any block size n. A version of OTR mode called AES-OTR [8] was submitted
to the CAESAR competition [2]. The security proof of OTR requires that all
input masks are distinct; however, the masks used in OTR and AES-OTR have
only been proved to be distinct for a specific choice of n and the primitive
polynomial defining the finite field.

OUR CONTRIBUTION. Firstly, we show that the current instantiation of OTR
uses masking coefficients that are not always distinct in fields based on other
primitive polynomials, including when n 6= 128. We show that using the current
instantiation with other primitive polynomials can result in non-distinct masking
values that can be exploited in forgery attacks against the scheme. This is a
problem with most modes that use the doubling masking technique.

Secondly, we propose an alternative set of masking coefficients so that OTR
can use the same set of coefficients for any block size n and any primitive poly-
nomial, without affecting the security provided by this scheme. That is, our
work generalises the OTR mode using the technique of doubling masking, and
removes the requirement for the user to perform huge prior calculations in order
to ensure that the masks do not overlap.

Note that this work does not imply that OTR mode or AES-OTR are inse-
cure. Note that this solution may also apply to other similar block cipher modes
that use the doubling masking technique, such as OCB1 [11], ELmD [4] and
AES-COPA [1].

2 Basic Notations

For simplicity and consistency, we follow the notation used in the original OTR
document [10].

{0, 1}∗ : the set of all finite-length binary strings.
ε : the empty string.
K : k-bit key used for the block cipher and tweak initialisation.
n : the block length of the block cipher.
N : the nonce that is changed for each message.
m : the number of blocks in the plaintext message.
l : the number of chunks of two blocks in the plaintext message.
M [2i−1] : the odd block in the ith chunk of the plaintext message.
M [2i] : the even block in the ith chunk of the plaintext message.
C[2i− 1] : the odd block in the ith chunk of the corresponding ciphertext message.
C[2i] : the even block in the ith chunk of the corresponding ciphertext message.
A : the associated data that need only authentication.
|X| : the length of the string X in bits.

4 H. Al Mahri, L. Simpson, H. Bartlett, E. Dawson, K. Wong

X||Y : the concatenation of the strings X and Y .
|X|a : max{d|X|/ae, 1}.
n←− X : returns (X[1], X[2], . . . , X[x]) where x = |X|n, |X[i]| = n for i < x and

|X[x]| ≤ n.
X : the 10∗ padding written as X‖10n−|X|−1.
msbc(X) : the first c bits of X provided that |X| ≥ c.
E : the block cipher encryption function under the key K.
TA : the authentication tag obtained from associated data.
TE : the authentication tag obtained from plaintext message.
T : the τ -bit final authentication tag of OTR scheme.

3 OTR Description

Offset Two-round (OTR) is an authenticated encryption block cipher mode that
is online, one-pass and each segment of two consecutive blocks can be processed
in parallel. OTR mode has a similar structure to OCB mode [11], but OTR uses
only the forward function of the block cipher for both encryption and decryption
algorithms. The OTR operation is illustrated in Table 1 and Fig. 1.

The OTR algorithm accepts the following inputs: Key K ∈ {0, 1}k, Nonce
N ∈ {0, 1}j for 1 ≤ j ≤ n− 1, Associated Data A ∈ {0, 1}∗ and Plaintext
M ∈ {0, 1}∗ and has the following outputs: Ciphertext C ∈ {0, 1}∗ and Tag
T ∈ {0, 1}τ . The OTR encryption algorithm consists of two algorithms known
as cores: an encryption core EFE and authentication core AFE . The OTR en-
cryption core divides a plaintext message M into chunks, each containing two
plaintext blocks. Then, each chunk is encrypted using two different masks. These
two masks are doubled to obtain other two masks for the next chunk and so on.

The authentication core can process the associated data in either of the
two ways: parallel or serial. OTR uses a variant of the PMAC1 scheme [11] to
authenticate associated data in parallel, and uses a variant of the OMAC mode
[6] to authenticate associated data serially.

The authentication tag T in OTR is generated in two different ways. For
parallel associated data, a dedicated mask (depending on the last chunk) is
XOR-ed with the checksum of plaintext blocks and the result is encrypted to
obtain TE. The final tag T is obtained by XOR-ing TE with the resultant tag
TA of authenticating the associated data. (T = TE⊕TA.) For serial associated
data, the associated data tag TA is used with the Nonce to obtain the secret
tweak L. In this case, the plaintext tag TE will be the final tag T .

4 The Current Instantiation of OTR Mode

Initially, OTR was designed using different instantiation values for the masking
coefficients. A proof that OTR is secure for the instantiation when n = 128 and
using the primitive polynomial f(x) = x128 + x7 + x2 + x+ 1 is given in [10].

As a general scheme, OTR is designed to work with any block size n and
any finite field F2n . However, to obtain security assurance for a different finite

Tweaking Generic OTR to Avoid Forgery Attacks 5

Table 1. OTR algorithm [9].

Algorithm 1: OTR Encryption Core Algorithm 2: OTR Decryption Core

1. Σ ← 0n 1. Σ ← 0n

2. L← E(N) 2. L← E(N)

3. (M [1], . . . ,M [m])
n←− M, l = dm/2e 3. (C[1], . . . , C[m])

n←− C, l = dm/2e
4. for i = 1 to l − 1 do 4. for i = 1 to l − 1 do
5. C[2i− 1]← E(2i−1L⊕M [2i− 1])⊕M [2i] 5. M [2i− 1]← E(2i−13L⊕ C[2i− 1])⊕ C[2i]
6. C[2i]← E(2i−13L⊕ C[2i− 1])⊕M [2i− 1] 6. M [2i]← E(2i−1L⊕M [2i− 1])⊕ C[2i− 1]
7. Σ ← Σ ⊕M [2i] 7. Σ ← Σ ⊕M [2i]
8. if m is even 8. if m is even

9. Z ← E(2l−1L⊕M [m− 1]) 9. M [2m− 1]← E(2l−13L⊕ C[m])⊕ C[m− 1]

10. C[m]← msb|M [m]|(Z)⊕M [m] 10. Z ← E(2l−1L⊕M [m− 1])

11. C[2m− 1]← E(2l−13L⊕ C[m])⊕M [m− 1] 11. M [m]← msb|M [m]|(Z)⊕ C[m]

12. Σ ← Σ ⊕ Z ⊕ C[m] 12. Σ ← Σ ⊕ Z ⊕ C[m]

13. if m is odd 13. if m is odd

14. C[m]← msb|M [m]|(E(2l−1L))⊕M [m] 14. M [m]← msb|M [m]|(E(2l−1L))⊕ C[m]
15. Σ ← Σ ⊕M [m] 15. Σ ← Σ ⊕M [m]

16. if m is even and |M [m]| 6= n 16. if m is even and |M [m]| 6= n

17. TE ← E(2l−133L⊕Σ) 17. TE ← E(2l−133L⊕Σ)
18. if m is even and |M [m]| = n 18. if m is even and |M [m]| = n

19. TE ← E(7.3.2l−1L⊕Σ) 19. TE ← E(7.3.2l−1L⊕Σ)
20. if m is odd and |M [m]| 6= n 20. if m is odd and |M [m]| 6= n

21. TE ← E(2l−132L⊕Σ) 21. TE ← E(2l−132L⊕Σ)
22. if m is odd and |M [m]| = n 22. if m is odd and |M [m]| = n

23. TE ← E(7.2l−1L⊕Σ) 23. TE ← E(7.2l−1L⊕Σ)
24. C ← (C[1], . . . , C[m]) 24. M ← (M [1], . . . ,M [m])
25. return (C, TE) 25. return (M,TE)
Algorithm 3: OTR Authentication with Parallel A Algorithm 4: OTR Authentication with Serial A

1. Ξ ← 0n 1. Ξ ← 0n

2. Q← E(0) 2. Q← E(0)

3. (A[1], . . . , A[a])
n←− A 3. (A[1], . . . , A[a])

n←− A
4. for i = 1 to a− 1 do 4. for i = 1 to l − 1 do
5. Ξ ← Ξ ⊕ E(Q⊕A[i]) 5. Ξ ← E(Ξ ⊕A[i])
6. Q← 2Q
7. Ξ ← Ξ ⊕A[a] 6. Ξ ← Ξ ⊕A[a]

8. if |M [m]| 6= n then TA← E(3Q⊕ Ξ) 7. if |M [m]| 6= n then TA← E(2Q⊕ Ξ)
9. else TA← E(32Q⊕ Ξ) 8. else TA← E(4Q⊕ Ξ)

10. return TA 9. return TA

field, the user has to prove that the chosen masks for that instantiation of OTR
are distinct and do not overlap. This requires discrete log computations. Using
discrete log computation, Rogaway proves in [11] that certain sets of masks are
distinct from each other and provide unique representation. He considers very
specific choices: when n = 128 or n = 64 and when the finite field is based on
certain commonly used primitive polynomials.

Bost and Sanders [3] showed trivial collisions between the OTR input masks
can be found when special forms of primitive polynomial are used. These col-
lisions can be exploited in practical forgery attacks. They suggested the use of
different masking coefficients chosen from the set given by Rogaway in [11]. Ac-
cordingly, Minematsu updated the OTR instantiation coefficients [9] and noted
that care must be taken in specifying the masking coefficients for other choices
of n and of primitive polynomials defining F2n .

6 H. Al Mahri, L. Simpson, H. Bartlett, E. Dawson, K. Wong

Fig. 2 Encryption of AES-OTR with parallel ADP. Fmt denotes the function Format, and a box
with underline and X denote the 10∗ padding of input X.

Time denote σpriv and t′ in the privacy bounds (Theorems 3.1 and Theorem 3.3). For Table 2, Data,
Verify, and Time denote σauth, qv, and t′ in the authenticity bounds (Theorem 3.2 and Theorem 3.4).
The inclusion of Verify in Table 2 is redundant since σauth includes qv and τ is 128 for the parameter
sets here, however, we explicitly present it to make clear that qv ≪ τ is a security condition, which is
meaningful if τ is small. Strictly speaking, the Data figures in the tables should be slightly smaller with
respect to the bounds, say Data 64 in Table 1 of aes128otrpv1 and aes256otrpv1 is 64− log2(c) with

c =
√

6 from Theorem 3.1.
As an additional security goal, we claim that the length of nonce can be changed without key renewal,

provided all nonces are unique for all encryptions, for both parallel and serial ADP versions. This setting
does not change the security bounds of Section 3. In addition, the security of serial ADP holds as far as
a pair of AD and nonce (A,N) is unique for all encryption queries, for privacy and authenticity notions.

Table 1 Security goal for confidentiality (privacy).

aes128otrpv1 aes128otrsv1 aes256otrpv1 aes256otrsv1

Confidentiality Data Time Data Time Data Time Data Time
(Privacy) 64 128 64 128 64 256 64 256

Table 2 Security goal for integrity (authenticity).

aes128otrpv1 aes128otrsv1 aes256otrpv1 aes256otrsv1

Integrity Data Verify Time Data Verify Time Data Verify Time Data Verify Time
(Authenticity) 64 128 (τ) 128 64 128 (τ) 128 64 128 (τ) 256 64 128 (τ) 256

3 Security Analysis
■Provable Security Paradigm. AES-OTR has a provable security based on the assumption that AES is a
pseudorandom function. Below we provide a brief explanation on the security model we consider, which
is common to many nonce-based AEAD blockcipher modes.

5

Fig. 1. OTR encryption operation with parallel associated data [9].

For generic instantiations of OTR using block sizes and primitive polynomials
other than those already examined, there is a risk that a user may not select
suitable masking coefficients for the instantiation. This open problem motivates
us to seek a more robust definition of OTR in which the masking coefficients are
distinct for any choice of finite field. Note that this will be applicable to OTR
and also to any design which uses the doubling masking technique.

In our analysis, we take a similar approach to Bost and Sanders’ work [3]. We
consider two special forms of primitive polynomial, different to those discussed
in [3], and which lead to a collision for the currently used masking coefficients.

Case 1: Primitive polynomial of the form f(x) = xn + x+ 1.
Many primitive polynomials can be found in this trinomial form f(x) =

xn+x+1 [12]. In this case, xn will be equal to x+1. That is, 3 will be equivalent to
2n and it is not 2huge as the current instantiation assumes. Therefore, a collision
can be found between 3L and 2nL as long as l > n.

Case 2: Primitive polynomial of the form f(x) = xn + x2 + 1.
This is another form of trinomial, and in this case, xn will be equal to x2 +1.

That is, 5 (which is equal to 32 in F2n) will be equivalent to 2n. In OTR, 32 is
used when the last block M [m] is not a full block (|M [m]| 6= n).

5 Proposed Attacks

In this section, we show how collisions between the masks can be exploited to
breach the integrity assurance of OTR. We consider the two cases from Sect. 4
separately. Our analysis assumes a man-in-the-middle attack model where the
attacker is able to intercept and alter messages before sending them on to the in-

Tweaking Generic OTR to Avoid Forgery Attacks 7

tended recipient. We assume that the attacker knows both the plaintext message
and its corresponding ciphertext using a single query of the OTR oracle.

Suppose that a plaintext message M is as follows:

M = (M [1],M [2], . . . ,M [m])

such that the number of blocks m = |M |n is odd and the number of chunks of
two blocks l > n + 1 where l = dm/2e. This message is encrypted using OTR
and results in the ciphertext C:

C = (C[1], C[2] . . . , C[m]).

5.1 Case 1 collisions

In this case, as noted in Sect. 4, 3L = 2nL. Suppose that the last block is a
full block (|M [m]| = n). A forged ciphertext message C? can be constructed as
follows:

C?[1] = M [2(n+ 1)− 1]

C?[2] = M [1]⊕M [2(n+ 1)]⊕ C[2(n+ 1)− 1]

= M [1]⊕ E(M [2(n+ 1)− 1]⊕ 2nL)

C?[i] = C[i], 3 ≤ i < m

C?[m] = C[m]⊕ C[1]⊕M [2(n+ 1)− 1]

Decrypting C? will give the same value for all plaintext blocks except for
M?[2] and M?[m] as follows:

M?[1] = E(C?[1]⊕ 3L)⊕ C?[2]

= E(M [2(n+ 1)− 1]⊕ 3L)⊕M [1]⊕ E(M [2(n+ 1)− 1]⊕ 2nL)

= M [1]

M?[2] = E(M?[1]⊕ L)⊕ C?[1] = E(M [1]⊕ L)⊕M [2(n+ 1)− 1]

M?[m] = E(2l−1L)⊕ C?[m]

= E(2l−1L)⊕ C[m]⊕ C[1]⊕M [2(n+ 1)− 1]

= M [m]⊕ C[1]⊕M [2(n+ 1)− 1]

Let Σ′ be the checksum of all even plaintext blocks of message M except
M [2] and the last block M [m]. That is,

Σ′ = Σ ⊕M [2]⊕M [m]

Therefore, the checksum of plaintext blocks for the forged message is:

Σ? = Σ′ ⊕M?[2]⊕M?[m]

= Σ′ ⊕ E(M [1]⊕ L)⊕M [2(n+ 1)− 1]⊕M [m]⊕ C[1]⊕M [2(n+ 1)− 1]

= Σ′ ⊕ E(M [1]⊕ L)⊕ C[1]⊕M [m]

= Σ′ ⊕M [2]⊕M [m]

= Σ

8 H. Al Mahri, L. Simpson, H. Bartlett, E. Dawson, K. Wong

Both C and the forged message C? produce the same checksum value. Thus, C?

will produce the same tag T as C, and will be accepted as genuine.

5.2 Case 2 collisions

For this case, suppose that the message M has also the following features:
|M [m]| 6= n, M [1] = 0n and M [2(n+1)−1] = ({1, 0}j ‖ 10∗) for 1 ≤ j < n. If M
is encrypted using OTR the pair (C, TE) is obtained. From this pair, an attacker
can calculate E(L) = C[1] ⊕M [2]. A new pair (C?, TE?) can be constructed
from this such that C? = C?[1] = msbj(M [2(n + 1) − 1] ⊕ E(L)) and the tag
TE? = C[2(n+ 1)− 1]⊕M [2(n+ 1)].

Decrypting the forged pair (C?, TE?) will give:

M?[1] = msbj(E(L))⊕ C?[1]

= msbj(E(L))⊕msbj(M [2(n+ 1)− 1]⊕ E(L))

= msbj(M [2(n+ 1)− 1])

Σ? = M?[1] = M [2(n+ 1)− 1]

Therefore, the tag TE′ of the received ciphertext will be:

TE′ = E(Σ? ⊕ 32L)

= E(M [2(n+ 1)− 1]⊕ 32L)

= E(M [2(n+ 1)− 1]⊕ 2nL)

= C[2(n+ 1)− 1]⊕M [2(n+ 1)]

= TE?

Thus, the forged pair (C?, TE?) will be considered as a valid message. This
clearly demonstrates the integrity assurance mechanism is flawed.

6 Proposed Solution

In Sect. 5 we demonstrated that, for certain forms of primitive polynomial, col-
lisions occur between masking values which can be exploited in forgery attacks.
This implies that the current choice of masking coefficients cannot be used in a
generic construction of OTR. For every choice of finite field the distinctness of
the masking values must be verified to ensure the design is secure against forgery
attacks.

In this section we propose two minor modifications to OTR which guarantee
that the masking coefficients are distinct for any choice of finite field. This makes
the generic OTR scheme more robust since it reduces the chance of security
compromise as a result of incorrect user choices. Our modifications preserve the
main features of OTR mode and still use the powerful doubling masking method.

Note from Table 1 that OTR uses one of four special masks in generating the
authentication tag TE from the checksum Σ of the plaintext blocks, with the

Tweaking Generic OTR to Avoid Forgery Attacks 9

choice of mask depending on two message features: whether the number of blocks
m is even or odd; and whether the last block is a full block (|M [m]| = n) or
not. To provide resistance against forgery attacks, it is important that when the
multipliers of 2l−1L in these masks are considered as powers of 2, the differences
between the indexes of any pair of multipliers must be much greater than the
maximum possible length (number of blocks) of any plaintext message. This will
prevent an attacker forcing collisions between masks by changing the message
length (inserting or deleting blocks). We suggest the following design changes to
avoid collisions between masks without having to find multipliers at such large
distances from one another.

PROPOSED INSTANTIATION OF ENCRYPTION/DECRYPTION CORE We
propose two minor modifications, as shown in Table 2 and Fig. 2, to provide a
generic version of OTR. Firstly, we set the masking values for odd blocks to start
from 23L, the masking values for even blocks to start from 2−3L and define the
four masks to be XOR-ed with the checksum of plaintext blocks as follows:

• 22L when m is even and |M [m]| 6= n
• 2L when m is even and |M [m]| = n
• 2−2L when m is odd and |M [m]| 6= n
• 2−1L when m is odd and |M [m]| = n

These choices ensure that the masks will not collide regardless of the primitive
polynomial being used. The values 2−1L and 2−2L can easily be obtained from L
with the right shift operation instead of the left shift used in the current scheme.

Secondly, we slightly redesign the last step in the process used to compute
the tag, separating the XOR of checksum Σ and the number of chunks l in the
plaintext message. This will prevent an attacker exploiting the tag computation
by compensating between these two variables. In our proposal, changing either
variable Σ or l will not have a clear effect on the other. The cost of this change
is one extra block cipher call. However, this extra block cipher call makes the
generic OTR design more robust.

PROPOSED INSTANTIATION OF AUTHENTICATION CORE As noted is
Sect. 3, the authentication core can process the associated data in two modes:
serial or parallel. For serial associated data, the same design will be used as
it uses only two masks: 2Q and 22Q. These masks are distinct regardless of
the primitive polynomial used. For parallel associated data, we only change the
masks used with the last block A[a]. OTR (Fig. 1) uses the masks 2a−13L and
2a−132L when |A[a]| 6= n and |A[a]| = n respectively. However, there is no need
for these two masks to be very far away from each other, as changing the number
of blocks a in the associated data will directly affect the accumulated tag TA.
Thus, the two masks we suggest for the last block are 2−1L and 2−2L when
|A[a]| 6= n and |A[a]| = n respectively.

Note that the base of all new masks suggested for OTR is 2. This guarantees
that the masks will not overlap, and enables us to use the same masks for all
choices of n and all choices of the primitive polynomials used to define the finite
field F2n .

10 H. Al Mahri, L. Simpson, H. Bartlett, E. Dawson, K. Wong

Table 2. Proposed OTR algorithm.

Algorithm 5: OTR Encryption Algorithm 6: OTR Decryption

1.Σ ← 0n 1. Σ ← 0n

2.L← E(N) 2. L← E(N)

3. (M [1], . . . ,M [m])
n←− M, l = dm/2e 3. (C[1], . . . , C[m])

n←− C, l = dm/2e
4. for i = 1 to l − 1 do 4. for i = 1 to l − 1 do

5. C[2i− 1]← E(2i+2L⊕M [2i− 1])⊕M [2i] 5. M [2i− 1]← E(2−(i+2)L⊕ C[2i− 1])⊕ C[2i]

6. C[2i]← E(2−(i+2)L⊕ C[2i− 1])⊕M [2i− 1] 6. M [2i]← E(2i+2L⊕M [2i− 1])⊕ C[2i− 1]
7. Σ ← Σ ⊕M [2i] 7. Σ ← Σ ⊕M [2i]
8. if m is even 8. if m is even

9. Z ← E(2l+2L⊕M [m− 1]) 9. M [2m− 1]← E(2−(l+2)L⊕ C[m])⊕ C[m− 1]

10. C[m]← msb|M [m]|(Z)⊕M [m] 10. Z ← E(2l+2L⊕M [m− 1])

11. C[2m− 1]← E(2−(l+2)L⊕ C[m])⊕M [m− 1] 11. M [m]← msb|M [m]|(Z)⊕ C[m]

12. Σ ← Σ ⊕ Z ⊕ C[m] 12. Σ ← Σ ⊕ Z ⊕ C[m]

13. if m is odd 13. if m is odd

14. C[m]← msb|M [m]|(E(2l+2L))⊕M [m] 14. M [m]← msb|M [m]|(E(2l+2L))⊕ C[m]
15. Σ ← Σ ⊕M [m] 15. Σ ← Σ ⊕M [m]

16. if m is even and |M [m]| 6= n 16. if m is even and |M [m]| 6= n
17. W ← E(2L⊕Σ) 17. W ← E(2L⊕Σ)
18. if m is even and |M [m]| = n 18. if m is even and |M [m]| = n
19. W ← E(22L⊕Σ) 19. W ← E(22L⊕Σ)
20. if m is odd and |M [m]| 6= n 20. if m is odd and |M [m]| 6= n
21. W ← E(2−1L⊕Σ) 21. W ← E(2−1L⊕Σ)
22. if m is odd and |M [m]| = n 22. if m is odd and |M [m]| = n
23. W ← E(2−2L⊕Σ) 23. W ← E(2−2L⊕Σ)
24.TE ← E(W ⊕ l) 24. TE ← E(W ⊕ l)
25.C ← (C[1], . . . , C[m]) 25. M ← (M [1], . . . ,M [m])
26. return (C, TE) 26. return (M,TE)
Algorithm 7: OTR Authentication with Parallel A Algorithm 8: OTR Authentication with Serial A

1.Ξ ← 0n 1. Ξ ← 0n

2.Q← E(0) 2. Q← E(0)

3. (A[1], . . . , A[a])
n←− A 3. (A[1], . . . , A[a])

n←− A
4. for i = 1 to a− 1 do 4. for i = 1 to l − 1 do
5. Ξ ← Ξ ⊕ E(Q⊕A[i]) 5. Ξ ← E(Ξ ⊕A[i])
6. Q← 2Q
7.Ξ ← Ξ ⊕A[a] 6. Ξ ← Ξ ⊕A[a]

8. if |M [m]| 6= n then TA← E(2−1Q⊕ Ξ) 7. if |M [m]| 6= n then TA← E(2Q⊕ Ξ)
9. else TA← E(2−2Q⊕ Ξ) 8. else TA← E(4Q⊕ Ξ)

10. return TA 9. return TA

7 Security Bounds for OTR Using the New Masking
Coefficients

This section discusses the impact of changing the input masks on the security
bounds of OTR. Firstly, all of proposed masks for OTR have the form 2j . Since
2 is the generator of the finite field F2n and the order of this field is 2n − 1,
this assures that 2j = 2j

′
iff j = j′ for any j ≤ 2n − 1. Therefore, these masks

will not collide for any collection of blocks with a length less than (2n−1 − 3),
which is well beyond the message length restriction of 2n/2 blocks imposed by
the designer of OTR. Thus, the collision attacks discussed in Sect. 5 are now
precluded.

Secondly, the security proofs of OTR [9] assume that all tweakable block
cipher calls in each of the two rounds have distinct masks. As shown in the

Tweaking Generic OTR to Avoid Forgery Attacks 11

⋯

𝐿 𝐶[2]𝐶[1]

𝑀[1]

2−3𝐿

23𝐿

𝐸𝐾

𝐸𝐾

𝑀[2]

𝐸𝐾

𝑁

𝐶[4] 𝐶[3]

𝑀[3]

2−4𝐿

24𝐿
𝐸𝐾

𝐸𝐾

𝑀[4] 𝑀[𝑚− 1]

𝐶[𝑚]𝐶[𝑚 − 1]

2−(𝑙+2)𝐿

2𝑙+2𝐿
𝐸𝐾

𝐸𝐾

𝑀[𝑚]
When 𝑚 is even

⋯

𝐿 𝐶[2]𝐶[1]

𝑀[1]

2−3𝐿

23𝐿
𝐸𝐾

𝐸𝐾

𝑀[2]

𝐸𝐾

𝑁

𝐶[4] 𝐶[3]

𝑀[3]

2−4𝐿

24𝐿
𝐸𝐾

𝐸𝐾

𝑀[4]

𝐶[𝑚]

2𝑙+2𝐿 𝐸𝐾

𝑀[𝑚]
When 𝑚 is odd

𝒍

2𝐿 when 𝑚 is even and 𝑀[𝑚] ≠ 𝑛

22𝐿 when 𝑚 is even and 𝑀[𝑚] = 𝑛

2−1𝐿 when 𝑚 is odd and 𝑀[𝑚] ≠ 𝑛

2−2𝐿 when 𝑚 is odd and 𝑀[𝑚] = 𝑛

When parallel associated data

2−1𝑄 when 𝐴[𝑎] ≠ 𝑛

2−2𝑄 when 𝐴[𝑎] = 𝑛

Fig. 2. Proposed OTR encryption diagram with parallel associated data.

above paragraph, the proposed masks are guaranteed to be different from each
other; thus, the same security bounds for OTR still hold.

Finally, our proposed modification to OTR adds one extra block cipher call,
as shown in Fig. 2. This step is required in order to avoid using a mask with a
base other than 2. The probability that an attacker can guess the tag successfully
is still 1/2τ where is τ the tag length. Therefore, the security of OTR will not
be degraded with the new instantiation method.

8 Conclusion

OTR is a block cipher mode of operation for AEAD that uses a doubling masking
technique. OTR is designed to be applicable for any block size n but currently
requires a suitable choice to be made for the finite field F2n used for doubling
the mask values. The security of OTR against forgery attacks depends on the

12 H. Al Mahri, L. Simpson, H. Bartlett, E. Dawson, K. Wong

distinctness of the masking values. This has only been proved for specific choices
of primitive polynomial in the particular cases of n = 64 and n = 128.

In this paper, we show that the masks used in the current instantiation of
OTR are not distinct for certain choices of finite field. Using these choices, we
demonstrate practical forgery attacks against OTR. Thus, the generic form of
the OTR design is not secure.

We propose two minor modifications to OTR to make the generic version
of this scheme more robust. We do this by specifying a set of masks that are
distinct in every finite field F2n . This enables OTR to work with any finite field
without invalidating the security claimed. Note that this work does not imply
that the versions of OTR described in [8, 9] are insecure.

9 Acknowledgements

Hassan Al Mahri would like to acknowledge the scholarship for this research
from the government of the Sultanate of Oman.

References

1. Andreeva, E., Bogdanov, A., Luykx, A., Mennink, B., Tischhauser, E., Yasuda, K.:
AES-COPA, http://competitions.cr.yp.to/caesar-submissions.html (2014)

2. Bernstein, D.: Cryptographic Competitions: CAESAR, http://competitions.cr.
yp.to/caesar-call.html (2014)

3. Bost, R., Sanders, O.: Trick or Tweak: On the (In)security of OTR’s Tweaks.
Cryptology ePrint Archive, Report 2016/234, http://eprint.iacr.org/ (2016)

4. Datta, N., Nandi, M.: ElmD, http://competitions.cr.yp.to/

caesar-submissions.html (2014)
5. Halevi, S., Rogaway, P.: A Parallelizable Enciphering Mode. In: Topics in

Cryptology–CT-RSA 2004, pp. 292–304. Springer (2004)
6. Iwata, T., Kurosawa, K.: OMAC: One-key CBC MAC. In: International Workshop

on Fast Software Encryption, pp. 129–153. Springer (2003)
7. Liskov, M., Rivest, R., Wagner, D.: Tweakable Block Ciphers. In: Advances in

Cryptology–CRYPTO 2002, pp. 31–46. Springer (2002)
8. Minematsu, K.: AES-OTR, http://competitions.cr.yp.to/

caesar-submissions.html (2014)
9. Minematsu, K.: Parallelizable Rate-1 Authenticated Encryption from Pseudoran-

dom Functions. Cryptology ePrint Archive, Report 2013/628, http://eprint.

iacr.org/ (2013)
10. Minematsu, K.: Parallelizable Rate-1 Authenticated Encryption from Pseudoran-

dom Functions. In: Advances in Cryptology–EUROCRYPT 2014, pp. 275–292.
Springer (2014)

11. Rogaway, P.: Efficient Instantiations of Tweakable Blockciphers and Refinements
to Modes OCB and PMAC. In: Advances in Cryptology–ASIACRYPT 2004, pp.
16–31. Springer (2004)

12. Seroussi, G.: Table of Low-Weight Binary Irreducible Polynomials. Computer Sys-
tems Laboratory, Report HPL-98-135, http://www.hpl.hp.com/techreports/98/
HPL-98-135.pdf?jumpid=reg_R1002_USEN (1998)

