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Abstract. If quantum computers were built, they would pose concerns
for public key cryptography as we know it. Among other cryptographic
techniques, they would jeopardize the use of PKI X.509 certificates (RSA,
ECDSA) used today for authentication. To overcome the concern, new
quantum secure signature schemes have been proposed in the literature.
Most of these schemes have significantly larger public key and signature
sizes than the ones used today. Even though post-quantum signatures
could work well for some usecases like software signing, there are con-
cerns about the effect their size and processing cost would have on tech-
nologies using X.509 certificates. In this work, we investigate the viability
of post-quantum signatures in X.509 certificates and protocols that use
them (e.g. TLS, IKEv2). We prove that, in spite of common concerns,
they could work in today’s protocols and could be a viable solution to
the emergence of quantum computing. We also quantify the overhead
they introduce in protocol connection establishment and show that even
though it is significant, it is not detrimental. Finally, we formalize the
areas of further testing necessary to conclusively establish that the sig-
nature schemes standardized in NIST’s PQ Project can work with X.509
certs in a post-quantum Internet.

1 Introduction

X.509 [1] defines public key certificates that are used to authenticate entities
via signatures from publicly trusted authorities. These certificates are used in
IETF’s Public Key Infrastructure (PKI) X.509 (PKIX) standards and are also
widely deployed on the Internet for authentication. X.509 certificates are PEM
or DER encoded. Their size can vary based on the attributes, algorithms (ECC,
RSA) and keys in them. The most common certificate sizes on the Internet
today vary between 500-1500B. In PKI, verifiers have a pre-populated truststore
of root certificates they already trust. In order to verify a certificate that contains
an entity’s public key, the verifier needs to be able to authenticate a certificate
chain (sequence of signatures) from the leaf to be authenticated all the way to the
root certificate, in its pre-trusted truststore. These certificate chains used on the
Internet today usually consist of two to four certificates with a total size of a few



kilobytes (KB). Thus in today’s world, X.509 certificates and their corresponding
certificate chains add up to a few kilobytes of data that are exchanged by the
entities authenticating.

In a post-quantum (PQ) world, the public key algorithms used to generate
a certificate’s public key, which is then signed by the certificate authority’s pri-
vate key, are susceptible to being broken. A quantum computer (using Shor’s
algorithm [2,3]) could derive the private key corresponding to the public key in
a certificate; this is significant because it means that an attacker could imper-
sonate the certificate owner at any time. In order to address this concern, many
post-quantum signature schemes have been proposed in the literature [4–13].

Most of the proposed PQ schemes have public key and signature sizes of
10-200KB [14], which is considerably bigger than today’s typical 500B, or less,
key and signature sizes. Table 1 shows roughly the size of the public key and
signature in some classes of traditional and quantum-resistant signature algo-
rithms. It shows that the sizes of the signatures and keys of quantum-resistant
schemes can grow from a few to many kilobytes which can pose challenges for
today’s existing infrastructures that would use them in X.509 certificates. These
challenges include transmission overhead which leads to delays in the connection
completion, IP fragmentation due to their size being bigger than the Path Maxi-
mum Transfer Unit (MTU) and wasted bandwidth for connections that transfer
small amounts of data. Similarly, NIST Round 1 [21] PQ signature candidates
vary from 2KB to a few MB.

PK+Sig. size (KB)

ECDSA ∼ 0.1

RSA ∼ 0.5

Stateful HBS 15

Stateless HBS 42

Code-based 190

Lattice-based 11

Multivariate 99

SS Isogenies 122

Table 1: Approximate traditional and post-quantum public key and signature
sizes

To support the algorithms used in the X.509 or other certificate standards [15,
16], some straightforward changes will be needed. RFC5280 and RFC6818 de-
fine the X.509 PKI certificate and CRL profile used on the Internet. These
standards describe an Algorithm Identifier used in the X.509 certificate struc-
tures. Algorithm Identifiers used in X.509 certificates are defined in various other
standards, such as RFC2528 which was obsoleted by RFC3279 and further up-



dated by RFC4055, RFC4491, RFC5480, RFC5756 and RFC5758. These X.509
algorithm identifiers are also used in multiple other standardized protocols like
EST (RFC7030) and PKCS#10 (RFC2986 updated by RFC5967). Thus, to use
new post-quantum signatures in X.509, changes would be required in the X.509
algorithms. In a similar example, [17] defined the corresponding identifiers to
support EdDSA signatures. Thus, it is straightforward to add support for new
proposed post-quantum signature schemes in X.509 when necessary by defining
new algorithm identifiers (that correspond to certain post-quantum signature
scheme parameters and structures). Alternatively, hybrid PQ certificates [18,19]
that are backwards compatible with traditional X.509 can be defined to be used
while post-quantum and pre-quantum compatibility is required. These certifi-
cates make use of non-critical extensions and PQ algorithm identifiers to add
a PQ public key and signature on top of the traditional key and signature in
X.509.

Our contribution: Due to the size challenges that PQ signatures schemes
introduce, in this work we evaluate how practical such signatures are in protocols
that use X.509 today. We analyze the fragmentation mechanisms in these proto-
cols and experimentally evaluate our analysis. We conjecture that the lengthier
post-quantum certificates will still be usable in existing protocols. We do not
consider the signature processing overhead which needs to be studied on a per
algorithm basis [20], but we focus on the protocol transmission overhead intro-
duced by the certificate size. Signature generation and verification of most PQ
schemes proposed in [21] are more processing intensive than RSA or ECDSA,
but specific PQ signature scheme processing overhead will be studied separately.
Finally, we formalize the areas of further testing necessary to conclusively estab-
lish that the schemes standardized in NIST’s PQ Project will work with X.509
certs in a post-quantum Internet.

The rest of the paper is organized as follows: Section 2 describes the impli-
cations introduced by big PQ certificates to widely used protocols and how they
are addressed by built-in protocol mechanisms. Section 3 validates our analysis
experimentally. Section 4 summarizes the findings, discusses usecases where PQ
certificates would not be viable and establishes future work.

2 PQ certificate Implications

2.1 (D)TLS

(D)TLS is a ubiquitous protocol used to protect communications (i.e., browsers,
EAP-TLS, SSL VPN). (D)TLS authentication often depends on public key X.509
certificates. A certificate is usually used to authenticate the identity of a server
or client. By leveraging a pre-trusted set of root certificate authorities, the client
can use the certificate chain and the server’s certificate provided in the (D)TLS
handshake to verify that this is a certificate it can trust and that the server’s
identity is what is expected.

In a post-quantum world, due to their size, post-quantum public keys and
signatures will significantly increase the size of the certificate chains being ex-



changed with (D)TLS records in the (D)TLS handshake, and therefore have
the potential to introduce substantial overhead to the exchanges. The protocols
already have mechanisms in place to address this concern:

TCP Segmentation / (D)TLS Record Fragmentation The TLS protocol
supports the ability for a certificate or certificate chain to exceed the maximum
payload length that is supported in the network path between the client and the
server. For TLS records that do not exceed 16KB, TLS uses TCP segmentation
in order to split apart long data payloads. In this case, the data which is known
to be too long is split into smaller pieces before being sent to the IP layer
to be packaged and sent. The receiver is then responsible for reassembling the
segments. Given that the MTU is commonly 1500B in modern networks, even
today, certificate chains often require segmentation in TLS.

In the event of a post-quantum certificate or chain exceeding the 16KB max-
imum length, TLS leverages Record Fragmentation, a mechanism that allows
for the sender to fragment his lengthy TLS records before sending them [22,23].
In this case, the packets are split after being packaged and recognized as too
large. The receiver coalesces the records that, when pieced together, contain the
original record. Similarly for DTLS [24, 25], it allows for fragmentation of the
handshake messages over multiple records. In both of these cases, the certificate
introduces overhead at the protocol level in the form of additional packets being
sent across the wire. However, the number of packets will not affect the com-
pletion of (D)TLS handshakes. Therefore, large certificate chains are likely to
introduce record fragmentation which will lead to an increased number of record
exchanges and delay, but the protocols will still be able to complete the hand-
shakes successfully. It is important to note that there is a potential for additional
overhead in the form of authenticating (signature generation and verification)
these large-sized certificates and public keys, which highly depends on the sig-
nature algorithm. Note: Other than certificate authentication, (D)TLS record
fragmentation will also benefit post-quantum key exchange messages with larger
keys.

Per Connection Overhead It is obvious that heavy post-quantum (D)TLS
handshakes would have significant impact on connections that transfer small
amounts of data. For example, transferring 20KB of certificates before sending
only 1KB of data introduces relatively massive overhead to the connection. In
today’s Internet, HTTP/1.1 uses multiple connections in order to serve resources
to the client. Leveraging multiple costly established connections with large post-
quantum certificate chains in order to transfer small amounts of data would
negatively impact HTTP/1.1 web pages.

On the other hand, HTTP/2 [26] introduces several improvements by mul-
tiplexing data over one single connection. Multiplexing alleviates the overhead
introduced by the heavy handshake by amortizing the overhead across a greater
number of total bytes being transferred over the same connection. HTTP/2 adop-
tion on the Internet has doubled to 14.6% over the last year [27]. At of the time



of this writing, the average number of requests per web page was about 100, the
total transferred data was about 2500KB and the average number of connections
per page was about 33 [28]. It is evident that with the adoption of multiplexing
in HTTP/2, the overhead introduced by heavier TLS handshakes will be better
amortized across more data heavy connections. 1-2% overhead for a multiplexed
TLS connection that transfers a total of 2MB of data over 100 requests is ac-
ceptable. Although the average case will not suffer significantly, there will be
pages where the resources pulled by various servers are so small that an PQ
TLS handshake will add significant overhead. For example, the performance of
pulling 33 different 1KB resources would suffer if we introduced a heavy PQ TLS
handshake. Client caching would be the mechanism that alleviates the overhead
in subsequent connections in this case.

Caching RFC7924 defines how information exchanged in the (D)TLS hand-
shake could be significantly decreased by the client indicating to the server what
certificate it has cached for him already from a previous handshake. The server
can avoid resending a certificate or chain if it is already cached by the client.
When the highlighted concern for protocol overhead in a post-quantum world
is the sending of large size certificate chains, this offers an obvious advantage.
Even though caching offers apparent advantages, it also has certain shortcom-
ings. Since it uses an old session to authenticate a new one, it leaks information
in the unencrypted (D)TLS handshake about the server certificate which could
allow for the correlation of (D)TLS sessions. For TLS 1.3, an attacker that ob-
served a ClientHello could replay it using its own KeyShare and read the resulting
encrypted certificate reply. The Security Considerations section of RFC7924 dis-
cusses some of these concerns. Even though potentially beneficial for reducing
the protocol overhead of bigger certificates, caching’s security concerns prevent
us from considering it as a general solution to the challenges big PQ certificates
pose.

Compression Certificate compression is a mechanism that shrinks the size of
the certificates transferred between communicating parties. Compression comes
with disadvantages which have been discussed in IETF. Since compression adds
processing for the client, it introduces Denial of Service (DoS) concerns. Al-
though we are not considering the processing overhead of PQ-sized certificates,
it is important to acknowledge that the cost of compression and decompression
processing should be less than the cost of protocol transmission of the decom-
pressed messages. Specifically for X.509, some preliminary testing showed us
that compressing a regular DER encoded RSA certificate gives only a 20% size
improvement for the certificate, which comes from the compression of recurring
text seen in the certificate. It is clear that reducing the certificate size by 20%
may not introduce considerable improvements in the overhead during certificate
transmission. In a PQ certificate that consists of 90% randomly generated key
and signature structure text, the compression benefit would not be significant
(much less than 20%), and therefore the improvements in transmission overhead



would be negligible. Thus, even though IETF is working on a new compression
draft [29], the benefits that compression can offer for big post-quantum certifi-
cates do not seem to outweigh the challenges it introduces.

2.2 QUIC

QUIC [30] is a transport protocol that runs over UDP. It was designed to provide
better performance and congestion control than HTTP over TLS using TCP for
the web. Similar to DTLS, QUIC mandates fragmenting big payloads so they
can fit within the specified MTU in the path of the communicating parties. Thus,
large PQ certificates included in the QUIC messages would be fragmented by the
sender, and later reassembled by the receiver. Additionally, as with HTTP/2,
QUIC leverages multiplexing of multiple streams which will improve the amor-
tization of big certificate exchanges in a new QUIC connection. QUIC also uses
gzip compression for certificates and supports caching of certificate chains. Mul-
tiplexing, fragmentation, compression, and caching are mechanisms which allevi-
ate the challenges introduced at the transport layer by post-quantum signatures.
We expect that the QUIC protocol will not be detrimentally impacted by PQ
certificates, which is emulated in Section 3.2

2.3 IKEv2

IKE is a protocol that establishes VPN keys to protect communications. IKEv2 [31]
uses X.509 certificates to authenticate peers that are establishing a VPN tunnel
on the Internet. It almost always runs over UDP. As with DTLS, large PQ cer-
tificates carried in IKEv2 messages over UDP introduce fragmentation concerns.
To address these concerns, RFC7296 defines the use of a hash and an URL that
serve the certificate in order to avoid sending it over UDP. This method is almost
never used in IKEv2 deployments today. Another more commonly used option
is described in RFC7383 [32] that defines fragmentation for IKE AUTH mes-
sages which transport peer certificates in IKEv2. This option doesn’t attempt
to retransmit individual fragments, so if one fragment of the IKE AUTH mes-
sage is lost in transit the entire IKE AUTH message needs to be retransmitted
which would introduce IKEv2 negotiation delays in lossy networks. RFC7383
is supported in the VPN stack of various vendors like Apple and StrongSwan.
Networking vendors like Cisco and Juniper also support IKEv2 fragmentation.

Today, IKEv2 fragmentation is used for traditional certificate chains that
exceed the size of the path MTU. Large post-quantum certificates will be trans-
ferred over multiple IKEv2 fragments with some delay but without special is-
sues as well. IKEv2 authentication takes place only during the initial IKEv2
IKE AUTH exchanges. Subsequently, no further authentication messages are
exchanged after the VPN tunnel is established unless RFC4478 [33] is used.
Thus, there will be good amortization of the fragmented big PQ certificates over
the encrypted data transferred over the lifetime of a VPN tunnel. Note: IKEv2
fragmentation will not benefit post-quantum key exchange as it applies only to
IKE AUTH and not IKE SA INIT that performs a public key exchange.



3 Experimental Results

From our analysis it is evident that PQ certificates would introduce some over-
head in protocols that use X.509 today, but the mechanisms already presented in
these protocols alleviate the concerns stemming from the transmission of large-
sized certificates. Below we try to experimentally prove our analysis by using
hash-based signature certificates and implementing them in TLS and IKE soft-
ware libraries. We also test (D)TLS, QUIC and IKE by emulating post-quantum
certificates with long, big-sized certificate chains.

3.1 Using large Hybrid X.509 PQ HSS certificates

We first implement a hybrid X.509 scheme that combines traditional and post-
quantum signatures and public keys [18, 19]. We begin as if we are creating a
standard X.509 certificate. Included in this initial certificate are two additional
non-critical extensions, one specifying the subject’s post-quantum public key and
the other specifying the post-quantum algorithm with which the issuer will cre-
ate a signature. These extensions serve similar purposes in the PQ world as the
SubjectPublicKeyInfo and SignatureAlgorithm fields of a traditional X.509 cer-
tificate. The certificate is then encoded and the encoding is signed by the issuer’s
post-quantum private key using the specified algorithm. This signature is then
added to the certificate in a third non-critical extension. This extension serves
a similar purpose in the PQ world as the Signature field of a traditional X.509
certificate. The hybrid certificate containing all three extensions is then signed
as usual with the issuer’s traditional RSA or ECDSA key. When the certificate
is constructed in this way, a verifier who doesn’t understand the new extensions
can still verify the traditional signature, while a verifier who understands the
extensions can verify the post-quantum signature. An example hybrid certificate
is shown below. With minor modifications, protocols which sign challenges or
portions of their transactions with the traditional private key can negotiate to
sign with the post-quantum private key correspond to the post-quantum public
key.

X.509 Certificate:

Data:

Version: 3 (0x2)

Serial Number: 4097 (0x1001)

Signature Algorithm: ecdsa-with-SHA256

Issuer: C=US, ST=NC, O=CISRA, CN=HSS-Hybrid-CACert-Test

Validity

Not Before: Jan 9 17:33:02 2018 GMT

Not After : Jan 9 17:33:02 2019 GMT

Subject: C=US, ST=NC, O=CISRA, CN=HSS-Hybrid-ServerCert-Test

Subject Public Key Info:

Public Key Algorithm: id-ecPublicKey

Public-Key: (256 bit)



[ ... omitted for brevity ... ]

X509v3 extensions:

X509v3 Basic Constraints:

CA:FALSE

Netscape Cert Type:

SSL Server

Netscape Comment:

OpenSSL Generated Server Certificate

[ ... omitted for brevity ... ]

Alt-Signature-Algorithm:

sha512WithHSS

Subject-Alt-Public-Key-Info:

Leighton-Micali Hierarchical Signature System

Public Key:

00:00:00:01:00:00:00:07:00:00:00:03:1c:ba:ef:

[ ... omitted for brevity ... ]

Winternitz Value: 3 (0x3)

Tree Height: 7 (0x7)

Alt-Signature-Value:

Signature:

30:82:0a:74:[ ... omitted for brevity ... ]

Signature Algorithm: ecdsa-with-SHA256

30:45:02:21:[ ... omitted for brevity ... ]

We implemented hybrid X.509 certificates in OpenSSL and StrongSwan, two
open-source libraries, in order to test TLS 1.2 and IKEv2 respectively. Both
libraries (OpenSSL 1.0.1l, StrongSwan 5.5.0) were updated to be able to parse
and verify these certificates by using the traditional and PQ signatures and sign
messages with the corresponding public key in order to perform authentication
in TLS and IKEv2. The post-quantum signature algorithm we used in the hy-
brid certs was hash-based HSS [6] with various tree size and Winternitz chain
parameters. The host we tested in was running Ubuntu 16.04 on an Ivy Bridge
i3. The handshake times we measured for TLS were from the initial ClientHello
to the Server Hello Done. The systems testing the algorithms were three network
hops away from each other.

Our experiments share some common ground with the experiments in [19]
that emulates hybrid PQ certificates in TLS libraries and browsers, but does
not test real PQ algorithms like HSS. Instead, it uses big-size extensions which
are practically not evaluated during signature generation in hybrid certificates
and do not add processing overhead. Our experiments use real PQ hash-based
signatures which are more costly to generate and verify.



RSA
HSS (w = 4,
h = 20, L = 1)

HSS (w = 8,
h = 25, L = 1)

HSS (w = 8,
h = 20, L = 1)

Handshake time 0.073s 0.343s 0.392s 0.381s

Avg # Packets 3 7 5 5

Table 2: TLS handshake with Hybrid HSS cert chains of length= 1 vs traditional
2Kb RSA key cert chains of length= 2. Client-server 3 hops away.

The results are summarized in Tables 2 and 3. For both TLS and IKEv2
experiments, the hybrid certificate chain was of length one. The TLS packets
counts were the number of certificate chain segments sent from the server. To
compare with traditional RSA certs we used a popular bank website a few hops
away that uses a 2048-bit cert chain of length two. As we can see in Table 2, in
TLS we saw, as expected, handshake times and total number of packets transmit-
ted increase from our baseline of seven handshake packets and 0.073s. Focusing
on the number of packets, we saw in each scenario modest increases in the num-
ber of handshake packets due to increase in size of the certificates transferred.
Depending on the size of the public key and signature of the PQ scheme, the
cert chain size could significantly change, but TLS record segmentation should
allow for the successful transfer of these chains. As for the handshake times,
even though it is specific to the signature algorithm and the network topology
(hops between client and server), Table 2 includes the signature generation and
verification times for HSS along with the transmission delay due to the extra
fragments. For the HSS parameters chosen, signature generation and verifica-
tion were not very expensive. Adding 200-300ms to a handshake is negligible for
most usecases. Depending on the PQ signature scheme the processing of these
signatures could vary.

For IKEv2, we measured the IKE negotiation times from the first IKE SA INIT
to the last IKE AUTH message and the number of IKE AUTH fragments com-
ing each direction using PQ HSS certificates. The systems testing the algorithms
were locally connected. As we can see in Table 3, similarly to TLS, the negoti-
ation took 200-400ms more time and the IKE AUTH fragments increased. For
both HSS parameter sets, we observed fragmentation during session establish-
ment. When using a RSA based certificate with a 2048-bit key, no fragmentation
was observed and an SA was established in 0.09s with four packets. All IKEv2
sessions were able to be established in under half a second with HSS based cer-
tificates. These experiments prove that IKEv2 has the transport mechanisms
needed to handle the increased sizes of HSS certificates, or other PQ schemes
with big keys and certs. Additionally, the delay introduced is not detrimental,
but it could vary based on signature algorithm used and network topology (hops
between client and server).

In summary, we showed that the size of HSS post-quantum signatures used
in common protocols like TLS and IKEv2 will not deem them unusable. As ex-
plained in our analysis, both protocols contain fragmentation mechanisms that



RSA HSS (w = 4, h = 20, L = 1) HSS (w = 8, h = 15, L = 1)

Negotiation time 0.09s 0.40s 0.26s

Avg # Packets 1 5 3

Table 3: IKEv2 negotiation with Hybrid HSS cert chains of length= 1 vs tradi-
tional 2Kb RSA key cert chains length= 1. Client-server 3 hops away.

allow for fragmenting big TLS records and IKE AUTH messages without the
extra packets and transmission delay being an important factor for the comple-
tion of the negotiation. In our experiments we did not focus on the signature
generation and verification times required for the TLS and IKE handshakes.
These could vary based on the PQ algorithm chosen, but as a proof-of-concept
we tested the total handshake times that included signing and verification with
HSS. HSS ad reasonable time performance for the chosen parameters.

3.2 Emulating large PQ X.509 certificates

To further quantify our analysis we tested the aforementioned protocols with
large certificates of comparable size to the PQ certificate sizes. Even without us-
ing actual post-quantum algorithms to generate the certificates, our experiments
reproduce the transmission overhead that would be introduced by testing with
certificates of similar size. In the experiments below we focus on the transmission
overhead as we want to prove that existing protocol mechanisms would ensure
the big PQ certificates are exchanged with no issues. We are not addressing the
potential delay of signature generation and verification which would depend on
the exact PQ signature scheme used and the topology. We also are not interested
in shortcomings of protocols when parsing long certificate chains as long as these
chains were transmitted successfully.

Our experiments share some common ground with the experiments in [19]
that emulates hybrid PQ certificates in TLS libraries and browsers, but does
not focus on emulating PQ-sized certs in QUIC or IKEv2. Another distinction
is that in our tests we use long certificate chains that add up to a significant size
and increases the chain processing overhead (as expected in with a more costly
PQ algorithm) of signature verification. [19] uses big-size extensions in hybrid
certificates which are practically not evaluated during signature generation and
do not add processing overhead. Even though we do not prove the processing
overhead of a lengthy chain in our test is the same as with a PQ signature
scheme, we believe that our emulation can be considered closer to reality.

(D)TLS with OpenSSL - WolfSSL To test (D)TLS 1.2, we used OpenSSL
1.0.2g, WolfSSL 3.11.1, and Apache Web Server 2.4.25. Like OpenSSL, WolfSSL
is a library that implement (D)TLS, and the Apache Web Server is commonly
used in Internet web servers. X.509 certificates were used for server authentica-
tion. To emulate today’s certificate sizes we employed 2048-bit RSA public keys,



which are very common in today’s PKI deployments. ECC keys used in digital
certificates are of much smaller size. To simulate large PQ certificates we used
8192 and 16384-bit RSA public keys in certificates with multiple intermediate
CAs. The certificate chains amounted to 8, 18 and 19KB for the above key sizes
respectively. To extensively test applications with even bigger chains we also cre-
ated 21 and 24 certificate long chains with 1024 and 16384-bit keys and multiple
SAN attributes that amounted to 23 and 135KB respectively.

Table 4a shows the results from testing OpenSSL client against Apache
server. We could verify that the post-quantum size certificate chains were being
transferred in the TLS 1.2 handshake by using segmentation and record frag-
mentation. As shown in the table, 24 cert long, 135KB chains with 16Kb keys
were failing at the OpenSSL client. Packet captures confirmed that the TLS
records were successfully received, but the client was introducing the error due
to message size limits. The 21 long cert chain of total size 23KB was transferred
and processed by the client with no failures. Our results are futher reinforced in
[19] that tested TLS 1.2 hybrid PQ certificates with other libraries like GnuTLS,
mbedTLS, BouncyCastle and NSS.

Similarly for DTLS, we used WolfSSL with the WolfSSL DTLS example clien-
t/server. As shown in 4c, DTLS worked correctly with lengthy server certificates
(with 8, 16Kb RSA keys) that required fragmentation. After receiving the big
server certificate, the WolfSSL client was reporting an error because of a buffer
size limit, but packet captures confirmed that DTLS fragmentation was working
correctly and the client was receiving the certificate successfully.

To further examine the correct operation of TCP segmentation separately,
we tested various public web servers by using a very small interface MTU size
which caused TCP segmentation of the certificate chains exchanged in the TLS
handshake. Our experiments showed that, as expected, TCP segmentation will
operate fine for big post-quantum certificates and chains that do not exceed the
16KB TLS record limit.

We then investigated the transmission overhead introduced by the post-
quantum certificates. We compared the average handshake time of a TLS hand-
shake with 16Kb public keys and a chain of 19KB to the handshakes with 2Kb
keys and 8KB chains. The total time increase was almost 0.5 seconds for a
client-server distance of three, which is negligible for most TLS connection re-
quirements. The corresponding number of packets from the server required to
complete the handshake increased by 70%. Even though there are significant
increases in the handshake time and packets exchanged, they are acceptable
for most usecases. Similarly for DTLS, the DTLS handshake took longer and
required more packets to complete. For the 16Kb key certificate, the WolfSSL
application was failing due to key size limits, which prevented us from collect-
ing accurate statistics of the increases in DTLS, but the overall increases were
similar to the experiments with TLS.

TLS with Browsers In order to study the web TLS implementations we tested
the Chrome and Firefox browsers. The versions we worked with were Chrome



OpenSSL Firefox Chrome

8-20KB cert chain,
(2, 8, 16)Kb pub.
keys

4 4 4

24 long cert
chain, 1Kb pub.
keys

4 8* 8*

21 long cert
chain, 16Kb pub.
keys

8* 8* 8*

(a) TLS

proto-quic

24 long cert chain,
1Kb pub. keys

4

21 long cert chain,
16Kb pub. keys 8*

8KB cert chain,
2Kb pub. keys

4

19KB cert chain,
16Kb pub. keys

4

(b) QUIC

WolfSSL

2Kb pub. key
RSA server cert

4

(8, 16)Kb pub.
key RSA server
cert

8*

(c) DTLS

Cisco StrongSwan

8KB cert chain,
2Kb pub. keys

4 4

(d) IKEv2 (IKE AUTH fragmentation)

* Failures related to the application certificate chain parsing, not to record fragmen-
tation or segmentation.

Table 4: Experimental results of (D)TLS, IKEv2, QUIC using big X.509 certifi-
cates

58.0.3029.110 (64-bit) that uses the BoringSSL library and Firefox 53.0.2 (Win-
dows 32-bit and Ubuntu 64-bit) that uses the NSS library. We were able to verify
that TCP segmentation and TLS record fragmentation were working correctly.
When using a certificate chain of total size 19KB with 16Kb public keys and
18KB chain with 8Kb key certificates respectively, the TLS handshake was com-
pleting successfully. On the other hand, when using a certificate chain of 135KB
with 16Kb keys, the handshake was failing. By using packet captures, we were
able to see the certificates transferred correctly in the handshakes which meant
that the failures were introduced by the browsers themselves when parsing the
chains, not by the protocols. When using a 1Kb RSA public key certificate with
a chain of length 24 we were able to see the browsers parsing part of the chain
before failing. Thus, it was evident that regardless of the size of the chain, the
chain length was the trigger of these failures in the browsers, and not the chain
size itself. The conclusion from these experiments was that PQ size certificates
will work slightly slower, but as expected in (D)TLS connections. Our results



are further reinforced in [19] that tested TLS 1.2 hybrid PQ certificates with
other browsers like Apple Safari, Edge and Opera.

QUIC uses fragmentation, compression, and caching to minimize the impact
of certificates in the handshake. In order to test how QUIC would operate with
quantum-resistant X.509 certificates we used Google’s proto-quic implementa-
tion. We tested 23KB certificate chains, 24 long with 1Kb RSA keys, 8KB chains
with 2Kb keys and 19KB chains with 16Kb keys (Table 4b) in order to emu-
late similar to post-quantum cert sizes. We were able to verify that all chains
were transferred correctly between the client and the server by using fragmen-
tation and compression. Due to the vast majority of the text within a certificate
consisting of non-compressible random RSA signature values the benefit of com-
pression was less than 20%. We also tested 21 long certificate chains with 16Kb
keys which failed in the proto-quic client. The error was not because of the
protocol dealing with the certificate sizes since we were able to verify that the
fragments were transmitted successfully. Instead, the error was due to a few sec-
ond delay being introduced by the server while transmitting the certificate chain
to the client, which led to a client timeout. Thus, the failure was triggered by the
implementation and not the protocol itself. It is evident that QUIC will operate
with lengthy PQ certificates with no issues.

IKEv2 is widely deployed today. It is not rare that large X.509 certificates and
certificate chains need to be transferred over UDP as part of the IKEv2 peer
authentication. Thus, fragmentation is already widely used on the Internet today
in order to carry lengthy certificates that do not fit in the path MTU. In order
to verify that IKEv2 fragmentation defined in RFC7383 will also work with PQ
size certificates, we tested StrongSwan 5.5 and Cisco IOS-XE software with 2Kb
public keys in an 8KB, 5 long certificate chain. We were able to confirm that,
as expected, IKE AUTH fragmentation of these long certificates was working
correctly (Table 4d).

4 Conclusion and Future Work

In conclusion, in this work we wanted to analyze the impact of large PQ signa-
tures in X.509. We studied the transmission overhead introduced by large certifi-
cates in various protocols. We looked into TLS, DTLS, IKEv2 and QUIC that use
digital certificates for authentication. We evaluated existing mechanisms built-in
the protocols that deal with large records like record fragmentation, segmenta-
tion, caching, and compression. We proved that mechanisms like segmentation
and fragmentation would add some more overhead by breaking the large PQ
certificate chain in more fragments, but still allow for large certificates to be
transferred successfully. The overhead is not negligible, but can be acceptable
in most modern usecases. We also showed that hash-based HSS post-quantum
hybrid certificates could operate in these protocols.



Newly introduced methods like compression and caching in the QUIC proto-
col will also help to alleviate the overhead of large X.509 certificates, but intro-
duce some security concerns and thus are not considered preferable solutions to
the large PQ cert problem. Multiplexing, which is already employed in HTTP/2
and QUIC, will further minimize the extra delays in (D)TLS handshakes at-
tributed to these certificates by using one connection to transfer multiple data
transactions. We also showed that even though the implementation of each pro-
tocol can have bugs and limitations on key and buffer sizes, the protocols alone
can transfer the long PQ certificates chain with no issues, proving that the over-
head in the protocol is not detrimental to the functionality. Implementation bugs
will need to be addressed to eliminate oversize keys, signatures and buffer errors.

There will still be environments that are very sensitive to delays, cannot store
big certificates, or perform PQ signature generation or verification because of
their processing constraints. Such environments usually contain resource con-
strained devices or delay-sensitive communications. In such environments, most
post-quantum signatures would be impractical because of their processing inten-
sity. Other signatures like [34] could be alternative for these usecases.

Future Work: In spite of the arguments made in this work, we still need to
expand our experiments to ensure a PQ PKI is possible without major changes
in the existing protocols and infrastructure. In our TLS experiments, we verified
a root CA signature, the leaf certificate signature and the TLS/IKEv2 hand-
shake signature to verify the identity of the server. Real-world scenarios include
signed certificate timestamp (SCT) and potentially an OCSP staple verification.
Additionally, subCA signatures could also exist in the cert chain. Thus, the ex-
periments shown in this work could include half the amount of PQ signature
verifications of a real-world scenario. The additional handshake data and pro-
cessing could double, which would not be detrimental based on Table 2. Even
though we proved that larger signature data will be transferred using fragmen-
tation, their impact on the overall handshake completion time would need to be
more carefully evaluated especially for real-world Internet paths over multiple
network hops.

Moreover, in this work, we tested with stateless hash-based signatures and
hybrid certificates. Stateful signatures are possible, but require careful state
management [35] in order to prevent forgery. Stateful signatures can be more
suitable for off-line rootCAs as state management would not be a concern for
these scenarios. A stateless HBS scheme like SPHINCS+ [21] eliminates the state
management need at the cost of bigger signatures and processing overhead. We
intend to evaluate the practicality of using SPHINCS+ in PQ hybrid certificates.

Specifically for HBS, the total number of messages signed are important for
the size of the tree. For example, a height 50 tree, would take more than 21
years to run out even if we signed 220 messages per second. The total SCT,
OCSP, subCA and root CA signatures are not expected to be as many as the
TLS/IKEv2 handshake signatures. 240 signed leaf certificates could be more
than enough for a subCA and 216 signed subCA certs could be enough for a
root CA. Thus, smaller tree parameters for root CA, subCAs, OCSP and SCT



signatures could alleviate the certificate chain size and processing cost. We intend
to quantify these parameters to evaluate how small the cert chain size could
become with HBS.

Additionally, HBS are not the only option. More lightweight algorithms (i.e.
Dilithium, WalnutDSA) proposed in [21] need to be evaluated in order to confirm
their practicality.

One more topic that needs further investigation is time-to-first byte for web-
pages on the Internet. If a website pulls resources from 33 different hosts, then
performing 33 heavyweight PQ TLS handshakes could affect the time the page
starts rendering in the browser. The first byte rendered could come from the
first connection that starts transferring back data after any HTTP redirects, so
it doesn’t mean all handshakes and resources would need to have been down-
loaded before the page starts rendering. Non-cached resources would certainly
take more time to complete downloading over PQ TLS handshakes, but the slow-
ness might not be noticeable as long as the handshake that transfers the bulk of
the page over HTTP/2 completes in sufficient time. More testing would need to
be performed with real webpages in order to justify this intuition.

Recently, while testing TLS 1.3, the IETF found that middleboxes deployed
on the Internet were interfering with TLS 1.3 handshakes they did not under-
stand. Even though the hybrid certificates and TLS changes introduced in this
work are not expected to ”confuse” such middleboxes as the TLS 1.3 messages
and data structures, the effect of large number of fragments in different TLS
handshakes going over one TCP connection in HTTP/2 should be evaluated.
Such fragmentation is already happening today with cert chains of length 3-4
and RSA keys of 2048 or 3072 bits, but we intend to experiment with such sce-
narios and PQ certificates to ensure that there will be no outages introduced by
middleboxes on the Internet.
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