
Full-Hiding (Unbounded) Multi-Input Inner Product Functional
Encryption from the 𝒌-Linear Assumption

Pratish Datta, Tatsuaki Okamoto, and Junichi Tomida

NTT Secure Platform Laboratories
Tokyo, 180-8585 Japan

–datta.pratish,okamoto.tatsuaki,tomida.junichi˝@lab.ntt.co.jp

February 13, 2018

𝐀𝐛𝐬𝐭𝐫𝐚𝐜𝐭. This paper presents two non-generic and practically efficient private key multi-input
functional encryption (MIFE) schemes for the multi-input version of the inner product functionality
that are the first to achieve simultaneous message and function privacy, namely, the full-hiding
security for a non-trivial multi-input functionality under well-studied cryptographic assumptions.
Our MIFE schemes are built in bilinear groups of prime order, and their security is based on the
standard 𝑘-Linear (𝑘-LIN) assumption (along with the existence of semantically secure symmetric
key encryption and pseudorandom functions). Our constructions support polynomial number of
encryption slots (inputs) without incurring any super-polynomial loss in the security reduction.
While the number of encryption slots in our first scheme is apriori bounded, our second scheme can
withstand an arbitrary number of encryption slots. Prior to our work, there was no known MIFE
scheme for a non-trivial functionality, even without function privacy, that can support an unbounded
number of encryption slots without relying on any heavy-duty building block or little-understood
cryptographic assumption.

𝐊𝐞𝐲𝐰𝐨𝐫𝐝𝐬: multi-input functional encryption, inner products, full-hiding security, unbounded ar-
ity, bilinear maps

1 Introduction

Functional encryption (FE) [BSW11,O’N10] is a new vision of modern cryptography that aims to overcome
the potential limitation of the traditional encryption schemes, namely, the so called “all-or-nothing”
control over decryption capabilities, i.e., parties holding the legitimate decryption key can recover the
entire message encrypted within a ciphertext, whereas others can learn nothing. Specifically, FE offers
additional flexibility by supporting restricted decryption keys which enable decrypters to learn specific
functions of encrypted messages, without revealing any additional information. More precisely, an FE
scheme for a function family ℱ involves a setup authority which holds a master secret key and publishes
public system parameters. An encrypter uses the public parameters (along with a secret encryption key
provided by the setup authority in case of a private key scheme) to encrypt its message 𝑚 belonging to
some supported message spaceℳ, creating a ciphertext ct. A decrypter may obtain a private decryption
key sk corresponding to some function 𝑓 ∈ ℱ from the setup authority provided the authority deems
that the decrypter is entitled for that key. Such a decryption key sk corresponding to certain decryption
function 𝑓 can be used to decrypt a ciphertext ct encrypting some message 𝑚 to recover 𝑓(𝑚). The
basic security requirement for an FE scheme is the privacy of encrypted messages against collusion of
decrypters, i.e., an arbitrary number of decrypters cannot jointly retrieve any more information about an
encrypted message beyond the union of what they each can learn individually.

Multi-input functional encryption (MIFE), introduced by Goldwasser et al. [GGG+14], is a gener-
alization of FE to the setting of multi-input functions. An MIFE scheme has several encryption slots,
and messages can be encrypted to different slots independently. A MIFE decryption key for an 𝑛-input
function 𝑓 simultaneously decrypts a set of 𝑛 ciphertexts, each of which is encrypted with respect to one
of the 𝑛 input slots associated with 𝑓 , to unveil the joint evaluation of 𝑓 on the 𝑛 messages encrypted
within those 𝑛 ciphertexts. Just like single-input FE the primary security requirement for an MIFE scheme
as well is the privacy of encrypted messages against collusion attacks. However, unlike single-input FE,
the formalization of this security notion in case of MIFE is somewhat subtle. In their pioneering work,

* This is the full version of an extended abstract that will appear in the proceedings of PKC 2018.

Goldwasser et al. [GGG+14] presented a rigorous framework to formally capture message privacy for
MIFE, both in the public key and in the private key regimes.

MIFE is particularly useful in scenarios where informations, which need to be processed together during
decryption, become available at different points of time or are supplied by different parties. In fact, MIFE
can be employed in a wide range of applications pertaining to computation and mining over encrypted
data coming from multiple sources. Examples include executing search queries over encrypted data-
bases, processing encrypted streaming data, non-interactive differentially private data releases, multi-
client delegation of computations to external servers, and many more. All of these applications are in fact
relevant in both the public key and the private key regimes.

In view of its countless practical applications, a series of recent works have attempted to con-
struct MIFE schemes based on various cryptographic tools. These constructions can be broadly classified
into two categories. The first line of research has tried to build MIFE schemes for general multi-input
functionalities, e.g., arbitrary polynomial-size circuits [GGG+14,AJ15,BKS16,GJO16,KS17] or Turing
machines [BGJS15]. Unfortunately however, all such MIFE constructions rely on highly strong crypto-
graphic primitives like indistinguishability obfuscation [BGI+01, GGH+16], single-input FE for general
circuits [GGH+16,GGHZ16], or multilinear maps [GGH13,CLT13], neither of which is currently instan-
tiable using efficient building blocks or under well-studied cryptographic assumptions. Consequently, a
second line of research have emerged whose focus is to design concretely efficient MIFE schemes based on
standard assumptions for specific multi-input functionalities, e.g., comparison [CLWW16,LW16,CLOZ16]
or multi-input inner product [KLM+16,LL16,AGRW17]. However, majority of the existing works onMIFE
have concentrated merely on achieving the basic security notion, namely, message confidentiality.

Unfortunately, message confidentiality is not sufficient in several advanced applications of FE, rather
privacy also needs to be ensured for the functions for which the decryption keys are issued. This is espe-
cially important in situations where the decryption functions themselves contain sensitive informations.
Consider the following scenario: Suppose a hospital subscribes to an external cloud server for storing
medical records of its patients. In order to ensure confidentiality of the records and, at the same time,
remotely perform various computations on the outsourced data from time to time, a promising choice
for the hospital is to use an FE scheme to encrypt the records locally prior to uploading to the cloud
server. Now, suppose the hospital wishes to retrieve the list of all patients who is receiving treatment for
a certain chronic disease from the cloud server. For this, the hospital needs to provide the cloud server
a decryption key for the corresponding functionality. However, if the FE scheme used by the hospital
possesses no function privacy, then the cloud server would get to know the functionality from the decryp-
tion key provided by the hospital. Thus, after performing the assigned computation, if the cloud server
notices the name of some celebrity in the obtained list of patients, it would at once understand that the
particular celebrity is suffering from such a chronic disease, and it may leak the information to the media
possibly for financial gain. This is clearly undesirable from the privacy point of view.

In order to address such scenarios, several recent works have studied the notion of function privacy
in the context of FE, both in the single-input setting [SSW09,AAB+13,BS15, ITZ15,BRS13a,BRS13b,
BJK15,DDM16,TAO16,KLM+16,LV16,Lin17] and in the multi-input setting [BKS16,AJ15,KS17,Lin17].
Intuitively, function privacy demands that the decryption keys leak no additional information about the
functions embedded within them, beyond what is revealed through decryption. However, it has been ob-
served that the extent to which function privacy can be realized differs dramatically between the public
key and the private key regimes. In fact, in the public key setting, where anyone can encrypt messages, only
a weak form of function privacy can be realized [BRS13a,BRS13b,ITZ15]. More precisely, in order to cap-
ture function privacy for FE in the public key setting, the framework must assume that the functions come
from a certain high-entropy distribution. On the contrary, function-private FE (both the single-input and
the multi-input versions) has been shown to possess great potentials in the private key setting, not only as
a stand-alone feature, but also as a very useful building block [ABSV15,AJ15,KSY15,LV16,Lin17,KS17].
Consequently, the research on function-private FE has been focused primarily on the private key set-
ting. However, despite of its immense theoretical and practical significance, so far, there are only a
handful of function-private FE schemes available in the literature that can be implemented in prac-
tice [BJK15,DDM16,TAO16,KLM+16,LV16,Lin17], and all of them have been designed for single-input
functions, precisely, inner products. In case of function-private MIFE, the only known concrete construc-
tion is the recent one due to Lin [Lin17]. She has constructed a private key function-private MIFE scheme
for computing inner products of arbitrary polynomial degree, where standard inner product is a degree
2 function. However, her construction employs multilinear maps, and thus is currently uninstantiable in
practice.

2

In this work, our goal is to design practical private key function-private MIFE scheme support-
ing a polynomial number of encryption slots, incurring only polynomial loss in the security reduc-
tion. Goldwasser et al. [GGG+14] have already shown that private key MIFE for general functionali-
ties supporting a polynomial number of encryption slots is equivalent to full-fledged indistinguishability
obfuscation. Hence, it seems impossible to design such highly expressive MIFE scheme without a sub-
exponential security loss [GGSW13]. In fact, all existing private key MIFE schemes for general function-
alities [GGG+14,BKS16,AJ15,KS17] do suffer from at least a quasi-polynomial security loss to support
even a poly-logarithmic number of encryption slots. Hence, we concentrate on a specific multi-input func-
tionality that has a wide range of real-life applications, namely, the natural multi-input generalization of
the inner product functionality. This functionality has been first considered by Abdalla et al. [AGRW17].
Concretely, a multi-input inner product function 𝑓{ #»𝑦 𝜄}𝜄∈𝑆

is associated with a set 𝑆 of encryption slot
indices and vectors #»𝑦 𝜄 ∈ ℤ𝑚 for all 𝜄 ∈ 𝑆. It takes as input a set of vectors { #»𝑥 𝜄}𝜄∈𝑆 with the same index
set 𝑆, where #»𝑥 𝜄 ∈ ℤ𝑚 for all 𝜄 ∈ 𝑆, and outputs

∑︀
𝜄∈𝑆

#»𝑥 𝜄 · #»𝑦 𝜄, where
#»𝑥 𝜄 · #»𝑦 𝜄 represents the inner product

of the vectors #»𝑥 𝜄 and
#»𝑦 𝜄 over ℤ. It is required that the norm of each component inner product #»𝑥 𝜄 · #»𝑦 𝜄 is

smaller than some upper bound B. Observe that this functionality is different from the high-degree inner
product functionality considered by Lin [Lin17]. The multi-input inner product functionality captures
various important computations arising in the context of data-mining, e.g., computing weighted mean of
informations supplied by different parties. Please refer to [AGRW17] for a comprehensive exposure of the
practical significance of the multi-input inner product functionality.

Abdalla et al. [AGRW17] have presented an MIFE scheme for the multi-input inner product function-
ality described above in the private key setting, using bilinear groups of prime order. Their construction
supports a fixed polynomial number of encryption slots and multi-input inner product functions associ-
ated with a fixed index set 𝑆 of polynomial size, as well as incurs only a polynomial loss in the security
reduction. Precisely, the index set 𝑆 in their construction is of the form 𝑆 = [𝑛] = {1, . . . , 𝑛}, where 𝑛
is the number of encryption slots – a polynomial determined at the time of setup, for the multi-input
inner product functions. Their construction achieves adaptive message privacy against arbitrary collu-
sion, as per the framework of Goldwasser et al. [GGG+14], in the standard model under the well-studied
𝑘-Linear (𝑘-LIN) assumption [Sha07]. Prior to the work of Abdalla et al. [AGRW17], two independent
works, namely, [KLM+16,LL16] were able to realize a two-input variant of their result, of which [KLM+16]
achieved it in the generic group model. However, none of these constructions guarantee function privacy.
In fact, in their paper [AGRW17], Abdalla et al. have posed the construction of a function-private MIFE
scheme for the multi-input inner product functionality based on the 𝑘-LIN assumption in prime order
bilinear groups as an open problem.

𝐎𝐮𝐫 𝐂𝐨𝐧𝐭𝐫𝐢𝐛𝐮𝐭𝐢𝐨𝐧𝐬

In this paper we solve the above open problem. More specifically, we construct two concretely efficient
standard-model private key MIFE schemes for the multi-input inner product functionality in prime order
bilinear groups that are the first to achieve function privacy under well-studied cryptographic assump-
tions. In fact, our constructions achieve the unified notion of message and function privacy, namely,
the full-hiding security, formulated by Brakerski et al. [BKS16] in the context of private key MIFE by
combining the corresponding notion in the context of private key single-input FE [AAB+13,BS15] with
the framework for message privacy of MIFE [GGG+14], under the 𝑘-LIN assumption (along with the
existence of semantically secure symmetric key encryption and pseudorandom functions). Both of our
constructions support polynomial number of encryption slots and are free from any super-polynomial
loss in the security reduction. Our MIFE schemes withstands any polynomial number of decryption key
queries and any polynomial number of ciphertext queries for each encryption slot. We employ the elegant
technique of dual pairing vector spaces (DPVS) introduced by Okamoto and Takashima [OT09,OT10],
and are implementable using both symmetric and asymmetric bilinear groups. Just like [AGRW17], our
first construction supports an apriori fixed number of encryption slots and a fixed slot index set for the
multi-input inner product functions. These limitations are removed in our second construction. More pre-
cisely, our second construction is capable of supporting an apriori unbounded number of encryption slots
and multi-input inner product functions with arbitrary slot index sets of any polynomial size. In fact,
this construction is the first MIFE scheme for a non-trivial functionality with an unbounded number of
encryption slots, built using efficient cryptographic tools and under well-studied complexity assumptions.
The only prior MIFE construction which achieves this feature [BGJS15] has been designed using heavy
machineries and relies on little-understood cryptographic assumption like public-coin differing input ob-

3

fuscation [IPS15]. Moreover, the MIFE construction of [BGJS15] has been developed in public key setting
and possesses no function privacy.

Our MIFE constructions are very efficient. When instantiated under the Symmetric External Diffie-
Hellman (SXDH) assumption (𝑘 = 1 version of the 𝑘-LIN assumption) and symmetric key encryption
(SKE) whose secret key size is 𝜆 bits, the ciphertexts of our bounded MIFE scheme consist of 2𝑚+3 group
elements and a 𝜆-bit string, while the decryption keys consist of 𝑛(2𝑚+3) group elements. Note that these
group elements are encrypted by SKE. The master secret key comprises of 𝑛(2𝑚 + 3)2 group elements
and 𝑛 𝜆-bit strings. The encryption incurs one time encryption of SKE and 2𝑚 + 3 exponentiations,
while key generation algorithm incurs one time encryption of SKE and 𝑛(2𝑚 + 3) exponentiations. The
decryption algorithm involves one time decryption of SKE and 𝑛(2𝑚+3) pairing operations followed by an
exhaustive search step over a polynomial-size range of possible values. Here, 𝑚 and 𝑛 respectively denote
the length of the vectors and the size of the index set associated with the multi-input inner product
functionality. Observe that these figures are already in close compliance with the 𝑛-fold extension of
the most efficient standard-model full-hiding single-input FE construction for inner products known till
date, namely, the scheme by Lin [Lin17] (which is also designed under the SXDH assumption). The
exhaustive search step in the decryption algorithm is reminiscent of all currently known bilinear-map
based FE constructions for inner products, both in the single-input and in the multi-input settings. In
unbounded scheme, the ciphertext size and decryption key size are the same as bounded scheme, while the
master secret key consists of two pseudorandom function (PRF) keys and (2𝑚+3)2 group elements. The
encryption incurs two PRF evaluations and 2𝑚+ 3 exponentiations, while the key generation algorithm
incurs 𝑛 times encryption of SKE, 2𝑛 PRF evaluations, and 𝑛(2𝑚 + 3) exponentiations. The decryption
algorithm involves 𝑛 times decryption of SKE and 𝑛(2𝑚+3) pairing operations followed by an exhaustive
search step.

𝐎𝐮𝐫 𝐓𝐞𝐜𝐡𝐧𝐢𝐪𝐮𝐞𝐬

We now explain the principal ideas underlying our MIFE constructions for the multi-input inner product
functionality. In order to simplify the exposition, we ignore many technicalities in this overview.

𝐎𝐮𝐫 𝐛𝐨𝐮𝐧𝐝𝐞𝐝-𝐚𝐫𝐢𝐭𝐲 𝐬𝐜𝐡𝐞𝐦𝐞: Since, the multi-input inner product functionality is a multi-input gen-
eralization of its single-input version, a natural first step is to explore whether we can obtain a private
key full-hiding 𝑛-input MIFE scheme for inner products by executing 𝑛 parallel copies of a private key
full-hiding FE scheme for inner products. The most efficient such scheme available in the literature is the
one due to Lin [Lin17], which is based on the SXDH assumption. However, the construction is built upon
the Decisional-Diffie-Hellman (DDH)-based construction of Abdalla et al. [ABDCP15] and is not readily
amenable to the general 𝑘-LIN assumption. Moreover, the construction is built in a two step approach,
namely, first constructing an FE scheme for inner products achieving only a weaker form of function
privacy, and then bootstrapping to the full-hiding security by using the conversion of Lin and Vaikun-
tanathan [LV16]. We want to avoid such an approach, rather our goal is to design a direct construction
of full-hiding MIFE for multi-input inner products. So, we start with the full-hiding single-input inner-
product FE scheme proposed by Tomida et al. [TAO16]. This construction is direct, and while originally
presented under a variant of the Decisional Linear (DLIN) assumption, seems naturally generalizable
to the 𝑘-LIN assumption. Further, in terms of efficiency, this construction is next to the construction of
Lin [Lin17] among the standard-model private key function-private FE constructions available in the liter-
ature [BJK15,DDM16,TAO16,Lin17]. Besides, this construction has the flexibility of being implementable
in both symmetric and asymmetric bilinear groups.

First, let us briefly review the construction and proof idea of Tomida et al. [TAO16]. We assume
familiarity with the DPVS framework for the rest of this section. (The background on DPVS is provided
in Section 2.3.) The master secret key msk in the construction of Tomida et al. [TAO16] consists of a pair
of dual orthogonal bases (𝔹,𝔹*) of a (2𝑚+5)-dimensional DPVS, where 𝑚 is the length of the ciphertext
and decryption key vectors. Out of the 2𝑚 + 5 dimensions, 𝑚 + 4 dimensions are utilized in the real
construction, while the rest are used in performing various hybrid transitions in the security proof. Note
that the use of such hidden dimensions is a powerful feature of the DPVS framework, and it has been
proven to be instrumental in deducing various complex security proofs in the literature. The ciphertext
ct of [TAO16] encrypting an 𝑚-dimensional vector #»𝑥 is given by ct = (#»𝑥 ,

#»
0𝑚,

#»
0 2, 𝜙1, 𝜙2, 0)𝔹, where

𝜙1, 𝜙2
U←− 𝔽𝑞. On the other hand, the decryption key sk corresponding to some 𝑚-dimensional vector #»𝑦

is of the form sk = (#»𝑦 ,
#»
0𝑚, 𝛾1, 𝛾2,

#»
0 2, 0)𝔹* , where 𝛾1, 𝛾2

U←− 𝔽𝑞. Here, (#»𝑣)𝕎, for any vector #»𝑣 with entries

4

in 𝔽𝑞 and any basis 𝕎 of a DPVS, signifies the linear combination of the members of 𝕎 using the entries
of #»𝑣 as coefficients. The decryption algorithm works by computing 𝑒(ct, sk) followed by performing an
exhaustive search step over a specified polynomial-size range to determine the output. The correctness
readily follows by the dual orthogonality property of (𝔹,𝔹*).

Recall that in the full-hiding security experiment for single-input inner product FE [AAB+13,BS15],

first the challenger ℬ sets up the system and samples a random bit 𝛽
U←− {0, 1}. Next, the adversary

𝒜 is allowed to adaptively make any polynomial number of ciphertext and decryption key queries to
ℬ. In order to make a ciphertext query, 𝒜 submits a pair of message vectors (#»𝑥 0,

#»𝑥 1) to ℬ, while to
make a decryption key query, 𝒜 submits a pair of vectors (#»𝑦 0,

#»𝑦 1) to ℬ. Depending on the random bit
𝛽, ℬ returns respectively an encryption of #»𝑥𝛽 and a decryption key for vector #»𝑦 𝛽 to the adversary in
response to the respective queries. Finally, the adversary has to correctly guess the random bit 𝛽 to win
the experiment. The restriction on the queries of 𝒜 is that for all pairs of vectors (#»𝑥 0,

#»𝑥 1) for which a
ciphertext query is made and for all pairs of vectors (#»𝑦 0,

#»𝑦 1) for which a decryption key query is made,
it should hold that #»𝑥 0 · #»𝑦 0 = #»𝑥 1 · #»𝑦 1.

In order to prove security of the construction of [TAO16] in the above full-hiding model, the following
hybrid transitions are performed: The initial hybrid is the real full-hiding experiment with the challenge
bit 𝛽 = 0, i.e., where the forms of the ciphertexts and decryption keys returned to𝒜 are respectively ct* =
(#»𝑥 0,

#»
0𝑚,

#»
0 2, 𝜙1, 𝜙2, 0)𝔹 and sk* = (#»𝑦 0,

#»
0𝑚, 𝛾1, 𝛾2,

#»
0 2, 0)𝔹* , while the final hybrid corresponds to the real

full-hiding experiment with 𝛽 = 1, i.e., where the forms of the ciphertexts and decryption keys returned
to the adversary are of the form ct* = (#»𝑥 1,

#»
0𝑚,

#»
0 2, 𝜙1, 𝜙2, 0)𝔹 and sk* = (#»𝑦 1,

#»
0𝑚, 𝛾1, 𝛾2,

#»
0 2, 0)𝔹*

respectively. Towards achieving this change, first, applying a combination of a computational change
using the DLIN assumption, in conjunction with a conceptual transformation of the underlying bases, the
form of the ciphertexts are altered one by one to ct* = (#»𝑥 0,

#»𝑥 1,
#»
0 2, 𝜙1, 𝜙2, 0)𝔹. In the next step, applying

another combination of computational and conceptual changes, the form of the queried decryption keys
are changed one by one to the form sk* = (

#»
0𝑚, #»𝑦 1, 𝛾1, 𝛾2,

#»
0 2, 0)𝔹* . This is the most subtle transition step,

and this is where we have to rely crucially on the restriction of the security model. More precisely, observe
that before altering the decryption keys, decrypting the queried ciphertexts using the queried decryption
keys result in #»𝑥 0· #»𝑦 0, whereas after the transformation, the decryption results are #»𝑥 1· #»𝑦 1. However, thanks
to the restriction of the full-hiding security experiment, we can ensure that the decryption results in the
two cases are the same, and thus the change cannot be detected through decryption. After this step, the
forms of ciphertexts and decryption keys are further altered respectively to ct* = (#»𝑥 1,

#»𝑥 0,
#»
0 2, 𝜙1, 𝜙2, 0)𝔹

and sk* = (#»𝑦 1,
#»
0𝑚, 𝛾1, 𝛾2,

#»
0 2, 0)𝔹* , with the help of another conceptual basis transformation. Once this

step is executed, the forms of the queried ciphertexts are changed to ct* = (#»𝑥 1,
#»
0𝑚,

#»
0 2, 𝜙1, 𝜙2, 0)𝔹

using a reverse transformation to the one used in the first step. Observe that this last step takes us to
the experiment corresponding to 𝛽 = 1.

Let us now consider an MIFE scheme for the 𝑛-input inner product functionality obtained by an 𝑛-
fold extension of the above single-input scheme. More precisely, consider an 𝑛-input MIFE scheme having
the following specifications: The master secret key msk consists of 𝑛 independently generated master
secret keys for the single-input scheme, i.e., msk = {msk𝜄 = (𝔹𝜄,𝔹*

𝜄)}𝜄∈[𝑛]. The ciphertext of some vector
#»𝑥 𝜄 with respect to index 𝜄 ∈ [𝑛] is simply a single-input FE ciphertext for #»𝑥 𝜄 with respect to msk𝜄,

i.e., the ciphertext has the form ct𝜄 = (𝜄, 𝒄𝜄 = (#»𝑥 𝜄,
#»
0𝑚,

#»
0 2, 𝜙𝜄,1, 𝜙𝜄,2, 0)𝔹𝜄), where 𝜙𝜄,1, 𝜙𝜄,2

U←− 𝔽𝑞. On
the other hand, a decryption key associated with a set of 𝑛 vectors { #»𝑦 𝜄}𝜄∈[𝑛] is given by a set of 𝑛
decryption keys {sk𝜄}𝜄∈[𝑛], where sk𝜄 is the single-input FE secret key for #»𝑦 𝜄 with respect to msk𝜄, i.e.,

sk = {𝒌𝜄 = (#»𝑦 𝜄,
#»
0𝑚, 𝛾𝜄,1, 𝛾𝜄,2,

#»
0 2, 0)𝔹*

𝜄
}𝜄∈[𝑛], where 𝛾𝜄,1, 𝛾𝜄,2

U←− 𝔽𝑞 for all 𝜄 ∈ [𝑛]. To decrypt a set of 𝑛
ciphertexts {ct𝜄}𝜄∈[𝑛] using a decryption key sk, one first computes

∏︀
𝜄∈[𝑛]

𝑒(𝒄𝜄,𝒌𝜄), and then performs an

exhaustive search step. It is easy to see that the correctness follows analogously to the single-input case.

However, one can readily observe that the above 𝑛-input extension is not secure. In particular, the
construction leaks partial information. Precisely, notice that for each 𝜄 ∈ [𝑛], one can easily recover
#»𝑥 𝜄 · #»𝑦 𝜄 by computing 𝑒(𝒄𝜄,𝒌𝜄), whereas ideally one should only be able to learn

∑︀
𝜄∈[𝑛]

#»𝑥 𝜄 · #»𝑦 𝜄. Abdalla et

al. [AGRW17] also faced a similar challenge while constructing their MIFE scheme by building on a single
input inner product FE scheme. In order to overcome this problem, they introduced additional randomness
within ciphertexts and decryption keys. Precisely, in order to generate a ciphertext for vector #»𝑥 𝜄 with

respect to index 𝜄 ∈ [𝑛], they encrypted the vector (#»𝑥 𝜄, 𝑧𝜄), where 𝑧1, . . . , 𝑧𝑛
U←− 𝔽𝑞 are included within the

master secret key. Similarly, while preparing a decryption key for a set of 𝑛 vectors { #»𝑦 𝜄}𝜄∈[𝑛], they sampled

a random value 𝑟
U←− 𝔽𝑞, and generated single-input FE decryption keys for the vectors (#»𝑦 𝜄, 𝑟) for all 𝜄 ∈

5

[𝑛], and additionally create the component 𝑘𝑇 = 𝑔

∑︀
𝜄∈[𝑛]

𝑧𝜄𝑟

𝑇 . We attempt to apply their trick to our setting.
More precisely, we modify our MIFE construction as follows: We add one additional dimension in the dual
orthogonal bases (𝔹𝜄,𝔹*

𝜄) for each 𝜄 ∈ [𝑛], i.e., they are now (2𝑚+6)-dimensional. A ciphertext encrypting
the vector #»𝑥 𝜄 with respect to index 𝜄 ∈ [𝑛] is of the form ct𝜄 = (𝜄, 𝒄𝜄 = (#»𝑥 𝜄,

#»
0𝑚, 𝑧𝜄,

#»
0 2, 𝜙𝜄,1, 𝜙𝜄,2, 0)𝔹𝜄),

where 𝑧1, . . . , 𝑧𝑛
U←− 𝔽𝑞 are parts of msk, and the decryption key corresponding to a set of 𝑛 vectors

{ #»𝑦 𝜄}𝜄∈[𝑛] is given by sk = ({𝒌𝜄 = (#»𝑦 𝜄,
#»
0𝑚, 𝑟, 𝛾𝜄,1, 𝛾𝜄,2,

#»
0 2, 0)𝔹*

𝜄
}𝜄∈[𝑛], 𝑘𝑇 = 𝑔

∑︀
𝜄∈[𝑛]

𝑧𝜄𝑟

𝑇). Decryption works

by first computing [
∏︀

𝜄∈[𝑛]

𝑒(𝒄𝜄,𝒌𝜄)]/𝑘𝑇 = 𝑔

∑︀
𝜄∈[𝑛]

#»𝑥 𝜄· #»𝑦 𝜄

𝑇 , and then performing an exhaustive search step to

recover
∑︀

𝜄∈[𝑛]

#»𝑥 𝜄 · #»𝑦 𝜄.

Let us now consider the security of the modified construction. For simplicity, assume that the adver-
sary queries a single decryption key and a single ciphertext for each of the 𝑛 encryption slots. The
full-hiding security model for private key MIFE [BKS16] is an extension of its single-input counter
part, but is significantly more complicated compared to it. Analogous to the single-input case, in this
multi-input security model, in order to make a ciphertext query for the 𝜄th slot, the adversary has to
submit a pair of vectors (#»𝑥 𝜄,0,

#»𝑥 𝜄,1), whereas for making a decryption key query, the adversary has
to submit a pair of sets of 𝑛 vectors ({ #»𝑦 𝜄,0}𝜄∈[𝑛], { #»𝑦 𝜄,1}𝜄∈[𝑛]). However, unlike the single-input set-
ting, now the restriction on the queries is that

∑︀
𝜄∈[𝑛]

#»𝑥 𝜄,0 · #»𝑦 𝜄,0 =
∑︀

𝜄∈[𝑛]

#»𝑥 𝜄,1 · #»𝑦 𝜄,1. Let us try to ar-

gue security of our modified construction by taking a similar path to that taken by Tomida et al.
[TAO16]. We start with the case where the challenge bit 𝛽 = 0, i.e., when the ciphertexts and de-
cryption key returned to the adversary have the form ct*

𝜄 = (𝜄, 𝒄*𝜄 = (#»𝑥 𝜄,0,
#»
0𝑚, 𝑧𝜄,

#»
0 2, 𝜙𝜄,1, 𝜙𝜄,2, 0)𝔹𝜄

),

for 𝜄 ∈ [𝑛], and sk* = ({𝒌*
𝜄 = (#»𝑦 𝜄,0,

#»
0𝑚, 𝑟, 𝛾𝜄,1, 𝛾𝜄,2,

#»
0 2, 0)𝔹*

𝜄
}𝜄∈[𝑛], 𝑘𝑇 = 𝑔

∑︀
𝜄∈[𝑛]

𝑧𝜄𝑟

𝑇). Just like [TAO16],
first, using a combination of computational changes using the DLIN assumption, in conjunction with
a conceptual transformation to the underlying bases, we can alter the forms of all the ciphertexts to
ct*

𝜄 = (𝜄, 𝒄*𝜄 = (#»𝑥 𝜄,0,
#»𝑥 𝜄,1, 𝑧𝜄,

#»
0 2, 𝜙𝜄,1, 𝜙𝜄,2, 0)𝔹𝜄). After this step is done, we would have to change the

form of the queried decryption key sk* so that the first 2𝑚 coefficients of each 𝒌*
𝜄 become (

#»
0𝑚, #»𝑦 𝜄,1).

In order to achieve this change, we first perform a computational change to 𝒌*
𝜄 , for each 𝜄 ∈ [𝑛], with

the help of the DLIN assumption to 𝒌*
𝜄 = (#»𝑦 𝜄,0,

#»
0𝑚, 𝑟, 𝛾𝜄,1, 𝛾𝜄,2,

#»
0 2, 𝜔𝜄)𝔹*

𝜄
, where 𝜔𝜄

U←− 𝔽𝑞 for all 𝜄 ∈ [𝑛].
Next, we need to perform a conceptual transformation to the underlying bases in each slot so that the
first two 𝑚 blocks of each 𝒌*

𝜄 gets interchanged. However, this conceptual change would generate the
term #»𝑥 𝜄,0 · #»𝑦 𝜄,0 − #»𝑥 𝜄,1 · #»𝑦 𝜄,1 in the (2𝑚+6)th coefficient of each ciphertext ct𝜄. In the single-input case,
such a term vanishes by the restriction on the ciphertext and decryption key queries. But, unlike the
single-input case, now #»𝑥 𝜄,0 · #»𝑦 𝜄,0 is not guaranteed to be equal to #»𝑥 𝜄,1 · #»𝑦 𝜄,1 for all 𝜄 ∈ [𝑛], and hence the
term in the (2𝑚+ 6)th coefficient does not vanish.

In order to overcome this problem, we modify the above construction by introducing a different
randomness in each of the 𝑛 component of the decryption key rather than using a same shared randomness
across all the 𝑛 components. More precisely, a decryption key corresponding to a set of 𝑛 vectors { #»𝑦 𝜄}𝜄∈[𝑛]

has the form sk = ({𝒌𝜄 = (#»𝑦 𝜄,
#»
0𝑚, 𝑟𝜄, 𝛾𝜄,1, 𝛾𝜄,2,

#»
0 2, 0)𝔹*

𝜄
}𝜄∈[𝑛], 𝑘𝑇 = 𝑔

∑︀
𝜄∈[𝑛]

𝑧𝜄𝑟𝜄

𝑇), where 𝑟𝜄
U←− 𝔽𝑞 for all

𝜄 ∈ [𝑛]. First, observe that this modification does not affect the correctness. Now, with this modification,
we can resolve the above problem as follows: In the above conceptual change step, we transform the
underlying bases in such a way that not only the first two 𝑚 blocks of each 𝒌*

𝜄 gets interchanged, but
also each 𝑟𝜄 gets altered to ̃︀𝑟𝜄, where ̃︀𝑟𝜄 = 𝑟𝜄 + [#»𝑥 𝜄,0 · #»𝑦 𝜄,0 − #»𝑥 𝜄,1 · #»𝑦 𝜄,1]/𝑧𝜄. Observe that the ̃︀𝑟𝜄’s are also
distributed uniformly and independently over 𝔽𝑞 since 𝑟𝜄’s are so. Also, this new basis transformation
will create the additional term [#»𝑥 𝜄,1 · #»𝑦 𝜄,1 − #»𝑥 𝜄,0 · #»𝑦 𝜄,0] in the (2𝑚 + 6)th coefficient of the queried
ciphertext in each slot that would cancel out the term [#»𝑥 𝜄,0 · #»𝑦 𝜄,0 − #»𝑥 𝜄,1 · #»𝑦 𝜄,1]. Further, notice that∑︀
𝜄∈[𝑛]

𝑧𝜄̃︀𝑟𝜄 =
∑︀

𝜄∈[𝑛]

𝑧𝜄𝑟𝜄 by the restriction of the full-hiding security experiment of the multi-input setting,

namely,
∑︀

𝜄∈[𝑛]

#»𝑥 𝜄,0 · #»𝑦 𝜄,0 =
∑︀

𝜄∈[𝑛]

#»𝑥 𝜄,1 · #»𝑦 𝜄,1.

Note that our actual construction and security proof, which is presented under the general 𝑘-LIN
assumption, is more subtle. In our actual construction, we observe that replacing the 𝑧𝜄 values with the
scalar 1 and choosing the 𝑟𝜄 values associated with a decryption key under the restriction that

∑︀
𝜄∈[𝑛]

𝑟𝜄 = 0

is sufficient to argue the security proof. As a result of this modification, we are able to remove the 𝑘𝑇

6

component from the decryption keys. Also, in the actual construction, we reduce the dimension of the
underlying bases further by making a more careful use of the randomness.

𝐎𝐮𝐫 𝐮𝐧𝐛𝐨𝐮𝐧𝐝𝐞𝐝-𝐚𝐫𝐢𝐭𝐲 𝐬𝐜𝐡𝐞𝐦𝐞: In our bounded-arity scheme, the setup algorithm makes 𝑛 random
dual orthogonal bases for 𝑛-input case, and stores them as a master secret key. The first problem is how
to make these bases unboundedly from a master secret key, whose size is independent from 𝑛. Considering
that our scheme is private-key MIPE, to get an idea of making them from a pseudorandom function is
not difficult. That is, we prepare a randomly chosen pseudorandom function key as a master secret key
in a setup phase, and in encryption or key generation, we can generate dual orthogonal bases from the
pseudorandom function with its input being the slot index when they are needed. Actually, this naive
idea works in a conditional full-hiding security model, where for each decryption key, all indices included
in the decryption keys are queried in ciphertext query. The crucial point is that, for some decryption key
queried by the adversary, if all indices that are included in the decryption key are queried in ciphertext
query, then all corresponding vectors must satisfy some restrictions to avoid a trivial attack. Concretely,
for each decryption key sk𝑆 for a index set 𝑆 and vectors { #»𝑦 𝜄}𝜄∈𝑆 , all vectors

#»𝑥 𝜄 for slot 𝜄 ∈ 𝑆 queried in
ciphertext query, satisfy the following restriction s.t.

∑︀
𝜄∈𝑆

#»𝑥 𝜄,0 · #»𝑦 𝜄,0 =
∑︀
𝜄∈𝑆

#»𝑥 𝜄,1 · #»𝑦 𝜄,1. When we construct our

bounded-arity scheme, we first construct a scheme that is secure in the conditional full-hiding security
model, and then we convert it into one that has full-hiding security with no conditions by a generic
transformation, similarly to Abdalla et. al. [AGRW17]. We leverage such a restriction in the proof of the
underlying scheme.

In the conversion, we prepare a random bit string 𝑘𝜄 for each index. Next, we encrypt all decryption
keys and ciphertexts of the underlying scheme with SKE using 𝐾 =

⨁︀𝑛
𝜄=1 𝑘𝜄 as a secret key. Then, we

append the random bit string 𝑘𝜄 to ciphertexts for index 𝜄. By the construction, if there exist some
indices that are not queried in ciphertext query, an adversary cannot compute 𝐾 and all ciphertexts and
decryption keys are completely hidden from the adversary. Therefore we can exclude such a situation and
focus on the conditional full-hiding security model. However, this generic transformation does not work
in the unbounded arity-case, because a set of ciphertexts (or indices) needed for decryption differs by
each decryption key. Then we do not know how to convert an unbounded-arity scheme secure under the
conditional full-hiding security model into one with full-hiding security.

To solve this problem, we introduce a new construction and new proof techniques. Our solution inherits
the spirit of the above technique due to Abdalla et. al. [AGRW17], but is not completely generic. The basic
scheme is that making use of pseudorandom functions as mentioned earlier. Then we introduce another
pseudorandom function, which takes an index of slots 𝜄 as an input and outputs a random bit string 𝑘𝜄,
which is assigned for each index. Those bit strings are appended to corresponding ciphertexts like the
above generic transformation, but we do not encrypt ciphertexts with SKE, or even cannot because it is
impossible to decide which indices are needed for decryption in the unbounded case. Instead we encrypt
each decryption key with SKE, using the all bit strings corresponding to the index set of decryption key,
as a secret key of SKE in some way. We can see that if there are some indices which are not queried in
ciphertext query (we call such indices as absent indices), then the decryption keys which contain absent
indices will be completely hidden from the adversary. It is because to obtain the secret keys of SKE, the
adversary needs all bit strings 𝑘𝜄 (or ciphertexts) for the corresponding indices.

In this construction, however, we cannot use a generic transformation because ciphertexts are not
encrypted with SKE. Instead we consider a series of hybrids in the same manner as bounded-arity case
for the security proof. During the hybrids, we encounter the problem that there are some decryption
keys that have absent indices, and therefore these decryption keys and ciphertexts might not satisfy the
restriction as explained above. To solve the problem, we leverage the power of SKE, and it enables us
to go the hybrids ahead. More precisely, for the decryption keys that have absent indices, we use the
power of SKE, and for the other decryption keys, we use the power of the basic scheme. But here, if we
define the secret key of SKE to encrypt a decryption key for a set 𝑆 as

⨁︀
𝜄∈𝑆 𝑘𝜄, likely to the generic

transformation of the bounded case, we realize that we cannot make a reduction algorithm for SKE. This
problem is mainly due to the flexibleness of decryption keys, that is, a set, which can be associated with
secret keys, is not determined in the scheme. Observe that in the bounded case, the set is determined
as {1, . . . , 𝑛}. Consider the case where the adversary has a decryption key for a set {1, 2, 3} (say 𝐾123),
one for {1, 2} (say 𝐾12) and a ciphertext for index 3. Then the adversary cannot compute the secret

key for these decryption keys, i.e., 𝐾123 =
⨁︀3

𝜄=1 𝑘𝜄 and 𝐾12 =
⨁︀2

𝜄=1 𝑘𝜄. However, the adversary has 𝑘3,
which is appended to the ciphertext for index 3, and knows 𝐾123 = 𝐾12 ⊕ 𝑘3. This correlation becomes
a obstacle for the reduction. To circumvent this obstacle, we introduce another encrypting method. That

7

is, we iteratively encrypt a decryption key with SKE, making each bit strings 𝑘𝜄 be a secret key. Then
such a correlation does not appear over every decryption key.

The final difficulty is that the adversary asks for decryption keys and ciphertexts in adaptive manner.
Consequently, the challenger cannot know which type a queried decryption key will be, one that has
absent indices or one does not, at the point where the decryption key is queried. Then we need to
carefully construct reduction algorithms and evaluate successful probabilities of the reductions.

𝐂𝐨𝐧𝐜𝐮𝐫𝐫𝐞𝐧𝐭 𝐖𝐨𝐫𝐤

Concurrently and independently to our work, Abdalla et al. [ACF+17] have also considered the problem
of constructing function-private MIFE scheme for the multi-input inner product functionality supporting
a polynomial number of encryption slots under standard assumption. They have first presented a semi-
generic scheme that achieves the full-hiding security only in a selective sense. They have subsequently
overcome the selective restriction in a concrete instantiation of their semi-generic construction. However,
similar to our firstMIFE scheme, their construction can only support an apriori fixed number of encryption
slots and a fixed slot index set for the multi-input inner product functions. Their concrete adaptively
full-hiding MIFE scheme is built in prime order bilinear group setting under the 𝑘-MDDH assumption,
which subsumes the 𝑘-LIN assumption used in our construction. When instantiated under the SXDH
assumption, while our construction contains 4𝑛(𝑚2 − 1) more field elements in the master secret key, it
involves 2 and 2𝑛 + 1 less group elements in ciphertexts and decryption keys respectively compared to
their scheme. On the other hand, our scheme incurs 2 and 2𝑛+ 1 less exponentiations in encryption and
key generation procedures respectively, as well as requires 2𝑛 less pairing operations during decryption
compared to theirs. Recall that 𝑚 and 𝑛 respectively denote the length of the vectors and the size of the
index set associated with the multi-input inner product functionality.

2 Preliminaries

In this section we present various definitions and decisional problems used in this paper.

2.1 Notations

Let 𝜆 ∈ ℕ denotes the security parameter and 1𝜆 be its unary encoding. Let ℕ and ℤ denote the set of
all positive integers and the set of all integers respectively, while 𝔽𝑞, for any prime power 𝑞 ∈ ℕ, denotes
the finite field of integers modulo 𝑝. For 𝑠 ∈ ℕ and 𝑡 ∈ ℕ ∪ {0} (with 𝑡 < 𝑠), we let [𝑠] = {1, . . . , 𝑠} and
[𝑡, 𝑠] = {𝑡, . . . , 𝑠}. For any set 𝑍, 𝑧

U←− 𝑍 represents the process of uniformly sampling an element 𝑧 from
the set 𝑍, and |𝑍| signifies the size or cardinality of 𝑍. For a probabilistic algorithm ℛ, we denote by

𝜘 = ℛ(𝛩;𝛷) the output of ℛ on input 𝛩 and the content of the random tape being 𝛷, while 𝜘 R←− ℛ(𝛩)
represents the process of sampling 𝜘 from the output distribution of ℛ on input 𝛩 with a uniform
random tape. On the other hand, for any deterministic algorithm 𝒟, 𝜘 = 𝒟(𝛩) denotes the output of
𝒟 on input 𝛩. We use the abbreviation PPT to mean probabilistic polynomial-time. We assume that all
the algorithms are given the unary representation 1𝜆 of the security parameter 𝜆 as input and will not
write 1𝜆 explicitly as input of the algorithms when it is clear from the context. For any finite field 𝔽𝑞

and 𝑚 ∈ ℕ, let #»𝑣 denotes a vector (𝑣(1), . . . , 𝑣(𝑚)) ∈ ℤ𝑚 or 𝔽𝑚
𝑞 , where 𝑣(𝑗) ∈ ℤ or 𝔽𝑞 respectively, for all

𝑗 ∈ [𝑚]. The all zero vectors in 𝔽𝑚
𝑞 will be denoted by

#»
0𝑚. For any two vectors #»𝑣 , #»𝑤 ∈ ℤ𝑚 or 𝔽𝑚

𝑞 , #»𝑣 · #»𝑤

stands for the inner product of the vectors #»𝑣 and #»𝑤 over the integers, i.e., #»𝑣 · #»𝑤 =
∑︀

𝑗∈[𝑚]

𝑣(𝑗)𝑤(𝑗) ∈ ℤ. For

any multiplicative cyclic group 𝔾 of order 𝑞 and any generator 𝑔 ∈ 𝔾, let 𝒖 represents the 𝑚-dimensional

vector of group elements (𝑔𝑣
(1)

, . . . , 𝑔𝑣
(𝑚)

) ∈ 𝔾𝑚, for some #»𝑣 ∈ 𝔽𝑚
𝑞 . By 𝟏𝑚

𝔾 we denote the 𝑚-dimensional
vector (1𝔾, . . . , 1𝔾) ∈ 𝔾𝑚, where 1𝔾 represents the identity element of the group 𝔾. We use 𝐴 = (𝑎𝑗,𝑡)ℓ×𝑠

to represent a ℓ × 𝑠 matrix with entries 𝑎𝑗,𝑡 ∈ 𝔽𝑞. By 𝐴
⊺ we will signify the transpose of the matrix 𝐴,

while by 𝐴* the matrix (𝐴−1)⊺. Let GL(ℓ,𝔽𝑞) denotes the set of all ℓ × ℓ invertible matrices over 𝔽𝑞. A
function negl : ℕ → ℝ+ is said to be negligible if for every 𝑐 ∈ ℕ, there exists 𝑇 ∈ ℕ such that for all
𝜆 ∈ ℕ with 𝜆 > 𝑇 , |negl(𝜆)| < 1/𝜆𝑐.

8

2.2 Some Essential Cryptographic Tools

𝐃𝐞fi𝐧𝐢𝐭𝐢𝐨𝐧 𝟐.𝟏 (𝐏𝐬𝐞𝐮𝐝𝐨𝐫𝐚𝐧𝐝𝐨𝐦 𝐅𝐮𝐧𝐜𝐭𝐢𝐨𝐧𝐬: PRFs): A pseudorandom function family ℱ = {ℱ𝜆}𝜆∈ℕ
with key space 𝒦 = {𝒦𝜆}𝜆∈ℕ, domain 𝒳 = {𝒳𝜆}𝜆∈ℕ, and range 𝒴 = {𝒴𝜆}𝜆∈ℕ is a function family that
consists of functions 𝐹𝜆 : 𝒦𝜆 × 𝒳𝜆 → 𝒴𝜆. Let ℛ𝜆 be a set of functions consists of all functions whose
domain and range are 𝒳𝜆 and 𝒴𝜆 respectively. For all PPT adversary 𝒜, the following condition holds;

Advprf𝒜 (𝜆) =
⃒⃒⃒
Pr[1

R←− 𝒜𝐹 (𝐾,·)]− Pr[1
R←− 𝒜𝑅(·)]

⃒⃒⃒
≤ negl(𝜆),

where 𝐹 ∈ ℱ𝜆, 𝐾
U←− 𝒦𝜆, and 𝑅

U←− ℛ𝜆.

𝐃𝐞fi𝐧𝐢𝐭𝐢𝐨𝐧 𝟐.𝟐 (𝐒𝐲𝐦𝐦𝐞𝐭𝐫𝐢𝐜 𝐊𝐞𝐲 𝐄𝐧𝐜𝐫𝐲𝐩𝐭𝐢𝐨𝐧: SKE): A symmetric key encryption consists of a tuple
of three PPT algorithms (SKE.KeyGen, SKE.Encrypt, SKE.Decrypt). SKE.KeyGen takes 1𝜆 as an input and
outputs a secret key 𝐾. SKE.Encrypt takes a secret key 𝐾 and a message 𝑚 and outputs a ciphertext 𝑐.
SKE.Decrypt takes a secret key 𝐾 and a ciphertext 𝑐 and outputs a message 𝑚′. Correctness of SKE is
that

Pr[𝑚 = 𝑚′|𝐾 R←− SKE.KeyGen,𝑚′ = SKE.Decrypt(𝐾,SKE.Encrypt(𝐾,𝑚))] = 1.

A semantically secure symmetric key encryption scheme satisfies the following condition. For all PPT
adversary 𝒜,

Advske𝒜 (𝜆) =
⃒⃒⃒
Pr[1

R←− 𝒜𝒪0(·)]− Pr[1
R←− 𝒜𝒪1(·)]

⃒⃒⃒
≤ negl(𝜆),

where an oracle 𝒪𝛽∈{0,1} chooses a random secret key 𝐾 as 𝐾
R←− SKE.KeyGen and when it takes a pair

of messages (𝑚0,𝑚1), it returns SKE.Encrypt(𝐾,𝑚𝛽).

2.3 Bilinear Groups and Dual Pairing Vector Spaces

𝐃𝐞fi𝐧𝐢𝐭𝐢𝐨𝐧 𝟐.𝟑 (𝐁𝐢𝐥𝐢𝐧𝐞𝐚𝐫 𝐆𝐫𝐨𝐮𝐩): A bilinear group params𝔾 = (𝑞,𝔾1,𝔾2, 𝔾𝑇 , 𝑔1, 𝑔2, 𝑒) is a tuple of
a prime integer 𝑞 ∈ ℕ; cyclic multiplicative groups 𝔾1,𝔾2,𝔾𝑇 of order 𝑞 each with polynomial-time
computable group operations; generators 𝑔1 ∈ 𝔾1, 𝑔2 ∈ 𝔾2; and a polynomial-time computable non-
degenerate bilinear map 𝑒 : 𝔾1 ×𝔾2 → 𝔾𝑇 , i.e., 𝑒 satisfies the following two properties:

– Bilinearity : 𝑒(𝑔𝜁1 , 𝑔
𝜂
2) = 𝑒(𝑔1, 𝑔2)

𝜁𝜂 for all 𝜁, 𝜂 ∈ 𝔽𝑞.
– Non-degeneracy : 𝑒(𝑔1, 𝑔2) ̸= 1𝔾𝑇

, where 1𝔾𝑇
denotes the identity element of the group 𝔾𝑇 .

There are three types of bilinear groups according as whether efficient isomorphisms exist or not between
𝔾1 and 𝔾2 [GPS08]. In case of type 1 bilinear groups, both the isomorphisms 𝜑 : 𝔾2 → 𝔾1 and its
inverse 𝜑−1 : 𝔾1 → 𝔾2 can be computed efficiently, i.e., 𝔾1

∼= 𝔾2. For type 2 groups, the isomorphism
𝜑 : 𝔾2 → 𝔾1 is efficiently computable but its inverse 𝜑−1 : 𝔾1 → 𝔾2 is not. Type 3 groups, on the other
hand, have no efficient isomorphisms between 𝔾1 and 𝔾2. Type 1 bilinear groups are called symmetric
bilinear groups, while type 2 and 3 groups are called asymmetric bilinear groups. Let 𝒢bpg be an algorithm
that on input the unary encoding 1𝜆 of the security parameter 𝜆, outputs a description params𝔾 =
(𝑞,𝔾1,𝔾2,𝔾𝑇 , 𝑔1, 𝑔2, 𝑒) of a bilinear group.

𝐃𝐞fi𝐧𝐢𝐭𝐢𝐨𝐧 𝟐.𝟒 (𝐃𝐮𝐚𝐥 𝐏𝐚𝐢𝐫𝐢𝐧𝐠 𝐕𝐞𝐜𝐭𝐨𝐫 𝐒𝐩𝐚𝐜𝐞𝐬: DPVS [𝐎𝐓𝟎𝟗,𝐎𝐓𝟏𝟎]): A dual pairing vector space
(DPVS) params𝕍 = (𝑞,𝕍1,𝕍2, 𝔾𝑇 ,𝔸1,𝔸2, 𝑒) by the direct product of a bilinear group params𝔾 =
(𝑞,𝔾1,𝔾2,𝔾𝑇 , 𝑔1, 𝑔2, 𝑒) is a tuple of a prime integer 𝑞; 𝑚-dimensional vector spaces 𝕍𝜒 = 𝔾𝑚

𝜒 over 𝔽𝑞, for
𝜒 ∈ [2], under vector addition ‘⊞’ and scalar multiplication ‘∘’ defined componentwise; canonical bases

𝔸𝜒 = {𝒂𝜒,𝑗 = (

𝑗−1⏞ ⏟
1𝔾𝜒 , . . . , 1𝔾𝜒 , 𝑔𝜒,

𝑚−𝑗⏞ ⏟
1𝔾𝜒 , . . . , 1𝔾𝜒)}𝑗∈[𝑚] of 𝕍𝜒, for 𝜒 ∈ [2], where 1𝔾𝜒 is the identity element of

the group 𝔾𝜒, for 𝜒 ∈ [2]; and a pairing 𝑒 : 𝕍1×𝕍2 → 𝔾𝑇 defined by 𝑒(𝒗,𝒘) =
∏︀

𝑗∈[𝑚]

𝑒(𝑔𝑣
(𝑗)

1 , 𝑔𝑤
(𝑗)

2) ∈ 𝔾𝑇 ,

for all 𝒗 = (𝑔𝑣
(1)

1 , . . . , 𝑔𝑣
(𝑞)

1) ∈ 𝕍1, 𝒘 = (𝑔𝑤
(1)

2 , . . . , 𝑔𝑤
(𝑞)

2) ∈ 𝕍2. Observe that the newly defined map 𝑒 is
also non-degenerate bilinear, i.e., 𝑒 satisfies the following two properties:

– Bilinearity : 𝑒(𝜇 ∘ 𝒗, 𝜂 ∘𝒘) = 𝑒(𝒗,𝒘)𝜇𝜂, for 𝜇, 𝜂 ∈ 𝔽𝑞, 𝒗 ∈ 𝕍1, and 𝒘 ∈ 𝕍2.
– Non-degeneracy : If 𝑒(𝒗,𝒘) = 1𝔾𝑇

for all 𝒘 ∈ 𝕍2, then 𝒗 = 𝟏𝑚
𝔾1
.

9

We will often omit the symbol ‘∘’ for scalar multiplication and abuse ‘+’ for the vector addition ‘⊞’
when it is clear from the context. For any set 𝕎 = {𝒘1, . . . ,𝒘𝑚} of vectors in 𝕍𝜒, for 𝜒 ∈ [2], and any
vector #»𝑣 ∈ 𝔽𝑚

𝑞 , let (#»𝑣)𝕎 represents the vector in 𝕍𝜒 formed by the linear combination of the members

of 𝕎 with the entries of #»𝑣 as the coefficients, i.e., (#»𝑣)𝕎 =
∑︀

𝑗∈[𝑚]

𝑣(𝑗)𝒘𝑗 ∈ 𝕍𝜒. Also, for any vector

𝒗 ∈ 𝕍𝜒, for 𝜒 ∈ [2], and any matrix 𝐴 = (𝑎𝑗,𝑡)𝑚×𝑚 with entries 𝑎𝑗,𝑡 ∈ 𝔽𝑞, for 𝑗, 𝑡 ∈ [𝑚], we denote

by 𝒗𝐴 the 𝑚-dimensional vector (𝑔

∑︀
𝑗∈[𝑚]

𝑎𝑗,1𝑣
(𝑗)

𝜒 , . . . , 𝑔

∑︀
𝑗∈[𝑚]

𝑎𝑗,𝑚𝑣(𝑗)

𝜒) ∈ 𝕍𝜒. The DPVS generation algorithm
𝒢dpvs takes input the unary encoded security parameter 1𝜆, a dimension value 𝑚 ∈ ℕ, along with a

bilinear group params𝔾 = (𝑞,𝔾1,𝔾2,𝔾𝑇 , 𝑔1, 𝑔2, 𝑒)
R←− 𝒢bpg(), and outputs a description params𝕍 = (𝑞,𝕍1,

𝕍2,𝔾𝑇 ,𝔸1,𝔸2, 𝑒) of DPVS with 𝑚-dimensional 𝕍1 and 𝕍2.

We now describe random dual orthogonal basis generator 𝒢ob [OT09,OT10] in Fig. 2.1. This algorithm
would be utilized as a sub-routine in our constructions.

𝒢ob(𝑚, params𝕍, 𝜈): This algorithm takes as input the unary encoded security parameter 1𝜆, a dimen-

sion value 𝑚 ∈ ℕ, a 𝑚-dimensional DPVS params𝕍 = (𝑞,𝕍1,𝕍2,𝔾𝑇 ,𝔸1,𝔸2, 𝑒)
R←− 𝒢dpvs(𝑚, params𝔾 =

(𝑞,𝔾1,𝔾2,𝔾𝑇 , 𝑔1, 𝑔2, 𝑒)), along with a random value 𝜈
U←− 𝔽𝑞∖{0}, and performs the following operations:

1. It first samples random 𝐵 = (𝑏𝑗,𝑡)𝑚×𝑚
U←− GL(𝑚,𝔽𝑞).

2. Next, it computes 𝐵★ = (𝑏*𝑗,𝑡)𝑚×𝑚 = 𝜈𝐵*.

3. For all 𝑗 ∈ [𝑚], let
#»

𝑏 𝑗 and
#»

𝑏 *
𝑗 represent the 𝑗th row-vectors of 𝐵 and 𝐵★ respectively. It computes

𝒃𝑗 = (
#»

𝑏 𝑗)𝔸1 , 𝒃
*
𝑗 = (

#»

𝑏 *
𝑗)𝔸2 , for 𝑗 ∈ [𝑚], and sets

𝔹 = {𝒃1, . . . , 𝒃𝑚},𝔹* = {𝒃*1, . . . , 𝒃*𝑚}.

Clearly 𝔹 and 𝔹* form bases of the vector spaces 𝕍1 = 𝔾𝑚
1 and 𝕍2 = 𝔾𝑚

2 respectively. Also, note
that 𝔹 and 𝔹* are dual orthogonal in the sense that for all 𝑗, 𝑗′ ∈ [𝑚],

𝑒(𝒃𝑗 , 𝒃
*
𝑗′) =

{︂
𝑔𝑇 , if 𝑗 = 𝑗′

1𝔾𝑇 , otherwise
,

where 𝑔𝑇 = 𝑒(𝑔1, 𝑔2)
𝜈 .

4. It returns (𝔹,𝔹*).

𝐅𝐢𝐠. 𝟐.𝟏: Dual Orthogonal Basis Generator 𝒢ob

2.4 Complexity Assumptions

𝐀𝐬𝐬𝐮𝐦𝐩𝐭𝐢𝐨𝐧 𝟏 (𝒌-𝐋𝐢𝐧𝐞𝐚𝐫: 𝒌-LIN [𝐒𝐡𝐚𝟎𝟕]): Fix a number 𝜒 ∈ [2]. The 𝑘-LIN problem is to guess a bit

𝛽
U←− {0, 1} given 𝜀𝛽 = (params𝔾, 𝑔

𝜉1
𝜒 , . . . , 𝑔

𝜉𝑘
𝜒 , 𝑔

𝛿1𝜉1
𝜒 , . . . , 𝑔𝛿𝑘𝜉𝑘𝜒 ,ℜ𝛽); where params𝔾 = (𝑞,𝔾1,𝔾2,𝔾𝑇 , 𝑔1,

𝑔2, 𝑒)
R←− 𝒢bpg(); 𝜉1, . . . , 𝜉𝑘, 𝜎

U←− 𝔽𝑞∖{0}; 𝛿1, . . . , 𝛿𝑘
U←− 𝔽𝑞; and ℜ𝛽 = 𝑔

∑︀
𝑗∈[𝑘]

𝛿𝑗

𝜒 or 𝑔
𝜎+

∑︀
𝑗∈[𝑘]

𝛿𝑗

𝜒 according as

𝛽 = 0 or 1. The 𝑘-LIN assumption states that for any PPT algorithm 𝒜, for any security parameter 𝜆,
the advantage of ℱ in deciding the 𝑘-LIN problem,

Adv𝑘-lin𝒜 (𝜆) =
⃒⃒⃒
Pr[1

R←− 𝒜(𝜀0)]− Pr[1
R←− 𝒜(𝜀1)]

⃒⃒⃒
≤ negl(𝜆),

for some negligible function negl.

We now define a set of decisional problems. We rely on the hardness of these problems for deriving security
of our constructions.

𝐃𝐞fi𝐧𝐢𝐭𝐢𝐨𝐧 𝟐.𝟓 (Problem 1): Problem 1 is to guess a bit 𝛽
U←− {0, 1} given 𝜚𝛽 = (params𝕍, 𝑔𝑇 ,

{̂︀𝔹𝜄, ̂︀𝔹*
𝜄 }𝜄∈[𝑛], {𝜰 𝜄,𝛽}𝜄∈[𝑛]); where params𝔾 = (𝑞,𝔾1,𝔾2,𝔾𝑇 , 𝑔1, 𝑔2, 𝑒)

R←− 𝒢bpg(); params𝕍 = (𝑞,𝕍1,𝕍2,𝔾𝑇 ,

𝔸1,𝔸2, 𝑒)
R←− 𝒢dpvs(2𝑚 + 2𝑘 + 1, params𝔾); 𝜈

U←− 𝔽𝑞∖{0}; 𝑔𝑇 = 𝑒(𝑔1, 𝑔2)
𝜈 ;(𝔹𝜄,𝔹*

𝜄)
R←− 𝒢ob(2𝑚 + 2𝑘 +

1, params𝕍, 𝜈); ̂︀𝔹𝜄 = {𝒃𝜄,1, . . . , 𝒃𝜄,2𝑚+1, 𝒃𝜄,2𝑚+𝑘+1, . . . , 𝒃𝜄,2𝑚+2𝑘}, ̂︀𝔹*
𝜄 = {𝒃*𝜄,1, . . . , 𝒃*𝜄,2𝑚+𝑘}, for 𝜄 ∈ [𝑛];

10

𝛼1, . . . , 𝛼𝑘
U←− 𝔽𝑞; ℑ

U←− 𝔽𝑞∖{0}; and 𝜰 𝜄,𝛽 = (
#»
0 2𝑚+𝑘, 𝛼1, . . . , 𝛼𝑘, 0)𝔹𝜄 or (

#»
0 2𝑚+𝑘, 𝛼1, . . . , 𝛼𝑘,ℑ)𝔹𝜄 ac-

cording as 𝛽 = 0 or 1. For any PPT algorithm 𝒜, the advantage of 𝒜 in deciding Problem 1 is defined
as

Advp1𝒜 (𝜆) =
⃒⃒⃒
Pr[1

R←− 𝒜(𝜚0)]− Pr[1
R←− 𝒜(𝜚1)]

⃒⃒⃒
.

𝐃𝐞fi𝐧𝐢𝐭𝐢𝐨𝐧 𝟐.𝟔 (Problem 1∗): Problem 1* is to guess a bit 𝛽
U←− {0, 1} given 𝜚𝛽 = (params𝕍, 𝑔𝑇 ,

{̂︀𝔹𝜄, ̂︀𝔹*
𝜄 }𝜄∈[𝑛], {𝜰 𝜄,𝛽}𝜄∈[𝑛]); where params𝔾 = (𝑞,𝔾1,𝔾2,𝔾𝑇 , 𝑔1, 𝑔2, 𝑒)

R←− 𝒢bpg(); params𝕍 = (𝑞,𝕍1,𝕍2,𝔾𝑇 ,

𝔸1,𝔸2, 𝑒)
R←− 𝒢dpvs(2𝑚 + 2𝑘 + 1, params𝔾); 𝜈

U←− 𝔽𝑞∖{0}; 𝑔𝑇 = 𝑒(𝑔1, 𝑔2)
𝜈 ; (𝔹𝜄,𝔹*

𝜄)
R←− 𝒢ob(2𝑚 + 2𝑘 +

1, params𝕍, 𝜈), for 𝜄 ∈ [𝑛]; ̂︀𝔹𝜄 = {𝒃𝜄,1, . . . , 𝒃𝜄,2𝑚+1, 𝒃𝜄,2𝑚+𝑘+1, . . . , 𝒃𝜄,2𝑚+2𝑘}, ̂︀𝔹*
𝜄 = {𝒃*𝜄,1, . . . , 𝒃*𝜄,2𝑚+𝑘,

𝒃*𝜄,2𝑚+2𝑘+1}, for 𝜄 ∈ [𝑛]; 𝛼1, . . . , 𝛼𝑘
U←− 𝔽𝑞; ℑ

U←− 𝔽𝑞∖{0}; and 𝜰 𝜄,𝛽 = (
#»
0 2𝑚, 𝛼1, . . . , 𝛼𝑘,

#»
0 𝑘, 0)𝔹*

𝜄
or

(
#»
0 2𝑚, 𝛼1, . . . , 𝛼𝑘,

#»
0 𝑘,ℑ)𝔹*

𝜄
according as 𝛽 = 0 or 1, for 𝜄 ∈ [𝑛]. For any PPT algorithm 𝒜, the advantage

of 𝒜 in deciding Problem 1* is defined as

Advp1*𝒜 (𝜆) =
⃒⃒⃒
Pr[1

R←− 𝒜(𝜚0)]− Pr[1
R←− 𝒜(𝜚1)]

⃒⃒⃒
.

In Appendix A, we will justify the reducibility of the hardness of the two decisional problems described
above to that of the 𝑘-LIN problem.

2.5 Notion of Full-Hiding Multi-Input Inner Product Functional Encryption

𝐃𝐞fi𝐧𝐢𝐭𝐢𝐨𝐧 𝟐.𝟕 (𝐌𝐮𝐥𝐭𝐢-𝐈𝐧𝐩𝐮𝐭 𝐈𝐧𝐧𝐞𝐫 𝐏𝐫𝐨𝐝𝐮𝐜𝐭 𝐅𝐮𝐧𝐜𝐭𝐢𝐨𝐧𝐚𝐥𝐢𝐭𝐲): An unbounded-arity multi-input inner

product function family ℱ𝑚,B
𝜆 = {ℱ𝑚,B

𝑆 }, for some 𝑚,B ∈ ℕ, consists of the sub-families ℱ𝑚,B
𝑆 of

bounded-arity multi-input inner product functions, where each subfamily ℱ𝑚,B
𝑆 is parameterized with an

index set 𝑆 ⊆ [𝑡(𝜆)] for any polynomial 𝑡, and contains functions 𝑓{ #»𝑦 𝜄}𝜄∈𝑆
: (ℤ𝑚)|𝑆| → ℤ associated with

sets of vectors { #»𝑦 𝜄}𝜄∈𝑆 such that each vector #»𝑦 𝜄 ∈ ℤ𝑚, where 𝑓{ #»𝑦 𝜄}𝜄∈𝑆
({ #»𝑥 𝜄}𝜄∈𝑆) =

∑︀
𝜄∈𝑆

#»𝑥 𝜄 · #»𝑦 𝜄, for all

sets of vectors { #»𝑥 𝜄}𝜄∈𝑆 such that each vector #»𝑥 𝜄 ∈ ℤ𝑚 and the norm of the inner product | #»𝑥 𝜄 · #»𝑦 𝜄| ≤ B
for all 𝜄 ∈ 𝑆.

Without loss of generality, when dealing with MIFE for some bounded-arity multi-input inner product
function family ℱ𝑚,B

𝑆 , we consider the associated index set 𝑆 to be [𝑛], and denote the function family
as ℱ𝑚,B

𝑛 , where 𝑛 = |𝑆|.

𝐃𝐞fi𝐧𝐢𝐭𝐢𝐨𝐧 𝟐.𝟖 (𝐅𝐮𝐥𝐥-𝐇𝐢𝐝𝐢𝐧𝐠 𝐏𝐫𝐢𝐯𝐚𝐭𝐞 𝐊𝐞𝐲 𝐁𝐨𝐮𝐧𝐝𝐞𝐝-𝐀𝐫𝐢𝐭𝐲 𝐌𝐮𝐥𝐭𝐢-𝐈𝐧𝐩𝐮𝐭 𝐈𝐧𝐧𝐞𝐫 𝐏𝐫𝐨𝐝𝐮𝐜𝐭 𝐅𝐮𝐧𝐜-
𝐭𝐢𝐨𝐧𝐚𝐥 𝐄𝐧𝐜𝐫𝐲𝐩𝐭𝐢𝐨𝐧: FH-MIPE): A full-hiding private key bounded-arity multi-input inner product func-
tional encryption scheme for an inner product function family ℱ𝑚,B

𝑛 consists of the following polynomial-
time algorithms:

FH-MIPE.Setup(𝑚,𝑛,B): This algorithm takes as input the unary encoded security parameter 1𝜆, along
with the length 𝑚 ∈ ℕ of vectors, the arity 𝑛 ∈ ℕ of the multi-input inner product functionality, and
the bound B ∈ ℕ on the size of each component inner products. It generates a master secret key
msk and the corresponding public parameters pp. Observe that we are considering private key setting
and hence pp is not sufficient to encrypt. It merely includes some public informations required for
decryption, e.g., the group description in a bilinear-map-based construction.

FH-MIPE.KeyGen(pp,msk, { #»𝑦 𝜄}𝜄∈[𝑛]): On input the public parameters pp, the master secret key msk,
along with a set of 𝑛 vectors { #»𝑦 𝜄}𝜄∈[𝑛] such that #»𝑦 𝜄 ∈ ℤ𝑚 for all 𝜄 ∈ [𝑛], this algorithm outputs a
decryption key sk.

FH-MIPE.Encrypt(pp,msk, 𝜄, #»𝑥 𝜄): This algorithm upon input the public parameters pp, the master secret
key msk, an index 𝜄 ∈ [𝑛], and a vector #»𝑥 𝜄 ∈ ℤ𝑚

𝑝 , outputs a ciphertext ct𝜄, which includes the index
𝜄 in the clear.

FH-MIPE.Decrypt(pp, sk, {ct𝜄}𝜄∈[𝑛]): On input the public parameters pp, a decryption key sk, along

with a set of 𝑛 ciphertexts {ct𝜄}𝜄∈[𝑛], where for all 𝜄 ∈ [𝑛], ct𝜄 is a ciphertext prepared for the 𝜄th

index, this algorithm either outputs a value 𝛬 ∈ ℤ or the distinguished symbol ⊥ indicating failure.

The algorithm FH-MIPE.Decrypt is deterministic while all the others are probabilistic. The algorithms
satisfy the following correctness and security requirements.

11

■ 𝐂𝐨𝐫𝐫𝐞𝐜𝐭𝐧𝐞𝐬𝐬: An FH-MIPE scheme is correct if for any security parameter 𝜆 ∈ ℕ, any polynomial 𝑛 in
𝜆, any 𝑚,B ∈ ℕ, any two sets of 𝑛 vectors { #»𝑥 𝜄}𝜄∈[𝑛], { #»𝑦 𝜄}𝜄∈[𝑛] such that #»𝑥 𝜄,

#»𝑦 𝜄 ∈ ℤ𝑚 with | #»𝑥 𝜄 · #»𝑦 𝜄| ≤ B
for all 𝜄 ∈ [𝑛], we have

Pr
[︁
FH-MIPE.Decrypt(pp, sk, {ct𝜄}𝜄∈[𝑛]) =

∑︁
𝜄∈[𝑛]

#»𝑥 𝜄 · #»𝑦 𝜄 :

(pp,msk)
R←− FH-MIPE.Setup(𝑚,𝑛,B);

sk
R←− FH-MIPE.KeyGen(pp,msk, { #»𝑦 𝜄}𝜄∈[𝑛]);

{ct𝜄
R←− FH-MIPE.Encrypt(pp,msk, 𝜄, #»𝑥 𝜄)}𝜄∈[𝑛]

]︁
≥ 1− negl(𝜆),

for some negligible function negl.

■ 𝐅𝐮𝐥𝐥-𝐇𝐢𝐝𝐢𝐧𝐠 𝐒𝐞𝐜𝐮𝐫𝐢𝐭𝐲: The (indistinguishability-based) full-hiding security notion for a private key

bounded-arity FH-MIPE scheme is formalized through the experiment Exptfh-mipe𝒜 (𝛽), for random 𝛽
U←−

{0, 1}, which involves a PPT adversary 𝒜 and a PPT challenger ℬ. The experiment is described below:

𝐒𝐞𝐭𝐮𝐩: ℬ generates (pp,msk)
R←− FH-MIPE.Setup(𝑚,𝑛,B) and provides pp to 𝒜.

𝐐𝐮𝐞𝐫𝐲 𝐏𝐡𝐚𝐬𝐞: 𝒜 is allowed to adaptively make any polynomial number of queries of the following two
types in arbitrary order:
– Decryption key query : In response to the 𝑖th decryption key query of 𝒜 corresponding to a pair

of sets of vectors ({ #»𝑦 𝜄,𝑖,0}𝜄∈[𝑛], { #»𝑦 𝜄,𝑖,1}𝜄∈[𝑛]) such that #»𝑦 𝜄,𝑖,0,
#»𝑦 𝜄,𝑖,1 ∈ ℤ𝑚 for all 𝜄 ∈ [𝑛], ℬ forms a

decryption key sk*
𝑖

R←− FH-MIPE.KeyGen(pp, msk, { #»𝑦 𝜄,𝑖,𝛽}𝜄∈[𝑛]) and hands sk*
𝑖 to 𝒜.

– Ciphertext query : To answer a ciphertext query of 𝒜 for the 𝜄th index corresponding to a pair of vec-

tors (#»𝑥 𝜄,𝑡𝜄,0,
#»𝑥 𝜄,𝑡𝜄,1) ∈ (ℤ𝑚)2, ℬ prepares a ciphertext ct*

𝜄,𝑡𝜄

R←− FH.MIPE.Encrypt(pp,msk, #»𝑥 𝜄,𝑡𝜄,𝛽)
and gives ct*

𝜄,𝑡𝜄 to 𝒜.
Let the total number of decryption key query made by 𝒜 be 𝑞key(≥ 0) and the total number of
ciphertext query made for the 𝜄th index be 𝑞ct,𝜄(≥ 0). The restrictions on the queries of 𝒜 are that if
𝑞ct,𝜄 ≥ 1 for all 𝜄 ∈ [𝑛], then for all 𝑖 ∈ [𝑞key] and for all (𝑡1, . . . , 𝑡𝑛) ∈ [𝑞ct,1] × . . . × [𝑞ct,𝑛], we must
have ∑︀

𝜄∈[𝑛]

#»𝑥 𝜄,𝑡𝜄,0 · #»𝑦 𝜄,𝑖,0 =
∑︀

𝜄∈[𝑛]

#»𝑥 𝜄,𝑡𝜄,1 · #»𝑦 𝜄,𝑖,1. (2.1)

𝐆𝐮𝐞𝐬𝐬: 𝒜 eventually outputs a guess bit 𝛽′ ∈ {0, 1}, which is the output of the experiment.

A private key FH-MIPE scheme is said to be full-hiding if for any PPT adversary 𝒜, for any security
parameter 𝜆, the advantage of 𝒜 in the above experiment,

Advfh-mipe𝒜 (𝜆) =
⃒⃒
Pr[Exptfh-mipe𝒜 (0) = 1]− Pr[Exptfh-mipe𝒜 (1) = 1]

⃒⃒
≤ negl(𝜆),

for some negligible function negl.

𝐃𝐞fi𝐧𝐢𝐭𝐢𝐨𝐧 𝟐.𝟗 (𝐅𝐮𝐥𝐥-𝐇𝐢𝐝𝐢𝐧𝐠 𝐔𝐧𝐛𝐨𝐮𝐧𝐝𝐞𝐝 𝐏𝐫𝐢𝐯𝐚𝐭𝐞 𝐊𝐞𝐲 𝐌𝐮𝐥𝐭𝐢-𝐈𝐧𝐩𝐮𝐭 𝐈𝐧𝐧𝐞𝐫 𝐏𝐫𝐨𝐝𝐮𝐜𝐭 𝐄𝐧𝐜𝐫𝐲𝐩𝐭𝐢𝐨𝐧:
FH-UMIPE): An unbounded full-hiding private key multi-input inner product encryption scheme for an

inner product function family ℱ𝑚,B
𝜆 consists of the following polynomial-time algorithms:

FH-UMIPE.Setup(𝑚,B): This algorithm takes as input the unary encoded security parameter 1𝜆, along
with the length 𝑚 ∈ ℕ of vectors, and the bound B ∈ ℕ of each inner product values. It generates a
master secret key msk and the corresponding public parameters pp. It publishes pp, while keeps msk
to itself.

FH-UMIPE.KeyGen(pp,msk, 𝑆, { #»𝑦 𝜄}𝜄∈𝑆): On input the public parameters pp, the master secret key msk,
a set of indices 𝑆 ⊆ [𝑡(𝜆)] where 𝑡 is any polynomial, along with an |𝑆|-tuple of vectors { #»𝑦 𝜄}𝜄∈𝑆 ∈
(ℤ𝑚)|𝑆|, this algorithm provides a decryption key sk𝑆 including the set S explicitly.

FH-UMIPE.Encrypt(pp,msk, 𝜄, #»𝑥 𝜄): On input the public parameters pp, the master secret key msk, an
index 𝜄 ∈ [2𝜆], and a vector #»𝑥 𝜄 ∈ ℤ𝑚, outputs a ciphertext ct𝜄, which includes the index 𝜄 in the
clear.

FH-UMIPE.Decrypt(pp, sk𝑆 , {ct𝜄}𝜄∈𝑆): On input the public parameters pp, a decryption key sk𝑆 asso-
ciated with 𝑆, along with a tuple of |𝑆| ciphertexts {ct𝜄}𝜄∈𝑆 , where ct𝜄 is a ciphertext prepared for
the index 𝜄, a decrypter either outputs a value 𝛬 ∈ ℕ or the distinguished symbol ⊥ indicating failure.

The algorithm FH-UMIPE.Decrypt is deterministic while all the others are probabilistic. The algorithms
satisfy the following correctness and security requirements.

12

■ 𝐂𝐨𝐫𝐫𝐞𝐜𝐭𝐧𝐞𝐬𝐬: An FH-UMIPE scheme is correct if for any 𝑚,B, 𝜆 ∈ ℕ, any set of indices 𝑆 ⊆ [𝑡(𝜆)],
where 𝑡 is any polynomial, any two |𝑆|-tuples of vectors { #»𝑥 𝜄}𝜄∈𝑆 , { #»𝑦 𝜄}𝜄∈𝑆 ∈ (ℤ𝑚)|𝑆| with | #»𝑥 𝜄 · #»𝑦 𝜄| ≤ B
for all 𝜄 ∈ 𝑆, we have

Pr
[︁
FH-UMIPE.Decrypt(pp, sk𝑆 , {ct𝜄}𝜄∈𝑆) =

∑︀
𝜄∈𝑆

#»𝑥 𝜄 · #»𝑦 𝜄 :

(pp,msk)
R←− FH-UMIPE.Setup(𝑚,B);

sk𝑆
R←− FH-UMIPE.KeyGen(pp,msk, 𝑆, { #»𝑦 𝜄}𝜄∈𝑆);

{ct𝜄
R←− FH-UMIPE.Encrypt(pp, 𝜄, #»𝑥 𝜄)}𝜄∈𝑆

]︁
≥ 1− negl(𝜆)

■ 𝐅𝐮𝐥𝐥-𝐇𝐢𝐝𝐢𝐧𝐠 𝐒𝐞𝐜𝐮𝐫𝐢𝐭𝐲: The (indistinguishability-based) full-hiding security notion for a private key

FH-UMIPE scheme is formalized through the experiment Exptfh-umipe𝒜 (𝛽), for random 𝛽
U←− {0, 1}, which

involves a PPT adversary 𝒜 and a PPT challenger ℬ. The experiment is described below:

𝐒𝐞𝐭𝐮𝐩: ℬ generates (pp,msk)
R←− FH-UMIPE.Setup(𝑚,B) and gives pp to 𝒜.

𝐐𝐮𝐞𝐫𝐲 𝐏𝐡𝐚𝐬𝐞: 𝒜 is allowed to adaptively make any polynomial number of queries of the following two
types in arbitrary order:

– Decryption key query : In response to the 𝑖th decryption key query of 𝒜 corresponding to a set of
indices 𝑆𝑖 ⊆ [𝑡(𝜆)] for any polynomial 𝑡 and a pair of |𝑆𝑖|-tuples of vectors { #»𝑦 𝜄,𝑖,0,

#»𝑦 𝜄,𝑖,1}𝜄∈𝑆𝑖 ∈
((ℤ𝑚)|𝑆𝑖|)2, ℬ forms a decryption key sk*

𝑆𝑖,𝑖
R←− FH-UMIPE.KeyGen(pp, msk, 𝑆𝑖, { #»𝑦 𝜄,𝑖,𝛽}𝜄∈𝑆𝑖

) and
hands sk*

𝑆𝑖,𝑖
to 𝒜.

– Ciphertext query : To answer a ciphertext query of 𝒜 for the 𝜄th index corresponding to a pair of vec-

tors (#»𝑥 𝜄,𝑡𝜄,0,
#»𝑥 𝜄,𝑡𝜄,1) ∈ (ℤ𝑚)2, ℬ prepares a ciphertext ct*

𝜄,𝑡𝜄

R←− UFH.MIPE.Encrypt(pp,msk, #»𝑥 𝜄,𝑡𝜄,𝛽)
and gives ct*

𝜄,𝑡𝜄 to 𝒜.
Let the total number of decryption key query made by 𝒜 be 𝑞key(≥ 0) and the total number of
ciphertext query made for the 𝜄th index be 𝑞ct,𝜄(≥ 0). The restrictions on the queries of 𝒜 are
that for each 𝑖 ∈ [𝑞key], if 𝑞ct,𝜄 ≥ 1 for all 𝜄 ∈ 𝑆𝑖, then for all {𝑡𝜄}𝜄∈𝑆𝑖

∈
∏︀
𝜄∈𝑆𝑖

[𝑞ct,𝜄] we must have∑︀
𝜄∈𝑆𝑖

#»𝑥 𝜄,𝑡𝜄,0 · #»𝑦 𝜄,𝑖,0 =
∑︀
𝜄∈𝑆𝑖

#»𝑥 𝜄,𝑡𝜄,1 · #»𝑦 𝜄,𝑖,1.

𝐆𝐮𝐞𝐬𝐬: 𝒜 eventually outputs a guess bit 𝛽′ ∈ {0, 1}, which is the output of the experiment.

A private key FH-UMIPE scheme is said to be full-hiding if for any PPT adversary 𝒜, for any security
parameter 𝜆, the advantage of 𝒜 in the above experiment,

Advfh-umipe𝒜 (𝜆) =
⃒⃒
Pr[Exptfh-umipe𝒜 (0) = 1]− Pr[Exptfh-umipe𝒜 (1) = 1]

⃒⃒
≤ negl(𝜆),

for some negligible function negl.

3 The Proposed Full-Hiding Bounded Multi-Input Inner Prod-
uct Functional Encryption Scheme

In this section, we present our FH-MIPE scheme.

3.1 Construction

FH-MIPE.Setup(𝑚,𝑛,B): This algorithm takes as input the unary encoded security parameter 1𝜆, the
length 𝑚 ∈ ℕ of vectors, the arity 𝑛 ∈ ℕ of the multi-input inner product functionality, and the bound
B ∈ ℕ on each component inner product. It proceeds as follows:

1. First, it generates a bilinear group params𝔾 = (𝑞,𝔾1,𝔾2,𝔾𝑇 , 𝑔1, 𝑔2, 𝑒)
R←− 𝒢bpg() with 𝑞 ≫ 𝑛B.

2. Next, it creates params𝕍 = (𝑞,𝕍1,𝕍2,𝔾𝑇 ,𝔸1, 𝔸2, 𝑒)
R←− 𝒢dpvs(2𝑚+ 2𝑘 + 1, params𝔾).

3. Then, it samples random 𝜈
U←− 𝔽𝑞∖{0}, and computes 𝑔𝑇 = 𝑒(𝑔1, 𝑔2)

𝜈 .

13

4. After that, for 𝜄 ∈ [𝑛], it generates (𝔹𝜄 = {𝒃𝜄,1, . . . , 𝒃𝜄,2𝑚+2𝑘+1},𝔹*
𝜄 = {𝒃*𝜄,1, . . . , 𝒃*𝜄,2𝑚+2𝑘+1})

R←−
𝒢ob(2𝑚+ 2𝑘 + 1, params𝕍, 𝜈) and sets

̂︀𝔹𝜄 = {𝒃𝜄,1, . . . , 𝒃𝜄,𝑚, 𝒃𝜄,2𝑚+1, 𝒃𝜄,2𝑚+𝑘+1, . . . , 𝒃𝜄,2𝑚+2𝑘},̂︀𝔹*
𝜄 = {𝒃*𝜄,1, . . . , 𝒃*𝜄,𝑚, 𝒃*𝜄,2𝑚+1, . . . , 𝒃

*
𝜄,2𝑚+𝑘}.

5. It publishes the public parameters pp = (params𝕍, 𝑔𝑇), while sets the master secret key msk =

{̂︀𝔹𝜄, ̂︀𝔹*
𝜄 }𝜄∈[𝑛].

FH-MIPE.KeyGen(pp,msk, { #»𝑦 𝜄}𝜄∈[𝑛]): On input the public parameters pp, the master secret key msk,
along with a set of 𝑛 vectors { #»𝑦 𝜄}𝜄∈[𝑛] such that #»𝑦 𝜄 ∈ 𝔽𝑚

𝑞 , this algorithm executes the following steps:

1. First, it samples random 𝑟𝜄, 𝛾𝜄,1, . . . , 𝛾𝜄,𝑘−1
U←− 𝔽𝑞, for 𝜄 ∈ [𝑛], subject to the restriction that∑︀

𝜄∈[𝑛]

𝑟𝜄 = 0.

2. Next, for each 𝜄 ∈ [𝑛], it computes

𝒌𝜄 =
∑︀

𝑗∈[𝑚]

𝑦
(𝑗)
𝜄 𝒃*𝜄,𝑗 + 𝑟𝜄𝒃

*
𝜄,2𝑚+1 +

∑︀
𝑗∈[𝑘−1]

𝛾𝜄,𝑗𝒃
*
𝜄,2𝑚+1+𝑗

= (#»𝑦 𝜄,
#»
0𝑚, 𝑟𝜄, 𝛾𝜄,1, . . . , 𝛾𝜄,𝑘−1,

#»
0 𝑘, 0)𝔹*

𝜄
,

by making use of ̂︀𝔹*
𝜄 extracted from msk.

3. It outputs the decryption key sk = {𝒌𝜄}𝜄∈[𝑛].

FH-MIPE.Encrypt(pp,msk, 𝜄, #»𝑥 𝜄): Taking as input the public parameters pp, the master secret key msk,
an index 𝜄 ∈ [𝑛], along with a vector #»𝑥 𝜄 ∈ 𝔽𝑚

𝑞 , this algorithm performs the following steps:

1. It selects random 𝜙𝜄,1, . . . , 𝜙𝜄,𝑘
U←− 𝔽𝑞, and computes

𝒄𝜄 =
∑︀

𝑗∈[𝑚]

𝑥
(𝑗)
𝜄 𝒃𝜄,𝑗 + 𝒃𝜄,2𝑚+1 +

∑︀
𝑗∈[𝑘]

𝜙𝜄,𝑗𝒃𝜄,2𝑚+𝑘+𝑗

= (#»𝑥 𝜄,
#»
0𝑚, 1,

#»
0 𝑘−1, 𝜙𝜄,1, . . . , 𝜙𝜄,𝑘, 0)𝔹𝜄

,

by utilizing ̂︀𝔹𝜄 extracted from msk.

2. It outputs the ciphertext ct𝜄 = (𝜄, 𝒄𝜄).

FH-MIPE.Decrypt(pp, sk, {ct𝜄}𝜄∈[𝑛]): This algorithm takes as input the public parameters pp, a decryp-
tion key sk = {𝒌𝜄}𝜄∈[𝑛], and a set of 𝑛 ciphertexts {ct𝜄 = (𝜄, 𝒄𝜄)}𝜄∈[𝑛]. It does the following:

1. It first computes 𝐿𝑇 =
∏︀

𝜄∈[𝑛]

𝑒(𝒄𝜄,𝒌𝜄).

2. Then, it attempts to determine a value 𝛬 ∈ ℤ such that 𝑔𝛬𝑇 = 𝐿𝑇 by performing an exhaustive
search over a specified polynomial-size range of possible values. If it succeeds, then it outputs 𝛬.
Otherwise, it outputs ⊥ indicating failure.

We emphasize that the polynomial running time of our decryption algorithm is guaranteed by restrict-
ing the output to lie within a fixed polynomial-size range. Note that similar exhaustive search step is
used to determine the output in the decryption algorithm of all bilinear-map-based IPE constructions
(both single and multi-input) available in the literature.

𝐑𝐞𝐦𝐚𝐫𝐤 𝟑.𝟏: We would like to mention here that the FH-MIPE scheme described above can be proven
to achieve the full-hiding security only when the adversary makes at least one ciphertext query for each of
the 𝑛 encryption indices, i.e., the restriction Eq. (2.1) is applicable. However, using a semantically secure
SKE scheme, one can generically transform any FH-MIPE scheme that achieves full-hiding security under
such restriction to one that achieves the full-hiding security even when the adversary makes no ciphertext
query for some of the encryption slots. The transformation is rather straightforward and is presented in
Remark B.1 in Appendix B.

14

■ 𝐂𝐨𝐫𝐫𝐞𝐜𝐭𝐧𝐞𝐬𝐬: The correctness of the above FH-MIPE construction can be verified as follows: Observe
that for any set of 𝑛 ciphertexts {ct𝜄 = (𝜄, 𝒄𝜄)}𝜄∈[𝑛], where ct𝜄 = (𝜄, 𝒄𝜄) encrypts some vector #»𝑥 𝜄 ∈ 𝔽𝑚

𝑞

with respect to the index 𝜄, for 𝜄 ∈ [𝑛], and any decryption key sk = {𝒌𝜄}𝜄∈[𝑛] corresponding to a set of
𝑛 vectors { #»𝑦 𝜄}𝜄∈[𝑛] such that #»𝑦 𝜄 ∈ 𝔽𝑚

𝑞 for all 𝜄 ∈ [𝑛], we have

𝐿𝑇 =
∏︀

𝜄∈[𝑛]

𝑒(𝒄𝜄,𝒌𝜄) = 𝑔

∑︀
𝜄∈[𝑛]

#»𝑥 𝜄· #»𝑦 𝜄

𝑇 .

This follows from the expressions of 𝒄𝜄,𝒌𝜄, for 𝜄 ∈ [𝑛], in conjunction with the fact that for each 𝜄 ∈ [𝑛], 𝔹𝜄

and 𝔹*
𝜄 are dual orthogonal bases. Thus, if

∑︀
𝜄∈[𝑛]

#»𝑥 𝜄 · #»𝑦 𝜄 is contained within the specified polynomial-size

range of possible values that the decryption algorithm searches, then the decryption algorithm would
definitely output 𝛬 =

∑︀
𝜄∈[𝑛]

#»𝑥 𝜄 · #»𝑦 𝜄 as desired.

3.2 Security

Theorem 3.1 (Security of our FH-MIPE Scheme): Assume that the 𝑘-LIN problem is hard. Then, the FH-
MIPE construction described above achieves full-hiding security under the restriction that the adversary
makes at least one ciphertext query for each encryption index. Additionally, assuming the semantic secu-
rity of the SKE scheme employed, the FH-MIPE scheme obtained by applying the generic transformation
of Remark B.1 to the FH-MIPE scheme described above achieves full-hiding security without any restric-
tion on the number of ciphertext queries per encryption slot. More formally, for any PPT adversary 𝒜
against the full-hiding security of the FH-MIPE construction obtained by applying the generic transforma-
tion of Remark B.1 to the FH-MIPE scheme described above, there exists a PPT algorithm ℬ1 against the
𝑘-LIN problem and a PPT adversary ℬ2 against the simantic security of SKE such that for any security
parameter 𝜆, we have

Advfh-mipe𝒜 (𝜆) ≤
[︀
4

∑︀
𝜄∈[𝑛]

𝑞ct,𝜄 + 2𝑞key
]︀
Adv𝑘-linℬ1

(𝜆) + Advskeℬ2
(𝜆).

Proof: Here, we only proof the hull-hiding security of the above FH-MIPE scheme under the restriction
that the adversary makes at least one ciphertext query per encryption slot. The proof of the scheme
obtained after applying the generic conversion is sketched in Remark B.1.

The proof is structured as a hybrid argument over a series of experiments which differ in the construc-
tion of the decryption keys and/or ciphertexts queried by the adversary 𝒜 in the full-hiding security model
described in Definition 2.8. In the first hybrid experiment, the queried decryption keys and ciphertexts
are constructed as those in the security experiment Exptfh-mipe𝒜 (0). We then progressively change the ci-
phertexts and decryption keys in multiple hybrid steps to those in the security experiment Exptfh-mipe𝒜 (1).
We prove that each hybrid is indistinguishable from the previous one, thus proving the full-hiding se-
curity of the above FH-MIPE construction. Let 𝑞key be the number of 𝒜’s decryption key queries and
𝑞ct,𝜄 (≥ 1), for 𝜄 ∈ [𝑛], be the number of 𝒜’s ciphertext queries for the 𝜄th index. As noted earlier, we
consider 𝑞ct,𝜄 ≥ 1 for all 𝜄 ∈ [𝑛]. The hybrid experiments are described below. In these hybrids, a part
framed by a box indicates those terms which were modified in the transition from the previous game.
The sequence of hybrid experiments follow:

� 𝐒𝐞𝐪𝐮𝐞𝐧𝐜𝐞 𝐨𝐟 𝐇𝐲𝐛𝐫𝐢𝐝 𝐄𝐱𝐩𝐞𝐫𝐢𝐦𝐞𝐧𝐭𝐬

Hyb𝟎: This experiment corresponds to the experiment Exptfh-mipe𝒜 (0) described in Definition 2.8, i.e.,
the full-hiding security experiment where the random bit used by the challenger ℬ to generate queried
ciphertexts and decryption keys is 𝛽 = 0. More precisely, for all 𝜄 ∈ [𝑛], 𝑡𝜄 ∈ [𝑞ct,𝜄], in response to the 𝑡𝜄

th

ciphertext query of 𝒜 with respect to index 𝜄 corresponding to pair of vectors (#»𝑥 𝜄,𝑡𝜄,0,
#»𝑥 𝜄,𝑡𝜄,1) ∈ (𝔽𝑚

𝑞)2,
ℬ returns ct*

𝜄,𝑡𝜄 = (𝜄, 𝒄*𝜄,𝑡𝜄), where

𝒄*𝜄,𝑡𝜄 = (#»𝑥 𝜄,𝑡𝜄,0,
#»
0𝑚, 1,

#»
0 𝑘−1, 𝜙𝜄,𝑡𝜄,1, . . . , 𝜙𝜄,𝑡𝜄,𝑘, 0)𝔹𝜄 , (3.1)

and for all 𝑖 ∈ [𝑞key], to answer the 𝑖th decryption key query of 𝒜 corresponding to pair of sets of 𝑛
vectors ({ #»𝑦 𝜄,𝑖,0}𝜄∈[𝑛], { #»𝑦 𝜄,𝑖,1}𝜄∈[𝑛]) such that #»𝑦 𝜄,𝑖,0,

#»𝑦 𝜄,𝑖,1 ∈ 𝔽𝑚
𝑞 , ℬ generates sk*

𝑖 = {𝒌*
𝜄,𝑖}𝜄∈[𝑛], where

𝒌*
𝜄,𝑖 = (#»𝑦 𝜄,𝑖,0,

#»
0𝑚, 𝑟𝜄,𝑖, 𝛾𝜄,𝑖,1, . . . , 𝛾𝜄,𝑖,𝑘−1,

#»
0 𝑘, 0)𝔹*

𝜄
, for 𝜄 ∈ [𝑛]. (3.2)

15

Here, params𝔾 = (𝑞,𝔾1,𝔾2,𝔾𝑇 , 𝑔1, 𝑔2, 𝑒)
R←− 𝒢bpg(); params𝕍 = (𝑞,𝕍1,𝕍2,𝔾𝑇 , 𝔸1,𝔸2, 𝑒)

R←− 𝒢dpvs(2𝑚 +

2𝑘+1, params𝔾); 𝜈
U←− 𝔽𝑞∖{0}; (𝔹𝜄,𝔹*

𝜄)
R←− 𝒢ob(2𝑚+2𝑘+1, params𝕍, 𝜈), for 𝜄 ∈ [𝑛]; and 𝜙𝜄,𝑡𝜄,1, . . . , 𝜙𝜄,𝑡𝜄,𝑘,

𝑟𝜄,𝑖, 𝛾𝜄,𝑖,1, . . . , 𝛾𝜄,𝑖,𝑘−1
U←− 𝔽𝑞 for all 𝜄 ∈ [𝑛], 𝑡𝜄 ∈ [𝑞ct,𝜄], 𝑖 ∈ [𝑞key], such that

∑︀
𝜄∈[𝑛]

𝑟𝜄,𝑖 = 0 for all 𝑖 ∈ [𝑞key].

Hyb𝟏 𝐒𝐞𝐪𝐮𝐞𝐧𝐜𝐞

Hyb𝟏,𝜾∗,𝝁𝜾∗ ,𝟏
(𝜾∗ ∈ [𝒏], 𝝁𝜾∗ ∈ [𝒒ct,𝜾∗]): Hyb1,0,𝑞ct,0,3 coincides with Hyb0. This experiment is the

same as Hyb1,𝜄*−1,𝑞ct,𝜄*−1,3
, if 𝜇𝜄* = 1, or Hyb1,𝜄*,𝜇𝜄*−1,3, if 𝜇𝜄* > 1, with the only exception that in

response to the 𝜇𝜄*
th ciphertext query of 𝒜 with respect to index 𝜄* corresponding to pair of vectors

(#»𝑥 𝜄*,𝜇𝜄* ,0,
#»𝑥 𝜄*,𝜇𝜄* ,1) ∈ (𝔽𝑚

𝑞)2, ℬ returns ct*
𝜄*,𝜇𝜄*

= (𝜄*, 𝒄*𝜄*,𝜇𝜄*
), where

𝒄*𝜄*,𝜇𝜄*
= (#»𝑥 𝜄*,𝜇𝜄* ,0,

#»
0𝑚, 1,

#»
0 𝑘−1, 𝜙𝜄*,𝜇𝜄* ,1, . . . , 𝜙𝜄*,𝜇𝜄* ,𝑘, 𝜌𝜄*,𝜇𝜄*)𝔹𝜄* . (3.3)

Here, 𝜌𝜄*,𝜇𝜄*
U←− 𝔽𝑞∖{0}, and the other variables are formed as in Hyb1,𝜄*−1,𝑞ct,𝜄*−1,3

or Hyb1,𝜄*,𝜇𝜄*−1,3

according as 𝜇𝜄* = 1 or 𝜇𝜄* > 1.

Hyb𝟏,𝜾∗,𝝁𝜾∗ ,𝟐
(𝜾∗ ∈ [𝒏], 𝝁𝜾∗ ∈ [𝒒ct,𝜾∗]): This experiment is analogous to Hyb1,𝜄*,𝜇𝜄* ,1

except that

to answer the 𝜇𝜄*
th ciphertext query of 𝒜 with respect to index 𝜄* corresponding to pair of vectors

(#»𝑥 𝜄*,𝜇𝜄* ,0,
#»𝑥 𝜄*,𝜇𝜄* ,1) ∈ (𝔽𝑚

𝑞)2, ℬ generates ct*
𝜄*,𝜇𝜄*

= (𝜄*, 𝒄*𝜄*,𝜇𝜄*
), where

𝒄*𝜄*,𝜇𝜄*
= (#»𝑥 𝜄*,𝜇𝜄* ,0,

#»𝑥 𝜄*,𝜇𝜄* ,1 , 1,
#»
0 𝑘−1, 𝜙𝜄*,𝜇𝜄* ,1, . . . , 𝜙𝜄*,𝜇𝜄* ,𝑘, 𝜌𝜄*,𝜇𝜄*)𝔹𝜄* . (3.4)

Here, all the variables are created as in Hyb1,𝜄*,𝜇𝜄* ,1
.

Hyb𝟏,𝜾∗,𝝁𝜾∗ ,𝟑
(𝜾∗ ∈ [𝒏], 𝝁𝜾∗ ∈ [𝒒ct,𝜾∗]): This experiment is exactly identical to Hyb1,𝜄*,𝜇𝜄* ,2

with

the only exception that in response to the 𝜇𝜄*
th ciphertext query of 𝒜 with respect to the index 𝜄*

corresponding to pair of vectors (#»𝑥 𝜄*,𝜇𝜄* ,0,
#»𝑥 𝜄*,𝜇𝜄* ,1) ∈ (𝔽𝑚

𝑞)2, ℬ returns ct*
𝜄*,𝜇𝜄*

= (𝜄*, 𝒄*𝜄*,𝜇𝜄*
), where

𝒄*𝜄*,𝜇𝜄*
= (#»𝑥 𝜄*,𝜇𝜄* ,0,

#»𝑥 𝜄*,𝜇𝜄* ,1, 1,
#»
0 𝑘−1, 𝜙𝜄*,𝜇𝜄* ,1, . . . , 𝜙𝜄*,𝜇𝜄* ,𝑘, 0)𝔹𝜄* . (3.5)

Here, all the variables are created as in Hyb1,𝜄*,𝜇𝜄* ,2
.

Hyb𝟐 𝐒𝐞𝐪𝐮𝐞𝐧𝐜𝐞

Hyb𝟐,𝝊,𝟏 (𝝊 ∈ [𝒒key]): Hyb2,0,3 coincides with Hyb1,𝑛,𝑞ct,𝑛,3. This experiment is analogous to Hyb2,𝜐−1,3

with the only exception that in response to the 𝜐th decryption key query of 𝒜 corresponding to the pair
of sets of 𝑛 vectors ({ #»𝑦 𝜄,𝜐,0}𝜄∈[𝑛], { #»𝑦 𝜄,𝜐,1}𝜄∈[𝑛]) such that #»𝑦 𝜄,𝜐,0,

#»𝑦 𝜄,𝜐,1 ∈ 𝔽𝑚
𝑞 for all 𝜄 ∈ [𝑛], ℬ gives back

sk*
𝜐 = {𝒌*

𝜄,𝜐}𝜄∈[𝑛], where

𝒌*
𝜄,𝜐 = (#»𝑦 𝜄,𝜐,0,

#»
0𝑚, 𝑟𝜄,𝜐, 𝛾𝜄,𝜐,1, . . . , 𝛾𝜄,𝜐,𝑘−1,

#»
0 𝑘, 𝜔𝜄,𝜐)𝔹*

𝜄
, for 𝜄 ∈ [𝑛]. (3.6)

Here, 𝜔𝜄,𝜐
U←− 𝔽𝑞∖{0} for all 𝜄 ∈ [𝑛], such that

∑︀
𝜄∈[𝑛]

𝜔𝜄,𝜐 = 0, and all the other variables are generated as

in Hyb2,𝜐−1,3.

Hyb𝟐,𝝊,𝟐 (𝝊 ∈ [𝒒key]): This experiment is identical to Hyb2,𝜐,1 except that in response to the 𝜐th

decryption key query of 𝒜 corresponding to the pair of sets of 𝑛 vectors ({ #»𝑦 𝜄,𝜐,0}𝜄∈[𝑛], { #»𝑦 𝜄,𝜐,1}𝜄∈[𝑛]) such
that #»𝑦 𝜄,𝜐,0,

#»𝑦 𝜄,𝜐,1 ∈ 𝔽𝑚
𝑞 , ℬ returns sk*

𝜐 = {𝒌*
𝜄,𝜐}𝜄∈[𝑛], where

𝒌*
𝜄,𝜐 = (

#»
0𝑚, #»𝑦 𝜄,𝜐,1, ̃︀𝑟𝜄,𝜐 , 𝛾𝜄,𝜐,1, . . . , 𝛾𝜄,𝜐,𝑘−1,

#»
0 𝑘, 𝜔𝜄,𝜐)𝔹*

𝜄
, for 𝜄 ∈ [𝑛]. (3.7)

Here, ̃︀𝑟𝜄,𝜐 U←− 𝔽𝑞 for all 𝜄 ∈ [𝑛], such that
∑︀

𝜄∈[𝑛]

̃︀𝑟𝜄,𝜐 = 0, and all the variables are generated as in Hyb2,𝜐,1.

16

Hyb𝟐,𝝊,𝟑 (𝝊 ∈ [𝒒key]): This experiment is analogous to Hyb2,𝜐,2 except that to answer the 𝜐
th decryption

key query of 𝒜 corresponding to the pair of sets of 𝑛 vectors ({ #»𝑦 𝜄,𝜐,0}𝜄∈[𝑛], { #»𝑦 𝜄,𝜐,1}𝜄∈[𝑛]) such that
#»𝑦 𝜄,𝜐,0,

#»𝑦 𝜄,𝜐,1 ∈ 𝔽𝑚
𝑞 , ℬ gives back sk*

𝜐 = {𝒌*
𝜄,𝜐}𝜄∈[𝑛], where

𝒌*
𝜄,𝜐 = (

#»
0𝑚, #»𝑦 𝜄,𝜐,1, ̃︀𝑟𝜄,𝜐, 𝛾𝜄,𝜐,1, . . . , 𝛾𝜄,𝜐,𝑘−1,

#»
0 𝑘, 0)𝔹*

𝜄
, for 𝜄 ∈ [𝑛]. (3.8)

Here, all the variables are generated as in Hyb2,𝜐,2.

Hyb𝟑: This experiment is identical to Hyb2,𝑞key,3 with the only exception that for all 𝜄 ∈ [𝑛], 𝑡𝜄 ∈ [𝑞ct,𝜄],

in response to the 𝑡𝜄
th ciphertext query of 𝒜 with respect to index 𝜄 corresponding to pair of vectors

(#»𝑥 𝜄,𝑡𝜄,0,
#»𝑥 𝜄,𝑡𝜄,1) ∈ (𝔽𝑚

𝑞)2, ℬ returns ct*
𝜄,𝑡𝜄 = (𝜄, 𝒄*𝜄,𝑡𝜄), where

𝒄*𝜄,𝑡𝜄 = (#»𝑥 𝜄,𝑡𝜄,1,
#»𝑥 𝜄,𝑡𝜄,0 , 1,

#»
0 𝑘−1, 𝜙𝜄,𝑡𝜄,1, . . . , 𝜙𝜄,𝑡𝜄,𝑘, 0)𝔹𝜄

, (3.9)

and for all 𝑖 ∈ [𝑞key], to answer the 𝑖th decryption key query of 𝒜 corresponding to pair of sets of 𝑛
vectors ({ #»𝑦 𝜄,𝑖,0}𝜄∈[𝑛], { #»𝑦 𝜄,𝑖,1}𝜄∈[𝑛]) such that #»𝑦 𝜄,𝑖,0,

#»𝑦 𝜄,𝑖,1 ∈ 𝔽𝑚
𝑞 , ℬ generates sk*

𝑖 = {𝒌*
𝜄,𝑖}𝜄∈[𝑛], where

𝒌*
𝜄,𝑖 = (#»𝑦 𝜄,𝑖,1,

#»
0𝑚 , ̃︀𝑟𝜄,𝑖, 𝛾𝜄,𝑖,1, . . . , 𝛾𝜄,𝑖,𝑘−1,

#»
0 𝑘, 0)𝔹*

𝜄
, for 𝜄 ∈ [𝑛]. (3.10)

Here, all the variables are generated as in Hyb2,𝑞key,3.

Hyb𝟒: This experiment corresponds to the experiment Exptfh-mipe𝒜 (1) described in Definition 2.8, i.e.,
the full-hiding security experiment where the random bit used by ℬ to generate the ciphertexts and
decryption keys queried by 𝒜 is 𝛽 = 1.

� 𝐀𝐧𝐚𝐥𝐲𝐬𝐢𝐬

Let us now denote by Adv
(𝑕)
𝒜 (𝜆) the advantage of the adversary 𝒜, i.e., 𝒜’s probability of outputting 1 in

Hyb𝑕, for 𝑕 ∈ {0, {1, 𝜄*, 𝜇𝜄* , 𝚥}𝜄*∈[𝑛],𝜇𝜄*∈[𝑞ct,𝜄*],𝚥∈[3], {2, 𝜐, 𝚥}𝜐∈[𝑞key],𝚥∈[3], 3, 4}. Then, by the definitions of

hybrids, we clearly have Adv
(0)
𝒜 (𝜆) ≡ Pr[Exptfh-mipe𝒜 (0) = 1], Adv

(1,0,𝑞ct,0,3)
𝒜 (𝜆) ≡ Adv

(0)
𝒜 (𝜆), Adv

(2,0,3)
𝒜 (𝜆) ≡

Adv
(1,𝑛,𝑞ct,𝑛,3)
𝒜 (𝜆), and Adv

(4)
𝒜 (𝜆) ≡ Pr[Exptfh-mipe𝒜 (1) = 1]. Also, observe that the transition from Hyb3

to Hyb4 is essentially the reverse transition of the Hyb1 sequence of hybrids with #»𝑥 𝜄*,𝜇𝜄* ,0 and #»𝑥 𝜄*,𝜇𝜄* ,1

interchanged. Therefore, it follows that

Advfh-mipe𝒜 (𝜆) ≤ 2
∑︀

𝜄*∈[𝑛]

[︁
|Adv(1,𝜄

−1,𝑞ct,𝜄−1,3)
𝒜 (𝜆)− Adv

(1,𝜄*,1,1)
𝒜 (𝜆)|

+
∑︀

𝜇𝜄*∈[2,𝑞ct,𝜄*]

|Adv(1,𝜄
,𝜇𝜄−1,3)

𝒜 (𝜆)− Adv
(1,𝜄*,𝜇𝜄* ,1)
𝒜 (𝜆)|

+
∑︀

𝜇𝜄*∈[𝑞ct,𝜄*],𝚥∈[2,3]

|Adv(1,𝜄
,𝜇𝜄 ,𝚥−1)

𝒜 (𝜆)− Adv
(1,𝜄*,𝜇𝜄* ,𝚥)
𝒜 (𝜆)|

]︁
+

∑︀
𝜐∈[𝑞key]

[︁
|Adv(2,𝜐−1,3)

𝒜 (𝜆)− Adv
(2,𝜐,1)
𝒜 (𝜆)|

+
∑︀

𝚥∈[2,3]

|Adv(2,𝜐,𝚥−1)
𝒜 (𝜆)− Adv

(2,𝜐,𝚥)
𝒜 (𝜆)|

]︁
+ |Adv(2,𝑞key,3)𝒜 (𝜆)− Adv

(3)
𝒜 (𝜆)|.

(3.11)

We will formally argue that each term on the RHS of Eq. (3.11) is negligible in a sequence of lemmas
(Lemmas C.1–C.7) in Appendix C. This completes the proof of Theorem 3.1. ⊓⊔

4 The Proposed Full-Hiding Unbounded Multi-Input Inner Prod-
uct Functional Encryption Scheme

In this section, we present our FH-UMIPE scheme.

17

4.1 Construction

For the simplicity, we consider the scheme based on the SXDH(1-Lin) in this section. However, it is
clear that we can instantiate our FH-UMIPE scheme from 𝑘-Lin assumption. We also consider the case

where the vector length 𝑚 is polynomial in 𝜆. Let 𝐹1 : {0, 1}𝜆 × {0, 1}𝜆 → 𝔽(2𝑚+3)×(2𝑚+3)
𝑞 and 𝐹2 :

{0, 1}𝜆×{0, 1}𝜆 → {0, 1}𝜆 be pseudorandom functions and (SKE.KeyGen, SKE.Encrypt, SKE.Decrypt) be
a semantically secure secret key encryption scheme whose secret key space is {0, 1}𝜆. We require that

SKE.KeyGen outputs a randomly chosen 𝜆-bit string as a secret key 𝐾, i.e., 𝐾
U←− {0, 1}𝜆. We abuse the

notation such that for a set of 𝑁 vectors of 𝑀 dimensional DPVS 𝔻 = (𝒅1, . . . ,𝒅𝑁) and 𝑊 ∈ GL(𝑀,𝔽𝑞),
𝔹 = 𝔻𝑊 denotes 𝔹 = (𝒅1𝑊, . . . ,𝒅𝑁𝑊).

FH-UMIPE.Setup(𝑚,B): It takes as input the unary encoded security parameter 1𝜆, the length 𝑚 ∈ ℕ
of vectors, and the bound B ∈ ℕ. It proceeds as follows:
1. First, it generates a bilinear group params𝔾 = (𝑞,𝔾1,𝔾2,𝔾𝑇 , 𝑔1, 𝑔2, 𝑒)

R←− 𝒢bpg() with 𝑞 a 𝜆-bit
prime.

2. Next, it forms params𝕍 = (𝑞,𝕍1,𝕍2,𝔾𝑇 ,𝔸1, 𝔸2, 𝑒)
R←− 𝒢dpvs(2𝑚+3, params𝔾), samples 𝜈

U←− 𝔽𝑞∖{0},
computes 𝑔𝑇 = 𝑒(𝑔1, 𝑔2)

𝜈 , generates (𝔻,𝔻*)
R←− 𝒢ob(2𝑚 + 3, params𝕍, 𝜈), and samples PRF keys

𝐾1,𝐾2
U←− {0, 1}𝜆. Then it sets ̂︀𝔻 = (𝒅1, . . . ,𝒅𝑚,𝒅2𝑚+1,𝒅2𝑚+2), ̂︀𝔻* = (𝒅*

1, . . . ,𝒅
*
𝑚,𝒅

*
2𝑚+1).

3. It publishes the public parameters pp = (params𝕍, 𝑔𝑇), while keeps the master secret key msk =

(𝐾1,𝐾2, ̂︀𝔻, ̂︀𝔻*).

FH-UMIPE.KeyGen(pp,msk, 𝑆, { #»𝑦 𝜄}𝜄∈𝑆): On input the public parameters pp, the master secret key msk,
a set of indices 𝑆 ⊆ [𝑡(𝜆)] for any polynomial 𝑡, along with a |𝑆|-tuple of vectors { #»𝑦 𝜄}𝜄∈𝑆 ∈ (ℤ𝑚)|𝑆|,
this algorithm executes the following steps:
1. First, it creates random dual orthogonal bases for the index 𝜄 ∈ 𝑆 as follows;

𝑊𝜄 = 𝐹1(𝐾1, 𝜄), 𝔹*
𝜄 = 𝔻*𝑊 *

𝜄 .

If 𝑊𝜄 for some 𝜄 ∈ 𝑆 is not a regular matrix, then it outputs ⊥ and halts.

2. Next, for each 𝜄 ∈ 𝑆, it computes decryption keys similarly to the bounded case;

{𝑟𝜄}𝜄∈𝑆
U←− 𝔽𝑞 s.t.

∑︁
𝜄∈𝑆

𝑟𝜄 = 0, 𝒌𝜄 = (#»𝑦 𝜄,
#»
0𝑚, 𝑟𝜄,

#»
0 2)𝔹*

𝜄
.

3. Let 𝑠𝑗 be the 𝑗th element of 𝑆 in ascending order. Then it iteratively encrypts the decryption keys
by symmetric key encryption as

𝐶1 =SKE.Encrypt(𝐹2(𝐾2, 𝑠1), {𝒌𝜄}𝜄∈𝑆),

𝐶2 =SKE.Encrypt(𝐹2(𝐾2, 𝑠2), 𝐶1),

...

𝐶|𝑆| =SKE.Encrypt(𝐹2(𝐾2, 𝑠|𝑆|), 𝐶|𝑆|−1),

and outputs sk𝑆 = (𝐶|𝑆|, 𝑆) as a decryption key for FH-UMIPE.

FH-UMIPE.Encrypt(pp,msk, 𝜄, #»𝑥 𝜄): Taking as input the public parameters pp, the master secret key msk,
an index 𝜄 ∈ [2𝜆], along with a vector #»𝑥 𝜄 ∈ ℤ𝑚, this algorithm performs the following steps:
1. First, it creates random dual orthogonal bases for the index 𝜄 as follows;

𝑊𝜄 = 𝐹1(𝐾1, 𝜄), 𝔹𝜄 = 𝔻𝑊𝜄.

If 𝑊𝜄 is not a regular matrix, then it outputs ⊥ and halts.

2. Otherwise, it selects random 𝜅𝜄
U←− 𝔽𝑞, computes

𝒄𝜄 = (#»𝑥 𝜄,
#»
0𝑚, 1, 𝜅𝜄, 0)𝔹𝜄 , 𝑘𝜄 = 𝐹2(𝐾2, 𝜄),

and outputs the ciphertext ct𝜄 = (𝒄𝜄, 𝑘𝜄, 𝜄).

FH-UMIPE.Decrypt(pp, sk𝑆 , {ct𝜄}𝜄∈𝑆): A decrypter takes as input the public parameters pp, a decryp-
tion key sk𝑆 for a set 𝑆, and a tuple of |𝑆| ciphertexts {ct𝜄}𝜄∈𝑆 . It does the following:

18

1. It first decrypts decryption keys as follows;

𝐶 ′
|𝑆|−1 =SKE.Decrypt(𝑘𝑠|𝑆| , 𝐶|𝑆|),

...

𝐶 ′
1 =SKE.Decrypt(𝑘𝑠2 , 𝐶

′
2),

{𝒌′
𝜄}𝜄∈𝑆 =SKE.Decrypt(𝑘𝑠1 , 𝐶

′
1).

2. Next, it computes 𝐿𝑇 =
∏︀
𝜄∈𝑆

𝑒(𝒄𝜄,𝒌
′
𝜄).

3. Then, it attempts to determine a value 𝛬 ∈ ℕ such that 𝑔𝛬𝑇 = 𝐿𝑇 by performing an exhaustive
search over a specified polynomial-size range of possible values. If it succeeds, then it outputs 𝛬.
Otherwise, it outputs ⊥ indicating failure.

■ 𝐂𝐨𝐫𝐫𝐞𝐜𝐭𝐧𝐞𝐬𝐬: From the fact that 𝐶|𝑆| = SKE.Encrypt(𝐹2(𝐾2, 𝑠|𝑆|), 𝐶|𝑆|−1) and 𝑘𝑠|𝑆| = 𝐹2(𝐾2, 𝑠|𝑆|),
we can easily confirm that 𝐶 ′

|𝑆|−1 = SKE.Decrypt(𝑘𝑠|𝑆| , 𝐶|𝑆|) = 𝐶|𝑆|−1 by the correctness of SKE. Itera-

tively, it is obvious that 𝐶 ′
𝑗 = 𝐶𝑗 for all 𝑗 ∈ [|𝑆| − 2] and {𝒌′

𝜄}𝜄∈𝑆 = {𝒌𝜄}𝜄∈𝑆 . Then, the correctness of the
above scheme holds in the almost same way as our bounded scheme, unless there exists an index 𝜄 ∈ 𝑆
s.t. 𝑊𝜄 is a singular matrix. In other words, if for all polynomial-sized set 𝑆, the probability that there
exists 𝜄 ∈ 𝑆 s.t. 𝑊𝜄 is a singular matrix is negligible in 𝜆, then the correctness of above scheme holds. We
consider the next two probabilities.

𝑃0(𝜆, 𝑆) = Pr

[︃
∃𝜄 ∈ 𝑆, det𝑊𝜄 = 0 𝐾1

U←− {0, 1}𝜆
∀𝜄 ∈ 𝑆,𝑊𝜄 = 𝐹1(𝐾1, 𝜄)

]︃
,

𝑃1(𝜆, 𝑆) = Pr

[︃
∃𝜄 ∈ 𝑆, det𝑊𝜄 = 0 𝑅1

U←− ℛ1,𝜆

∀𝜄 ∈ 𝑆,𝑊𝜄 = 𝑅1(𝜄)

]︃
,

where ℛ1,𝜆 is a set of all functions that have the same domain and range as 𝐹1. For any polynomial-
sized set 𝑆, suppose 𝑃1(𝜆, 𝑆) is negligible in 𝜆. Then if 𝑃0(𝜆, 𝑆) is non-negligible function, we can easily
break the PRF property by making an adversary which outputs 1 when there exists 𝜄 ∈ 𝑆 s.t. 𝑊𝜄 is a
singular matrix. Consequently, the last thing we have to confirm is that 𝑃1(𝜆, 𝑆) is negligible in 𝜆 for all
polynomial-sized set 𝑆.

Lemma 4.1: For 𝑀, 𝑞 ∈ ℕ s.t. 𝑀 < 𝑞, Pr[det𝑊 ̸= 0|𝑊 U←− 𝔽𝑀×𝑀
𝑞] ≥ 1− 𝑀

𝑞 .

Proof: The probability that all columns of 𝑊 are linearly independent in 𝔽𝑞, i.e., det𝑊 ̸= 0 is

𝑀∏︁
𝑖=1

(1− 1

𝑞𝑖
) ≥ (1− 1

𝑞
)𝑀 ≥ 1− 𝑀

𝑞
.

⊓⊔

Lemma 4.2: For 𝑀,𝑛, 𝑞 ∈ ℕ s.t. 𝑀𝑛 < 𝑞, Pr[∀𝑖 ∈ [𝑛],det𝑊𝑖 ̸= 0|𝑊1, . . . ,𝑊𝑛
U←− 𝔽𝑀×𝑀

𝑞] ≥ 1− 𝑀𝑛
𝑞 .

Proof: From Lemma 4.1,

Pr[∀𝑖 ∈ [𝑛],det𝑊𝑖 ̸= 0|𝑊1, . . . ,𝑊𝑛
U←− 𝔽𝑀×𝑀

𝑞] ≥ (1− 𝑀

𝑞
)𝑛 ≥ 1− 𝑀𝑛

𝑞
.

⊓⊔

From the above lemmas, we can see that 𝑃1(𝜆, 𝑆) ≤ (2𝑚+3)|𝑆|
𝑞 where 𝑚 and |𝑆| are polynomial in 𝜆 while

𝑞 is exponential in 𝜆. It means that 𝑃1(𝜆, 𝑆) is negligible in 𝜆.

4.2 Security

Theorem 4.1 (Security of Our FH-UMIPE Scheme): Assume that 𝐹1 and 𝐹2 are pseudorandom functions,
SKE is semantically secure symmetric key encryption, and SXDH problem is hard, then our FH-UMIPE
construction achieves full-hiding security. More formally, for any PPT adversary 𝒜 against the full-hiding

19

security of the proposed FH-UMIPE construction, there exists a PPT algorithm ℬ1 against the SXDH
problem, ℬ2 against the symmetric key encryption scheme, and ℬ3 and ℬ4 against the pseudorandom
functions such that for any security parameter 𝜆, we have

Advfh-umipe𝒜 (𝜆) ≤
[︀
4

∑︀
𝜄∈[2𝜆]

𝑞ct,𝜄 + 2𝑞key
]︀
Advsxdhℬ1

(𝜆) + 𝑛𝑚𝑎𝑥𝑞keyAdv
ske
ℬ2

(𝜆) + 2Advprf1ℬ3
(𝜆) + 2Advprf2ℬ4

(𝜆),

where 𝑞ct,𝜄 is the total number of ciphertext query for the index 𝜄, 𝑞key is the total number of decryption
key query, and 𝑛𝑚𝑎𝑥 is the maximum index of a decryption key that 𝒜 queries, i.e., 𝑆𝑖 ⊆ [𝑛𝑚𝑎𝑥] for all
𝑖 ∈ [𝑞sk].

Proof: The proof of Theorem 4.1 is structured as a hybrid argument over a series of experiments which
differ in the construction of the decryption keys and/or ciphertexts queried by the adversary 𝒜 in the full-
hiding security model described in Definition 2.9. The hybrid transition is proceeded in the similar way
to the bounded scheme, that is, first we gradually change the ciphertext form from (#»𝑥 𝜄,0,

#»
0𝑚, 1, 𝜅𝜄, 0)𝔹𝜄

to (#»𝑥 𝜄,0,
#»𝑥 𝜄,1, 1, 𝜅𝜄, 0)𝔹𝜄

. After that, we change the decryption key form from (#»𝑦 𝜄,0,
#»
0𝑚, 𝑟𝜄,

#»
0 2)𝔹*

𝜄
to

(
#»
0𝑚, #»𝑦 𝜄,1, 𝑟𝜄,

#»
0 2)𝔹*

𝜄
. Then, switch the first 𝑚 coefficients with the second 𝑚 coefficients and restore the

ciphertexts. The proof of the ciphertexts part is almost same as that of the bounded scheme, while the
decryption key part is more complicated than the bounded one. The hybrid experiments are described
below. In these hybrids, a part framed by a box indicates those terms which were modified in the transition
from the previous game. The sequence of hybrid experiments follow:

� 𝐒𝐞𝐪𝐮𝐞𝐧𝐜𝐞 𝐨𝐟 𝐇𝐲𝐛𝐫𝐢𝐝 𝐄𝐱𝐩𝐞𝐫𝐢𝐦𝐞𝐧𝐭𝐬

Hyb𝟎: We denote the 𝑗th element of 𝑆𝑖 in ascending order by 𝑠𝑖,𝑗 . This experiment is the same as
Exptfh-umipe𝒜 (0) defined in Definition 2.9. That is, when the challenger receives (#»𝑥 𝜄,𝑡𝜄,0,

#»𝑥 𝜄,𝑡𝜄,1) from 𝒜 as
a 𝑡𝜄

th ciphertext query for index 𝜄, it returns ct*
𝜄,𝑡𝜄 = (𝒄*𝜄,𝑡𝜄 , 𝑘𝜄, 𝜄), where

𝑊𝜄 = 𝐹1(𝐾1, 𝜄), 𝔹𝜄 = 𝔻𝑊𝜄,

𝜅𝜄,𝑡𝜄
U←− 𝔽𝑞, 𝒄*𝜄,𝑡𝜄 = (#»𝑥 𝜄,𝑡𝜄,0,

#»
0𝑚, 1, 𝜅𝜄,𝑡𝜄 , 0)𝔹𝜄

, 𝑘𝜄 = 𝐹2(𝐾2, 𝜄).

On the other hand, when the challenger receives (𝑆𝑖, { #»𝑦 𝜄,𝑖,0,
#»𝑦 𝜄,𝑖,1}𝜄∈𝑆𝑖

) for 𝑖th decryption key query, it
returns sk*

𝑆𝑖,𝑖
= (𝐶|𝑆𝑖|, 𝑆𝑖), where

𝑟𝜄,𝑖
U←− 𝔽𝑞 s.t.

∑︁
𝜄∈𝑆𝑖

𝑟𝜄,𝑖 = 0, 𝑊𝜄 = 𝐹1(𝐾1, 𝜄), 𝔹*
𝜄 = 𝔻*𝑊 *

𝜄 ,

𝒌*
𝜄,𝑖 = (#»𝑦 𝜄,𝑖,0,

#»
0𝑚, 𝑟𝜄,𝑖,

#»
0 2)𝔹*

𝜄
for 𝜄 ∈ 𝑆𝑖,

𝐶|𝑆𝑖| = SKE.Encrypt(𝐹2(𝐾2, 𝑠𝑖,|𝑆𝑖|), . . . ,SKE.Encrypt(𝐹2(𝐾2, 𝑠𝑖,1), {𝒌*
𝜄,𝑖}𝜄∈𝑆𝑖) . . .).

Hyb𝟏: In this hybrids, we replace pseudorandom functions 𝐹𝑖(𝐾𝑖, ·) for 𝑖 ∈ {1, 2} with random functions

𝑅𝑖(·)
U←− ℛ𝑖,𝜆, where ℛ𝑖,𝜆 is a set of functions consists of all functions that have the same domain and

range as 𝐹𝑖. Observe that all dual orthogonal bases used in the ciphertexts and decryption keys queried
by 𝒜 are completely independent and random ones by each index after Hyb1.

Hyb𝟐: The all replies for the ciphertext queries are changed as follows;

𝑊𝜄 = 𝑅1(𝜄), 𝔹𝜄 = 𝔻𝑊𝜄,

𝜅𝜄,𝑡𝜄
U←− 𝔽𝑞, 𝒄*𝜄,𝑡𝜄 = (#»𝑥 𝜄,𝑡𝜄,0,

#»𝑥 𝜄,𝑡𝜄,1 , 1, 𝜅𝜄,𝑡𝜄 , 0)𝔹𝜄 , 𝑘𝜄 = 𝑅2(𝜄),

and returns ct*
𝜄,𝑡𝜄 = (𝒄*𝜄,𝑡𝜄 , 𝑘𝜄, 𝜄).

20

Hyb𝟑 𝐒𝐞𝐪𝐮𝐞𝐧𝐜𝐞

Hyb𝟑,𝝊 (𝝊 ∈ [𝒒key]): Hyb3,0 is the same as Hyb2. The challenger replies to the first 𝜐 decryption key

queries, i.e., the 𝑖th decryption key query for all 𝑖 ≤ 𝜐, as

𝑟𝜄,𝑖
U←− 𝔽𝑞 s.t.

∑︁
𝜄∈𝑆𝑖

𝑟𝜄,𝑖 = 0, 𝑊𝜄 = 𝑅1(𝜄), 𝔹*
𝜄 = 𝔻*𝑊 *

𝜄 ,

𝒌*
𝜄,𝑖 = (

#»
0𝑚, #»𝑦 𝜄,𝑖,1 , 𝑟𝜄,𝑖,

#»
0 2)𝔹*

𝜄
for 𝜄 ∈ 𝑆𝑖,

𝐶|𝑆𝑖| = SKE.Encrypt(𝑅2(𝑠𝑖,|𝑆𝑖|), . . . ,SKE.Encrypt(𝑅2(𝑠𝑖,1), {𝒌*
𝜄,𝑖}𝜄∈𝑆𝑖

) . . .),

and returns sk*
𝑆𝑖,𝑖

= (𝐶|𝑆𝑖|, 𝑆𝑖). For the other decryption key queries, the challenger replies the same way
as Hyb2.

Hyb𝟒: In this hybrid, we switch the coefficients of 1 to 𝑚th vector with those of 𝑚+1 to 2𝑚th vector in
both decryption key side and ciphertext side. Namely, the replies for the ciphertext queries are ct*

𝜄,𝑡𝜄 =
(𝒄*𝜄,𝑡𝜄 , 𝑘𝜄, 𝜄), where

𝑊𝜄 = 𝑅1(𝜄), 𝔹𝜄 = 𝔻𝑊𝜄,

𝜅𝜄,𝑡𝜄
U←− 𝔽𝑞, 𝒄*𝜄,𝑡𝜄 = (#»𝑥 𝜄,𝑡𝜄,1,

#»𝑥 𝜄,𝑡𝜄,0 , 1, 𝜅𝜄,𝑡𝜄 , 0)𝔹𝜄 , 𝑘𝜄 = 𝑅2(𝜄),

and the replies for the decryption key queries are sk*
𝑆𝑖,𝑖

= (𝐶|𝑆𝑖|, 𝑆𝑖), where

𝑟𝜄,𝑖
U←− 𝔽𝑞 s.t.

∑︁
𝜄∈𝑆𝑖

𝑟𝜄,𝑖 = 0, 𝑊𝜄 = 𝑅1(𝜄), 𝔹*
𝜄 = 𝔻*𝑊 *

𝜄 ,

𝒌*
𝜄,𝑖 = (#»𝑦 𝜄,𝑖,1,

#»
0𝑚 , 𝑟𝜄,𝑖,

#»
0 2)𝔹*

𝜄
for 𝜄 ∈ 𝑆𝑖,

𝐶|𝑆𝑖| = SKE.Encrypt(𝑅2(𝑠𝑖,|𝑆𝑖|), . . . ,SKE.Encrypt(𝑅2(𝑠𝑖,1), {𝒌*
𝜄,𝑖}𝜄∈𝑆𝑖

) . . .).

Hyb𝟓: This hybrid is the same as Exptfh-umipe𝒜 (1) defined in Definition 2.9. That is, the replies for the
ciphertext queries are ct*

𝜄,𝑡𝜄 = (𝒄*𝜄,𝑡𝜄 , 𝑘𝜄, 𝜄), where

𝑊𝜄 = 𝐹1(𝐾1, 𝜄) , 𝔹𝜄 = 𝔻𝑊𝜄,

𝜅𝜄,𝑡𝜄
U←− 𝔽𝑞, 𝒄*𝜄,𝑡𝜄 = (#»𝑥 𝜄,𝑡𝜄,1,

#»
0𝑚 , 1, 𝜅𝜄,𝑡𝜄 , 0)𝔹𝜄 , 𝑘𝜄 = 𝐹2(𝐾2, 𝜄) ,

and the replies for the decryption key queries are sk*
𝑆𝑖,𝑖

= (𝐶|𝑆𝑖|, 𝑆𝑖), where

𝑟𝜄,𝑖
U←− 𝔽𝑞 s.t.

∑︁
𝜄∈𝑆𝑖

𝑟𝜄,𝑖 = 0, 𝑊𝜄 = 𝐹1(𝐾1, 𝜄) , 𝔹*
𝜄 = 𝔻*𝑊 *

𝜄 ,

𝒌*
𝜄,𝑖 = (#»𝑦 𝜄,𝑖,1,

#»
0𝑚, 𝑟𝜄,𝑖,

#»
0 2)𝔹*

𝜄
for 𝜄 ∈ 𝑆𝑖,

𝐶|𝑆𝑖| = SKE.Encrypt(𝐹2(𝐾2, 𝑠𝑖,|𝑆𝑖|) , . . . ,SKE.Encrypt(𝐹2(𝐾2, 𝑠𝑖,1) , {𝒌*
𝜄,𝑖}𝜄∈𝑆𝑖

) . . .).

� 𝐀𝐧𝐚𝐥𝐲𝐬𝐢𝐬

Let us now denote by Adv
(𝑕)
𝒜 (𝜆) the advantage of the adversary 𝒜, i.e., 𝒜’s probability of outputting 1

in Hyb𝑕. Then, we can see that

Advfh-umipe𝒜 (𝜆) ≤ |Adv(0)𝒜 (𝜆)− Adv
(1)
𝒜 (𝜆)|+ |Adv(1)𝒜 (𝜆)− Adv

(2)
𝒜 (𝜆)|

+

𝑞key∑︁
𝜐=1

|Adv(3,𝜐−1)
𝒜 (𝜆)− Adv

(3,𝜐)
𝒜 (𝜆)|

+ |Adv(3,𝑞key)𝒜 (𝜆)− Adv
(4)
𝒜 (𝜆)|+ |Adv(4)𝒜 (𝜆)− Adv

(5)
𝒜 (𝜆)|.

(4.1)

We will formally argue that each term on the RHS of Eq. (4.1) is negligible in Appendix D. This completes
the proof of Theorem 4.1. ⊓⊔

21

References

AAB+13. Shashank Agrawal, Shweta Agrawal, Saikrishna Badrinarayanan, Abishek Kumarasubramanian,
Manoj Prabhakaran, and Amit Sahai. Function private functional encryption and property preserving
encryption: New definitions and positive results. Cryptology ePrint Archive, Report 2013/744, 2013.

ABDCP15. Michel Abdalla, Florian Bourse, Angelo De Caro, and David Pointcheval. Simple functional encryp-
tion schemes for inner products. In Public Key Cryptography–PKC 2015, pages 733–751. Springer,
2015.

ABSV15. Prabhanjan Ananth, Zvika Brakerski, Gil Segev, and Vinod Vaikuntanathan. From selective to
adaptive security in functional encryption. In Advances in Cryptology–CRYPTO 2015, pages 657–
677. Springer, 2015.

ACF+17. Michel Abdalla, Dario Catalano, Dario Fiore, Romain Gay, and Bogdan Ursu. Multi-input functional
encryption for inner products: Function-hiding realizations and constructions without pairings. Cryp-
tology ePrint Archive, Report 2017/972, 2017.

AGRW17. Michel Abdalla, Romain Gay, Mariana Raykova, and Hoeteck Wee. Multi-input inner-product func-
tional encryption from pairings. In Advances in Cryptology–EUROCRYPT 2017, pages 601–626.
Springer, 2017.

AJ15. Prabhanjan Ananth and Abhishek Jain. Indistinguishability obfuscation from compact functional
encryption. In Advances in Cryptology–CRYPTO 2015, pages 308–326. Springer, 2015.

BGI+01. Boaz Barak, Oded Goldreich, Rusell Impagliazzo, Steven Rudich, Amit Sahai, Salil Vadhan, and
Ke Yang. On the (im) possibility of obfuscating programs. In Advances in Cryptology–CRYPTO
2001, pages 1–18. Springer, 2001.

BGJS15. Saikrishna Badrinarayanan, Divya Gupta, Abhishek Jain, and Amit Sahai. Multi-input functional
encryption for unbounded arity functions. In Advances in Cryptology–ASIACRYPT 2015, pages
27–51. Springer, 2015.

BJK15. Allison Bishop, Abhishek Jain, and Lucas Kowalczyk. Function-hiding inner product encryption. In
Advances in Cryptology–ASIACRYPT 2015, pages 470–491. Springer, 2015.

BKS16. Zvika Brakerski, Ilan Komargodski, and Gil Segev. Multi-input functional encryption in the private-
key setting: Stronger security from weaker assumptions. In Advances in Cryptology–EUROCRYPT
2016, pages 852–880. Springer, 2016.

BRS13a. Dan Boneh, Ananth Raghunathan, and Gil Segev. Function-private identity-based encryption: Hiding
the function in functional encryption. In Advances in Cryptology–CRYPTO 2013, pages 461–478.
Springer, 2013.

BRS13b. Dan Boneh, Ananth Raghunathan, and Gil Segev. Function-private subspace-membership encryption
and its applications. In Advances in Cryptology–ASIACRYPT 2013, pages 255–275. Springer, 2013.

BS15. Zvika Brakerski and Gil Segev. Function-private functional encryption in the private-key setting. In
Theory of Cryptography Conference–TCC 2015, pages 306–324. Springer, 2015.

BSW11. Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Definitions and challenges. Theory
of Cryptography–TCC 2011, pages 253–273, 2011.

CLOZ16. David Cash, Feng-Hao Liu, Adam O’Neill, and Cong Zhang. Reducing the leakage in practical
order-revealing encryption. Cryptology ePrint Archive, Report 2016/661, 2016.

CLT13. Jean-Sébastien Coron, Tancrede Lepoint, and Mehdi Tibouchi. Practical multilinear maps over the
integers. In Advances in Cryptology–CRYPTO 2013, pages 476–493. Springer, 2013.

CLWW16. Nathan Chenette, Kevin Lewi, Stephen A Weis, and David J Wu. Practical order-revealing encryption
with limited leakage. In Fast Software Encryption–FSE 2016, pages 474–493. Springer, 2016.

DDM16. Pratish Datta, Ratna Dutta, and Sourav Mukhopadhyay. Functional encryption for inner product
with full function privacy. In Public-Key Cryptography–PKC 2016, pages 164–195. Springer, 2016.

GGG+14. Shafi Goldwasser, S Dov Gordon, Vipul Goyal, Abhishek Jain, Jonathan Katz, Feng-Hao Liu, Amit
Sahai, Elaine Shi, and Hong-Sheng Zhou. Multi-input functional encryption. In Advances in
Cryptology–EUROCRYPT 2014, pages 578–602. Springer, 2014.

GGH13. Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from ideal lattices. In
Advances in Cryptology–EUROCRYPT 2013, pages 1–17. Springer, 2013.

GGH+16. Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters. Candi-
date indistinguishability obfuscation and functional encryption for all circuits. In SIAM Journal on
Computing, volume 45, pages 882–929. SIAM, 2016.

GGHZ16. Sanjam Garg, Craig Gentry, Shai Halevi, and Mark Zhandry. Functional encryption without obfus-
cation. In Theory of Cryptography Conference–TCC 2016, pages 480–511. Springer, 2016.

GGSW13. Sanjam Garg, Craig Gentry, Amit Sahai, and Brent Waters. Witness encryption and its applications.
In symposium on Theory of computing–stoc 2013, pages 467–476. ACM, 2013.

GJO16. Vipul Goyal, Aayush Jain, and Adam O’Neill. Multi-input functional encryption with unbounded-
message security. In Advances in Cryptology–ASIACRYPT 2016, pages 531–556. Springer, 2016.

GPS08. Steven D Galbraith, Kenneth G Paterson, and Nigel P Smart. Pairings for cryptographers. Discrete
Applied Mathematics, 156(16):3113–3121, 2008.

22

IPS15. Yuval Ishai, Omkant Pandey, and Amit Sahai. Public-coin differing-inputs obfuscation and its appli-
cations. In Theory of Cryptography Conference–TCC 2015, pages 668–697. Springer, 2015.

ITZ15. Vincenzo Iovino, Qiang Tang, and Karol Zebrowski. On the power of public-key functional encryption
with function privacy. Cryptology ePrint Archive, Report 2015/470, 2015.

KLM+16. Sam Kim, Kevin Lewi, Avradip Mandal, Hart William Montgomery, Arnab Roy, and David J Wu.
Function-hiding inner product encryption is practical. Cryptology ePrint Archive, Report 2016/440,
2016.

KS17. Ilan Komargodski and Gil Segev. From minicrypt to obfustopia via private-key functional encryption.
In Advances in Cryptology–EUROCRYPT 2017, pages 122–151. Springer, 2017.

KSY15. Ilan Komargodski, Gil Segev, and Eylon Yogev. Functional encryption for randomized functionalities
in the private-key setting from minimal assumptions. In Theory of Cryptography Conference–TCC
2015, pages 352–377. Springer, 2015.

Lin17. Huijia Lin. Indistinguishability obfuscation from sxdh on 5-linear maps and locality-5 prgs. In
Advances in Cryptology–CRYPTO 2017, pages 599–629. Springer, 2017.

LL16. Kwangsu Lee and Dong Hoon Lee. Two-input functional encryption for inner products from bilinear
maps. Cryptology ePrint Archive, Report 2016/432, 2016.

LV16. Huijia Lin and Vinod Vaikuntanathan. Indistinguishability obfuscation from ddh-like assumptions
on constant-degree graded encodings. In Foundations of Computer Science–FOCS 2016, pages 11–20.
IEEE, 2016.

LW16. Kevin Lewi and David J Wu. Order-revealing encryption: New constructions, applications, and lower
bounds. In ACM SIGSAC Conference on Computer and Communications Security–CCS 2016, pages
1167–1178. ACM, 2016.

O’N10. Adam O’Neill. Definitional issues in functional encryption. Cryptology ePrint Archive, Report
2010/556, 2010.

OT09. Tatsuaki Okamoto and Katsuyuki Takashima. Hierarchical predicate encryption for inner-products.
In Advances in Cryptology–ASIACRYPT 2009, pages 214–231. Springer, 2009.

OT10. Tatsuaki Okamoto and Katsuyuki Takashima. Fully secure functional encryption with general re-
lations from the decisional linear assumption. In Advances in Cryptology–CRYPTO 2010, pages
191–208. Springer, 2010.

Sha07. Hovav Shacham. A cramer-shoup encryption scheme from the linear assumption and from progres-
sively weaker linear variants. Cryptology ePrint Archive, Report 2007/074, 2007.

SSW09. Emily Shen, Elaine Shi, and Brent Waters. Predicate privacy in encryption systems. In Theory of
Cryptography Conference–TCC 2009, pages 457–473. Springer, 2009.

TAO16. Junichi Tomida, Masayuki Abe, and Tatsuaki Okamoto. Efficient functional encryption for inner-
product values with full-hiding security. In Information Security–ISC 2016, pages 408–425. Springer,
2016.

23

Appendix

A Reducing the Hardness of Problem 1 and 1∗ to 𝒌-LIN

In this section, we demonstrate how to reduce the hardness of Problem 1 (Definition 2.5) and 1* (Def-
inition 2.6) to that of the 𝑘-LIN problem. Towards this end, we first define an intermediate decisional
problem, namely, Problem 0, and then reduce the hardness of Problem 1 and 1* to that of Problem 0
(Lemmas A.2 and A.3 respectively), as well as reduce the hardness of Problem 0 to that of the 𝑘-LIN
problem (Lemma A.1).

𝐃𝐞fi𝐧𝐢𝐭𝐢𝐨𝐧 𝐀.𝟏 (Problem 0): Fix an arbitrary number 𝜒 ∈ [2]. Problem 0 is to guess a bit 𝛽
U←− {0, 1}

provided 𝜍𝛽 = (params𝔾,𝔻, ̂︀𝔻*, 𝑔𝜁𝜒,𝜴𝛽); where params𝔾 = (𝑞,𝔾1,𝔾2,𝔾𝑇 , 𝑔1, 𝑔2, 𝑒)
R←− 𝒢bpg(); 𝜁, 𝜓

U←−

𝔽𝑞∖{0}; 𝜏1, . . . , 𝜏𝑘
U←− 𝔽𝑞; 𝐷 = (𝑑𝑗,𝑡)(𝑘+1)×(𝑘+1)

U←− GL(𝑘 + 1,𝔽𝑞); 𝐷
★ = (𝑑*𝑗,𝑡)(𝑘+1)×(𝑘+1) = 𝜁𝐷*; 𝒅𝑗 =

(𝑔
𝑑𝑗,1
𝜒 , . . . , 𝑔

𝑑𝑗,(𝑘+1)
𝜒), 𝒅*

𝑗 = (𝑔
𝑑*
𝑗,1

3−𝜒, . . . , 𝑔
𝑑*
𝑗,(𝑘+1)

3−𝜒), for 𝑗 ∈ [𝑘 + 1]; 𝔻 = {𝒅1, . . . ,𝒅𝑘+1}, ̂︀𝔻* = {𝒅*
1}; and

𝜴𝛽 = (𝜏1, . . . , 𝜏𝑘, 0)𝔻 or (𝜏1, . . . , 𝜏𝑘, 𝜓)𝔻 according as 𝛽 = 0 or 1. For any PPT algorithm 𝒜, the advantage
of 𝒜 in deciding Problem 0 is defined as

Advp0𝒜 (𝜆) =
⃒⃒⃒
Pr[1

R←− 𝒜(𝜍0)]− Pr[1
R←− 𝒜(𝜍1)]

⃒⃒⃒
.

Lemma A.1: For any PPT algorithm 𝒜 for Problem 0, there exists a PPT algorithm ℬ for the 𝑘-LIN
problem such that for any security parameter 𝜆, we have Advp0𝒜 (𝜆) ≤ Advk-linℬ (𝜆).

Proof: We construct a PPT algorithm ℬ for solving the 𝑘-LIN problem using a PPT algorithm 𝒜 for
Problem 0. ℬ chooses a number 𝜒 ∈ [2], and is given an instance of the 𝑘-LIN problem

𝜀𝛽 = (params𝔾, 𝑔
𝜉1
𝜒 , . . . , 𝑔

𝜉𝑘
𝜒 , 𝑔

𝛿1𝜉1
𝜒 , . . . , 𝑔𝛿𝑘𝜉𝑘𝜒 ,ℜ𝛽),

for some 𝛽
U←− {0, 1};

where params𝔾 = (𝑞,𝔾1,𝔾2,𝔾𝑇 , 𝑔1, 𝑔2, 𝑒)
R←− 𝒢bpg(); 𝜉1, . . . , 𝜉𝑘, 𝜎

U←− 𝔽𝑞∖{0}; 𝛿1, . . . , 𝛿𝑘
U←− 𝔽𝑞; and ℜ𝛽 =

𝑔

∑︀
𝑗∈[𝑘]

𝛿𝑗

𝜒 or 𝑔
𝜎+

∑︀
𝑗∈[𝑘]

𝛿𝑗

𝜒 according as 𝛽 = 0 or 1. ℬ proceeds as follows:

1. First, ℬ sets 𝑔𝜁𝜒 = 𝑔𝜉1𝜒 , i.e., it implicitly defines 𝜁 = 𝜉1.

2. Next, ℬ samples random 𝑊
U←− GL(𝑘 + 1,𝔽𝑞), implicitly sets the matrices

𝐷 = (𝑑𝑗,𝑡)(𝑘+1)×(𝑘+1) =

⎛⎜⎜⎜⎝
𝜉1 1

. . .
...

𝜉𝑘 1
1

⎞⎟⎟⎟⎠𝑊,

𝐷★ = (𝑑*𝑗,𝑡)(𝑘+1)×(𝑘+1) = 𝜉1

⎛⎜⎜⎜⎝
𝜉−1
1

. . .

𝜉−1
𝑘

−𝜉−1
1 . . . −𝜉−1

𝑘 1

⎞⎟⎟⎟⎠𝑊 *,

defines 𝒅𝑗 = (𝑔
𝑑𝑗,1
𝜒 , . . . , 𝑔

𝑑𝑗,(𝑘+1)
𝜒), 𝒅*

𝑗 = (𝑔
𝑑*
𝑗,1

3−𝜒, . . . , 𝑔
𝑑*
𝑗,(𝑘+1)

3−𝜒), for 𝑗 ∈ [𝑘 + 1], and sets

𝔻 = {𝒅1, . . . ,𝒅𝑘+1}, ̂︀𝔻* = {𝒅*
1}.

Observe that since 𝑊 is uniformly sampled from GL(𝑘 + 1,𝔽𝑞), 𝐷 is distributed uniformly over

GL(𝑘 + 1,𝔽𝑞) as well. Also, 𝐷★ = 𝜁𝐷*. Further, note that ℬ can explicitly compute 𝔻 and ̂︀𝔻* from
the available informations.

3. After that, ℬ sets
𝜴𝛽 = (𝑔𝛿1𝜉1𝜒 , . . . , 𝑔𝛿𝑘𝜉𝑘𝜒 ,ℜ𝛽)𝑊.

4. Finally, ℬ hands 𝜍𝛽 = (params𝔾,𝔻, ̂︀𝔻*, 𝑔𝜁𝜒,𝜴𝛽) to 𝒜 and outputs 𝛽′ ∈ {0, 1} returned by 𝒜.

24

Observe that if 𝛽 = 0, i.e., ℜ𝛽 = 𝑔

∑︀
𝑗∈[𝑘]

𝛿𝑗

𝜒 , then we have

𝜴𝛽 = (𝛿1, . . . , 𝛿𝑘, 0)𝔻.

On the other hand, in case 𝛽 = 1, i.e., ℜ𝛽 = 𝑔
𝜎+

∑︀
𝑗∈[𝑘+1]

𝛿𝑗

𝜒 , then we have

𝜴𝛽 = (𝛿1, . . . , 𝛿𝑘, 𝜎)𝔻.

Hence, it follows that 𝜍𝛽 simulated by ℬ is indeed an instance of Problem 0 with the challenge bit 𝛽,

where we have 𝜏𝑗 = 𝛿𝑗 for all 𝑗 ∈ [𝑘 + 1], and 𝜓 = 𝜎. This completes the proof of Lemma A.1. ⊓⊔

Lemma A.2: For any PPT algorithm 𝒜 for Problem 1, there exists a PPT algorithm ℬ for Problem 0
such that for any security parameter 𝜆, we have Advp1𝒜 (𝜆) ≤ Advp0ℬ (𝜆).

Proof: We construct a PPT algorithm ℬ for solving Problem 0 by using a PPT algorithm 𝒜 for Problem
1, as a sub-routine. ℬ is given an instance of Problem 0 corresponding to 𝜒 = 1,

𝜍𝛽 = (params𝔾,𝔻, ̂︀𝔻*, 𝑔𝜁1 ,𝜴𝛽),

where params𝔾 = (𝑞,𝔾1,𝔾2,𝔾𝑇 , 𝑔1, 𝑔2, 𝑒)
R←− 𝒢bpg(); 𝜁, 𝜓

U←− 𝔽𝑞∖{0}; 𝜏1, . . . , 𝜏𝑘
U←− 𝔽𝑞;𝐷 = (𝑑𝑗,𝑡)(𝑘+1)×(𝑘+1)

U←−
GL(𝑘 + 1,𝔽𝑞); 𝐷

★ = (𝑑*𝑗,𝑡)(𝑘+1)×(𝑘+1) = 𝜁𝐷*; 𝒅𝑗 = (𝑔
𝑑𝑗,1

1 , . . . , 𝑔
𝑑𝑗,(𝑘+1)

1), 𝒅*
𝑗 = (𝑔

𝑑*
𝑗,1

2 , . . . , 𝑔
𝑑*
𝑗,(𝑘+1)

2), for

𝑗 ∈ [𝑘 + 1]; 𝔻 = {𝒅1, . . . ,𝒅𝑘+1}, ̂︀𝔻* = {𝒅*
1}; and 𝜴𝛽 = (𝜏1, . . . , 𝜏𝑘, 0)𝔻 or (𝜏1, . . . , 𝜏𝑘, 𝜓)𝔻 according as

𝛽 = 0 or 1. Then, ℬ proceeds as follows:

1. ℬ forms params𝕍 = (𝑞,𝕍1,𝕍2,𝔾𝑇 ,𝔸1,𝔸2, 𝑒)
R←− 𝒢dpvs(2𝑚 + 2𝑘 + 1, params𝔾) and computes 𝑔𝑇 =

𝑒(𝑔𝜁1 , 𝑔2).
2. Next, for each 𝜄 ∈ [𝑛], ℬ executes the following steps:

i) First, ℬ samples a random invertible (2𝑚+2𝑘+1)×(2𝑚+2𝑘+1) matrix𝑊𝜄 = (𝑤𝜄,𝑗,𝑡)(2𝑚+2𝑘+1)×(2𝑚+2𝑘+1)
U←−

GL(2𝑚+ 2𝑘 + 1,𝔽𝑞).
ii) Then, ℬ computes the following:

𝒃𝜄,𝑗 = (𝟏𝑗+𝑘
𝔾1

, 𝑔𝜁1 ,𝟏
2𝑚+𝑘−𝑗
𝔾1

)𝑊𝜄, for 𝑗 ∈ [2𝑚+ 𝑘]

𝒃𝜄,2𝑚+𝑘+𝑗 = (𝒅𝑗 ,𝟏
2𝑚+𝑘
𝔾1

)𝑊𝜄, for 𝑗 ∈ [𝑘 + 1]

𝒃*𝜄,𝑗 = (𝟏𝑗+𝑘
𝔾2

, 𝑔2,𝟏
2𝑚+𝑘−𝑗
𝔾2

)𝑊 *
𝜄 , for 𝑗 ∈ [2𝑚+ 𝑘]

𝒃*𝜄,2𝑚+𝑘+1 = (𝒅*
1,𝟏

2𝑚+𝑘
𝔾2

)𝑊 *
𝜄

iii) ℬ also implicitly sets

𝒃*𝜄,2𝑚+𝑘+𝑗 = (𝒅*
𝑗 ,𝟏

2𝑚+𝑘
𝔾2

)𝑊 *
𝜄 , for 𝑗 ∈ [2, 𝑘 + 1].

iv) ℬ sets
𝔹𝜄 = {𝒃𝜄,1, . . . , 𝒃𝜄,2𝑚+2𝑘+1},

and implicitly defines
𝔹*
𝜄 = {𝒃*𝜄,1, . . . , 𝒃*𝜄,2𝑚+2𝑘+1}.

It is easy to verify that (𝔹𝜄,𝔹*
𝜄) are indeed dual orthogonal bases of the pair of vector spaces

(𝕍1 = 𝔾2𝑚+2𝑘+1
1 ,𝕍2 = 𝔾2𝑚+2𝑘+1

2). Moreover, since 𝑊𝜄 is uniformly and independently sampled
from GL(2𝑚+ 2𝑘 + 1,𝔽𝑞), {𝔹𝜄,𝔹*

𝜄 } are distributed uniformly and independently as well. Further,
𝑒(𝒃𝜄,𝑗 , 𝒃

*
𝜄,𝑗) = 𝑔𝑇 , for all 𝑗 ∈ [2𝑚+ 2𝑘 + 1].

v) ℬ sets

̂︀𝔹𝜄 = {𝒃𝜄,1, . . . , 𝒃𝜄,2𝑚+1, 𝒃𝜄,2𝑚+𝑘+1, . . . , 𝒃𝜄,2𝑚+2𝑘},̂︀𝔹*
𝜄 = {𝒃*𝜄,1, . . . , 𝒃*𝜄,2𝑚+𝑘}.

Observe that ℬ can explicitly determine ̂︀𝔹𝜄 and ̂︀𝔹*
𝜄 from the available informations.

25

vi) After that, ℬ sets

𝜰 𝜄,𝛽 = (𝜴𝛽 ,𝟏
2𝑚+𝑘
𝔾1

)𝑊𝜄.

3. Finally, ℬ hands 𝜚𝛽 = (params𝕍, 𝑔𝑇 , {̂︀𝔹𝜄, ̂︀𝔹*
𝜄 }𝜄∈[𝑛], {𝜰 𝜄,𝛽}𝜄∈[𝑛]) to 𝒜, and outputs 𝛽′ ∈ {0, 1} returned

by 𝒜.

Observe that if 𝛽 = 0, i.e., 𝜴𝛽 = (𝜏1, . . . , 𝜏𝑘, 0)𝔻, then we have

𝜰 𝜄,𝛽 = (
#»
0 2𝑚+𝑘, 𝜏1, . . . , 𝜏𝑘, 0)𝔹𝜄

for all 𝜄 ∈ [𝑛].

On the other hand, in case 𝛽 = 1, i.e., 𝜴𝛽 = (𝜏1, . . . , 𝜏𝑘, 𝜓)𝔻, then we have

𝜰 𝜄,𝛽 = (
#»
0 2𝑚+𝑘, 𝜏1, . . . , 𝜏𝑘, 𝜓)𝔹𝜄 for all 𝜄 ∈ [𝑛].

Hence, it follows that 𝜚𝛽 simulated by ℬ is indeed an instance of Problem 1 with challenge bit 𝛽, where

we have 𝛼𝑗 = 𝜏𝑗b for all 𝑗 ∈ [𝑘], and ℑ = 𝜓. This completes the proof of Lemma A.2. ⊓⊔

Lemma A.3: For any PPT algorithm 𝒜 for Problem 1*, there exists a PPT algorithm ℬ for Problem 0
such that for any security parameter 𝜆, we have Advp1*𝒜 (𝜆) ≤ Advp0ℬ (𝜆).

Proof: The proof of Lemma A.3 is the same as that of Lemma A.2 except for some minor modifications
that are easy to figure out. We omit the details to avoid repetition. ⊓⊔

B Some Remarks on the Full-Hiding Security of Bounded Multi-
Input Inner Product Encryption

𝐑𝐞𝐦𝐚𝐫𝐤 𝐁.𝟏 (𝐙𝐞𝐫𝐨 𝐯𝐬 𝐌𝐮𝐥𝐭𝐢𝐩𝐥𝐞 𝐐𝐮𝐞𝐫𝐢𝐞𝐬): Here, we show how to generically convert an FH-MIPE
scheme that achieves the full-hiding security when the adversary receives at least one ciphertext for each
encryption index to one that achieves full-hiding security without any restriction on the number of cipher-
text queries for each encryption index, by applying a similar transformation using a standard symmetric
key encryption (SKE) scheme. More formally, assume that 𝛱fh-mipe = (FH-MIPE.Setup,FH-MIPE.KeyGen,
FH-MIPE.Encrypt,FH-MIPE.Decrypt) be a private key FH-MIPE scheme for ℱ𝑚,B

𝑛 that achieves the full-
hiding security under the model described above, and 𝛱ske = (SKE.KeyGen, SKE.Encrypt,SKE.Decrypt)
be a symmetric key encryption scheme. Consider the private key FH-MIPE construction 𝛱 ′

fh-mipe =
(FH-MIPE.Setup′,FH-MIPE.KeyGen′, FH-MIPE.Encrypt′, FH-MIPE.Decrypt′) for ℱ𝑚,B

𝑛 described below:

(pp′ = pp,msk′ = (msk, {𝑘𝜄}𝜄∈[1,𝑛]))
R←− FH-MIPE.Setup′(𝑚,𝑛,B):

1. (pp,msk)
R←− FH-MIPE.Setup(𝑚,𝑛,B)

2. 𝐾
R←− SKE.KeyGen()

3. 𝑘1, . . . , 𝑘𝑛−1
U←− {0, 1}|𝐾|, 𝑘𝑛 = 𝐾 ⊕ (

⨁︀
𝜄∈[1,𝑛−1]

𝑘𝜄)

(sk′)
R←− FH-MIPE.KeyGen′(pp′,msk′, (#»𝑦 1, . . . ,

#»𝑦 𝑛)):

1. sk
R←− FH-MIPE.KeyGen(pp,msk, (#»𝑦 1, . . . ,

#»𝑦 𝑛))

2. sk′ R←− SKE.Encrypt(𝐾, sk)

(ct′
𝜄, 𝑘𝜄)

R←− FH-MIPE.Encrypt′(pp′,msk′, 𝜄, #»𝑥 𝜄):

1. ct𝜄
R←− FH-MIPE.Encrypt(pp,msk, 𝜄, #»𝑥 𝜄)

2. ct′
𝜄

R←− SKE.Encrypt(𝐾,ct𝜄)
𝛬 or ⊥ = FH-MIPE.Decrypt′(pp′, sk′, ((ct′

1, 𝑘1), . . . , (ct
′
𝑛, 𝑘𝑛))):

1. 𝐾 =
⨁︀

𝜄∈[1,𝑛]

𝑘𝜄

2. sk = SKE.Decrypt(𝐾, sk′)
3. ct𝜄 = SKE.Decrypt(𝐾,ct′

𝜄),∀𝜄 ∈ [𝑛]
4. 𝛬 or ⊥ = FH-MIPE.Decrypt(pp, sk, (ct1, . . . ,ct𝑛))

Observe that 𝛱 ′
fh-mipe achieves full-hiding security without any restriction on the number of queries of

the adversary. Roughly, let us consider two cases separately:

26

a) (∃ 𝜄 ∈ [𝑛] : 𝑞ct,𝜄 = 0) In this case, the corresponding 𝑘𝜄 is perfectly hidden from the adversary, and
hence 𝐾 is so as well. Then, security follows readily from the simantic security of 𝛱ske.

b) (𝑞ct,𝜄 ≥ 1∀𝜄 ∈ [𝑛]) In this case, security follows immediately from that of 𝛱fh-mipe.

𝐑𝐞𝐦𝐚𝐫𝐤 𝐁.𝟐 (𝐀𝐧 𝐞𝐪𝐮𝐢𝐯𝐚𝐥𝐞𝐧𝐭 𝐟𝐨𝐫𝐦𝐮𝐥𝐚𝐭𝐢𝐨𝐧 𝐨𝐟 𝐭𝐡𝐞 𝐫𝐞𝐬𝐭𝐫𝐢𝐜𝐭𝐢𝐨𝐧 𝐨𝐧 𝐭𝐡𝐞 𝐪𝐮𝐞𝐫𝐢𝐞𝐬 𝐨𝐟 𝐭𝐡𝐞 𝐚𝐝𝐯𝐞𝐫𝐬𝐚𝐫𝐲 𝐢𝐧
𝐜𝐚𝐬𝐞 𝐢𝐭 𝐦𝐚𝐤𝐞𝐬 𝐚𝐭 𝐥𝐞𝐚𝐬𝐭 𝐨𝐧𝐞 𝐜𝐢𝐩𝐡𝐞𝐫𝐭𝐞𝐱𝐭 𝐪𝐮𝐞𝐫𝐲 𝐩𝐞𝐫 𝐞𝐧𝐜𝐫𝐲𝐩𝐭𝐢𝐨𝐧 𝐬𝐥𝐨𝐭): In the full-hiding security proof
of the FH-MIPE scheme proposed in Section 3.1, we consider 𝑞ct,𝜄 ≥ 1 for all 𝜄 ∈ [𝑛], i.e., the adversary
𝒜 makes at least one ciphertext query for each of the 𝑛 encryption indices. Observe that under such
constraint, we can make use of an alternative equivalent formulation of the restrictions on the queries of
the adversary 𝒜 as described below. We will use this later formulation of the restriction on the adversarial
queries in the security proof of our FH-MIPE scheme of Section 3.1.

Let {(#»𝑥 𝜄,𝑡𝜄,0,
#»𝑥 𝜄,𝑡𝜄,1)}𝜄∈[𝑛],𝑡𝜄,∈[𝑞ct,𝜄] is the set of all ciphertext queries and {({ #»𝑦 𝜄,𝑖,0}𝜄∈[𝑛], { #»𝑦 𝜄,𝑖,1}𝜄∈[𝑛])}𝑖∈[𝑞key]

is the set of all decryption key queries of 𝒜. Then, it is required that for all 𝑖 ∈ [𝑞key],∑︀
𝜄∈[𝑛]

#»𝑥 𝜄,1,0 · #»𝑦 𝜄,𝑖,0 =
∑︀

𝜄∈[𝑛]

#»𝑥 𝜄,1,1 · #»𝑦 𝜄,𝑖,1, (B.1)

and #»𝑥 𝜄,𝑡𝜄,0 · #»𝑦 𝜄,𝑖,0 − #»𝑥 𝜄,1,0 · #»𝑦 𝜄,𝑖,0 = #»𝑥 𝜄,𝑡𝜄,1 · #»𝑦 𝜄,𝑖,1 − #»𝑥 𝜄,1,1 · #»𝑦 𝜄,𝑖,1, for all 𝜄 ∈ [𝑛], 𝑡𝜄 ∈ [2, 𝑞ct,𝜄]. (B.2)

Eq. (B.1) follows directly from Eq. (2.1) by setting 𝑡𝜄 = 1 for all 𝜄 ∈ [𝑛], while the set of equations
Eq. (B.2) are implied by Eq. (2.1) as follows: By Eq. (2.1), we have for all 𝑖 ∈ [𝑞key],

#»𝑥 𝜄,𝑡𝜄,0 · #»𝑦 𝜄,𝑖,0 +
∑︀

𝜄′∈[𝑛]
𝜄′ ̸=𝜄

#»𝑥 𝜄′,1,0 · #»𝑦 𝜄′,𝑖,0 = #»𝑥 𝜄,𝑡𝜄,1 · #»𝑦 𝜄,𝑖,1 +
∑︀

𝜄′∈[𝑛]
𝜄′ ̸=𝜄

#»𝑥 𝜄′,1,1 · #»𝑦 𝜄′,𝑖,1, for all 𝜄 ∈ [𝑛], 𝑡𝜄 ∈ [𝑞ct,𝜄]

=⇒ #»𝑥 𝜄,𝑡𝜄,0 · #»𝑦 𝜄,𝑖,0 − #»𝑥 𝜄,1,0 · #»𝑦 𝜄,𝑖,0 = #»𝑥 𝜄,𝑡𝜄,1 · #»𝑦 𝜄,𝑖,1 − #»𝑥 𝜄,1,1 · #»𝑦 𝜄,𝑖,1, for all 𝜄 ∈ [𝑛], 𝑡𝜄 ∈ [2, 𝑞ct,𝜄].

On the other hand, for any 𝑖 ∈ [𝑞key], adding both sides of Eq. (B.1) and those of the set of equations
Eq. (B.2) for (𝑡1, . . . , 𝑡𝑛) ∈ [𝑞ct,1] × . . . × [𝑞ct,𝑛], we get Eq. (2.1) for (𝑡1, . . . , 𝑡𝑛) ∈ [𝑞ct,1] × . . . × [𝑞ct,𝑛].
We will use the alternative equivalent restriction described in this remark in the security proof of our
FH-MIPE construction.

C Lemmas for the Proof of Theorem 3.1

In Lemmas C.1–C.7, we make use of the following natural order “≺” defined over (ℕ ∪ {0})2 as (𝑠, 𝑡) ≺
(𝑠′, 𝑡′) ⇐⇒ [𝑠 < 𝑠′] ∨ [(𝑠 = 𝑠′) ∧ (𝑡 < 𝑡′)], for (𝑠, 𝑡), (𝑠′, 𝑡′) ∈ (ℕ ∪ {0})2. We define (𝑠, 𝑡) ≻ (𝑠′, 𝑡′) ⇐⇒
(𝑠′, 𝑡′) ≺ (𝑠, 𝑡), for (𝑠, 𝑡), (𝑠′, 𝑡′) ∈ (ℕ ∪ {0})2.

Lemma C.1: For any PPT adversary 𝒜 between Hyb𝜄*,𝜇𝜄* ,1
and Hyb1,𝜄*−1,𝑞ct,𝜄*−1,3

or Hyb1,𝜄*,𝜇𝜄*−1,3 de-
pending on whether 𝜇𝜄* = 1 or 𝜇𝜄* > 1, there exists a PPT algorithm ℬ for Problem 1 such that for any
security parameter 𝜆, we have⃒⃒⃒

Adv
(1,𝜄*−1,𝑞ct,𝜄*−1,3)
𝒜 (𝜆)− Adv

(1,𝜄*,𝜇𝜄* ,1)
𝒜 (𝜆)

⃒⃒⃒
≤ Advp1ℬ (𝜆), if 𝜇𝜄* = 1⃒⃒⃒

Adv
(1,𝜄*,𝜇𝜄*−1,3)
𝒜 (𝜆)− Adv

(1,𝜄*,𝜇𝜄* ,1)
𝒜 (𝜆)

⃒⃒⃒
≤ Advp1ℬ (𝜆), if 𝜇𝜄* > 1

⎫⎪⎪⎬⎪⎪⎭∀ 𝜄* ∈ [𝑛].

Proof: Suppose that there exists a PPT adversary 𝒜 between Hyb1,𝜄*,𝜇𝜄* ,1
and Hyb1,𝜄*−1,𝑞ct,𝜄*−1,3

or
Hyb1,𝜄*,𝜇𝜄*−1,3 depending on whether 𝜇𝜄* = 1 or 𝜇𝜄* > 1. We construct a PPT algorithm ℬ for Problem 1
using 𝒜 as a sub-routine. ℬ takes the role of the challenger in the full-hiding security experiment described
in Definition 2.8 and interacts with 𝒜 as follows:

∙ ℬ is given an instance of Problem 1,

𝜚𝛽 = (params𝕍, 𝑔𝑇 , {̂︀𝔹𝜄, ̂︀𝔹*
𝜄 }𝜄∈[𝑛], {𝜰 𝜄,𝛽}𝜄∈[𝑛]);

where params𝔾 = (𝑞,𝔾1,𝔾2,𝔾𝑇 , 𝑔1, 𝑔2, 𝑒)
R←− 𝒢bpg(); params𝕍 = (𝑞,𝕍1,𝕍2,𝔾𝑇 ,𝔸1,𝔸2, 𝑒)

R←− 𝒢dpvs(2𝑚+

2𝑘 + 1, params𝔾); 𝜈
U←− 𝔽𝑞∖{0}; 𝑔𝑇 = 𝑒(𝑔1, 𝑔2)

𝜈 ; (𝔹𝜄,𝔹*
𝜄)

R←− 𝒢ob(2𝑚 + 2𝑘 + 1, params𝕍, 𝜈), for

𝜄 ∈ [𝑛]; ̂︀𝔹𝜄 = {𝒃𝜄,1, . . . , 𝒃𝜄,2𝑚+1, 𝒃𝜄,2𝑚+𝑘+1, . . . , 𝒃𝜄,2𝑚+2𝑘}, ̂︀𝔹*
𝜄 = {𝒃*𝜄,1, . . . , 𝒃*𝜄,2𝑚+𝑘}, for 𝜄 ∈ [𝑛];

𝛼1, . . . , 𝛼𝑘
U←− 𝔽𝑞; ℑ

U←− 𝔽𝑞∖{0}; and 𝜰 𝜄,𝛽 = (
#»
0 2𝑚+𝑘, 𝛼1, . . . , 𝛼𝑘, 0)𝔹𝜄 or (

#»
0 2𝑚+𝑘, 𝛼1, . . . , 𝛼𝑘,ℑ)𝔹𝜄

for all 𝜄 ∈ [𝑛] according as 𝛽 = 0 or 1. ℬ hands pp = (params𝕍, 𝑔𝑇) to 𝒜.

27

∙ For all 𝑖 ∈ [𝑞key], in response to the 𝑖th decryption key query of 𝒜 corresponding to pair of sets of 𝑛 vec-

tors ({ #»𝑦 𝜄,𝑖,0}𝜄∈[𝑛], { #»𝑦 𝜄,𝑖,1}𝜄∈[𝑛]) such that #»𝑦 𝜄,𝑖,0,
#»𝑦 𝜄,𝑖,1 ∈ 𝔽𝑚

𝑞 , ℬ selects random 𝑟𝜄,𝑖, 𝛾𝜄,𝑖,1, . . . , 𝛾𝜄,𝑖,𝑘−1
U←−

𝔽𝑞, for 𝜄 ∈ [𝑛], subject to the restriction that
∑︀

𝜄∈[𝑛]

𝑟𝜄,𝑖 = 0, and computes

𝒌*
𝜄,𝑖 =

∑︀
𝑗∈[𝑚]

𝑦
(𝑗)
𝜄,𝑖,0𝒃

*
𝜄,𝑗 + 𝑟𝜄,𝑖𝒃

*
𝜄,2𝑚+1 +

∑︀
𝑗∈[𝑘−1]

𝛾𝜄,𝑖,𝑗𝒃
*
𝜄,2𝑚+1+𝑗

= (#»𝑦 𝜄,𝑖,0,
#»
0𝑚, 𝑟𝜄,𝑖, 𝛾𝜄,𝑖,1, . . . , 𝛾𝜄,𝑖,𝑘−1,

#»
0 𝑘, 0)𝔹*

𝜄
, for 𝜄 ∈ [𝑛].

ℬ gives sk*
𝑖 = {𝒌*

𝜄,𝑖}𝜄∈[𝑛] to 𝒜.
∙ For 𝜄 ∈ [𝑛], 𝑡𝜄 ∈ [𝑞ct,𝜄], to answer the 𝑡𝜄

th ciphertext query of 𝒜 with respect to index 𝜄 corresponding
to pair of vectors (#»𝑥 𝜄,𝑡𝜄,0,

#»𝑥 𝜄,𝑡𝜄,1) ∈ (𝔽𝑚
𝑞)2, ℬ computes 𝒄*𝜄,𝑡𝜄 as follows:

a) ((𝜄, 𝑡𝜄) ≺ (𝜄*, 𝜇𝜄*)) ℬ samples random 𝜙𝜄,𝑡𝜄,1, . . . , 𝜙𝜄,𝑡𝜄,𝑘
U←− 𝔽𝑞, and computes 𝒄*𝜄,𝑡𝜄 as

𝒄*𝜄,𝑡𝜄 =
∑︀

𝑗∈[𝑚]

𝑥
(𝑗)
𝜄,𝑡𝜄,0

𝒃𝜄,𝑗 +
∑︀

𝑗∈[𝑚]

𝑥
(𝑗)
𝜄,𝑡𝜄,1

𝒃𝜄,𝑚+𝑗 + 𝒃𝜄,2𝑚+1 +
∑︀

𝑗∈[𝑘]

𝜙𝜄,𝑡𝜄,𝑗𝒃𝜄,2𝑚+𝑘+𝑗

= (#»𝑥 𝜄,𝑡𝜄,0,
#»𝑥 𝜄,𝑡𝜄,1, 1,

#»
0 𝑘−1, 𝜙𝜄,𝑡𝜄,1, . . . , 𝜙𝜄,𝑡𝜄,𝑘, 0)𝔹𝜄

.

b) ((𝜄, 𝑡𝜄) = (𝜄*, 𝜇𝜄*)) ℬ computes 𝒄*𝜄*,𝜇𝜄*
as

𝒄*𝜄*,𝜇𝜄*
=

∑︀
𝑗∈[𝑚]

𝑥
(𝑗)
𝜄*,𝜇𝜄* ,0

𝒃𝜄*,𝑗 + 𝒃𝜄*,2𝑚+1 + 𝜰 𝜄*,𝛽 .

c) ((𝜄, 𝑡𝜄) ≻ (𝜄*, 𝜇𝜄*)) ℬ picks random 𝜙𝜄,𝑡𝜄,1, . . . , 𝜙𝜄,𝑡𝜄,𝑘
U←− 𝔽𝑞, and computes 𝒄*𝜄,𝑡𝜄 as

𝒄*𝜄,𝑡𝜄 =
∑︀

𝑗∈[𝑚]

𝑥
(𝑗)
𝜄,𝑡𝜄,0

𝒃𝜄,𝑗 + 𝒃𝜄,2𝑚+1 +
∑︀

𝑗∈[𝑘]

𝜙𝜄,𝑡𝜄,𝑗𝒃𝜄,2𝑚+𝑘+𝑗

= (#»𝑥 𝜄,𝑡𝜄,0,
#»
0𝑚, 1,

#»
0 𝑘−1, 𝜙𝜄,𝑡𝜄,1, . . . , 𝜙𝜄,𝑡𝜄,𝑘, 0)𝔹𝜄

.

ℬ provides 𝒜 with ct*
𝜄,𝑡𝜄 = (𝜄, 𝒄*𝜄,𝑡𝜄).

∙ 𝒜 eventually outputs a guess bit 𝛽′ ∈ {0, 1}. ℬ outputs 𝛽′ = 𝛽′ as its guess bit in its Problem 1
challenge.

Observe that if 𝛽 = 0, i.e., 𝜰 𝜄*,𝛽 = (
#»
0 2𝑚+𝑘, 𝛼1, . . . , 𝛼𝑘, 0)𝔹𝜄* , then we have

𝒄*𝜄*,𝜇𝜄*
= (#»𝑥 𝜄*,𝜇𝜄* ,0,

#»
0𝑚, 1,

#»
0 𝑘−1, 𝛼1, . . . , 𝛼𝑘, 0)𝔹𝜄* ,

which is of the same form as that in Eq. (3.1), where we have 𝜙𝜄*,𝜇𝜄* ,𝑗 = 𝛼𝑗 for all 𝑗 ∈ [𝑘], and this is
the proper form of 𝒄*𝜄*,𝜇𝜄*

in the hybrid immediately preceding Hyb1,𝜄*,𝜇𝜄* ,1
. On the other hand, in case

𝛽 = 1, i.e., 𝜰 𝜄*,𝛽 = (
#»
0 2𝑚+𝑘, 𝛼1, . . . , 𝛼𝑘,ℑ)𝔹𝜄* , then we have

𝒄*𝜄*,𝜇𝜄*
= (#»𝑥 𝜄*,𝜇𝜄* ,0,

#»
0𝑚, 1,

#»
0 𝑘−1, 𝛼1, . . . , 𝛼𝑘,ℑ)𝔹𝜄* ,

which is of the same form as in Eq. (3.3), where we have 𝜙𝜄*,𝜇𝜄* ,𝑗 = 𝛼𝑗 for all 𝑗 ∈ [𝑘], and 𝜌𝜄*,𝜇𝜄* = ℑ, and
this is the proper form of 𝒄*𝜄*,𝜇𝜄*

in Hyb1,𝜄*,𝜇𝜄* ,1
. For (𝜄, 𝑡𝜄) ≺ (𝜄*, 𝜇𝜄*), 𝒄

*
𝜄,𝑡𝜄 has the form as in Eq. (3.5),

while for (𝜄, 𝑡𝜄) ≻ (𝜄*, 𝜇𝜄*), 𝒄
*
𝜄,𝑡𝜄 is of the form as in Eq. (3.1). These are indeed the proper forms of 𝒄*𝜄,𝑡𝜄

in the respective cases in both Hyb1,𝜄*,𝜇𝜄* ,1
as well as the previous hybrid. Also, for all 𝑖 ∈ [𝑞key], the 𝑖

th

answered decryption key has the form as in Eq. (3.2) which is their proper form in both Hyb1,𝜄*,𝜇𝜄* ,1
and

the earlier hybrid. Thus, the view of the adversary 𝒜 simulated by ℬ is distributed as in Hyb1,𝜄*,𝜇𝜄* ,1
or

its preceding hybrid, i.e., Hyb1,𝜄*−1,𝑞ct,𝜄*−1,3
or Hyb1,𝜄*,𝜇𝜄*−1,3 depending on whether 𝜇𝜄* = 1 or 𝜇𝜄* > 1,

according as 𝛽 = 0 or 1. This completes the proof of Lemma C.1. ⊓⊔

Lemma C.2: For any probabilistic adversary 𝒜, for any security parameter 𝜆, we have

Adv
(1,𝜄*,𝜇𝜄* ,1)
𝒜 (𝜆) = Adv

(1,𝜄*,𝜇𝜄* ,2)
𝒜 (𝜆) for all 𝜄* ∈ [𝑛], 𝜇𝜄* ∈ [𝑞ct,𝜄*].

28

Proof: In order to prove Lemma C.2, we demonstrate that the view of the adversary𝒜 in Hyb1,𝜄*,𝜇𝜄* ,1
and

that in Hyb1,𝜄*,𝜇𝜄* ,2
are identically distributed. Towards this end, we define new sets of dual orthogonal

bases {𝕌𝜄 = {𝒖𝜄,1, . . . , 𝒖𝜄,2𝑚+2𝑘+1},𝕌*
𝜄 = {𝒖*

𝜄,1, . . . ,𝒖
*
𝜄,2𝑚+2𝑘+1}}𝜄∈[𝑛] of the pair of vector spaces (𝕍1 =

𝔾2𝑚+2𝑘+1
1 ,𝕍2 = 𝔾2𝑚+2𝑘+1

2) using the sets of dual orthogonal bases {𝔹𝜄 = {𝒃𝜄,1, . . . , 𝒃𝜄,2𝑚+2𝑘+1},𝔹*
𝜄 =

{𝒃*𝜄,1, . . . , 𝒃*𝜄,2𝑚+2𝑘+1}}𝜄∈[𝑛] generated from 𝒢ob(2𝑚+ 2𝑘 + 1, params𝕍, 𝜈) in Hyb1,𝜄*,𝜇𝜄* ,1
as follows:

𝒖𝜄*,2𝑚+2𝑘+1 = 𝒃𝜄*,2𝑚+2𝑘+1 −
∑︀

𝑗∈[𝑚]

𝑥
(𝑗)
𝜄*,𝜇𝜄* ,1

𝜌𝜄*,𝜇𝜄*
𝒃𝜄*,𝑚+𝑗

𝒖𝜄*,𝑗 = 𝒃𝜄*,𝑗 , for 𝑗 ∈ [2𝑚+ 2𝑘]

𝒖*
𝜄*,𝑚+𝑗 = 𝒃*𝜄*,𝑚+𝑗 +

𝑥
(𝑗)
𝜄*,𝜇𝜄* ,1

𝜌𝜄*,𝜇𝜄*
𝒃*𝜄*,2𝑚+2𝑘+1, for 𝑗 ∈ [𝑚]

𝒖*
𝜄*,𝑗 = 𝒃*𝜄*,𝑗 , for 𝑗 ∈ [1,𝑚] ∪ [2𝑚+ 1, 2𝑚+ 2𝑘 + 1]

𝒖𝜄,𝑗 = 𝒃𝜄,𝑗 , for 𝜄 ∈ [𝑛]∖{𝜄*}, 𝑗 ∈ [2𝑚+ 2𝑘 + 1]

𝒖*
𝜄,𝑗 = 𝒃*𝜄,𝑗 , for 𝜄 ∈ [𝑛]∖{𝜄*}, 𝑗 ∈ [2𝑚+ 2𝑘 + 1]

Note that {𝕌𝜄,𝕌*
𝜄 }𝜄∈[𝑛] is indeed a set of dual orthogonal bases since those are obtained from the set of

dual orthogonal bases {𝔹𝜄,𝔹*
𝜄 }𝜄∈[𝑛] by applying invertible linear transformations. Further, {𝕌𝜄,𝕌*

𝜄 }𝜄∈[𝑛]

are distributed uniformly at random since {𝔹𝜄,𝔹*
𝜄 }𝜄∈[𝑛] are so.

Now, observe that the 𝜇𝜄*
th answered ciphertext ct*

𝜄*,𝜇𝜄*
= (𝜄*, 𝒄*𝜄*,𝜇𝜄*

) for index 𝜄* corresponding to
the pair of vectors (#»𝑥 𝜄*,𝜇𝜄* ,0,

#»𝑥 𝜄*,𝜇𝜄* ,1) ∈ (𝔽𝑚
𝑞)2 in Hyb1,𝜄*,𝜇𝜄* ,1

can be expressed as

𝒄*𝜄*,𝜇𝜄*
= (#»𝑥 𝜄*,𝜇𝜄* ,0,

#»
0𝑚, 1,

#»
0 𝑘−1, 𝜙𝜄*,𝜇𝜄* ,1, . . . , 𝜙𝜄*,𝜇𝜄* ,𝑘, 𝜌𝜄*,𝜇𝜄*)𝔹𝜄*

= (#»𝑥 𝜄*,𝜇𝜄* ,0,
#»𝑥 𝜄*,𝜇𝜄* ,1, 1,

#»
0 𝑘−1, 𝜙𝜄*,𝜇𝜄* ,1, . . . , 𝜙𝜄*,𝜇𝜄* ,𝑘, 𝜌𝜄*,𝜇𝜄*)𝕌𝜄* ,

which is of the same form as that in Eq. (3.4) that corresponds to Hyb1,𝜄*,𝜇𝜄* ,2
. So, the form of ct*

𝜄*,𝜇𝜄*
=

(𝜄*, 𝒄*𝜄*,𝜇𝜄*
) in Hyb1,𝜄*,𝜇𝜄* ,1

is changed to that in Hyb1,𝜄*,𝜇𝜄* ,2
through the basis transformations. Also for

all (𝜄, 𝑡𝜄) ̸= (𝜄*, 𝜇𝜄*), the 𝑡𝜄
th answered ciphertext ct*

𝜄,𝑡𝜄 = (𝜄, 𝒄*𝜄,𝑡𝜄) for index 𝜄 corresponding to the pair
of vectors (#»𝑥 𝜄,𝑡𝜄,0,

#»𝑥 𝜄,𝑡𝜄,1) ∈ (𝔽𝑚
𝑞)2 in Hyb1,𝜄*,𝜇𝜄* ,1

can be expressed as follows:

a) ((𝜄, 𝑡𝜄) ≺ (𝜄*, 𝜇𝜄*))

𝒄*𝜄,𝑡𝜄 = (#»𝑥 𝜄,𝑡𝜄,0,
#»𝑥 𝜄,𝑡𝜄,1, 1,

#»
0 𝑘−1, 𝜙𝜄,𝑡𝜄,1, . . . , 𝜙𝜄,𝑡𝜄,𝑘, 0)𝔹𝜄

= (#»𝑥 𝜄,𝑡𝜄,0,
#»𝑥 𝜄,𝑡𝜄,1, 1,

#»
0 𝑘−1, 𝜙𝜄,𝑡𝜄,1, . . . , 𝜙𝜄,𝑡𝜄,𝑘, 0)𝕌𝜄

b) ((𝜄, 𝑡𝜄) ≻ (𝜄*, 𝜇𝜄*))

𝒄*𝜄,𝑡𝜄 = (#»𝑥 𝜄,𝑡𝜄,0,
#»
0𝑚, 1,

#»
0 𝑘−1, 𝜙𝜄,𝑡𝜄,1, . . . , 𝜙𝜄,𝑡𝜄,𝑘, 0)𝔹𝜄

= (#»𝑥 𝜄,𝑡𝜄,0,
#»
0𝑚, 1,

#»
0 𝑘−1, 𝜙𝜄,𝑡𝜄,1, . . . , 𝜙𝜄,𝑡𝜄,𝑘, 0)𝕌𝜄

Thus, it follows that for all (𝜄, 𝑡𝜄) ̸= (𝜄*, 𝜇𝜄*), the form of ct*
𝜄,𝑡𝜄 = (𝜄, 𝒄*𝜄,𝑡𝜄) is preserved under the basis

transformations.

On the other hand, for all 𝑖 ∈ [𝑞key], the components of the 𝑖th answered decryption key sk*
𝑖 =

{𝒌*
𝜄,𝑖}𝜄∈[𝑛] corresponding to the pair of sets of 𝑛 vectors ({ #»𝑦 𝜄,𝑖,0}𝜄∈[𝑛], { #»𝑦 𝜄,𝑖,1}𝜄∈[𝑛]) such that #»𝑦 𝜄,𝑖,0,

#»𝑦 𝜄,𝑖,1 ∈
𝔽𝑚
𝑞 for all 𝜄 ∈ [𝑛], in Hyb1,𝜄*,𝜇𝜄* ,1

can be expressed as follows:

𝒌*
𝜄,𝑖 = (#»𝑦 𝜄,𝑖,0,

#»
0𝑚, 𝑟𝜄,𝑖, 𝛾𝜄,𝑖,1, . . . , 𝛾𝜄,𝑖,𝑘−1,

#»
0 𝑘, 0)𝔹*

𝜄

= (#»𝑦 𝜄,𝑖,0,
#»
0𝑚, 𝑟𝜄,𝑖, 𝛾𝜄,𝑖,1, . . . , 𝛾𝜄,𝑖,𝑘−1,

#»
0 𝑘, 0)𝕌*

𝜄
, for 𝜄 ∈ [𝑛]

Hence, we see that for all 𝑖 ∈ [𝑞key], the forms of the components of sk*
𝑖 = {𝒌*

𝜄,𝑖}𝜄∈[𝑛] are also preserved
under the basis transformations.

Moreover, observe that 𝑒(𝒖𝜄,𝑗 ,𝒖
*
𝜄,𝑗) = 𝑒(𝒃𝜄,𝑗 , 𝒃

*
𝜄,𝑗) = 𝑔𝑇 for all 𝜄 ∈ [𝑛], 𝑗 ∈ [2𝑚 + 2𝑘 + 1], and hence

the basis transformations are compatible with the public parameters pp = (params𝕍, 𝑔𝑇) in Hyb1,𝜄*,𝜇𝜄* ,1

as well. Thus, it follows that the view of the adversary 𝒜 in Hyb1,𝜄*,𝜇𝜄* ,1
can be conceptually changed to

that in Hyb1,𝜄*,𝜇𝜄* ,2
. ⊓⊔

29

Lemma C.3: For any PPT adversary 𝒜 between Hyb1,𝜄*,𝜇𝜄* ,2
and Hyb1,𝜄*,𝜇𝜄* ,3

, there exists a PPT algo-
rithm ℬ for Problem 1 such that for any security parameter 𝜆, we have⃒⃒⃒

Adv
(1,𝜄*,𝜇𝜄* ,2)
𝒜 (𝜆)− Adv

(1,𝜄*,𝜇𝜄* ,3)
𝒜 (𝜆)

⃒⃒⃒
≤ Advp1ℬ (𝜆), for 𝜄* ∈ [𝑛], 𝜇𝜄* ∈ [𝑞ct,𝜄*].

Proof: The proof of Lemma C.3 is the same as that of Lemma C.1, except for some readily identifiable
modifications. We omit the details to avoid repetition. ⊓⊔

Lemma C.4: For any PPT adversary 𝒜 between Hyb2,𝜐−1,3 and Hyb2,𝜐,1, there exists a PPT algorithm
ℬ for Problem 1* such that for any security parameter 𝜆, we have⃒⃒⃒

Adv
(2,𝜐−1,3)
𝒜 (𝜆)− Adv

(2,𝜐,1)
𝒜 (𝜆)

⃒⃒⃒
≤ Advp1*ℬ (𝜆), for 𝜐 ∈ [𝑞key].

Proof: Suppose there exists a PPT adversary 𝒜 between Hyb2,𝜐−1,3 and Hyb2,𝜐,1. We construct a PPT
algorithm ℬ for Problem 1* using 𝒜 as a sub-routine. ℬ takes the role of the challenger in the full-hiding
security experiment described in Definition 2.8 and interacts with 𝒜 as follows:

∙ ℬ is given an instance of Problem 1*,

𝜚𝛽 = (params𝕍, 𝑔𝑇 , {̂︀𝔹𝜄, ̂︀𝔹*
𝜄 }𝜄∈[𝑛], {𝜰 𝜄,𝛽}𝜄∈[𝑛]);

where params𝔾 = (𝑞,𝔾1,𝔾2,𝔾𝑇 , 𝑔1, 𝑔2, 𝑒)
R←− 𝒢bpg(); params𝕍 = (𝑞,𝕍1,𝕍2,𝔾𝑇 ,𝔸1,𝔸2, 𝑒)

R←− 𝒢dpvs(2𝑚+

2𝑘 + 1, params𝔾); 𝜈
U←− 𝔽𝑞∖{0}; 𝑔𝑇 = 𝑒(𝑔1, 𝑔2)

𝜈 ; (𝔹𝜄,𝔹*
𝜄)

R←− 𝒢ob(2𝑚 + 2𝑘 + 1, params𝕍, 𝜈), for

𝜄 ∈ [𝑛]; ̂︀𝔹𝜄 = {𝒃𝜄,1, . . . , 𝒃𝜄,2𝑚+1, 𝒃𝜄,2𝑚+𝑘+1, . . . , 𝒃𝜄,2𝑚+2𝑘}, ̂︀𝔹*
𝜄 = {𝒃*𝜄,1, . . . , 𝒃*𝜄,2𝑚+𝑘}, for 𝜄 ∈ [𝑛];

𝛼1, . . . , 𝛼𝑘
U←− 𝔽𝑞; ℑ

U←− 𝔽𝑞∖{0}; and 𝜰 𝜄,𝛽 = (
#»
0 2𝑚, 𝛼1, . . . , 𝛼𝑘,

#»
0 𝑘, 0)𝔹*

𝜄
or (

#»
0 2𝑚, 𝛼1, . . . , 𝛼𝑘,

#»
0 𝑘,ℑ)𝔹*

𝜄
,

for 𝜄 ∈ [𝑛], according as 𝛽 = 0 or 1. ℬ hands pp = (params𝕍, 𝑔𝑇) to 𝒜.
∙ For 𝑖 ∈ [𝑞key], to answer the 𝑖th decryption key query of 𝒜 corresponding to pair of sets of 𝑛

vectors ({ #»𝑦 𝜄,𝑖,0}𝜄∈[𝑛], { #»𝑦 𝜄,𝑖,1}𝜄∈[𝑛]) such that #»𝑦 𝜄,𝑖,0,
#»𝑦 𝜄,𝑖,1 ∈ 𝔽𝑚

𝑞 , ℬ generates the components of
sk*

𝑖 = {𝒌*
𝜄,𝑖}𝜄∈[𝑛] as follows:

a) (𝑖 < 𝜐) ℬ selects random ̃︀𝑟𝜄,𝑖 U←− 𝔽𝑞, for 𝜄 ∈ [𝑛], such that
∑︀

𝜄∈[𝑛]

̃︀𝑟𝜄,𝑖 = 0, 𝛾𝜄,𝑖,1, . . . , 𝛾𝜄,𝑖,𝑘−1
U←− 𝔽𝑞, for

𝜄 ∈ [𝑛], and computes

𝒌*
𝜄,𝑖 =

∑︀
𝑗∈[𝑚]

𝑦
(𝑗)
𝜄,𝑖,1𝒃

*
𝜄,𝑚+𝑗 + ̃︀𝑟𝜄,𝑖𝒃*𝜄,2𝑚+1 +

∑︀
𝑗∈[𝑘−1]

𝛾𝜄,𝑖,𝑗𝒃
*
𝜄,2𝑚+1+𝑗

= (
#»
0𝑚, #»𝑦 𝜄,𝑖,1, ̃︀𝑟𝜄,𝑖, 𝛾𝜄,𝑖,1, . . . , 𝛾𝜄,𝑖,𝑘−1,

#»
0 𝑘, 0)𝔹*

𝜄
, for 𝜄 ∈ [𝑛].

b) (𝑖 = 𝜐) ℬ samples random ℘𝜄,𝜐
U←− 𝔽𝑞∖{0}, 𝜃𝜄,𝜐

U←− 𝔽𝑞, for 𝜄 ∈ [𝑛], such that
∑︀

𝜄∈[𝑛]

℘𝜄,𝜐 =
∑︀

𝜄∈[𝑛]

𝜃𝜄,𝜐 = 0,

𝜅𝜄,𝜐,1, . . . , 𝜅𝜄,𝜐,𝑘−1
U←− 𝔽𝑞, for 𝜄 ∈ [𝑛], and computes

𝒌*
𝜄,𝜐 =

∑︀
𝑗∈[𝑚]

𝑦
(𝑗)
𝜄,𝜐,0𝒃

*
𝜄,𝑗 + 𝜃𝜄,𝜐𝒃

*
𝜄,2𝑚+1 +

∑︀
𝑗∈[𝑘−1]

𝜅𝜄,𝜐,𝑗𝒃
*
𝜄,2𝑚+1+𝑗 + ℘𝜄,𝜐𝜰 𝜄,𝛽 ,

for 𝜄 ∈ [𝑛].

c) (𝑖 > 𝜐) ℬ selects random 𝑟𝜄,𝑖
U←− 𝔽𝑞, for 𝜄 ∈ [𝑛], such that

∑︀
𝜄∈[𝑛]

𝑟𝜄,𝑖 = 0, 𝛾𝜄,𝑖,1, . . . , 𝛾𝜄,𝑖,𝑘−1
U←− 𝔽𝑞, for

𝜄 ∈ [𝑛], and computes

𝒌*
𝜄,𝑖 =

∑︀
𝑗∈[𝑚]

𝑦
(𝑗)
𝜄,𝑖,0𝒃

*
𝜄,𝑗 + 𝑟𝜄,𝑖𝒃

*
𝜄,2𝑚+1 +

∑︀
𝑗∈[𝑘−1]

𝛾𝜄,𝑖,𝑗𝒃
*
𝜄,2𝑚+1+𝑗

= (#»𝑦 𝜄,𝑖,0,
#»
0𝑚, 𝑟𝜄,𝑖, 𝛾𝜄,𝑖,1, . . . , 𝛾𝜄,𝑖,𝑘−1,

#»
0 𝑘, 0)𝔹*

𝜄
, for 𝜄 ∈ [𝑛].

ℬ gives sk*
𝑖 = {𝒌*

𝜄,𝑖}𝜄∈[𝑛] to 𝒜.
∙ For all 𝜄 ∈ [𝑛], 𝑡𝜄 ∈ [𝑞ct,𝜄], to answer the 𝑡𝜄

th ciphertext query of𝒜 with respect to index 𝜄 corresponding

to pair of vectors (#»𝑥 𝜄,𝑡𝜄,0,
#»𝑥 𝜄,𝑡𝜄,1) ∈ (𝔽𝑚

𝑞)2, ℬ samples random 𝜙𝜄,𝑡𝜄,1, . . . , 𝜙𝜄,𝑡𝜄,𝑘
U←− 𝔽𝑞, and computes

𝒄*𝜄,𝑡𝜄 =
∑︀

𝑗∈[𝑚]

𝑥
(𝑗)
𝜄,𝑡𝜄,0

𝒃𝜄,𝑗 +
∑︀

𝑗∈[𝑚]

𝑥
(𝑗)
𝜄,𝑡𝜄,1

𝒃𝜄,𝑚+𝑗 + 𝒃𝜄,2𝑚+1 +
∑︀

𝑗∈[𝑘]

𝜙𝜄,𝑡𝜄,𝑗𝒃𝜄,2𝑚+𝑘+𝑗

= (#»𝑥 𝜄,𝑡𝜄,0,
#»𝑥 𝜄,𝑡𝜄,1, 1,

#»
0 𝑘−1, 𝜙𝜄,𝑡𝜄,1, . . . , 𝜙𝜄,𝑡𝜄,𝑘, 0)𝔹𝜄

.

ℬ provides 𝒜 with ct*
𝜄,𝑡𝜄 = (𝜄, 𝒄*𝜄,𝑡𝜄).

30

∙ 𝒜 eventually outputs a guess bit 𝛽′ ∈ {0, 1}. ℬ outputs 𝛽′ = 𝛽′ as its guess bit in its Problem 1*

challenge.

Observe that if 𝛽 = 0, i.e., 𝜰 𝜄,𝛽 = (
#»
0 2𝑚, 𝛼1, . . . , 𝛼𝑘,

#»
0 𝑘, 0)𝔹*

𝜄
for all 𝜄 ∈ [𝑛], then we have

𝒌*
𝜄,𝜐 = (#»𝑦 𝜄,𝜐,0,

#»
0𝑚, 𝛼1℘𝜄,𝜐 + 𝜃𝜄,𝜐, 𝛼2℘𝜄,𝜐 + 𝜅𝜄,𝜐,1, . . . , 𝛼𝑘℘𝜄,𝜐 + 𝜅𝜄,𝜐,𝑘−1,

#»
0 𝑘, 0)𝔹*

𝜄

for all 𝜄 ∈ [𝑛],

which is of the same form as that in Eq. (3.2), where we have 𝑟𝜄,𝜐 = 𝛼1℘𝜄,𝜐+𝜃𝜄,𝜐, and 𝛾𝜄,𝜐,𝑗 = 𝛼𝑗+1℘𝜄,𝜐+
𝜅𝜄,𝜐,𝑗 , for 𝑗 ∈ [𝑘− 1], and this is the proper form of 𝒌*

𝜄,𝜐 in Hyb2,𝜐−1,3, for all 𝜄 ∈ [𝑛]. On the other hand,

in case 𝛽 = 1, i.e., 𝜰 𝜄,𝛽 = (
#»
0 2𝑚, 𝛼1, . . . , 𝛼𝑘,

#»
0 𝑘,ℑ)𝔹*

𝜄
, then we have

𝒌*
𝜄,𝜐 = (#»𝑦 𝜄,𝜐,0,

#»
0𝑚, 𝛼1℘𝜄,𝜐 + 𝜃𝜄,𝜐, 𝛼2℘𝜄,𝜐 + 𝜅𝜄,𝜐,1, . . . , 𝛼𝑘℘𝜄,𝜐 + 𝜅𝜄,𝜐,𝑘−1,

#»
0 𝑘,ℑ℘𝜄,𝜐)𝔹*

𝜄

for all 𝜄 ∈ [𝑛],

which is of the same form as in Eq. (3.6), where we have 𝑟𝜄,𝜐 = 𝛼1℘𝜄,𝜐+𝜃𝜄,𝜐, 𝛾𝜄,𝜐,𝑗 = 𝛼𝑗+1℘𝜄,𝜐+𝜅𝜄,𝜐,𝑗 , for
𝑗 ∈ [𝑘− 1], and 𝜔𝜄,𝜐 = ℑ℘𝜄,𝜐, and this is the proper form of 𝒌*

𝜄,𝜐 in Hyb2,𝜐,1, for all 𝜄 ∈ [𝑛]. In particular,
notice that

∑︀
𝜄∈[𝑛]

𝑟𝜄,𝜐 = 0 =
∑︀

𝜄∈[𝑛]

𝜔𝜄,𝜐. For 𝑖 < 𝜐, 𝒌*
𝜄,𝑖 has the form as in Eq. (3.8), for all 𝜄 ∈ [𝑛], while for

𝑖 > 𝜐, 𝒌*
𝜄,𝑖 is of the form as in Eq. (3.2), for all 𝜄 ∈ [𝑛]. These are indeed the proper forms of 𝒌*

𝜄,𝑖 in the
respective cases in both Hyb2,𝜐−1,3 as well as in Hyb2,𝜐,1, for all 𝜄 ∈ [𝑛]. Further, for all 𝜄 ∈ [𝑛], 𝑡𝜄 ∈ [𝑞ct,𝜄],

the 𝑡𝜄
th answered ciphertext with respect to index 𝜄 has the form as in Eq. (3.5) which is their proper

form in both Hyb2,𝜐−1,3 and Hyb2,𝜐,1. Thus, the view of the adversary 𝒜 simulated by ℬ is distributed

as in Hyb2,𝜐−1,3 or Hyb2,𝜐,1 according as 𝛽 = 0 or 1. This completes the proof of Lemma C.4. ⊓⊔

Lemma C.5: For any probabilistic adversary 𝒜, for any security parameter 𝜆, we have

Adv
(2,𝜐,1)
𝒜 (𝜆) = Adv

(2,𝜐,2)
𝒜 (𝜆), for all 𝜐 ∈ [𝑞key].

Proof: In order to prove Lemma C.5, we demonstrate that the view of the adversary 𝒜 in Hyb2,𝜐,1
and that in Hyb2,𝜐,2 are identically distributed. Towards this end, we define new sets of dual orthogonal
bases {𝕌𝜄 = {𝒖𝜄,1, . . . , 𝒖𝜄,2𝑚+2𝑘+1},𝕌*

𝜄 = {𝒖*
𝜄,1, . . . ,𝒖

*
𝜄,2𝑚+2𝑘+1}}𝜄∈[𝑛] of the pair of vector spaces (𝕍1 =

𝔾2𝑚+2𝑘+1
1 ,𝕍2 = 𝔾2𝑚+2𝑘+1

2) using the sets of dual orthogonal bases {𝔹𝜄 = {𝒃𝜄,1, . . . , 𝒃𝜄,2𝑚+2𝑘+1},𝔹*
𝜄 =

{𝒃*𝜄,1, . . . , 𝒃*𝜄,2𝑚+2𝑘+1}}𝜄∈[𝑛] generated from 𝒢ob(2𝑚+ 2𝑘 + 1, params𝕍, 𝜈) in Hyb2,𝜐,1 as follows:

𝒖𝜄,𝑗 = 𝒃𝜄,𝑗 −
𝑦
(𝑗)
𝜄,𝜐,0

𝜔𝜄,𝜐
𝒃𝜄,2𝑚+2𝑘+1, for 𝜄 ∈ [𝑛], 𝑗 ∈ [𝑚]

𝒖𝜄,𝑚+𝑗 = 𝒃𝜄,𝑚+𝑗 +
𝑦
(𝑗)
𝜄,𝜐,1

𝜔𝜄,𝜐
𝒃𝜄,2𝑚+2𝑘+1, for 𝜄 ∈ [𝑛], 𝑗 ∈ [𝑚]

𝒖𝜄,2𝑚+1 = 𝒃𝜄,2𝑚+1 +
#»𝑥 𝜄,1,0 · #»𝑦 𝜄,𝜐,0 − #»𝑥 𝜄,1,1 · #»𝑦 𝜄,𝜐,1

𝜔𝜄,𝜐
𝒃𝜄,2𝑚+2𝑘+1, for 𝜄 ∈ [𝑛]

𝒖𝜄,𝑗 = 𝒃𝜄,𝑗 , for 𝜄 ∈ [𝑛], 𝑗 ∈ [2𝑚+ 2, 2𝑚+ 2𝑘 + 1]

𝒖*
𝜄,2𝑚+2𝑘+1 = 𝒃*𝜄,2𝑚+2𝑘+1 +

∑︀
𝑗∈[𝑚]

𝑦
(𝑗)
𝜄,𝜐,0

𝜔𝜄,𝜐
𝒃*𝜄,𝑗 −

∑︀
𝑗∈[𝑚]

𝑦
(𝑗)
𝜄,𝜐,1

𝜔𝜄,𝜐
𝒃*𝜄,𝑚+𝑗+

#»𝑥 𝜄,1,1 · #»𝑦 𝜄,𝜐,1 − #»𝑥 𝜄,1,0 · #»𝑦 𝜄,𝜐,0

𝜔𝜄,𝜐
𝒃*𝜄,2𝑚+1, for 𝜄 ∈ [𝑛]

𝒖*
𝜄,𝑗 = 𝒃*𝜄,𝑗 , for 𝜄 ∈ [𝑛], 𝑗 ∈ [2𝑚+ 2𝑘]

Note that {𝕌𝜄,𝕌*
𝜄 }𝜄∈[𝑛] is indeed a set of dual orthogonal bases since those are obtained from the set of

dual orthogonal bases {𝔹𝜄,𝔹*
𝜄 }𝜄∈[𝑛] by applying invertible linear transformations. Further, {𝕌𝜄,𝕌*

𝜄 }𝜄∈[𝑛]

are distributed uniformly at random since {𝔹𝜄,𝔹*
𝜄 }𝜄∈[𝑛] are so.

Now, observe that the components of the 𝜐th answered decryption key sk*
𝜐 = {𝒌*

𝜄,𝜐}𝜄∈[𝑛] corresponding
to the pair of sets of 𝑛 vectors ({ #»𝑦 𝜄,𝜐,0}𝜄∈[𝑛], { #»𝑦 𝜄,𝜐,1}𝜄∈[𝑛]) such that #»𝑦 𝜄,𝜐,0,

#»𝑦 𝜄,𝜐,1 ∈ 𝔽𝑚
𝑞 for all 𝜄 ∈ [𝑛], in

Hyb2,𝜐,1 can be expressed as

𝒌*
𝜄,𝜐 = (#»𝑦 𝜄,𝜐,0,

#»
0𝑚, 𝑟𝜄,𝜐, 𝛾𝜄,𝜐,1, . . . , 𝛾𝜄,𝜐,𝑘−1,

#»
0 𝑘, 𝜔𝜄,𝜐)𝔹*

𝜄

= (
#»
0𝑚, #»𝑦 𝜄,𝜐,1, ̃︀𝑟𝜄,𝜐, 𝛾𝜄,𝜐,1, . . . , 𝛾𝜄,𝜐,𝑘−1,

#»
0 𝑘, 𝜔𝜄,𝜐)𝕌*

𝜄
, for 𝜄 ∈ [𝑛],

(C.1)

31

where ̃︀𝑟𝜄,𝜐 = 𝑟𝜄,𝜐 +
#»𝑥 𝜄,1,0 · #»𝑦 𝜄,𝜐,0 − #»𝑥 𝜄,1,1,

#»𝑦 𝜄,𝜐,1

𝜔𝜄,𝜐
, for all 𝜄 ∈ [𝑛]. Observe that

∑︀
𝜄∈[𝑛]

̃︀𝑟𝜄,𝜐 = 0 holds since∑︀
𝜄∈[𝑛]

𝑟𝜄,𝜐 = 0 and
∑︀

𝜄∈[𝑛]

#»𝑥 𝜄,1,0 · #»𝑦 𝜄,𝜐,0 =
∑︀

𝜄∈[𝑛]

#»𝑥 𝜄,1,1 · #»𝑦 𝜄,𝜐,1 by the restriction Eq. (B.1) on the queries of 𝒜.

Moreover, for all 𝜄 ∈ [𝑛], ̃︀𝑟𝜄,𝜐 is distributed uniformly and independently over 𝔽𝑞 since 𝑟𝜄,𝜐 is so for all
𝜄 ∈ [𝑛].

Clearly, for all 𝜄 ∈ [𝑛], the form of 𝒌*
𝜄,𝜐 in Eq. (C.1) is identical to that in Eq. (3.7) that corresponds

to Hyb2,𝜐,2. Thus, the form of the 𝜐th answered decryption key sk*
𝜐 = {𝒌*

𝜄,𝜐}𝜄∈[𝑛] is switched from that
in Hyb2,𝜐,1 to that in Hyb2,𝜐,2 through the basis transformations. Further, for all 𝑖 ̸= 𝜐, the components

of the 𝑖th answered decryption key sk*
𝑖 = {𝒌*

𝜄,𝑖}𝜄∈[𝑛] corresponding to the pair of sets of 𝑛 vectors
({ #»𝑦 𝜄,𝑖,0}𝜄∈[𝑛], { #»𝑦 𝜄,𝑖,1}𝜄∈[𝑛]) such that #»𝑦 𝜄,𝑖,0,

#»𝑦 𝜄,𝑖,1 ∈ 𝔽𝑚
𝑞 , in Hyb2,𝜐,1 can be expressed as follows:

a) (𝑖 < 𝜐)

𝒌*
𝜄,𝑖 = (

#»
0𝑚, #»𝑦 𝜄,𝑖,1, ̃︀𝑟𝜄,𝑖, 𝛾𝜄,𝑖,1, . . . , 𝛾𝜄,𝑖,𝑘−1,

#»
0 𝑘, 0)𝔹*

𝜄

= (
#»
0𝑚, #»𝑦 𝜄,𝑖,1, ̃︀𝑟𝜄,𝑖, 𝛾𝜄,𝑖,1, . . . , 𝛾𝜄,𝑖,𝑘−1,

#»
0 𝑘, 0)𝕌*

𝜄
, for 𝜄 ∈ [𝑛]

b) (𝑖 > 𝜐)

𝒌*
𝜄,𝑖 = (#»𝑦 𝜄,𝑖,0,

#»
0𝑚, 𝑟𝜄,𝑖, 𝛾𝜄,𝑖,1, . . . , 𝛾𝜄,𝑖,𝑘−1,

#»
0 𝑘, 0)𝔹*

𝜄

= (#»𝑦 𝜄,𝑖,0,
#»
0𝑚, 𝑟𝜄,𝑖, 𝛾𝜄,𝑖,1, . . . , 𝛾𝜄,𝑖,𝑘−1,

#»
0 𝑘, 0)𝕌*

𝜄
, for 𝜄 ∈ [𝑛]

Hence, we see that for all 𝑖 ̸= 𝜐, the forms of the components of sk*
𝑖 = {𝒌*

𝜄,𝑖}𝜄∈[𝑛] are preserved under
the basis transformations.

On the other hand, for all 𝜄 ∈ [𝑛], 𝑡𝜄 ∈ [𝑞ct,𝜄], the 𝑡𝜄
th answered ciphertext ct*

𝜄,𝑡𝜄 = (𝜄, 𝒄*𝜄,𝑡𝜄) for index
𝜄 corresponding to the pair of vectors (#»𝑥 𝜄,𝑡𝜄,0,

#»𝑥 𝜄,𝑡𝜄,1) ∈ (𝔽𝑚
𝑞)2 in Hyb2,𝜐,1 can be expressed as follows:

𝒄*𝜄,𝑡𝜄 = (#»𝑥 𝜄,𝑡𝜄,0,
#»𝑥 𝜄,𝑡𝜄,1, 1,

#»
0 𝑘−1, 𝜙𝜄,𝑡𝜄,1, . . . , 𝜙𝜄,𝑡𝜄,𝑘, 0)𝔹𝜄

= (#»𝑥 𝜄,𝑡𝜄,0,
#»𝑥 𝜄,𝑡𝜄,1, 1,

#»
0 𝑘−1, 𝜙𝜄,𝑡𝜄,1, . . . , 𝜙𝜄,𝑡𝜄,𝑘, [

#»𝑥 𝜄,𝑡𝜄,0 · #»𝑦 𝜄,𝜐,0 − #»𝑥 𝜄,𝑡𝜄,1 · #»𝑦 𝜄,𝜐,1−
(#»𝑥 𝜄,1,0 · #»𝑦 𝜄,𝜐,0 − #»𝑥 𝜄,1,1 · #»𝑦 𝜄,𝜐,1)]/𝜔𝜄,𝜐)𝕌𝜄

= (#»𝑥 𝜄,𝑡𝜄,0,
#»𝑥 𝜄,𝑡𝜄,1, 1,

#»
0 𝑘−1, 𝜙𝜄,𝑡𝜄,1, . . . , 𝜙𝜄,𝑡𝜄,𝑘, 0)𝕌𝜄

The fact that (#»𝑥 𝜄,𝑡𝜄,0 · #»𝑦 𝜄,𝜐,0 − #»𝑥 𝜄,𝑡𝜄,1 · #»𝑦 𝜄,𝜐,1)− (#»𝑥 𝜄,1,0 · #»𝑦 𝜄,𝜐,0 − #»𝑥 𝜄,1,1 · #»𝑦 𝜄,𝜐,1) = 0 follows directly from
the restriction Eq. (B.2) on the queries of the adversary 𝒜. Thus, it follows that for all 𝜄 ∈ [𝑛], 𝑡𝜄 ∈ [𝑞ct,𝜄],
the form of ct*

𝜄,𝑡𝜄 = (𝜄, 𝒄*𝜄,𝑡𝜄) is preserved under the basis transformations.

Moreover, observe that 𝑒(𝒖𝜄,𝑗 ,𝒖
*
𝜄,𝑗) = 𝑒(𝒃𝜄,𝑗 , 𝒃

*
𝜄,𝑗) = 𝑔𝑇 for all 𝜄 ∈ [𝑛], 𝑗 ∈ [2𝑚 + 2𝑘 + 1], and hence

the basis transformations are compatible with the public parameters pp = (params𝕍, 𝑔𝑇) in Hyb2,𝜐,1 as
well. Thus, it follows that the view of the adversary 𝒜 in Hyb2,𝜐,1 can be conceptually changed to that
in Hyb2,𝜐,2. ⊓⊔

Lemma C.6: For any PPT adversary 𝒜 between Hyb2,𝜐,2 and Hyb2,𝜐,3, there exists a PPT algorithm ℬ
for Problem 1* such that for any security parameter 𝜆, we have⃒⃒⃒

Adv
(2,𝜐,2)
𝒜 (𝜆)− Adv

(2,𝜐,3)
𝒜 (𝜆)

⃒⃒⃒
≤ Advp1*ℬ (𝜆), for 𝜐 ∈ [𝑞key].

Proof: The proof of Lemma C.6 is the same as that of Lemma C.4, except for some minor modifications
that are easy to find out. We omit the details to avoid repetition. ⊓⊔

Lemma C.7: For any probabilistic adversary 𝒜, for any security parameter 𝜆, we have

Adv
(2,𝑞key,3)
𝒜 (𝜆) = Adv

(3)
𝒜 (𝜆).

Proof: In order to prove Lemma C.7, we demonstrate that the view of the adversary 𝒜 in Hyb2,𝑞key,3
and that in Hyb3 are identically distributed. Towards this end, we define new sets of dual orthogonal
bases {𝕌𝜄 = {𝒖𝜄,1, . . . ,𝒖𝜄,2𝑚+2𝑘+1}, 𝕌*

𝜄 = {𝒖*
𝜄,1, . . . ,𝒖

*
𝜄,2𝑚+2𝑘+1}}𝜄∈[𝑛] of the pair of vector spaces (𝕍1 =

𝔾2𝑚+2𝑘+1
1 , 𝕍2 = 𝔾2𝑚+2𝑘+1

2) from the sets of dual orthogonal bases {𝔹𝜄 = {𝒃𝜄,1, . . . , 𝒃𝜄,2𝑚+2𝑘+1}, 𝔹*
𝜄 =

32

{𝒃*𝜄,1, . . . , 𝒃*𝜄,2𝑚+2𝑘+1}}𝜄∈[𝑛] generated from 𝒢ob(2𝑚+ 2𝑘 + 1, params𝕍, 𝜈) in Hyb2,𝑞key,3 as follows:

𝒖𝜄,𝑗 = 𝒃𝜄,𝑚+𝑗 , for 𝜄 ∈ [𝑛], 𝑗 ∈ [𝑚]

𝒖𝜄,𝑚+𝑗 = 𝒃𝜄,𝑗 , for 𝜄 ∈ [𝑛], 𝑗 ∈ [𝑚]

𝒖𝜄,𝑗 = 𝒃𝜄,𝑗 , for 𝜄 ∈ [𝑛], 𝑗 ∈ [2𝑚+ 1, 2𝑚+ 2𝑘 + 1]

𝒖*
𝜄,𝑗 = 𝒃*𝜄,𝑚+𝑗 , for 𝜄 ∈ [𝑛], 𝑗 ∈ [𝑚]

𝒖*
𝜄,𝑚+𝑗 = 𝒃*𝜄,𝑗 , for 𝜄 ∈ [𝑛], 𝑗 ∈ [𝑚]

𝒖*
𝜄,𝑗 = 𝒃*𝜄,𝑗 , for 𝜄 ∈ [𝑛], 𝑗 ∈ [2𝑚+ 1, 2𝑚+ 2𝑘 + 1]

Note that {𝕌𝜄,𝕌*
𝜄 }𝜄∈[𝑛] is indeed a set of dual orthogonal bases since those are obtained from the set of

dual orthogonal bases {𝔹𝜄,𝔹*
𝜄 }𝜄∈[𝑛] by applying invertible linear transformations. Further, {𝕌𝜄,𝕌*

𝜄 }𝜄∈[𝑛]

are distributed uniformly at random since {𝔹𝜄,𝔹*
𝜄 }𝜄∈[𝑛] are so.

Now, observe that for all 𝜄 ∈ [𝑛], 𝑡𝜄 ∈ [𝑞ct,𝜄], the 𝑡𝜄
th answered ciphertext ct*

𝜄,𝑡𝜄 = (𝜄, 𝒄*𝜄,𝑡𝜄) for index 𝜄
corresponding to the pair of vectors (#»𝑥 𝜄,𝑡𝜄,0,

#»𝑥 𝜄,𝑡𝜄,1) ∈ (𝔽𝑚
𝑞)2 in Hyb2,𝑞key,3 can be expressed as

𝒄*𝜄,𝑡𝜄 = (#»𝑥 𝜄,𝑡𝜄,0,
#»𝑥 𝜄,𝑡𝜄,1, 1,

#»
0 𝑘−1, 𝜙𝜄,𝑡𝜄,1, . . . , 𝜙𝜄,𝑡𝜄,𝑘, 0)𝔹𝜄

= (#»𝑥 𝜄,𝑡𝜄,1,
#»𝑥 𝜄,𝑡𝜄,0, 1,

#»
0 𝑘−1, 𝜙𝜄,𝑡𝜄,1, . . . , 𝜙𝜄,𝑡𝜄,𝑘, 0)𝕌𝜄

,

which is of the same form as that in Eq. (3.9) that corresponds to Hyb3. Thus, the form of ct*
𝜄,𝑡𝜄 = (𝜄, 𝒄*𝜄,𝑡𝜄)

in Hyb2,𝑞key,3 is changed to that in Hyb3 through the basis transformations.

On the other hand, for all 𝑖 ∈ [𝑞key], the components of the 𝑖th answered decryption key sk*
𝑖 =

{𝒌*
𝜄,𝑖}𝜄∈[𝑛] corresponding to the pair of sets of 𝑛 vectors ({ #»𝑦 𝜄,𝑖,0}𝜄∈[𝑛], { #»𝑦 𝜄,𝑖,1}𝜄∈[𝑛]) such that #»𝑦 𝜄,𝑖,0,

#»𝑦 𝜄,𝑖,1 ∈
𝔽𝑚
𝑞 , in Hyb2,𝑞key,3 can be expressed as

𝒌*
𝜄,𝑖 = (

#»
0𝑚, #»𝑦 𝜄,𝑖,1, ̃︀𝑟𝜄,𝑖, 𝛾𝜄,𝑖,1, . . . , 𝛾𝜄,𝑖,𝑘−1,

#»
0 𝑘, 0)𝔹*

𝜄

= (#»𝑦 𝜄,𝑖,1,
#»
0𝑚, ̃︀𝑟𝜄,𝑖, 𝛾𝜄,𝑖,1, . . . , 𝛾𝜄,𝑖,𝑘−1,

#»
0 𝑘, 0)𝕌*

𝜄
, for 𝜄 ∈ [𝑛].

Clearly, for all 𝜄 ∈ [𝑛], 𝑖 ∈ [𝑞key], the form of 𝒌*
𝜄,𝑖 above is identical to that in Eq. (3.10) that corresponds

to Hyb3. Thus, for all 𝑖 ∈ [𝑞key], the form of the 𝑖th answered decryption key sk*
𝑖 = {𝒌*

𝜄,𝑖}𝜄∈[𝑛] is also
switched from that in Hyb2,𝑞key,3 to that in Hyb3 through the basis transformations.

Moreover, observe that for all 𝜄 ∈ [𝑛],

𝑒(𝒖𝜄,𝑗 ,𝒖
*
𝜄,𝑗) =

⎧⎨⎩
𝑒(𝒃𝜄,𝑚+𝑗 , 𝒃

*
𝜄,𝑚+𝑗) = 𝑔𝑇 , for 𝑗 ∈ [𝑚]

𝑒(𝒃𝜄,𝑗−𝑚, 𝒃
*
𝜄,𝑗−𝑚) = 𝑔𝑇 , for 𝑗 ∈ [𝑚+ 1, 2𝑚]

𝑒(𝒃𝜄,𝑗 , 𝒃
*
𝜄,𝑗) = 𝑔𝑇 , for 𝑗 ∈ [2𝑚+ 1, 2𝑚+ 2𝑘 + 1]

,

and hence the basis transformations are compatible with the public parameters pp = (params𝕍, 𝑔𝑇) in
Hyb2,𝑞key,3 as well. Thus, it follows that the view of the adversary 𝒜 in Hyb2,𝑞key,3 can be conceptually
changed to that in Hyb3. ⊓⊔

D Lemmas for the Proof of Theorem 4.1

𝐑𝐞𝐦𝐚𝐫𝐤 𝐃.𝟏: In some hybrids, a reduction algorithm needs to simulate random functions, which are
changed from pseudorandom functions. For the simulation, the algorithm makes a list 𝐿 for a random
function 𝑅. When the algorithm needs to evaluate a random function with an input 𝜄, it looks up (𝜄, 𝑣𝜄)
from 𝐿. If there is such a pair (𝜄, 𝑣𝜄), then the algorithm uses 𝑣𝜄 as the output of the random function.
Otherwise, it chooses a random value 𝑣𝜄 from its range and makes it the output of the random function.
Then it adds the pair (𝜄, 𝑣𝜄) into the list 𝐿. For ease of exposition, we express the above operation just
as 𝑣𝜄 = 𝑅(𝜄).

Lemma D.1: For any PPT adversary 𝒜 between Hyb0 and Hyb1, there exist PPT adversaries ℬ1 and ℬ2
against PRFs such that for any 𝜆, we have

|Adv(0)𝒜 (𝜆)− Adv
(1)
𝒜 (𝜆)| ≤ Advprf1ℬ1

(𝜆) + Advprf2ℬ2
(𝜆).

33

Proof: This lemma directly follows from the definition of PRFs. ⊓⊔

Lemma D.2: For any PPT adversary 𝒜 between Hyb1 and Hyb2, there exists PPT adversaries ℬ for
Problem 1 (Definition 2.5) such that for any 𝜆, we have

|Adv(1)𝒜 (𝜆)− Adv
(2)
𝒜 (𝜆)| ≤ 2

∑︁
𝜄∈[2𝜆]

𝑞ct,𝜄Adv
p1
ℬ (𝜆).

Proof (sketch): We can prove this lemma similarly to the Hyb1 sequence in the bounded scheme (Section
3.2). When we embed Problem 1 into hybrids, we proceed as follows.

1. First, the challenger ℬ receives an instance of Problem 1 with 𝑛 = 1; (params𝕍,

𝑔𝑇 , ̂︀𝔹, ̂︀𝔹*,𝜰𝛽), and sets (̂︀𝔻, ̂︀𝔻*) = (̂︀𝔹, ̂︀𝔹*) as msk.

2. When ℬ is queried about a ciphertext for the index 𝜄, it creates the basis as 𝑊𝜄 = 𝑅1(𝜄), ̂︀𝔹𝜄 = ̂︀𝔻𝑊𝜄.
Then it encrypts the message using the basis.

3. The simulation of the decryption key query is almost same as the ciphertext query.
4. When ℬ embeds the problem into the ciphertext, it uses 𝜰𝛽𝑊𝜄 to creates the ciphertext.
5. Finally, ℬ makes use of the output of the adversary.

⊓⊔

Lemma D.3: Let 𝑛𝑚𝑎𝑥 be the maximum index of a decryption key that 𝒜 queries, i.e., 𝑆𝑖 ⊆ [𝑛𝑚𝑎𝑥] for
all 𝑖 ∈ [𝑞sk]. For any PPT adversary 𝒜 between Hyb3,𝜐−1 and Hyb3,𝜐 for 𝜐 ∈ [𝑞key], there exists PPT
adversaries ℬ1 for Problem 1* (Definition 2.6) and ℬ2 for SKE such that for any 𝜆, we have

|Adv(3,𝜐−1)
𝒜 (𝜆)− Adv

(3,𝜐)
𝒜 (𝜆)| ≤ 2Advp1*ℬ1

(𝜆) + 𝑛𝑚𝑎𝑥Adv
ske
ℬ2

(𝜆).

Proof: In Hyb3,𝜐−1 and Hyb3,𝜐, we can classify the experiment into the following two types with respect

to the 𝜐th key query.

1. For all 𝜄 ∈ 𝑆𝜐, 𝑞ct,𝜄 ≥ 1.
2. There exists 𝜄 ∈ 𝑆𝜐 s.t. 𝑞ct,𝜄 = 0.

Let 𝑋𝑗 be a random variable over {1, 2}. We define 𝑋𝑗 = ℓ if the ℓth event above occurs in the end of

Hyb3,𝑗 . We also define 𝑃𝑗 as an event that 𝒜 outputs 1 in Hyb3,𝑗 . Namely, Adv
(3,𝑗)
𝒜 (𝜆) = Pr[𝑃𝑗]. Then,

we have

|Adv(3,𝜐−1)
𝒜 (𝜆)− Adv

(3,𝜐)
𝒜 (𝜆)| = |Pr[𝑃𝜐−1]− Pr[𝑃𝜐]|

=

⃒⃒⃒⃒
Pr[𝑋𝜐−1 = 1]Pr[𝑃𝜐−1|𝑋𝜐−1 = 1]− Pr[𝑋𝜐 = 1]Pr[𝑃𝜐|𝑋𝜐 = 1]

+ Pr[𝑋𝜐−1 = 2]Pr[𝑃𝜐−1|𝑋𝜐−1 = 2]− Pr[𝑋𝜐 = 2]Pr[𝑃𝜐|𝑋𝜐 = 2]

⃒⃒⃒⃒
.

First, we consider the case of the event 1.

Lemma D.4: For any PPT adversary 𝒜, there exists a PPT adversary ℬ1 for Problem 1* (Definition 2.6)
such that for any 𝜆, we have

|Pr[𝑋𝜐−1 = 1]Pr[𝑃𝜐−1|𝑋𝜐−1 = 1]− Pr[𝑋𝜐 = 1]Pr[𝑃𝜐|𝑋𝜐 = 1]| ≤ 2Advp1*ℬ1
(𝜆).

Proof: Let Hyb3,𝜐−1,1,Hyb3,𝜐−1,2 be intermediate hybrids between Hyb3,𝜐−1 and Hyb3,𝜐, and defined as
follows.

Hyb𝟑,𝝊−𝟏,𝟏 (𝝊 ∈ [𝒒key]): This hybrid is identical to Hyb3,𝜐−1 except that the 𝜐th decryption key query
is replied as

𝑟𝜄,𝜐, 𝛾𝜄,𝜐
U←− 𝔽𝑞 s.t.

∑︁
𝜄∈𝑆𝜐

𝑟𝜄,𝜐 =
∑︁
𝜄∈𝑆𝜐

𝛾𝜄,𝜐 = 0, 𝑊𝜄 = 𝑅1(𝜄), 𝔹*
𝜄 = 𝔻*𝑊 *

𝜄 ,

𝒌*
𝜄,𝜐 = (#»𝑦 𝜄,𝜐,0,

#»
0𝑚, 𝑟𝜄,𝜐, 0, 𝛾𝜄,𝜐)𝔹*

𝜄
for 𝜄 ∈ 𝑆𝜐,

𝐶|𝑆𝜐| = SKE.Encrypt(𝑅2(𝑠𝜐,|𝑆𝜐|), . . . ,SKE.Encrypt(𝑅2(𝑠𝜐,1), {𝒌*
𝜄,𝜐}𝜄∈𝑆𝜐

) . . .),

sk*
𝑆𝜐,𝜐 = (𝐶|𝑆𝜐|, 𝑆𝜐).

34

Hyb𝟑,𝝊−𝟏,𝟐 (𝝊 ∈ [𝒒key]): This hybrid is identical to Hyb3,𝜐−1,1 except that the 𝜐
th decryption key query

is replied as

𝑟𝜄,𝜐, 𝛾𝜄,𝜐
U←− 𝔽𝑞 s.t.

∑︁
𝜄∈𝑆𝜐

𝑟𝜄,𝜐 =
∑︁
𝜄∈𝑆𝜐

𝛾𝜄,𝜐 = 0, 𝑊𝜄 = 𝑅1(𝜄), 𝔹*
𝜄 = 𝔻*𝑊 *

𝜄 ,

𝒌*
𝜄,𝜐 = (

#»
0𝑚, #»𝑦 𝜄,𝜐,1 , 𝑟𝜄,𝜐, 0, 𝛾𝜄,𝜐)𝔹*

𝜄
for 𝜄 ∈ 𝑆𝜐,

𝐶|𝑆𝜐| = SKE.Encrypt(𝑅2(𝑠𝜐,|𝑆𝜐|), . . . ,SKE.Encrypt(𝑅2(𝑠𝜐,1), {𝒌*
𝜄,𝜐}𝜄∈𝑆𝜐

) . . .),

sk*
𝑆𝜐,𝜐 = (𝐶|𝑆𝜐|, 𝑆𝜐).

Then we consider following lemmas.

Lemma D.5: For any PPT adversary 𝒜, there exists a PPT adversary ℬ for the Problem 1* such that for
any 𝜆, we have ⃒⃒⃒⃒

Pr[𝑋𝜐−1 = 1]Pr[𝑃𝜐−1|𝑋𝜐−1 = 1]
− Pr[𝑋𝜐−1,1 = 1]Pr[𝑃𝜐−1,1|𝑋𝜐−1,1 = 1]

⃒⃒⃒⃒
≤ Advp1*ℬ (𝜆).

Lemma D.6: For any PPT adversary 𝒜, we have

Pr[𝑋𝜐−1,1 = 1]Pr[𝑃𝜐−1,1|𝑋𝜐−1,1 = 1] = Pr[𝑋𝜐−1,2 = 1]Pr[𝑃𝜐−1,2|𝑋𝜐−1,2 = 1].

Lemma D.7: For any PPT adversary 𝒜, there exists a PPT adversary ℬ for the Problem 1* such that for
any 𝜆, we have ⃒⃒⃒⃒

Pr[𝑋𝜐−1,2 = 1]Pr[𝑃𝜐−1,2|𝑋𝜐−1,2 = 1]
− Pr[𝑋𝜐 = 1]Pr[𝑃𝜐|𝑋𝜐 = 1]

⃒⃒⃒⃒
≤ Advp1*ℬ (𝜆).

Proof (of Lemma D.5): Let ℬ behaves as follows.

1. ℬ is given an instance of Problem 1* with 𝑛 = 1; (params𝕍, 𝑔𝑇 , ̂︀𝔹, ̂︀𝔹*,𝜰𝛽) and sets (̂︀𝔻, ̂︀𝔻*) = (̂︀𝔹, ̂︀𝔹*)
as msk. It gives (params𝕍, 𝑔𝑇) as pp to 𝒜.

2. In the ciphertext query, ℬ replies for 𝑡𝜄
th ciphertext query for index 𝜄 as

𝑊𝜄 = 𝑅1(𝜄), ̂︀𝔹𝜄 = ̂︀𝔻𝑊𝜄, 𝜅𝜄,𝑡𝜄
U←− 𝔽𝑞,

𝒄*𝜄,𝑡𝜄 = (#»𝑥 𝜄,𝑡𝜄,0,
#»𝑥 𝜄,𝑡𝜄,1, 1, 𝜅𝜄,𝑡𝜄 , 0)𝔹𝜄 , 𝑘𝜄 = 𝑅2(𝜄), ct*

𝜄,𝑡𝜄 = (𝒄*𝜄,𝑡𝜄 , 𝑘𝜄, 𝜄).

3. In the decryption key query, for all 𝑖 ≤ 𝜐 − 1, ℬ generates the 𝑖th decryption keys as

𝑟𝜄,𝑖
U←− 𝔽𝑞 s.t.

∑︁
𝜄∈𝑆𝑖

𝑟𝜄,𝑖 = 0, 𝑊𝜄 = 𝑅1(𝜄), ̂︀𝔹*
𝜄 = ̂︀𝔻*𝑊 *

𝜄 ,

𝒌*
𝜄,𝑖 = (

#»
0𝑚, #»𝑦 𝜄,𝑖,1, 𝑟𝜄,𝑖,

#»
0 2)𝔹*

𝜄
for 𝜄 ∈ 𝑆𝑖,

𝐶|𝑆𝑖| = SKE.Encrypt(𝑅2(𝑠𝑖,|𝑆𝑖|), . . . ,SKE.Encrypt(𝑅2(𝑠𝑖,1), {𝒌*
𝜄,𝑖}𝜄∈𝑆𝑖

) . . .),

sk*
𝑆𝑖,𝑖 = (𝐶|𝑆𝑖|, 𝑆𝑖).

4. For the 𝜐th key query, ℬ makes a decryption key as

𝑟′𝜄,𝜐, 𝛾
′
𝜄,𝜐

U←− 𝔽𝑞 s.t.
∑︁
𝜄∈𝑆𝜐

𝑟′𝜄,𝜐 =
∑︁
𝜄∈𝑆𝜐

𝛾′𝜄,𝜐 = 0, 𝑊𝜄 = 𝑅1(𝜄), ̂︀𝔹*
𝜄 = ̂︀𝔻*𝑊 *

𝜄 ,

𝒌*
𝜄,𝜐,𝛽 =

𝑚∑︁
𝜂=1

𝑦𝜄,𝜐,0,𝜂𝒃
*
𝜄,𝜂 + 𝑟′𝜄,𝜐𝒃

*
𝜄,2𝑚+1 + 𝛾′𝜄,𝜐𝜰𝛽𝑊

*
𝜄 for 𝜄 ∈ 𝑆𝜐,

𝐶|𝑆𝜐| = SKE.Encrypt(𝑅2(𝑠𝜐,|𝑆𝜐|), . . . ,SKE.Encrypt(𝑅2(𝑠𝜐,1), {𝒌*
𝜄,𝜐}𝜄∈𝑆𝜐

) . . .),

sk*
𝑆𝜐,𝜐 = (𝐶|𝑆𝜐|, 𝑆𝜐).

We can see that

𝒌*
𝜄,𝜐,0 = (#»𝑦 𝜄,𝜐,0,

#»
0𝑚, 𝑟′𝜄,𝜐 + 𝛾′𝜄,𝜐𝛼1, 0, 0)𝔹*

𝜄
= (#»𝑦 𝜄,𝜐,0,

#»
0𝑚, 𝑟𝜄,𝜐, 0, 0)𝔹*

𝜄
,

𝒌*
𝜄,𝜐,1 = (#»𝑦 𝜄,𝜐,0,

#»
0𝑚, 𝑟′𝜄,𝜐 + 𝛾′𝜄,𝜐𝛼1, 0, 𝛾

′
𝜄,𝜐ℑ)𝔹*

𝜄
= (#»𝑦 𝜄,𝜐,0,

#»
0𝑚, 𝑟𝜄,𝜐, 0, 𝛾𝜄,𝜐)𝔹*

𝜄
,

where 𝑟𝜄,𝜐 = 𝑟′𝜄,𝜐 + 𝛾′𝜄,𝜐𝛼1 and 𝛾𝜄,𝜐 = 𝛾′𝜄,𝜐ℑ.

35

5. The other key queries are replied as

𝑟𝜄,𝑖
U←− 𝔽𝑞 s.t.

∑︁
𝜄∈𝑆𝑖

𝑟𝜄,𝑖 = 0, 𝑊𝜄 = 𝑅1(𝜄), ̂︀𝔹*
𝜄 = ̂︀𝔻*𝑊 *

𝜄 ,

𝒌*
𝜄,𝑖 = (#»𝑦 𝜄,𝑖,0,

#»
0𝑚, 𝑟𝜄,𝑖,

#»
0 2)𝔹*

𝜄
for 𝜄 ∈ 𝑆𝑖,

𝐶|𝑆𝑖| = SKE.Encrypt(𝑅2(𝑠𝑖,|𝑆𝑖|), . . . ,SKE.Encrypt(𝑅2(𝑠𝑖,1), {𝒌*
𝜄,𝑖}𝜄∈𝑆𝑖) . . .),

sk*
𝑆𝑖,𝑖 = (𝐶|𝑆𝑖|, 𝑆𝑖).

6. If the event 2 occurs in the end of the experiment, i.e., there exists 𝜄 ∈ 𝑆𝜐 s.t. 𝑞ct,𝜄 = 0, then ℬ abort
and outputs 0.

7. Finally, 𝒜 outputs 𝛽′, then ℬ outputs 𝛽′ as it is.

Observe that 𝒜′s view is identical to Hyb3,𝜐−1 if 𝛽 = 0, and it is identical to Hyb3,𝜐−1,1 if 𝛽 = 1. Then
if 𝛽 = 0, the probability ℬ outputs 1 is Pr[𝑋𝜐−1 = 1]Pr[𝑃𝜐−1|𝑋𝜐−1 = 1] and if 𝛽 = 1, the probability is
Pr[𝑋𝜐−1,1 = 1]Pr[𝑃𝜐−1,1|𝑋𝜐−1,1 = 1]. ⊓⊔

Proof (Lemma D.6): The proof of this lemma is almost the same as that of Lemma C.5, so we omit
the proof. Note that under the event 1, i.e., for all 𝜄 ∈ 𝑆𝜐, 𝑞ct,𝜄 ≥ 1, all ciphertext queries for index
𝜄 ∈ 𝑆𝜐 satisfy the conditions in Definition 2.9. That is, for all {𝑡𝜄}𝜄∈𝑆𝜐

∈
∏︀

𝜄∈𝑆𝜐
[𝑞ct,𝜄] we must have∑︀

𝜄∈𝑆𝜐

#»𝑥 𝜄,𝑡𝜄,0 · #»𝑦 𝜄,𝜐,0 =
∑︀

𝜄∈𝑆𝜐

#»𝑥 𝜄,𝑡𝜄,1 · #»𝑦 𝜄,𝜐,1. Therefore we can consider the same kind of basis change in

Lemma C.5. ⊓⊔

Proof (Lemma D.7): The proof of this lemma is almost the same as that of Lemma D.5, so we omit
the proof. ⊓⊔

From above lemmas, we can see that

|Pr[𝑋𝜐−1 = 1]Pr[𝑃𝜐−1|𝑋𝜐−1 = 1]− Pr[𝑋𝜐 = 1]Pr[𝑃𝜐|𝑋𝜐 = 1]|
≤|Pr[𝑋𝜐−1 = 1]Pr[𝑃𝜐−1|𝑋𝜐−1 = 1]− Pr[𝑋𝜐−1,1 = 1]Pr[𝑃𝜐−1,1|𝑋𝜐−1,1 = 1]|

+ |Pr[𝑋𝜐−1,1 = 1]Pr[𝑃𝜐−1,1|𝑋𝜐−1,1 = 1]− Pr[𝑋𝜐−1,2 = 1]Pr[𝑃𝜐−1,2|𝑋𝜐−1,2 = 1]|
+ |Pr[𝑋𝜐−1,2 = 1]Pr[𝑃𝜐−1,2|𝑋𝜐−1,2 = 1]− Pr[𝑋𝜐 = 1]Pr[𝑃𝜐|𝑋𝜐 = 1]|

≤2Advp1*ℬ1
(𝜆).

⊓⊔

Next, we consider the case of the event 2.

Lemma D.8: For any PPT adversary 𝒜, there exists a PPT adversary ℬ2 for SKE such that for any 𝜆,
we have

|Pr[𝑋𝜐−1 = 2]Pr[𝑃𝜐−1|𝑋𝜐−1 = 2]− Pr[𝑋𝜐 = 2]Pr[𝑃𝜐|𝑋𝜐 = 2]| ≤ 𝑛𝑚𝑎𝑥Adv
ske
ℬ2

(𝜆).

Proof: In decryption key query, a set 𝑆 queried by an adversary must be a subset of [𝑡(𝜆)] for any
polynomial 𝑡. We can consider that for each adversary 𝒜, it has some polynomial 𝑡𝒜 such that all sets
that 𝒜 makes decryption key queries for are in [𝑡𝒜(𝜆)], i.e., 𝑛𝑚𝑎𝑥 = 𝑡𝒜(𝜆). Then it is sufficient to prove
that there exists a (possibly different) PPT algorithm ℬ2 for each 𝒜 s.t. above inequality holds. Without
loss of generality, we can assume that ℬ2 knows 𝑛𝑚𝑎𝑥. Let ℬ2 behaves as follows. ℬ2 has an access to an
SKE oracle 𝒪𝛽 , which return the encryption of 𝑚𝛽 when it receives (𝑚0,𝑚1). Let ̂︀𝑆𝜐 be a subset of 𝑆𝜐

whose elements are indices for which 𝒜 does not make a ciphertext query thorough the experiment.

1. First, ℬ2 creates pp and bases (̂︀𝔻, ̂︀𝔻*), and give pp to 𝒜.
2. ℬ2 chooses 𝜄′

U←− [𝑛𝑚𝑎𝑥] as a conjecture of the minimum element of ̂︀𝑆𝜐.
3. In ciphertext query, ℬ2 encrypts messages in the same way as Hyb2. If a ciphertext for index 𝜄′ is

queried, then ℬ2 aborts and outputs 0.
4. For 𝑖 < 𝜐, ℬ2 replies for the 𝑖th key query with a set 𝑆𝑖 as follows. We denote the 𝑗th element of 𝑆𝑖

in ascending order by 𝑠𝑖,𝑗 .
– Let 𝒌*

𝜄,𝑖 for all 𝜄 ∈ 𝑆𝑖 be

𝑟𝜄,𝑖
U←− 𝔽𝑞 s.t.

∑︁
𝜄∈𝑆𝑖

𝑟𝜄,𝑖 = 0, 𝑊𝜄 = 𝑅1(𝜄), 𝔹*
𝜄 = 𝔻*𝑊 *

𝜄 ,

𝒌*
𝜄,𝑖 = (

#»
0𝑚, #»𝑦 𝜄,𝑖,1, 𝑟𝜄,𝑖,

#»
0 2)𝔹*

𝜄
.

36

– If 𝜄′ /∈ 𝑆𝑖, ℬ2 computes 𝐶|𝑆𝑖| as

𝐶1 =SKE.Encrypt(𝑅2(𝑠𝑖,1), {𝒌*
𝜄,𝑖}𝜄∈𝑆𝑖

)

𝐶2 =SKE.Encrypt(𝑅2(𝑠𝑖,2), 𝐶1),

...

𝐶|𝑆𝑖| =SKE.Encrypt(𝑅2(𝑠𝑖,|𝑆𝑖|), 𝐶|𝑆𝑖|−1).

If 𝜄′ ∈ 𝑆𝑖, ℬ2 computes 𝐶|𝑆𝑖| as follows. First, ℬ2 computes 𝐶𝑗 by iterating encryption as above,
where 𝑗 is the maximum index s.t. 𝑠𝑖,𝑗 < 𝜄′, i.e., 𝜄′ = 𝑠𝑖,𝑗+1. Namely,

𝐶1 =SKE.Encrypt(𝑅2(𝑠𝑖,1), {𝒌*
𝜄,𝑖}𝜄∈𝑆𝑖

)

𝐶2 =SKE.Encrypt(𝑅2(𝑠𝑖,2), 𝐶1),

...

𝐶𝑗 =SKE.Encrypt(𝑅2(𝑠𝑖,𝑗), 𝐶𝑗−1).

Then it inputs a pair of the identical two messages (𝐶𝑗 , 𝐶𝑗) into 𝒪𝛽 and defines the output as
𝐶𝑗+1. Finally, if |𝑆𝑖| > 𝑗 + 1, continues encryption of SKE as

𝐶𝑗+2 =SKE.Encrypt(𝑅2(𝑠𝑖,𝑗+2), 𝐶𝑗+1),

...

𝐶|𝑆𝑖| =SKE.Encrypt(𝑅2(𝑠𝑖,|𝑆𝑖|), 𝐶|𝑆𝑖|−1).

– ℬ2 returns sk*
𝑆𝑖,𝑖

= (𝐶|𝑆𝑖|, 𝑆𝑖) to 𝒜.
5. For the 𝜐th key query with a set 𝑆𝜐, if 𝜄

′ /∈ 𝑆𝜐, ℬ2 aborts and outputs 0. Otherwise, it proceeds as
follows.
– For all 𝜄 ∈ 𝑆𝜐 and 𝛽 ∈ {0, 1}, let 𝒌*

𝜄,𝜐,𝛽 be

𝑟𝜄,𝜐
U←− 𝔽𝑞 s.t.

∑︁
𝜄∈𝑆𝜐

𝑟𝜄,𝜐 = 0, 𝑊𝜄 = 𝑅1(𝜄), 𝔹*
𝜄 = 𝔻*𝑊 *

𝜄 ,

𝒌*
𝜄,𝜐,0 = (#»𝑦 𝜄,𝜐,0,

#»
0𝑚, 𝑟𝜄,𝜐,

#»
0 2)𝔹*

𝜄
, 𝒌*

𝜄,𝜐,1 = (
#»
0𝑚, #»𝑦 𝜄,𝜐,1, 𝑟𝜄,𝜐,

#»
0 2)𝔹*

𝜄
.

– ℬ2 computes 𝐶|𝑆𝜐|,𝛽 as follows. Let 𝑗 be the maximum index s.t. 𝑠𝜐,𝑗 < 𝜄′. First, it computes 𝐶𝑗,0

and 𝐶𝑗,1 as

𝐶1,𝛽 =SKE.Encrypt(𝑅2(𝑠𝜐,1), {𝒌*
𝜄,𝜐,𝛽}𝜄∈𝑆𝜐)

𝐶2,𝛽 =SKE.Encrypt(𝑅2(𝑠𝜐,2), 𝐶1,𝛽),

...

𝐶𝑗,𝛽 =SKE.Encrypt(𝑅2(𝑠𝜐,𝑗), 𝐶𝑗−1,𝛽) for 𝛽 ∈ {0, 1}.

Then it inputs a pair of two messages (𝐶𝑗,0, 𝐶𝑗,1) into 𝒪𝛽 and defines the output as 𝐶𝑗+1,𝛽 . If
|𝑆𝜐| > 𝑗 + 1, it iteratively encrypts 𝐶𝑗+1,𝛽 until getting 𝐶|𝑆𝜐|,𝛽 in the same way as step 4.

– ℬ2 returns sk*
𝑆𝜐,𝜐,𝛽

= (𝐶|𝑆𝜐|,𝛽 , 𝑆𝜐) to 𝒜.
6. For 𝑖 > 𝜐, ℬ2 replies for the 𝑖th key query with a set 𝑆𝑖 as follows.

– Let 𝒌*
𝜄,𝑖 for all 𝜄 ∈ 𝑆𝑖 be

𝑟𝜄,𝑖
U←− 𝔽𝑞 s.t.

∑︁
𝜄∈𝑆𝑖

𝑟𝜄,𝑖 = 0, 𝑊𝜄 = 𝑅1(𝜄), 𝔹*
𝜄 = 𝔻*𝑊 *

𝜄 ,

𝒌*
𝜄,𝑖 = (#»𝑦 𝜄,𝑖,0,

#»
0𝑚, 𝑟𝜄,𝑖,

#»
0 2)𝔹*

𝜄
.

– The remaining procedure is the same as step 4.
7. During the experiment, if the event 1 occurs i.e., for all 𝜄 ∈ 𝑆𝜐, 𝑞ct,𝜄 ≥ 1, then ℬ2 aborts and outputs

0.
8. In the end of the experiment, if 𝜄′ is not the minimum element of ̂︀𝑆𝜐, then ℬ2 aborts and outputs 0.
9. Finally, 𝒜 outputs 𝛽′, then ℬ2 outputs 𝛽′ as it is.

37

ℬ2 implicitly sets 𝑅2(𝜄
′) = 𝐾𝒪𝛽

, where 𝐾𝒪𝛽
is a secret key used in 𝒪𝛽 . Observe that 𝒜′s view is identical

to Hyb3,𝜐−1 if 𝛽 = 0, and it is identical to Hyb3,𝜐 if 𝛽 = 1. Then if 𝛽 = 0, the probability ℬ2 outputs 1

is Pr[𝑋𝜐−1 = 2]Pr[𝑃𝜐−1 ∧ 𝜄′ = min ̂︀𝑆𝜐|𝑋𝜐−1 = 2] and if 𝛽 = 1, the probability is Pr[𝑋𝜐 = 2]Pr[𝑃𝜐 ∧ 𝜄′ =
min ̂︀𝑆𝜐|𝑋𝜐 = 2]. Note that 𝑃𝜐−1 (resp. 𝑃𝜐) and 𝜄′ = min ̂︀𝑆𝜐 under 𝑋𝜐−1 = 2 (resp. 𝑋𝜐 = 2) are
independent events, and 𝜄′ is uniformly chosen from [𝑛𝑚𝑎𝑥]. Then, we have

Pr[𝑋𝜐−1 = 2]Pr[𝑃𝜐−1 ∧ 𝜄′ = min ̂︀𝑆𝜐|𝑋𝜐−1 = 2]

=Pr[𝑋𝜐−1 = 2]Pr[𝑃𝜐−1|𝑋𝜐−1 = 2]Pr[𝜄′ = min ̂︀𝑆𝜐|𝑋𝜐−1 = 2]

=
1

𝑛𝑚𝑎𝑥
Pr[𝑋𝜐−1 = 2]Pr[𝑃𝜐−1|𝑋𝜐−1 = 2],

Pr[𝑋𝜐 = 2]Pr[𝑃𝜐 ∧ 𝜄′ = min ̂︀𝑆𝜐|𝑋𝜐 = 2]

=
1

𝑛𝑚𝑎𝑥
Pr[𝑋𝜐 = 2]Pr[𝑃𝜐|𝑋𝜐 = 2].

Consequently,

|Pr[𝑋𝜐−1 = 2]Pr[𝑃𝜐−1|𝑋𝜐−1 = 2]− Pr[𝑋𝜐 = 2]Pr[𝑃𝜐|𝑋𝜐 = 2]| ≤ 𝑛𝑚𝑎𝑥Adv
ske
ℬ2

(𝜆).

⊓⊔

From Lemma D.4 and D.8, Lemma D.3 holds. ⊓⊔

Lemma D.9: For any PPT adversary 𝒜 between Hyb3,𝑞key and Hyb4, we have

Adv
(3,𝑞key)
𝒜 (𝜆) = Adv

(4)
𝒜 (𝜆).

Proof: This lemma can be proven similarly to Lemma C.7.

Lemma D.10: For any PPT adversary 𝒜 between Hyb4 and Hyb5, there exist PPT adversaries ℬ1 and ℬ2
against PRFs and ℬ3 for Problem 1 such that for any 𝜆, we have

|Adv(4)𝒜 (𝜆)− Adv
(5)
𝒜 (𝜆)| ≤ Advprf1ℬ1

(𝜆) + Advprf2ℬ2
(𝜆) + 2

∑︁
𝜄∈[2𝜆]

𝑞ct,𝜄Adv
p1
ℬ3
(𝜆).

Proof: The hybrid sequence of Hyb4 to Hyb5 is just the reverse of Hyb0 to Hyb2.
⊓⊔

38

	Full-Hiding (Unbounded) MIPE from the k-LIN Assumption
	Introduction
	Preliminaries
	Notations
	Some Essential Cryptographic Tools
	Bilinear Groups and Dual Pairing Vector Spaces
	Complexity Assumptions
	Notion of Full-Hiding Multi-Input Inner Product Functional Encryption

	The Proposed Full-Hiding Bounded Multi-Input Inner Product Functional Encryption Scheme
	Construction
	Security

	The Proposed Full-Hiding Unbounded Multi-Input Inner Product Functional Encryption Scheme
	Construction
	Security

	 Reducing the Hardness of Problem 1 and 1 to k-LIN
	 Some Remarks on the Full-Hiding Security of Bounded Multi-Input Inner Product Encryption
	 Lemmas for the Proof of fhmipeproof
	 Lemmas for the Proof of ufhmipeproof

