
A Simple Reduction from State Machine Replication to

Binary Agreement in Partially Synchronous or Asynchronous

Networks

Abhinav Aggarwal∗,†, Yue Guo∗
∗Cornell University, Ithaca, NY

†University of New Mexico, Albuquerque, NM

Abstract

The recent advent of blockchains has spurred a huge interest in the research and development
of numerous cryptocurrencies as well as understanding the fundamental concepts that underly
this technology. At the heart of this design is the classic state machine replication protocol in
which a group of n machines (out of which f are Byzantine) want to agree on an ever-growing
log of transactions.

In this paper, we present a simple blackbox reduction from state machine replication (SMR)
to the classical binary agreement (BA) protocol on top of a fully decentralized network. We
consider both synchronous and partially synchronous/asynchronous settings for our reduction.
We also present an algorithm for a reduction from BA to SMR, thus establishing an equivalence
between the two. In each of these settings, we analyze our algorithms with respect to the
required security properties.

Although there is prior work that establishes these reductions, our solutions are simpler (at
the cost of efficiency) and useful from a pedagogical point of view.

1 Introduction

The Internet today has provided a fast and reliable way of communication between any group of
people independent of time and their location. With high guarantees of success, this communication
is, on an average, a textbook example of what modern technology can aim to achieve with respect to
bringing the world closer. However, there exist certain applications for which this feat of technology
is just not enough until some demanding conditions are met. One such example, amongst many
others, is the recently introduced and highly popular cryptocurrency technology where thousands of
people have invested billions of dollars on a purely digital form of monetary exchange that at its very
best demands strict assumptions on the underlying network it can securely and efficiently run on. At
the heart of these assumptions is the knowledge of the exact (or an upper bound on the) timing delay
for a message to propagate across the network. As shown independently by Garay et al. and Pass
et al. [Gar+16; PSS17] in their analysis of the underlying blockchain protocol, this assumption is in
fact a fundamental requirement for any cryptocurrency to function securely and avoid attacks by a
clever network adversary. Such a model in which the knowledge of network delay forms a parameter
for the design of algorithms (and is hence, assumed to be known to all participating nodes) is known
as the synchronous model of communication in the distributed computing parlance.

Although at first it may seem like a reasonable assumption given the technological advancement
and the success of Internet ever since it was first introduced, the assumption of synchrony is often
far from reality. Unexpected disturbances in the network, natural phenomenon or even adversarial
intervention can cause violations of any fixed bounds on the network delay and make synchronous
protocols come to a halt. In situations like these, a weaker model that relaxes this requirement of
the knowledge of network delay (yet assuming the existence of an unknown finite bound) comes to
rescue. First introduced by Dwork, Lynch and Stockmeyer in their seminal paper [DLS88], partial

1

synchrony has since been a popular choice of communication model that allows flexibility against
assuming strict message delivery times by requiring the participating nodes to know that a finite
bound on the message delay exists while being oblivious to the actual value of this bound. This lies
somewhere in the spectrum between pure synchrony and asynchrony, where the latter only promises
eventual message delivery without any guarantee on the delivery times of the messages sent.

In this partially synchronous world, it then becomes obvious to ask if certain fundamental prob-
lems like Byzantine agreement or State machine replication become inherently harder than their
synchronous analogs. While the former forms the basis of any distributed decision making in the
strongest possible fault model (Byzantine), the latter is a more practically motivated problem that
achieves fault tolerance through appropriate replication of the working elements of a system that
constitute its state in the given protocol execution. Ever since it was first introduced and studied in
depth [Sch90], state machine replication has formed the basis of many large scale protocols includ-
ing the modern blockchain technology. Keeping the financial aspect of the cryptocurrency aside,
the blockchain underlying the ledger maintenance is essentially a replicated state machine, which
is updated by thousands of nodes in parallel in a tamper evident undirectional manner. We, thus,
seek an answer to the following basic question:

Is it fundamentally harder to achieve state machine replication than byzantine agreement in the
absence of network synchrony?

This question was first answered in the negative by Liskov et al. [CL+99] in their celebrated
paper on practical byzantine fault tolerance where they gave an algorithm to realize state machine
replication under partial synchrony using Byzantine agreement as a primitive, thus establishing
an equivalence in terms of computational hardness of the two problems (the reverse reduction is
(comparatively) trivial). However, the protocol in the paper is highly complex to understand and
unfortunately, falls victim to highly error-prone implementations as a result. Just short of two
decades later, a cleaner and highly optimized reduction was provided by Miller et al. [Mil+16]
for asynchronous networks. We take motivation from these two breakthrough papers and all the
followup research to seek a simple, cleaner reduction without any optimization primitives to study
the fundamental connection between state machine replication and byzantine agreement and ask
ourselves the fundamental requirements and complexities of such an equivalence. Our algorithms
on one hand may seem far less efficient and resource intensive than the ones provided in [Mil+16]
or other papers, nevertheless, our reduction enjoys simplicity and easy adaptability with numerous
scope of parameter tuning given any application at hand.

2 Preliminaries

2.1 Model

In this report, we focus mainly on partial synchronous communication, which refers to a network
environment with message delay bounded by an unknown upper bound ∆ in terms of number of
rounds or real time. There are other versions of partially synchronous setting. As proven and
first introduced in [CL+99], these versions are essentially equivalent. We also assume that this
bound on the message delay holds no matter how long the messages are. Commensurate with the
reasoning by Pass and Shi in [PS17], such as assumption is justified by assuming that the network
is sufficiently connected and has sufficiently many honest nodes to ensure ∆ delivery time for the
messages. Furthermore, assuming that the lengths of all the inputs provided by the environment are
bounded by some function of a security parameter, the assumption of ensured bound on the delivery
time by the sufficiently connected network is justified.

We assume that honest nodes can send messages to all other honest nodes. The adversary is in
charge of scheduling message delivery. However, it cannot modify the contents of messages broadcast
by the honest nodes, but it can reorder and delay them subject to the constraints described above
(bounded message delay). The adversary is allowed to send messages to a subset of honest nodes but
not all of them. All the communication channels are authenticated and the identities of every node

2

is known from the beginning of the protocol to all other nodes. We assume the existence of a public
key infrastructure (PKI) to allow message authentication. This is akin to the permissioned-classical
setting from [PS17], in which the environment is required to spawn all nodes upfront and inform all
honest nodes the identities of all nodes spawned. Henceforth, without loss of generality, we assume
that the spawned nodes have identities 0, 1, . . . , n− 1 respectively.

As the protocol is event driven rather than real time, we use the term epoch to denote the time
unit of protocol execution. We purposely avoid the use of the term round here, since it usually refers
to a certain fixed length of real time in the distributed computing parlance.

2.2 Building Blocks

In our reduction from state machine replication to binary agreement, we use reliable broadcast
(RBC) and binary agreement (BA) as the building blocks for the state machine replication protocol.
We define each of these primitives and give the abstractions and properties for these protocols in the
partially synchronous setting. In the reduction from binary agreement to state machine replication,
we use the same abstractions and definitions.

2.2.1 Reliable Broadcast

Reliable broadcast (RBC), first introduced as the Byzantine Generals Problem by Lamport [LSP82],
provides a way for a designated node (called the sender) to send a message to all other nodes. We
work with the following input and output abstraction for RBC.

• Input: The sender (known a priori) receives an input value v from environment.

• Output: If the sender is honest, then every honest node Pi outputs a value v′i.

Note that RBC only guarantees an output when the sender is honest. A protocol for RBC requires
that all honest parties deliver the same set of messages and that this set includes all messages
broadcast by honest parties, without guaranteeing anything about the order in which messages are
delivered [Cac+01]. Thus, except with negligible probability of the execution traces, the following
security properties are guaranteed.

• Consistency: If any two honest nodes outputs v and v′, then v = v′.

• Ttot-Totality: If some honest node outputs v in epoch t, then every honest node outputs v
before epoch t + Ttot.

• Tval-Validity: If the sender is honest and inputs v in epoch t, then all honest nodes outputs
v before epoch t + Tval.

We let TRBC = max{Ttot, Tval} to denote the maximum time it takes for an instance of RBC to
complete.

For our reduction in Section 4.1, we instantiate RBC with Bracha’s reliable broadcast protocol
from [Bra84] which works for asynchronous networks and tolerates f ≤ dn−1e/3 Byzantine failures.
The different steps of this protocol are presented in Fig. 1. The sender begins by sending the
message to everyone. Each honest node, upon the receipt of this message, echoes it to everyone else
and starts collecting the echoes from other nodes. Once sufficiently many echoes have been collected,
the (honest) node believes that enough honest nodes have received the message from the sender and
it sends a message to indicate that it is ready to produce an output. When a required number of
ready messages have been received, the honest node produces the output and sends a notification
to everyone about this. It terminates the protocol thereafter.

The notification of delivery (output) is sent in the final step purely for the knowledge of the
other honest nodes that have not terminated yet. As will be seen in our reduction, such no-
tifications will become important checkpoints for making progress in our algorithm since partial
synchrony/asynchrony prohibits dependence on real time.

3

The sender Ps sends the message (send, v) to everyone. Each honest player does the following:

• Upon receiving (send, v) from Ps, send (echo, v) to everyone.

• Upon receiving 2f+1 messages (echo, v) and not having sent (ready, v), send (ready, v)
to everyone.

• Upon receiving f+1 messages (ready, v) and not having sent (ready, v), send (ready, v)
to everyone.

• Upon receiving 2f + 1 messages (ready, v), send (deliver, v) to everyone, output v
and terminate.

Figure 1: Bracha’s Reliable Broadcast Protocol [Bra84]

2.2.2 Binary Agreement

The standard notion of Byzantine agreement seeks a binary decision value derived off the inputs
of its participating nodes. Such protocols, referred to as Binary agreement protocols (BA), often
form fundamental building blocks for more involved distributed algorithms. The binary agreement
protocols have the following input and output abstraction:

• Input: Every node Pi receives an input bit bi from environment.

• Output: Every honest node Pi outputs a bit b′i.

Except with negligible probability over the execution traces, a binary agreement protocol satisfies
the following properties. As is usual with

• Agreement: If any honest node outputs the bit b. then every honest node outputs b.

• TBA-Termination: If all honest nodes receive input in round T , then every honest node
outputs a bit before round T + TBA.

• Validity: If any honest node outputs b, then at least one honest node receives b as input.

We instantiate this algorithm with the randomized binary byzantine agreement protocol given by
Toueg in [Tou84]. Although they assume a trusted dealer who distributed a common random bit to
all the players as required, such a functionality can be realized using private coins as well [CGR11].
Thus, we assume that each player Pi has a private coin coini which produces a random binary output
each time it is called.

2.3 State Machine Replication

State machine replication (SMR) (for Byzantine faults), also referred to as atomic broadcast or total
order, was first introduced by Lamport in [Lam84] and abstracted as a general protocol for fault
tolerance and decentralized control by Schneider in [Sch90]. In a state machine replication protocol,
a set of nodes seek to continuously agree on an ever-growing linearly ordered log over time. The
input and output abstraction for such protocols is defined as following:

• Input: Every node keeps receiving transactions tx from the environment.

• Output: Every honest node Pi outputs a sequence of batchs of transactions as the log log`
i

at the end of every epoch `.

In every epoch, an honest and online node receives as input a set of transactions txs from the
environment at the beginning of the epoch and outputs a log collected thus far to the environment at

4

Each honest player Pi with input bi does the following:

• r ← 0
while not decided, do:

– Send the message (ready, r, vi) to everyone.

– Upon, receiving (ready, r, vj) messages from n−f players, let Π← set of received
(ready, r, vj) messages.

– Let v ← majority value in Π.

– Using reliable broadcast, send the message (commit, r, vi,Π) to everyone.

– Upon receiving (n − f) messages (deliver, (commit, r, vj ,Π)) from the reliable
broadcast, set m ← value v′ that is contained most often among the these mes-
sages, c← the number of messages that contain value m and r ← coini.

– If c = n− f , then update v ← m, else v ← r.

– If c ≥ t + 1 and m = r, then send the message (decide, v) to everyone. Output v
and terminate. Else, r ← r + 1.

• Upon receiving f + 1 messages (decide, v) and not having sent (decide, v) so far, send
the message (decide, v) to everyone. Output v and terminate.

Figure 2: Toueg’s Binary Agreement Protocol [Tou84]

the end of the round. Except with negligible probability over the execution traces, SMR ensures both
consistency (all honest nodes’ logs agree with each other although some nodes may progress faster
than others) and liveness property (transactions received by honest nodes as input get confirmed
in all honest nodes’ logs quickly). We formally define these properties below. The notation � here
denotes the “is a prefix of” relation.

• Consistency:

– (Common Prefix) For all nodei which is honest by the end of epoch r, and for all node
nodej which is honest by the end of epoch t, either logr

i � logt
j or logt

j � logr
i .

– (Future Self-Consistency) For each nodei which is honest by the end of epoch r and t
where r ≤ t, we have logr

i � logt
i.

• Tconf-Liveness: If nodej that is honest in epoch r receives some set of transactions tx in epoch
r, or if tx ⊂ logr

j , then for all Pi which is honest in epoch t ≥ r + Tconf , it must be the case

that tx ⊂ logt
i.

2.4 Reduction in Synchronous Network

We first present a simple reduction from SMR to BA in the synchronous setting. Here, the problem
of realizing State Machine Replication based on one-time consensus protocol is easier. As we have
the concept of round, we can use Byzantine Agreement only without using Reliable Broadcast since
the latter does not guarantee termination when the sender is corrupt. There will, thus, be no need
for a reliable broadcast protocol. The reduction we present here is presented in detail (in the context
of blockchain) in the paper by Pass and Shi [PS17]. We assume a shared public key infrastructure
among all players. We instantiate the byzantine agreement protocol by the multi-valued version of
the classic Dolev-Strong binary agreement protocol [DS83] for this reduction. In this setting, we
call the time for executing one instance of Dolev-Strong protocol an epoch. For each epoch `, the
protocol runs as following:

5

• The n players initiate n instances of the Dolev-Strong protocol, DS`
j for j ∈ {1, . . . , n}, si-

multaneously. Pi acts as the sender of the i-th instance DS`
i with the input received from the

environment.

• Every player Pi collects its outputs of all DS`
j into batch`

i and updates log`
i = log`−1

i ∪ batch`
i .

The consistency and liveness property of this reduction trivially follows from the security properties
of the Dolev-Strong protocol. We omit details of the proof here, however we note the the reduction
above makes use of multiple instances of the multi-valued agreement protocol (DS), which requires
each instance to be spawned with a unique session identifier for secure protocol composition. We
do not include the identifiers in the protocol above for sake of clarity, but the detailed reduction is
available in Section 2.4.2 of [PS17]. The paper also shows that assuming a secure signature scheme,
this reduction preserves the properties of state machine replication.

3 Related Work

The concept of partial synchrony was introduced in 1988 by Dwork, Lynch and Stockmeyer in their
seminar paper [DLS88] for consensus without any knowledge of the bound on the message delay over
the network. The paper also presents tight lower bounds and optimal algorithms for consensus in this
model as well as for the alternate definitions of partial synchrony, which were proved to be essentially
equivalent. Unlike asynchrony, approximate notions of time can be achieved in this model and hence,
it forms a strictly stronger assumption. Moreover, algorithms that parametrize themselves with the
network delay and thus assume synchrony can fail to work under partial synchrony if the assumed
bound on the message delay is conservative. This renders partial synchrony strictly weaker than the
synchronous communication model.

Shifting gears from the network communication model, a core distributed protocol used in nu-
merous practical and pedagogical applications is state machine replication, which was first studied
in detail by Schneider in 1990 [Sch90]. Also known as total order or atomic broadcast [Cri+95], this
protocol is used to make a set of participating nodes agree on an ever growing linearly-ordered log
that satisfies consistency and liveness under appropriately defined settings. For more than a decade,
companies like Google and Facebook have deployed Paxos-style protocols [Bur06; JRS11; Lam06]
to replicate a significant part of their computing infrastructure. With the advent of cryptocurren-
cies, large scale deployment of state machine replication is in high demand, which causes a clear
distinction in the classical approach to state machine replication with the modern blockchain-style
approach [PS17]. While the former uses celebrated protocols like PBFT [CL+99] and Byzantine-
Paxos [Lam06], it often suffers from poor implementation, maintenance and reconfiguration for
large scale settings as a result of their notoriously complicated descriptions. As a contrast, the
modern setting for blockchain-style state machine replication, represented by Nakamoto’s original
blockchain [Nak08], are relatively simple and tolerate minority corruptions as opposed to the super-
majority of honest nodes required by the classical protocols.

Variants of atomic broadcast were subsequently proposed to realize the protocol under different
practical requirements. In the early years of the millenium, two papers [KS05; RC05] studied atomic
broadcast from the perspective of reducing communication cost by optimistically running a broadcast
protocol under normal network conditions and switching to a slower mode when under attack. The
novelty of the works lie in consistency and liveness preserving recovery from the slow mode while
preserving the average or amortized cost of communication.

While only recently the paper by Pass and Shi [PS17] provides a clean reduction of state ma-
chine replication from byzantine agreement in the synchronous setting, from the very early years
of this century, Cachin et al. provide an excellent survey of reductions of the different broad-
cast protocols in purely asynchronous environment using cryptographic primitives [Cac+01]. Their
paper also provides the first randomized atomic broadcast protocol based on a novel efficient multi-
valued asynchronous Byzantine agreement primitive with an external validity condition. In the
spirit of such a reduction, follow up works like those of connecting Paxos to generalized consensus
by Lamport [Lam05] and optimizing the latency of realizing state machine replication through the

6

agreement primitive [SB12] were proposed. Further optimizations were made by Miller et al. in
their paper [Mil+16] which provides a clean modular realization of atomic broadcast using the asyn-
chronous common subset primitive realized off a simple binary agreement protocol. Being closest
to our work, this paper tries to address an attack on partially synchronous protocols by exploiting
their sensitivity on bounded network delay and provides a cryptographically-aided reduction in the
purely asynchronous setting. The follow up work by Malkhi et al. [AM+17] discusses this reduction
in the blockchain setting.

Although most of the reductions discussed above along with the numerous other attempts (that
we omit mentioning for the lack of space) work in the strictly weaker communication model of
asynchrony that will also extend to the partially synchronous setting, we seek to work with the
minimal requirements for such a reduction or equivalence to hold in the stronger model and ask
ourselves if liveness guarantees that are better than eventual deliveries (like in the asynchronous
model) can be provided with a simple protocol. We note that our reduction is not entirely novel in
its problem statement, however, its simplicity and lack of distracting optimizations are helpful from
a pedagogical standpoint, which is quintessential in understanding the foundations of consensus in
this setting.

4 Reduction in in Partially Synchronous Network

4.1 From State Machine Replication to Binary Agreement

As shown in Section 4.3, there exists a reduction from reliable broadcast to binary agreement. So in
this section, we give a reduction from state machine replication to binary agreement by describing a
SMR algorithm built with binary agreement protocol BA and reliable broadcast protocol RBC with
n nodes, f of which are corrupted. The building blocks are used as black box.

Assumptions. Except with the assumptions made by the specific RBC and BA protocol used,
the following reduction assumes that n > 2f . However, as proven in [DLS88], BA in partially
synchronous setting with Byzantine faults requires n > 3f . So we are going to use the assumption
n > 3f rather than honest majority. The reduction works in permissioned model, in which the
participants are determined at the beginning of execution, with both static and dynamic corruption
with n− f ever-honest nodes.

High level idea. Using BA, which is assured to terminate, to determine whether the output of
the corresponding RBC instance should be (waited for and) collected into the final log or not.

The reduction is given in Figure 4. In this reduction, each node Pi participates in n RBC protocols
and n BA protocols in each epoch `, and maintains three local sets:

• finished`
i : contains all indices of RBC protocols that Pi has already output in.

• collect`i : contains all indices of RBC protocols, the output of which need to be collected into
the batch`

i .

• batch`
i : contains all transactions that will be finally included in the log.

Proof In the proofs in this section, we only consider the execution paths that all of the properties
of RBC and BA protocols hold. The cases where some of the properties do not hold only happens
with negligible probability, we can just take union bound and the probability is still negligible.

Here we give the proof for consistency and liveness properties of this protocol in static corruption
setting.

Theorem 4.1 (Common Prefix). Except with negligible probability, for any two honest nodes Pi

and Pj and any epoch `, log`
i = log`

j.

7

Figure 3: Example of the reduction for four nodes P1−P4 of which node P4 is corrupt (and hence,
its state is not shown). The blue bars indicate an ongoing instance of RBC, the yellow bars indicate
theinstance of BA and the pink boxes indicate the ongoing epoch.

Proof. Here we show that, there is no transaction tx which is included in log`
i0 and not included in

log`
i1 for and two honest nodes Pi0 and Pi1 .

For the sake of contradiction, assume that there is a transaction tx included in log`
i0 and not

included in log`
i1 . Then there must be a tuple (tx, j, `′) ∈ batch`′′

i0 for some `′′ ≤ `, which means this

tuple must be included in output`
′′

i0,j′
for some j′ ∈ collect`

′′

i0 . And (tx, j, `′) /∈ batchl′′

i1 .
There are following two cases:

• Case I: (j′ /∈ collect`
′′

i1): This implies that b`
′′

i0,j′
= 1 and b`

′′

i1,j′
= 0. However, according to

the definition of binary agreement protocol, for the instance BA`′′

j′ , honest nodes Pi0 and Pi1

should output the same bit value. So there is contradiction.

• Case II (j′ ∈ collectl
′′

i1 and (tx, j, l′) /∈ output`
′′

i1,j′
): According to the definiton of reli-

able broadcast protocol, for the instance RBC`′′

j′ , if Pi0 outputs output`
′′

i0,j′
, and Pi1 outputs

output`
′′

i1,j′
, then output`

′′

i0,j′
= output`

′′

i1,j′
. So there is contradiction.

Theorem 4.2 (Future Self-Consistency). Except with negligible probability, for any honest node Pi

and any two epoch `1 < `2, log`1
i is the prefix of log`2

j .

Proof. This theorem trivially follows the protocol description because there is no step in the protocol
execution that modifies the existing log.

Lemma 4.3 (Epoch Synchronization). If an honest node is in epoch `, then no honest node is in
epoch ` + 2 or higher.

Proof. For the sake of contradiction, assume there is an honest node Pi0 in epoch ` + 2 when there
is another honest node Pi1 in epoch ` for some `. This assumption implies that Pi0 has output in all
BA`+1,j , j ∈ {1, . . . , n} instances, otherwise it won’t enter epoch ` + 2. At the same time, Pi1 has
not input in all BA`+1,j , j ∈ {1, . . . , n} instances because it is still in epoch `. However, according
to the definition of binary agreement protocol, Pi0 in BA`+1,j , j ∈ {1, . . . , n} won’t output anything
if Pi1 has not participated in yet. So there is contradiction.

Lemma 4.4 (Epoch Progress). Except with negligible probability, if an honest node Pi changes its
current epoch to ` in round T , then Pi will output log`

i and change its epoch number to ` + 1 before
round T + max{TRBC, TBA}+ TRBC + TBA.

8

The protocol starts with ` = 0 and all v0,i = ∅. For epoch `, the node Pi in SMR runs as
following.

• At the beginning of epoch `, batch`
i ← ∅, finished`

i ← ∅, collect`i ← ∅, v`+1,i ← ∅. and

participate in RBC`,i as sender with input value v`,i \ log`−1
i .

• On receiving input transaction tx from the environment, set v`+1,i ← v`+1,i ∪ {tx} and
gossip it to other nodes.

• On receiving tx from other nodes, set v`+1,i ← v`+1,i ∪ {tx}.

• On outputting value output`i,j in RBC`,j for j ∈ {1, . . . , n}, participate in BA`,j with

input bit b`i,j = 1, and set finished`
i ← finished`

i ∪ {j}.

• On outputting 1 in BA`,j for j ∈ {1, . . . , n}, update collect`i ← collect`i ∪ {j}.

• When |collect`i | ≥ n− f , participate in all instances BA`,j for j ∈ {1, . . . , n} \ finished`
i

with input bit b`i,j = 0.

• After outputting in all BA`,j for j ∈ {1, . . . , n}:

1. Wait for all RBC`,j for j ∈ collect`i to terminate.

2. batch` ← ∪j∈collect`i output`i,j

3. log`
i ← log`−1

i || batch`
i

4. Enter epoch ` + 1.

Figure 4: Reduction from SMR to BA and RBC

Proof. As described in the protocol, Pi will change its epoch number to ` + 1 when all of the BA`,j

instances terminates and all RBC`,j for j ∈ collect`i terminates. In the worst case, the corrupt nodes
does not send anything, and the waiting time is maximized.

As Pi is already in epoch `, Pi should have collected outputs of all BA`−1,j , j ∈ {1, . . . , n}, which
implies that every nodes has already input to all BA`−1,j instances. According to the termination
property of binary agreement protocol, all nodes will output in all BA`−1,j instances before round
T + TBA.

Let’s consider the “slowest” node Pi′ in epoch `− 1, which is the last one enters epoch `. For the
worst case, it wait for TBA rounds to collect outputs of all BA`−1,j instances, and it may still need
to wait for some RBC`−1,j′ after BA`−1,j′ outputs 1. So the maximum time it takes for Pi′ to enter
epoch ` is max{TBA, TRBC}. Then Pi′ will input to RBC`,i′ . It takes at most TRBC +TBA rounds for
Pi to finish instance RBC`,i′ and BA`,i′ . Pi will output in all other instances before this time point.
So Pi will enter epoch ` + 1 before round T + max{TRBC, TBA}+ TRBC + TBA.

As described in the protocol, if a transaction tx is input to some honest node Pi in round T , Pi

will broadcast tx to all other nodes by gossiping network. So at round T +∆, tx will be known by all
honest nodes, and is ensured to be included in the batch?

j for the next epoch. Therefore, Lemma 4.4
implies the liveness property of this state machine replication protocol.

Theorem 4.5 (Liveness). Except with negligible probability, if Pi that is honest in round r re-
ceives some transaction tx in round r, then for all Pj which is honest in round t ≥ r + ∆ +

2(max{TRBC, TBA}+ TRBC + TBA) and its current epoch number ` after round, tx ∈ log`
i .

9

4.2 From Binary Agreement to State Machine Replication

Here we introduce a trivial way to implement binary agreement with SMR in hand. This reduction
works in permissioned model with PKI in the presence of dynamic corruption, assuming n > 3f ,
and n− f nodes are ever-honest.

All nodes in BA starts an instance of SMR at beginning. Denote the output of Pi in SMR in
(local) round ` with log`

i . Let batch`
i := log`

i − log`−1
i . The node Pi in BA runs as following.

• On receiving input bit bi from environment, participates in the SMR with input set
{vote(i, bi)}.

• For index ` from 1, on outputting the batch`
i , collects all fresh votes vote(j, bj) into

pooli. For convenience, denote pooli after collecting fresh votes from batch`
i with pool`i .

A vote vote(j, bj) is fresh if pooli does not contain any vote vote(j, ·).

• If for some l, |pool`−1i | < n − f and |pool`i | ≥ n − f , then outputs the bit with more
votes in pool`i .

If there is a tie, output a pre-determined bit, like 0.

Figure 5: Reduction from BA to SMR

Proof In the proofs in this section, we only consider the execution paths that all of the properties
of SMR protocols hold. The cases where some of the properties do not hold only happens with
negligible probability, we can just take union bound and the probability is still negligible.

Here we give the proof for the three properties of this protocol in static corruption setting.

Theorem 4.6 (Agreement). Except with negligible probability, if any honest node outputs the bit b,
then every honest node outputs b.

Proof. For the sake of contradiction, assume that there are two honest nodes, Pi0 outputting 0 and
Pi1 outputting 1. Then for the epoch l0 in which Pi0 makes decision, the majority of votes in pool`0i0
are for bit 0, and for the epoch l1 in which Pi1 makes decision, the majority of votes in pool`1i1 are
for bit 1.

There are two cases:

• `0 6= `1. This implies that |pool`0i0 | 6= |pool`1i1 | or |pool`0−1i0
| 6= |pool`1−1i1

|. However, according to

the common prefix property of SMR protocol, |pool`0i0 | = |pool`1i1 | and |pool`0−1i0
| = |pool`1−1i1

|.
Here is the contradiction.

• `0 = `1 = `, but numbers of votes for 0 are for 1 are different in pool`i0 and pool`i1 . However,
according to the common prefix property of SMR protocol, For the two honest nodes Pi0 and
Pi1 , pool`i0 = pool`i1 for any `. Then there is a contradiction.

Theorem 4.7 (Termination). Except with negligible probability, If all honest nodes receive input in
round T , then every honest node outputs a bit before round T + Tconf .

Proof. This is trivially guarenteed by the liveness property of SMR protocol. As each honest node
will only input one vote to the SMR protocol, and at most one vote from each node will be accepted
by honest node, according to the liveness property of SMR, all of the inputs of honest nodes will be
included in the log before round T + Tconf . Therefore, all of honest nodes will have output before
round T + Tconf .

10

Theorem 4.8 (Validity). Except with negligible probability, If any honest node outputs b, then at
least one honest node receives b as input.

Proof. Assume for the sake of contradiction that some honest node Pi outputs b which is not the
input of any honest node. Then we know that in Pi’s final poolb, the majority of votes vote for the
bit b. As required in the protocol description, |pool`b| ≥ n− f , which means the number of votes for
bit b is larger than or equal to (n− f)/2, which is greater than f . Then the pool`b contains at least
one vote for b from an honest node. Then there is contradiction.

4.3 From Reliable Broadcast to Binary Agreement

In this reduction, we assume the existance of authenticated channel, and that the length of input
value v is known a priori. If |v| is not pre-determined, the protocol can first have all node agree on
|v|, then agree on the input value v. The reduction is presented in Figure 6. It also works in both
static and dynamic corruption settings with n− f ever-honest nodes.

Denote the input value from environment to the sender with v.

• For k = 1 to |v|, the sender diffuse vk, the k-th bit of v, to every node, and all nodes
run a binary agreement instance BAk tagged with the index k.

• For index k from 1 to |v|, on outputting the bit bki , Pi concatenate bki to the output
value, i.e. outputi = outputi||bki .

Figure 6: Reduction RBC to BA

In this reduction, consistency is guaranteed by the agreement property of binary agreement.
As defined in the property of RBC protocols, this reduction does not guarantee termination when

the sender is corrupt. For example, if the corrupt sender skips some index k, then the execution of
the protocol can be suspended. If the sender is honest, then the termination is guaranteed by the
termination property, and validity is guaranteed by the validity property of binary agreement.

5 Conclusion and Future Work

In this report, we gave two-way reduction algorithms between state machine replication and binary
agreement in the partially synchronous setting. The existence of reduction implies the equivalence
between these two consensus protocols when we assume the existence of PKI.

In the next step, we want to figure out if there exists reduction from BA to SMR with assumption
of authenticated channel rather than PKI. We also plan to find reduction algorithms that work in
permissionless model.

References

[AM+17] Ittai Abraham, Dahlia Malkhi, et al. “The Blockchain Consensus Layer and BFT”. In:
Bulletin of EATCS 3.123 (2017).

[Bra84] Gabriel Bracha. “An asynchronous [(n-1)/3]-resilient consensus protocol”. In: Proceedings
of the third annual ACM symposium on Principles of distributed computing. ACM. 1984,
pp. 154–162.

[Bur06] Mike Burrows. “The Chubby lock service for loosely-coupled distributed systems”. In:
Proceedings of the 7th symposium on Operating systems design and implementation.
USENIX Association. 2006, pp. 335–350.

11

[Cac+01] Christian Cachin et al. “Secure and efficient asynchronous broadcast protocols”. In: An-
nual International Cryptology Conference. Springer. 2001, pp. 524–541.

[CGR11] Christian Cachin, Rachid Guerraoui, and Luis Rodrigues. Introduction to reliable and
secure distributed programming. Springer Science & Business Media, 2011.

[CL+99] Miguel Castro, Barbara Liskov, et al. “Practical Byzantine fault tolerance”. In: OSDI.
Vol. 99. 1999, pp. 173–186.

[Cri+95] Flaviu Cristian et al. “Atomic broadcast: From simple message diffusion to Byzantine
agreement”. In: Information and Computation 118.1 (1995), pp. 158–179.

[DLS88] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. “Consensus in the presence of
partial synchrony”. In: Journal of the ACM (JACM) 35.2 (1988), pp. 288–323.

[DS83] Danny Dolev and H. Raymond Strong. “Authenticated algorithms for Byzantine agree-
ment”. In: SIAM Journal on Computing 12.4 (1983), pp. 656–666.

[Gar+16] Juan A Garay et al. “Bootstrapping the Blockchain-Directly.” In: IACR Cryptology
ePrint Archive 2016 (2016), p. 991.

[JRS11] Flavio P Junqueira, Benjamin C Reed, and Marco Serafini. “Zab: High-performance
broadcast for primary-backup systems”. In: Dependable Systems & Networks (DSN),
2011 IEEE/IFIP 41st International Conference on. IEEE. 2011, pp. 245–256.

[KS05] Klaus Kursawe and Victor Shoup. “Optimistic Asynchronous Atomic Broadcast.” In:
ICALP. Springer. 2005, pp. 204–215.

[Lam05] Leslie Lamport. Generalized consensus and paxos. Tech. rep. Technical Report MSR-TR-
2005-33, Microsoft Research, 2005.

[Lam06] Leslie Lamport. “Fast paxos”. In: Distributed Computing 19.2 (2006), pp. 79–103.

[Lam84] Leslie Lamport. “Using time instead of timeout for fault-tolerant distributed systems.”
In: ACM Transactions on Programming Languages and Systems (TOPLAS) 6.2 (1984),
pp. 254–280.

[LSP82] Leslie Lamport, Robert Shostak, and Marshall Pease. “The Byzantine generals problem”.
In: ACM Transactions on Programming Languages and Systems (TOPLAS) 4.3 (1982),
pp. 382–401.

[Mil+16] Andrew Miller et al. “The honey badger of BFT protocols”. In: Proceedings of the 2016
ACM SIGSAC Conference on Computer and Communications Security. ACM. 2016,
pp. 31–42.

[Nak08] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2008.

[PS17] Rafeal Pass and Elaine Shi. Thunderella: blockchains with optimistic instant confirma-
tion. 2017.

[PSS17] Rafael Pass, Lior Seeman, and Abhi Shelat. “Analysis of the blockchain protocol in asyn-
chronous networks”. In: Annual International Conference on the Theory and Applications
of Cryptographic Techniques. Springer. 2017, pp. 643–673.

[RC05] HariGovind V Ramasamy and Christian Cachin. “Parsimonious asynchronous byzantine-
fault-tolerant atomic broadcast”. In: OPODIS. Springer. 2005, pp. 88–102.

[SB12] João Sousa and Alysson Bessani. “From Byzantine consensus to BFT state machine
replication: A latency-optimal transformation”. In: Dependable Computing Conference
(EDCC), 2012 Ninth European. IEEE. 2012, pp. 37–48.

[Sch90] Fred B Schneider. “The state machine approach: A tutorial”. In: Fault-Tolerant Dis-
tributed Computing. Springer, 1990, pp. 18–41.

[Tou84] Sam Toueg. “Randomized byzantine agreements”. In: Proceedings of the third annual
ACM symposium on Principles of distributed computing. ACM. 1984, pp. 163–178.

12

	Introduction
	Preliminaries
	Model
	Building Blocks
	Reliable Broadcast
	Binary Agreement

	State Machine Replication
	Reduction in Synchronous Network

	Related Work
	Reduction in in Partially Synchronous Network
	From State Machine Replication to Binary Agreement
	From Binary Agreement to State Machine Replication
	From Reliable Broadcast to Binary Agreement

	Conclusion and Future Work

