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Abstract: Keccak is the final winner of SHA-3 competition and it can be used as message authentic
codes as well. The basic and balanced divide-and-conquer attacks on Keccak-MAC were proposed
by Dinur et al. at Eurocrypt 2015. The idea of cube attacks is used in the two attacks to divide
key bits into small portions. In this paper, by carefully analysing the mappings used in Keccak-
MAC, it is found that some cube variables could divide key bits into smaller portions and so
better divide-and-conquer attacks are obtained. Furthermore, in order to evaluate the resistance
of Keccak-MAC against divide-and-conquer attacks based on cubes, we theoretically analyse the
lower bounds of the complexities of divide-and-conquer attacks. It is shown that the lower bounds
of the complexities are still not better than those of the conditional cube tester proposed by Senyang
Huang et al.. This indicates that Keccak-MAC can resist the divide-and-conquer attack better than
the conditional cube tester. We hope that these techniques still could provide some new insights
on the future cryptanalysis of Keccak.
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1. Introduction

Keccak [1] is a family of sponge functions consisting of seven permutations, say Keccak-f [b], with
b = 25, 50, 100, 200, 400, 800 or 1600. The largest permutation, i.e., Keccak-f [1600], was selected
as the new SHA-3 standard by the U.S. National Institute of Standards and Technology in 2012,
and so its security property has attracted much attention.

In keyless modes, Keccak is used as a hash function, and so attacking techniques against hash
functions like preimage attacks and collision attacks etc. have been studied for Keccak by some re-
searchers. In [2] and [3], the preimage attack and the second preimage attack were implemented for
round-reduced Keccak. In [4], a collision attack on the 2-round and a near collision attack on the
3-round ⌊Keccak⌋224 and ⌊Keccak⌋256 were proposed. In [5], the attacking rounds of ⌊Keccak⌋224
and ⌊Keccak⌋256 were improved to 4 and 5 for collision attacks and near collision attacks respec-
tively. In [6], based on the propagation analysis, the authors constructed distinguishers on the
6-round Keccak. Other techniques such as zero-sum distinguishers could also be applied to ana-
lyze Keccak. In [7], several zero-sum partitions of size 21586 for 20-round Keccak were found. In
[8] the authors gave some zero-sum partitions of size 21590 for the the full 24-round Keccak, and
the size of the zero-sum partitions were further reduced to 21579 in [9].

In keyed modes, Keccak is used as stream ciphers, message authentication codes (MAC) de-
noted by Keccak-MAC and authenticated encryption schemes (see Keyak [10]). For these keyed
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modes, the published cryptanalytical results are all given by cube attacks. In [11], the author pro-
posed three different attacks on stream ciphers based on Keccak, Keccak-MAC and Keyak. Firstly,
the authors used cube attacks to break up to some 6-round Keccak variants. Secondly, cube testers
were applied to predict output bits. Finally, the authors showed how to utilize the divide-and-
conquer attack based on cubes to recover the key for the 6-round Keccak-MAC and theoretically
analysed the complexities of the 7-round case. In [12], the authors proposed a new type of cube
distinguisher called conditional cube tester to recover key bits of Keccak-MAC and Keyak. Mak-
ing use of the conditional cube tester, compared with the attack in [11], the authors either decreased
the complexity or increased the number of attacking rounds.

In this paper, we focus on Keccak-MAC only. With more careful analysis of the mappings used
in Keccak, we make a new investigation into the divide-and-conquer attack based on cubes.

Our contributions

In this paper, we mainly focus on the divide-and-conquer attack on the round-reduced Keccak-
MAC. It is known that the complexity of the divide-and-conquer attack depends on how small
portions the key bits can be divided into. In [11], the authors divide the 128-bit key into two
64-bit small keys (basic attacks), which resulted in a high time complexity of the preprocessing
phase. Fortunately, by analysing ρ mapping used in Keccak, we find cubes with eighteen (resp.
thirty-four) effective key bits, which could divide the 128-bit key into smaller portions, for the
6-round (reps. 7-round) Keccak-MAC. This indicates that complexities of the divide-and-conquer
attack could be dramatically reduced without any extra cost. Furthermore, in order to evaluate
the resistance of Keccak-MAC against the divide-and-conquer attack, we theoretically analyse the
lower bounds of the complexity of the divide-and-conquer attack on the round-reduced Keccak-
MAC in two scenarios. In Scenario I, inspired by the attack idea in [11], we only consider such
cubes that the cube sums (derived from outputting bits) are only dependent on one of A[0][0]
and A[1][0]. It is proved that in Scenario I for the 6-round (resp. 7-round) Keccak-MAC, the
preprocessing time is lower-bounded by 241 (resp. 276), the memory is lower-bounded by 29 (resp.
212), and the online time is lower-bounded by 240 (resp. 275). Since there is no proof that an
optimal cube for the divide-and-conquer attack should satisfy such restriction, we further remove
the restriction on cubes in Scenario II. This means that in Scenario II, the cube sums of a cube may
be dependent on both of A[0][0] and A[1][0], and we only care about whether the total number of
effective key bits related to the cube could attain the minimum. Moreover, in Scenario II, we even
neglect the specific rotation constants used in ρ, to see how small the attacking complexity could
eventually be. It is proved that in Scenario II for the 6-round (resp. 7-round) Keccak-MAC, the
preprocessing time is lower-bounded by 240 (resp. 273), the memory is lower-bounded by 28 (resp.
29), and the online time is lower-bounded by 239 (resp. 273). A comparison of our work with the
best previously known attacks on the round-reduced Keccak-MAC is presented in Table 1. It can
be seen that even in such ideal scenario as scenario II, the attacking complexity is no better than
that given in [12]. Thus the Keccak-MAC can resist the divide-and-conquer attack better than the
conditional cube tester proposed in [12].

This paper is organized as follow. In Section 2, we introduce Keccak, Keccak-MAC and cube
attacks briefly, review the divide-and-conquer attack presented in [11] and introduce our attack
model in detail. In Section 3, we show that some cubes could divide the 128-bit key into smaller
portions for 6- and 7-round Keccak-MAC. In Section 4, we theoretically analyse the lower bound-
s of the complexities of the divide-and-conquer attack on 6- and 7-round Keccak-MAC in two
different scenarios. Finally, we conclude this paper in Section 5.
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Table 1 Summary of complexities of the pervious attacks and our work

Rounds Attacks TC in PP MC in PP TC in OP
6 The Basic Attack in [11] 296 264 232

6 The Balanced Attack in [11] 264 232 266

6 The Balanced Attack in Subsection 3.1 245 213 245

6 The Attack in [12] 240 negligible 240

7 The Balanced Attack in [11] 297 264 298

7 The Balanced Attack in Subsection 3.2 284 267 284

7 The Attack in [12] 272 negligible 272

TC in PP: the time complexity of the preprocessing phase
MC in PP: the memory complexity of the preprocessing phase
TC in OP: the time complexity of the online phase

2. Prelimiaries

2.1. Keccak

Keccak is designed based on the sponge construction. Keccak sponge functions have seven per-
mutations, indicated by Keccak-f [b], where b = 25× 2l is called the width and l ranges from 0 to
6. The permutation Keccak-f [b] is over Fb

2 and consists of a family of operations on a b-bit state
A. The internal state A is usually described by a three-dimensional array over F2, i.e., A[5][5][w],
where w = 2l. The names of parts of the Keccak-f [b] state are illustrated in Fig. 1, which help
simplify the description of our analysis. Furthermore, to remove any vagueness in the following
discussions, the specific location of each lane is shown in Fig. 2, where each square represents a
lane (w bits) of the internal state.

Keccak-f [b] is an iterated permutation consisting of a sequence of nr rounds R(A,RC[ir]) (0 ≤
ir ≤ nr−1), where A is a state and RC[ir] is a round constant. A round consists of five mappings,
namely θ, ρ, π, χ, ι, which is described in the form of pseudo-code, see Table 2. All these nr rounds
are exactly the same except the round constants RC[ir]. Note that all the operations on indices in
the pseudo-code are done modulo 5.

The sponge function denoted by Keccak[r, c] is built with Keccak-f [b], muti-rate padding and
the bitrate r. The value of c = b − r is called the capacity. The b-bit internal state is divided into
two parts. One part includes the first r bits of the internal state, and the other part includes the
remaining c bits. The message is padded with 10 ∗ 1 and divided into r-bit blocks. The initial state

y

z

x

Fig. 1. Illustration of Keccak-f internal state
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[0][0] [1][0] [2][0] [3][0] [4][0] 

[0][1] [1][1] [2][1] [3][1] [4][1] 

[0][2] [1][2] [2][2] [3][2] [4][2] 

[0][3] [1][3] [2][3] [3][3] [4][3] 

[0][4] [1][4] [2][4] [3][4] [4][4] 

 

Fig. 2. Lane coordinates

Table 2 Pseudo-code of a round permutation of Keccak-f [b]

Round(A, RC[ir])
{

θ step
C[x] = A[x][0] xor A[x][1] xor A[x][2] xorA[x][3] xorA[x][4], for all x in (0 . . . 4)
D[x] = C[x− 1] xor (C[x+ 1] <<< 1), for all x in (0 . . . 4)
A[x][y] = A[x][y] xor D[x], for all (x, y) in (0 . . . 4,0 . . . 4)
ρ step
A[x][y] = A[x][y] <<< r[x][y], for all (x, y) in (0 . . . 4,0 . . . 4)
π step
B[y][2 · x+ 3 · y] = A[x][y], for all (x, y) in (0 . . . 4,0 . . . 4)
χ step
A[x][y] = B[x][y] xor ((notB[x+1][y]) and B[x+2][y]), for all (x, y) in (0, . . . 4,0 . . . 4)
ι step
A[0][0] = A[0][0] xor RC[ir]
return A

}

is set to be zeros. The whole procedure includes two phases. During the first phase, which is called
the absorbing phase, a r-bit message block is OXRed with the first r bits of the internal state every
time. After absorbing all the message blocks, it moves to the second phase, which is called the
squeezing phase. During this phase, it runs over the internal state iteratively and return the first r
bits as output till the desired length of message digest is satisfied.

The default value for Keccak sponge function is b = 1600, c = 576, and nr = 24. For more
information about Keccak sponge function, the readers can refer to [1].

2.2. Keccak-MAC

The Keccak sponge function, say Keccak[r, c], can be used in the keyed modes, such as MACs.
Keccak-MAC is constructed simply by prepending the secrete key to the message to calculate a
tag. In this paper, we will focus on MACs of short messages such that the internal permutation
Keccak-f [r+ c] is applied only once. The construction of Keccak-MAC working on a single block
is shown in Fig. 3.
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bitrate
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+

c bits

Keccak internal
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128-bit key||message

128-bit tag

Fig. 3. Keccak-MAC

2.3. Cube attacks

The cube attack was proposed by Itai Dinur and Adi Shamir in [13]. It could be applied to a wide
range of cryptographic primitives, such as stream cipher Trivium [13], block cipher KATAN [14],
and hash function Keccak [11]. In this subsection, we briefly introduce the idea of cube attacks,
and readers could refer to [13] for more details.

In the cube attack against a cipher, an output bit z of the cipher is seen as a blackbox polynomial
on secrete variables SV and public variables PV , say z = f(SV, PV ). For a subset of public
variables, say I = {vi|0 ≤ i ≤ k − 1}, z can be rewritten as

z = T · g(SV, PV \ C)⊕ h(SV, PV ),

where T =
∏k−1

i=0 vi , any term of h is not divisible by T , and PV \I represents the public variables
which do not belong to I . Then the sum of f over all values of the variables in I is given by∑

(v0,··· ,vk−1)∈C

f(SV, PV ) = g(SV, PV \ I),

where C = {0, 1}k. If g is of low degree about SV (usually linear), then it is useful for recovering
the value of secret variables. In the cube attack, the elements in I are called cube variables, C
which collects all possible values of cube variables is called a k-dimensional cube, and g is called
the superpoly of C (or of I).

The cube attack includes two phases, namely the preprocessing phase and the online phase.

• The preprocessing phase
The preprocessing phase does not depend on the value of secret key bits and needs to be car-
ried out only once for a cipher. We need to find a number of cubes such that their superpolies
are of low degree, particularly linear expressions. Since generally the algebraic normal form
of f(SV, PV ) is very complex, this is accomplished by black polynomial test.

• The online phase
In this phase, an attacker online calculates the value of the superpoly for each cube found
in the preprocessing phase (public variables not in a cube are fixed to be 0). This leads to a
system of equations in secrete key variables. Solving the system of equations, some or all key
bits could be recovered.
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2.4. The previous divide-and-conquer attack

In [11], the authors proposed two divide-and-conquer attacks on the 6-round Keccak-MAC. The
main idea of the two attacks was to find cubes whose cube sums of all output bits only depend on
a part of key bits. A cube in A[2][2] and A[2][3] was proven to have the following two properties.

Property 1. The cube sum of each output bit after six rounds does not depend on the value of
A[1][0].

Property 2. The cube sums of the output bits after six rounds depend on the value of A[0][0].

Exploiting the cube given above, the authors presented a basic divide-and-conquer attack on the
round-reduced Keccak-MAC. The attack included two phases, namely, the preprocessing phase
and the online phase.

• The preprocessing phase
1. Set the state bits to 0 except A[0][0] and the cube variables.
2. For each of the 264 possible value of A[0][0],

(a) calculate the cube sums after 6 rounds for all output bits. Store the cube sums and the
corresponding value of A[0][0] in the list L.

• The online phase
1. Calculate the cube sums for all output bits and search them in L.
2. For each match in L, retrieve A[0][0] and store all of its possible values.

Similarly, by selecting another cube in A[4][2] and A[4][3], the possible values of A[1][0] could
be retrieved. Finally, in order to recover the full key, all combinations of the candidates indepen-
dently obtained for A[0][0] and A[1][0] were enumerated and tested. The time complexity in the
preprocessing phase was 296 and that of the online phase was 232. Thus, the total time complexity
was 296, the data complexity was 232, and the memory complexity was 264.

In this basic attack, the time complexity was dominated by the preprocessing phase, and so
an improved attack called balanced attack was further proposed in [11] to tradeoff the complexity
of the preprocessing and online phases. In the balanced attack, additional auxiliary variables in
A[0][1] were used to eliminate the dependency of the cube sums of the output bits on some of the
variables of A[0][0]. Thus, the time complexity of the preprocessing phase could be reduced from
296 to 264.

It was mentioned in Subsection 6.3 of [11] that the 6-round balanced attack could be extended
to a 7-round attack by selecting a borderline cube of sixty-four variables in A[2][2] and A[2][3] with
the data complexity 264, the time complexity 297, and the memory complexity 232.

2.5. Attack models and parameters

It is known that there are two types of attacks towards a MAC. The first one is that an adversary
could forge a MAC for a message that has not been authenticated. The second one is that an
adversary could recover the secret key. Obviously, the second one is much stronger. In this paper,
we would concentrate on recovering the secret key for the short messages such that the internal
permutation would be applied only once. More precisely, we would target at some variants of
Keccak-MAC with a 1600-bit state, the capacity parameter c = 256, and a 128-bit key. This
means that in our attack model, we could choose a 1344-bit input message and obtain its 128-bit
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outputting tag. Thus, for a cube C, a cube sum could be derived by examining each 128 outputting
bits, and so in the following paper, the cube sums of C refer to all 128 sums.

3. More careful investigations into the divide-and-conquer attacks on
Keccak-MAC

Recall that the 128 key bits are placed in A[0][0] and A[1][0]. Without loss of generality, we assume
that A[0][0][i] = ki and A[1][0][i] = ki+64, 0 ≤ i ≤ 63.

It is well known that the action of θ depends on the column parities only. This property is
exploited in the previous paper [11] to make the algebraic degree of Keccak remain 1 on cube
variables after the first round, by setting the cube variables in such a way that all the column
parities are constants at the beginning of the first round. In this paper, we also exploit this property
of θ, and we simply say that setting the cube variables satisfying the constant condition instead.

Besides, for the sake of convenience, we introduce the following definition of effective key bits
of a cube.

Definition 1. For a given cube, a key bit that will be multiplied with the cube variables by χ in the
first round is called an effective key bit (or variable) of the cube.

By setting the cube variables satisfying the constant condition, the set of effective key bits is
actually the same as the set of key bits which the 128 cube sums of outputting bits depended on.
The reason for this is as follows. Considering the n-round Keccak-MAC, the degree of the Boolean
function f representing an output bit would reach 2n after n rounds. But if the cube variables are set
to satisfy the constant condition initially, then as discussed above cube variables will not multiply
with each other after the first round and so the degree of f on cube variables would be at most 2n−1.
Hence, for a cube C of 2n−1-variables ensuring that the column parities are constant initially, each
128 cube sums of the outputting bits depend and only depend on the key bits multiplied with the
2n−1 cube variables in the first round.

3.1. New results on the 6-round Keccak-MAC

In Section 6.1 of [11], the authors selected the cube variables in A[2][2] and A[2][3]. For this cube,
the authors pointed out that since the cube sums of output bits after six rounds depended on all
the sixty-four bits of A[0][0] (key bits), the time complexity of the preprocessing phase became as
high as 296. Consequently, in Section 6.2 of [11], the authors proposed to use auxiliary variables
to reduce the time complexity of the preprocessing phase. However, in the following part of this
subsection, we shall show that in fact for some carefully chosen cubes, the cube sums only depend
on eighteen key bits after six rounds. Thus, the time complexity and the memory complexity of
the preprocessing phase could be dramatically decreased without any extra cost.

Theorem 1. For A[0][0], let C = {vi = A[2][2][3 · i]|0 ≤ i ≤ 16}∪ {vi+17 = A[2][3][3 · i]|0 ≤ i ≤
14} and set

A[2][0][3 · i] =

{
vi ⊕ vi+17 (0 ≤ i ≤ 14)

vi (15 ≤ i ≤ 16)

to keep the column parities of A[2][∗] constant, then the effective key bits of C are k2, k5, · · · , k47, k60, k63,
namely, C has eighteen effective key bits.
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Proof. We fix the value of A[1][0] to an arbitrary constant, and symbolically represent the sixty-
four bits of A[0][0] as secret variables. Since we choose cube variables in A[2][0], A[2][2] and
A[2][3], the initial state is shown in Figure 4 (a) where the lane in orange(resp. pink) means that it
includes secret variables(resp. cube variables). After θ, the state is shown in the Figure 4 (b). The
number in each lane is the offset that it has been rotated compared with the initial state.

C

C

K C

(a)

θ

0 1

0 0 1

0 0 1

0 1

0 0 0 1

(b)

ρ

2 15

45 15 9

10 43 40

44 21

0 1 62 28

(c)

π

62 40 2

28 10 15

1 9

21 45

0 44 43 15

(d)

Fig. 4. The diffusion of cube variables and key bits in one round

Due to ρ, every lane of the state is rotated with a different offset , the state after ρ is shown in
Figure 4 (c). The function of π is to reorder the lanes, thus, the state after π is shown as Figure 4
(d).

It worth noting that only three lanes (A[0][2], A[3][3] and A[0][4] in Figure 4 (d)) contain cube
variables. From Figure 4, we know that vi = A[2][2][3 · i] (the initial state) will multiply with
k3·i+62−2 = k3·i−4 (Here the substraction and addition operations are done modulo 64). Similarly,
we could obtain all the effective key bits, see Table 3.

Hence, for C, its effective key bits are k2, k5, k8, k11, k14, k17, k20, k23, k26, k29, k32, k35, k38,
k41, k44, k47, k60 and k63, namely the number of its effective key bits is eighteen.

Table 3 The key bits multiplied with cube variables in each lane

Lane Key bits
A[2][0] k2, k5, k8, k11, k14, k17, k20, k23, k26, k29, k32, k35, k38, k41, k44, k60, k63
A[2][2] k2, k5, k8, k11, k14, k17, k20, k23, k26, k29, k32, k35, k38, k41, k44, k47, k63
A[2][3] k5, k8, k11, k14, k17, k20, k23, k26, k29, k32, k35, k38, k41, k44, k47

Similarly, we could construct cubes with eighteen effective key bits when recovering A[1][0].

Theorem 2. For A[1][0], let C = {vi = A[4][2][19 · i]|0 ≤ i ≤ 16} ∪ {vi+17 = A[4][0][19 · i]|0 ≤
i ≤ 14}, and set

A[4][1][19 · i] =

{
vi ⊕ vi+17 (0 ≤ i ≤ 14)

vi (15 ≤ i ≤ 16)

to keep the column parities of A[4][∗] constant, then the effective key bits of C are k64, k66, k71, k73,
k78, k80, k85, k90, k92, k97, k99, k104, k109, k111, k116, k118, k123, k125, namely, C has eighteen effective
key bits.

By sliding the cube C in Theorem 1 five times (the effective key bits are slid as well), we get
another five cubes, and so we could recover all the sixty-four bits of A[0][0]. Similarly, by sliding
the cube C in Theorem 2, we could get five cubes to recover all the sixty-four bits of A[1][0]. In
the preprocessing phase, for each of the chosen cubes, the cube sums are calculated and stored
for all the possible values of its effective key bits. Thus, in this phase, the time complexity is
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218 · 11 · 232 ≈ 254 and the memory complexity is 218 · 11 ≈ 222. In the online phase, we need
to calculate the cube sums of the eleven chosen cubes respectively. Since the each cube contains
thirty-two variables, the time complexity of the online phase is 232 · 11 ≈ 236. Compared with
the basic attack presented in [11], our attack reduces both the time and memory complexity in the
preprocessing phase by a factor of 242.

Fortunately, the auxiliary variables could also be used to balance our attack. We shall take
the case of recovering A[0][0] as an example to illustrate the impact of auxiliary variables. For
recovering A[0][0], if we use 9 auxiliary variables in A[0][1], then the time complexity of the
preprocessing phase is 29 · 6 · 232 ≈ 244 and the memory complexity is 29 · 6 ≈ 212. While
the time complexity of the online phase is 29 · 232 · 6 ≈ 244. Hence, the total time complexity
of the preprocessing phase is about 245, the memory complexity is about 213, and the total time
complexity of the online phase is about 245.

3.2. New results on the 7-round Keccak-MAC

It is known that the algebraic degrees of output bits will reach 128 after seven rounds. Even if
the column parities are kept constant, we need 64-variable cubes to implement divide-and-conquer
attacks. However, we could still find cubes like those in Theorem 1 and 2.

Theorem 3. For A[0][0], let C = {vi = A[2][2][3 · i]|0 ≤ i ≤ 32}∪ {vi+33 = A[2][3][3 · i]|0 ≤ i ≤
30} and set

A[2][0][3 · i] =

{
vi ⊕ vi+33 (0 ≤ i ≤ 30)

vi (31 ≤ i ≤ 32)

to keep the column parities of A[2][∗] constant, then the effective key bits of C are k60, k63, k2, k5, k8, . . . , k62,
k1, k4, . . . , k31, namely C has thirty-four effective key bits.

Theorem 4. For A[1][0], let C = {vi = A[4][2][19 · i]|0 ≤ i ≤ 32} ∪ {vi+33 = A[4][0][19 · i]|0 ≤
i ≤ 30}, and set

A[4][1][19 · i] =

{
vi ⊕ vi+33 (0 ≤ i ≤ 30)

vi (31 ≤ i ≤ 32)

to keep the column parities of A[4][∗] constant, then the effective key bits of C are k64+((19·i+16) mod 64)(0 ≤
i ≤ 33), namely, C has thirty-four effective key bits.

By sliding cubes in Theorem 3 and 4 (the effective key bits are slid as well), we get enough
cubes to recover the 128-bit key. With the help of auxiliary variables, the time complexity in the
preprocessing phase is about 284, the memory complexity is about 267, and the time complexity in
the online phase is about 284.

4. Lower bounds of complexities of divide-and-conquer attacks based on cubes

It can be seen that the complexity of divide-and-conquer attacks on Keccak-MAC is largely de-
termined by the number of effective key bits, i.e., key bits multiplied with cube variables in the
first round of Keccak-MAC. Small number of effective key bits is desirable in divide-and-conquer
attacks. Thus, in this section, we discuss how small portions the key could be divided into in two
different scenarios.
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(a)

ρ, π

C C

C C

C C

C C

(b)

π
−1

C C

C C

C

C

(c)

Fig. 5. Overview of how to choose cube variables for recovering A[0][0]

4.1. Scenario I: cubs with a reasonable restriction

Inspired by the attacking idea in [11], in this subsection, based on the cubes whose cube sums are
independent on the value of A[1][0] (resp. A[0][0]), we shall discuss how small portions A[0][0]
(resp. A[1][0])could be divided into.

In the case of recovering A[0][0], cubes whose cube sums do not depend on the value of the
value of A[1][0] after six (seven) rounds are wanted. Figure 5 (a) and (b) show the diffusion of the
key bits in A[1][0]. In Figure 5, the orange squares represent the lanes containing key bits in bits in
A[1][0]. For a cube, it is easy to verify that only when cube variables are in the orange lanes with
”C” inside (see Figure 5 (b)) after π, its cube sums would not depend on the value of A[1][0] after
six (seven) rounds. Since c = 256 and the 128-bit key is placed in A[0][0] and A[1][0] in this paper,
we could not choose cube variables from A[0][0], A[1][0], and A[i][4] (1 ≤ i ≤ 4). Hence, only
cubes chosen from A[2][i](i ∈ {0, 2, 3}) and A[0][i] (i ∈ {1, 2, 3}) (see Figure 5) could satisfy that
its cube sums do not depend on the value of A[1][0] after six (seven) rounds.

Similarly, in the case of recovering A[1][0], for a cube, in order to make its cube sums do not
depend on the value of A[0][0] after six (seven) rounds, we could only choose cube variables from
A[4][i] (0 ≤ i ≤ 3) and A[1][i] (1 ≤ i ≤ 2). There are still six lanes that we could choose cube
variables.

For the 6-round Keccak-MAC, we need 32-variable cubes to complete the divide-and-conquer
attack. In the case of recovering A[0][0], for a cube, in order to make its cube sums do not depend on
the value of A[1][0], we could only choose cube variables from four lanes of A[2][i](i ∈ {0, 2, 3})
and A[0][i] (i ∈ {1, 2, 3}) (two lanes are used to keep the column parities constant). Similarly, in
the case of recovering A[1][0], for a cube, in order to make its cube sums do not depend on the value
of A[0][0], we could choose cube variables from four lanes. Hence, in both cases, there would be
at least one lane containing at least eight cube variables. Since the key bits in the same lane are
pairwise different, for such cubes, there would be at least eight effective key bits. However, with
the consideration of the rotation constants used in the ρ, we could get more precise results. Firstly,
we would introduce a helpful lemma.

Lemma 1. For two different positive integers m1 and m2, let t = 64
gcd(64,(m1−m2))

, and let I =

{ij|0 ≤ j ≤ n− 1}. Denote I1 = {i0 +m1, · · · , in−1 +m1} and I2 = {i0 +m2, · · · , in−1 +m2}.
If I1 = I2, then n is divisible by t. Here all the addition and subtraction operations are done
modulo 64.

Proof. Suppose that I1 = I2. Denote

Ij = {ij + (m1 −m2) · l|0 ≤ l ≤ t− 1} (0 ≤ j ≤ t− 1).
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It is obvious that

I ⊆
n−1∪
j=0

Ij.

Firstly, we shall prove that
I l ⊆ I (0 ≤ l ≤ n− 1).

Since I1 = I2, for any il (0 ≤ l ≤ n − 1) there exists is ∈ I such that il + m1 − m2 = is for
some s. In a similar way, is + m1 − m2 = il + (m1 − m2) · 2 = iu ∈ I , for some u. Hence,
il + (m1 −m2) · j ∈ I (0 ≤ j ≤ t− 1), namely I l ⊆ I (0 ≤ l ≤ n− 1). Therefore

∪n−1
j=0 I

j ⊆ I .
This indicates that

∪n−1
j=0 I

j = I .
Secdonly, we shall prove that for two sets I l and Is, if they have a common element, then

I l = Is. For the sake of convenience, we denote ij + (m1 − m2) · p by Ij[p]. Without loss of
generality, we assume that I l[0] = Is[q]. On one hand, for 0 ≤ r ≤ t− q − 1,

I l[r] = Is[r + q].

On the other hand, for t− q ≤ r ≤ t− 1, since t · (m1 −m2) is divisible by 64, we have

I l[r] = il + r · (m1 −m2) = is + (r + q − t) · (m1 −m2) = Is[r + q − t].

Hence, I l = Is.
Therefore, I =

∪
j I

j ,where Ij are pairwise different. Since |Ij| = t holds for 0 ≤ j ≤ n− 1,
it follows that |I| = |

∪
j I

j| =
∑

j t is divisible by t.

Using Lemma 1, we could obtain the lower bounds of complexities of the divide-and-conquer
attacks on the round-reduced Keccak-MAC.

Theorem 5. In the case of recovering A[0][0] (resp.A[1][0]) of the 6-round Keccak-MAC, for a
32-variable cube whose cube sums do not depend on the value of A[1][0](resp. A[0][0]) after six
rounds, the number of its effective key bits is at least nine.

Proof. We would prove that in the case of recovering A[0][0], for a 32-variable cube whose cube
sums do not depend on the value of A[1][0] after six rounds, the number of its effective key bits is
at least nine. The case of recovering A[1][0] could be proved similarly.

Let C be a 32-variable cube whose cube sums do not depend on the value of A[1][0] after
six rounds. Assume the number of effective key bits of C is eight. Then, there would be six lanes
containing eight cube variables (two lanes are used to keep the column parities constant). Since the
parities of the columns containing cube variables are kept constant, the locations of cube variables
in lanes of the same sheet are the same. Let I = {ij|0 ≤ j ≤ 7} be the set of locations of cube
variables in A[2][i] (i ∈ {0, 2, 3}). Let Ii be the set of key bits which would multiply with the
cube variables in A[2][i] (i ∈ {0, 2, 3}) in the first round. According to the proof of Theorem
1, Ii = {ij + mi} (i ∈ {0, 2, 3}), where mi (i ∈ {0, 2, 3}) is determined by θ and the rotation
constants used in ρ. In this case, we could obtain that m0 = 60, m2 = 63 and m3 = 5, see Figure
6. Since the number of effective key bits is eight, we have I0 = I2 = I3. According to Lemma
1, |I| could be divisible by 64

gcd(64,(mi−mj))
(i ̸= j, i, j ∈ {0, 2, 3}). However, 64

gcd(64,(m0−m2))
= 64,

that is, we get a contradiction. Hence, for a 32-variable cube whose cube sums do not depend on
the value of A[1][0] after six rounds, the minimum number of its effective key bits would be at least
nine.
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44 21
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π

62 40 2

28 10 15

1 9

21 45

0 44 43 15

(b)

Fig. 6. The state after ρ and π

In the case of the 7-round Keccak-MAC, we obtain the similar conclusion.

Theorem 6. In the case of recovering A[0][0] (resp.A[1][0]) of the 7-round Keccak-MAC, for a
64-variable cube whose cube sums do not depend on the value of A[1][0] (resp. A[0][0]) after seven
rounds, the number of its effective key bits is at least seventeen.

According to Theorem 5 and 6, we could obtain the lower bounds of the complexities of the
divide-and-conquer attack on the round-reduced Keccak-MAC, see Table 4.

Table 4 The lower bounds of the complexities

Rounds TC in PP MC in PP TC in OP
6 241 212 240

7 276 220 275

4.2. Scenario II: cubes with no restriction and not considering specific rotation
constants used in ρ

Since there is no proof that an optimal cube for the divide-and-conquer attack should satisfy such
restriction in the above subsection. In this subsection, we shall consider the lower bounds of
complexities of divide-and-conquer attacks based on cubes without any restriction, and we even
neglect the specific rotation constants used in ρ. That is to say, we could choose cube variables
from nineteen lanes (c = 256 and the 128-bit key is placed in A[0][0] and A[1][0]). Since we need
to the keep the parities of columns containing cube variables constant, we could only choose cube
variables from at most fourteen lanes, see Figure 7. In Figure 7, the squares with ”cp” represent
lanes used to keep the column parities constant, the orange squares mean lanes containing key bits,
the pink squares represent lanes padded zeros (the capacity part) and the blank squares means lanes
we could choose cube variables from.

cp cp

cp cp cp

Fig. 7. lanes which could be chosen cube variables from

In the case of the 6-round Keccak-MAC, we need 32-variable cubes to complete the divide-and-
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conquer attack. We could choose cube variables from lanes in five sheets at most. For example,
if we choose cube variables from lanes in the same sheet, there are at most three lanes could be
used (one lane is used to keep the column parities constant), then there would be at least one
lane containing ⌈32/3⌉ = 11 cube variable. Hence, there would be eleven bits of the fourth lane
containing cube variables for keeping the column parities constant. In other words, there would be
32 + 11 = 43 state bits containing cube variables. We summarize the result of each case in Table
5.

Table 5 Summary of each case
Number of sheets where
cube variables chosen

Maximum number of cube vari-
ables in each lane after π

Number of state bits containing
cube variables after π

1 11 43
2 6 43
3 4 43
4 3 43
5 3 44

As we can see in Table 5, there would be at least forty-three state bits containing cube variables
after π. In other words, there would be at least forty-three key bits multiplying with cube variables
(some of these forty-three key bits may be the same). Due to θ, one key bit would diffuse to eleven
state bits after θ in the first round. For a 32-variable cube (parities of columns containing cube
variables are kept constant), there would be at least ⌈43/11⌉ = 4 effective key bits.

In fact, after θ, there are only seven lanes which are next to only one lane containing key bits.
What is more, these seven lanes are in two sheets, see the pink squares in Figure 8. When we
choose cube variables from lanes in two sheets, there would be at least one lane containing six
cube variables. Since the key bits in the same lane are pairwise different, there would be at least
six effective key bits. When we choose cube variables from at least three sheets, it is possible
that the number of effective key bits is less than 6. Since cube variables come from at least three
different sheets, there exist some cube variables which do not belongs to the above seven lanes.
Hence, there exist at least two cube variables multiplying with two key bits. Namely, in this case,
there would be at least ⌈(41 + 2 · 2)/11⌉ = 5 effective key bits.

Fig. 8. Lanes which would be next to only one lane containing key bits after π

Similarly, in the case of the 7-round Keccak-MAC, for a 64-variable cube, we obtian that the
number of the effective cube variables would be at least ten effective key bits.

Even if the technique of auxiliary variables could be used, the lower bounds are still not better
than the complexities of the conditional cube tester in [12]. We summarize the lower bounds of
complexities of divide-and-conquer attacks on the 6-round and the 7-round Keccak-MAC in Table
6.
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Table 6 Lower bounds of the complexities based on cubes without any restriction

Rounds TC in PP MC in PP TC in OP
6 240 28 239

7 273 29 273

5. Conclusion

In this paper we study divide-and-conquer attack against Keccak-MAC. Improved divide-and-
conquer attacks against 6- and 7-round Keccak-MAC are given by exploiting the property of ρ
which is not paid enough attention by the previous attackers. Furthermore, we theoretically anal-
yse the lower bounds of complexities of divide-and-conquer attacks on the round-reduced Keccak-
MAC. It is shown that the Keccak-MAC can resist the divide-and-conquer attack better than the
conditional cube tester no matter which rotation constants are used in the ρ mapping.
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