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Abstract

Algebraic Manipulation Detection (AMD) codes is a cryptographic primitive that was introduced by
Cramer, Dodis, Fehr, Padró and Wichs [1]. They are keyless message authentication codes that protect
messages against additive tampering by the adversary assuming that the adversary cannot “see” the
codeword. For certain applications, it is unreasonable to assume that the adversary computes the added
offset without any knowledge of the codeword c. Recently, Ahmadi and Safavi-Naini [2], and then Lin,
Safavi-Naini, and Wang [3] gave a construction of leakage-resilient AMD codes where the adversary has
some partial information about the codeword before choosing added offset, and the scheme is secure even
conditioned on this partial information.

In this paper we establish bounds on the leakage rate ρ and the code rate κ for leakage-resilient AMD
codes. In particular we prove that 2ρ+κ < 1 and for the weak case (security is averaged over a uniformly
random message) ρ + κ < 1. These bounds hold even if adversary is polynomial-time bounded, as long
as we allow leakage function to be arbitrary.

We present constructions of AMD codes that (asymptotically) fulfill the above bounds for almost full
range of parameters ρ and κ. This shows that the above bounds and constructions are in-fact optimal.

In the last section we show that if a leakage function is computationally bounded (we use the Ideal
Cipher Model) then it is possible to break these bounds.

1 Introduction

Algebraic Manipulation Detection (AMD) codes [1] are keyless message authentication codes that protect
messages against additive tampering by the adversary assuming that the adversary cannot “see” the code-
word. In AMD codes, a message m ∈ {0, 1}k is encoded to a codeword C in {0, 1}n, and the codeword is
stored such that the adversary cannot get any information about the codeword. The adversary is assumed to
be able to add an arbitrary element A to C such that C +A could potentially decode to a message m′ 6= m.
In a δ-secure AMD code, such a manipulation succeeds with probability δ, and with probability 1 − δ, the
decoder on input C + A, either outputs m or a special symbol ⊥ indicating that the tampering (by the
adversary) has been detected. Another notion that has been considered in [1] is that of weakly secure AMD
codes (also called weak AMD codes), where the security guarantee is only for a uniformly random message
over the message space {0, 1}k, and the coding scheme is deterministic.

As mentioned in [1], AMD codes find useful applications in linear secret sharing schemes (e.g. Shamir’s
secret sharing [4]) and Fuzzy Extractors [5]. In particular, AMD codes can be used to turn any linear secret
sharing scheme into a so called robust secret sharing scheme [6], which ensures that no unqualified subset of
players can modify their shares and cause the reconstruction of a string s′ which is different from the secret s.
Similarly, AMD codes can help turn fuzzy extractors into robust fuzzy extractors that were first considered
by Boyen et al. [7, 8]. We direct the reader to [1] for a more detailed discussion of these applications.

In reality, the assumption that the adversary computes the offset A without any knowledge of the code-
word c might be unrealistic due to the presence of side channel attacks [9, 10, 11], where the adversary can
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obtain partial information (leakage) on the secret state of an implementation of a cryptographic scheme, by
exploiting physical phenomena.

Recently, Ahmadi and Safavi-Naini [2], and then Lin, Safavi-Naini, and Wang [3] gave a construction
of so called ρ-Linear Leakage-Resilient AMD (ρ-LLR-AMD) codes where the adversary has some partial
information about the codeword c before choosing A, and the scheme is secure even conditioned on this
partial information. In [2], the authors consider the notion of a coding scheme from m ∈ {0, 1}k to c ∈ {0, 1}n
where the encoding algorithm uses randomness R ∈ {0, 1}σ, and the adversary computes A given partial
information Z such that the entropy of R conditioned on Z is at least (1 − ρ)σ. A similar notion of weak
ρ-LLR-AMD codes was defined and constructed where the security is for a uniformly random message M ,
and the entropy of M conditioned on Z is assumed to be at least (1− ρ)k.

In the subsequent work, Lin, Safavi-Naini, and Wang [3] considered a stronger notion of ρ-AMD codes,
where Z carries information about the codeword, and the entropy of the codeword C conditioned on Z is at
least (1−ρ)n. Similar to the original AMD codes defined in [1], the authors defined weak and strong ρ-AMD
codes as deterministic and randomized codes that guarantee security for a uniformly distributed message
and any message, respectively. Since ρ-AMD codes are the main topic of our paper, we briefly restate the
main application of ρ-AMD codes as discussed in [3].

Robust ramp secret sharing scheme. A (t, r)-ramp secret sharing scheme [12, 13] is a secret sharing
scheme such that any t or fewer shares reveal nothing about the secret s, and any r or more shares are
enough to reconstruct the secret. If the number of shares a is between r and t, then an a−t

r−t fraction of the
secret is leaked. Some authors such as [14] refer to this as a linear ramp secret sharing scheme. By encoding
a secret with a ρ-AMD code with error δ, and then using a (t, r)-ramp secret sharing scheme, we can ensure
that as long as the number of shares are at most t+ bρ(r − t)c, the probability of being able to reconstruct
the secret is upper bounded by δ. Notice that if we assume that the secret is chosen uniformly at random,
then even a weak ρ-AMD code will be sufficient for this application.

For this application, or for that matter any other application of ρ-AMD codes, we want the leakage
fraction ρ to be as large as possible and for the efficiency of the scheme, we additionally want the rate of
the codeword κ := k

n also to be as large as possible. In [3], the authors give a construction of strong ρ-AMD

codes with error δ, where κ = d
d+2 , and ρ = 1

d+2 − ε, where ε is a small constant that depends on δ, and d is

a positive integer. In order to maximise the leakage, we can set d = 1, which will imply that ρ ≈ 1
3 , and the

rate of the code is 1
3 . Also, it was shown in [3] that for any strong ρ-AMD code with any error δ, we must

have that κ+ ρ < 1. This leads us to the following question.

Question 1. Does there exist a strong ρ-AMD code with leakage rate ρ ≥ 1
3? Can we obtain a better tradeoff

between κ and ρ?

In this paper, we answer both these questions in the affirmative. In Section 4, we generalise the construc-
tion from [3] to obtain a construction of a whole family of ρ-AMD codes for a wider range of parameters.
More precisely (see Corollary 1 for details), we have constructions that are secure as long as 2ρ + κ < 1.
Moreover, we show in Section 5 that there exists no construction of strong ρ-AMD codes that is secure if
2ρ+ κ ≥ 1. This means that we covered the whole space of possible values of ρ and κ. On the other hand,
we prove that if we work in Ideal Cipher Model we can go even further: we can break proven barrier and
achieve ρ arbitrary close to 1. See Section 6 for details.

Similarly, as above, for weak ρ-AMD codes with error δ, Lin et al. gave a construction with κ = d
d+1 ,

and ρ = 1
d+1 − ε, where ε is a small constant that depends on δ, and d is a positive integer. Setting d = 1,

we get ρ ≈ 1
2 , and κ = 1

2 . They, however, failed to obtain any nontrivial condition under which there exist
weak ρ-AMD codes. We can again ask a question similar to Question 1 for weak ρ-AMD codes.

Question 2. Does there exist a weak ρ-AMD code with leakage rate ρ ≥ 1
2? Can we obtain some nontrivial

tradeoff between κ and ρ?

We answer the first question in the negative and the second in the affirmative by showing in Section 5
that for any ρ ∈ (0, 1) there exists no weak ρ-AMD code with ρ+ κ ≥ 1, or ρ ≥ κ. In other words, for any
secure weak ρ-AMD code, we must have ρ + κ < 1, and ρ < κ. We also include a construction achieving
parameters similar to [3] in Section 4.
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We would again like to remark that all our constructions and proofs in Section 4 closely resemble those
in [1, 3]. Our main contribution is to show that these constructions are optimal and that we can cover the
whole space of feasible parameters.

In the following, we briefly discuss the leakage models that have been considered in the literature.

1.1 Leakage models

In general, we consider the leakage as f(x) where f is the leakage function, and x is the secret state. Notice
that for achieving any security guarantee, we have to restrict the amount of leakage allowed, or else the
adversary can leak the entire state.

Bounded Leakage The most widely used leakage model is the bounded leakage model introduced by
Dziembowski and Pietrzak [15]. The popularity of this model is in part due to its simplicity. In this model,
it is assumed that |f(x)| is bounded, and (significantly) smaller than |x|.

Noisy Leakage The main limitation of the bounded leakage model is that real world side channel informa-
tion obtained by the adversary is rarely bounded in length. Typically, the length is huge, but the correlation
between the leakage and the secret state is small, i.e., most of the leakage is “noise”. This model was first
considered by Naor and Segev [16] informally, and was more formally introduced by [17]. In this model, the
idea of weak correlation between the leakage and the secret is captured by the assumption that the average
min-entropy of x given f(x) remains high.

As shown in Lemma 1, the noisy leakage model is more general than the bounded leakage model. Thus,
all results in this paper are in the noisy leakage model.

2 Preliminaries

For an integer m ∈ N, we denote the set of integers {1, . . . ,m} by [m]. Unless otherwise stated, F = Fq
denotes a finite field of size q.

The min-entropy of a random variable X is defined as H∞(X)
def
= − log(maxx Pr[X = x]). This notion is

fundamental for cryptographic community as it it is used to measure the probability of guessing a random
element drawn out from the distribution X.

We also define average (aka conditional) min-entropy of a random variable X conditioned on another
random variable Z as

H̃∞(X|Z)
def
= − log

(
Ez←Z

[
max
x

Pr[X = x|Z = z]
])

= − log
(
Ez←Z

[
2−H∞(X|Z=z)

])
,

where Ez←Z denotes the expected value over z ← Z. Intuitively, if H̃∞(X|Z) is high, then almost
certainly (for all except only negligible fraction of events from Z) the probability of guessing X conditioned
on some z ← Z is low. Placing the operator E inside the logarithm is crucial in the definition to hold this
intuition. For more discussion on this notion one is referred to [5].

The following lemma shows a fundamental property of conditional min-entropy.

Lemma 1 ([17]). Given distributions X, Y where |support(Y )| ≤ 2λ, we have that

H̃∞(X|Y ) ≥ H∞(X,Y )− λ ≥ H∞(X)− λ.

We will need also the following result:

Lemma 2. Let 0 < p < 1, and let E1, . . . , Et be pairwise independent events such that Pr(Ei) = p for all
i ∈ [t]. Then

Pr(∪ti=1Ei) ≥ t · p−
t2 · p2

2
.
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Proof. Using Bonferroni inequality [18], we have that

Pr(∪ti=1Ei) ≥
t∑
i=1

Pr(Ei)−
∑

i,j∈[t],i6=j

Pr(Ei ∩ Ej)

= t · p− t(t− 1)

2
p2

> t · p− t2 · p2

2
.

3 Definitions

We first define a general coding scheme.

Definition 1. A coding scheme is given by an encoding function Enc : Fk×Fσ 7→ Fn from k-length messages
to n-length codewords1, and a decoding function Dec : Fn 7→ Fk ∪ {⊥} such that, for each m ∈ Fk, r ∈ Fσ,
we have that Pr(Dec(Enc(m, r)) = m) = 1.

Additionally, the coding scheme is called regular if Enc is a one-to-one function.

We now define AMD codes.

Definition 2. Let Enc : Fk × Fσ 7→ Fn, Dec : Fn 7→ Fk ∪ {⊥} be a coding scheme. We say that (Enc, Dec)
is a strong (ρ, δ)-AMD code if for any m ∈ Fk, R uniform in Fσ,

Pr[Dec(Enc(m,R) + A(Z)) /∈ {m,⊥}] ≤ δ ,

where Z ∈ Z is a random variable such that H̃∞(Enc(m,R)|Z) ≥ H∞(Enc(m,R)) − ρ · (n log q), and
A : Z 7→ Fn is an arbitrary randomized function chosen by the adversary. The probability is over the
randomness of the encoding, the possibly independent randomness of the leakage function, and the randomness
of the adversary, i.e., over R,Z,A.

If the adversary is only allowed time polynomial in n to compute A(Z), then the underlying scheme is
said to be a computationally secure strong (ρ, δ)-AMD code.

If the security guarantee is only for a uniform message distribution, then we call such an AMD code a
weak AMD code. More formally,

Definition 3. Let Enc : Fk 7→ Fn, Dec : Fn 7→ Fk ∪ {⊥} be a coding scheme. 2 We say that (Enc, Dec) is a
weak (ρ, δ)-AMD code if for M uniform in Fk, we have that

Pr[Dec(Enc(M) + A(Z)) /∈ {M,⊥}] ≤ δ ,

where Z ∈ Z is a leakage variable such that H̃∞(Enc(M)|Z) ≥ H∞(Enc(M))− ρn log q, and A : Z 7→ Fn is
an arbitrary function chosen by the adversary.

If the adversary is only allowed time polynomial in n to compute A(Z), then the underlying scheme is
said to be a computationally secure weak (ρ, δ)-AMD code.

4 Constructing Leakage-resilient AMD codes

In the following, we show that given AMD codes, we can construct leakage-resilient AMD codes.

Lemma 3. For any δ > 0, 0 < ρ < 1, any regular coding scheme Enc : Fk × Fσ 7→ Fn, Dec : Fn 7→ Fk ∪ {⊥}
that is a strong (0, δ)-AMD code is also a strong (ρ, qρnδ)-AMD code.

1The encoding function takes randomness of length σ, which we make explicit in the definition for convenience.
2In this paper, we restrict our attention to weak leakage resilient AMD codes that are deterministic as in [2, 3]. In general,

when talking about AMD codes without leakage-resilience, we typically don’t assume that the encoding function is deterministic.
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Proof. Since (Enc,Dec) is a (0, δ)-AMD code, we have that for a uniform R in Fσ, and any m ∈ Fk, α ∈ Fn,

Pr(Dec(Enc(m,R) + α) /∈ {m,⊥}) ≤ δ .

Define BAD(m,α) to be the set of all c in the support of Enc(m,R) such that Dec(c + α) /∈ {m,⊥}. From
the equation above, we have that

|BAD(m,α)| ≤ δ · qσ . (1)

Now, consider a leakage variable Z such that H̃∞(Enc(m,R)|Z) ≥ H∞(Enc(m,R)) − ρn log q. Since
(Enc,Dec) is a regular coding scheme, we have that H∞(Enc(m,R)) = H∞(R) = σ log q, and hence

H̃∞(Enc(m,R)|Z) ≥ (σ − ρn) log q. Thus, using the definition of conditional min-entropy, we have that∑
z∈Z

Pr(Z = z) ·max
c∈Fn

Pr(Enc(m,R) = c | Z = z) ≤ 1

qσ−ρn
. (2)

We now bound the probability of incorrect decoding when the adversary computes the offset given Z.

Pr[Dec(Enc(m,R) + A(Z)) /∈ {m,⊥}]

=
∑
z∈Z

(
Pr[Dec(Enc(m,R) + A(Z)) /∈ {m,⊥} | Z = z] · Pr[Z = z]

)
=
∑
z∈Z

Pr[Enc(m,R) ∈ BAD(m,A(Z)) | Z = z] · Pr[Z = z]

≤
∑
z∈Z

(
|BAD(m,A(Z)|max

c∈Fn
Pr(Enc(m,R) = c | Z = z) · Pr(Z = z)

)
≤δ · qσ · 1

qσ−ρn
= δ · qρn ,

where the last inequality uses the inequalities (1) and (2).

Similar to the above, we can construct weak AMD codes with leakage-resilience from a weak AMD code
without leakage-resilience. The proof (and even the parameter changes in the formulas) of the following
lemma is similar to that of Lemma 3, but we include it here for completeness.

Lemma 4. For any δ > 0, 0 < ρ < 1, any regular coding scheme Enc : Fk 7→ Fn, Dec : Fn 7→ Fk ∪ {⊥} that
is a weak (0, δ)-AMD code is also a weak (ρ, qρnδ)-AMD code.

Proof. Since (Enc,Dec) is a (0, δ)-AMD code, we have that for a uniform M in Fk, and any α ∈ Fn,

Pr(Dec(Enc(M) + α) /∈ {M,⊥}) ≤ δ .

Define BAD(α) to be the set of all c in the support of Enc(M) such that Dec(c + α) /∈ {M,⊥}. From the
equation above, we have that

|BAD(α)| ≤ δ · qk . (3)

Now, consider a leakage variable Z such that H̃∞(Enc(M)|Z) ≥ H∞(Enc(M)) − ρn log q. Since (Enc,Dec)

is a regular coding scheme, we have that H∞(Enc(M)) = H∞(M) = k log q, and hence H̃∞(Enc(M)|Z) ≥
(k − ρn) log q. Thus, using the definition of conditional min-entropy, we have that∑

z∈Z
Pr(Z = z) ·max

c∈Fn
Pr(Enc(M) = c | Z = z) ≤ 1

qk−ρn
. (4)
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We now bound the probability of incorrect decoding when the adversary computes the offset given Z.

Pr[Dec(Enc(M) + A(Z)) /∈ {M,⊥}]

=
∑
z∈Z

(
Pr[Dec(Enc(M) + A(Z)) /∈ {M,⊥} | Z = z] · Pr[Z = z]

)
=
∑
z∈Z

Pr[Enc(M) ∈ BAD(A(Z)) | Z = z] · Pr[Z = z]

≤
∑
z∈Z

(
|BAD(A(Z)|max

c∈Fn
Pr(Enc(M) = c | Z = z) · Pr(Z = z)

)
≤δ · qk · 1

qk−ρn
= δ · qρn ,

where the last inequality uses the inequalities (3) and (4).

We now give a construction of an efficient coding scheme without any leakage. This construction closely
resembles the construction of AMD codes from [1].

Theorem 1. For any positive integers k < q − 2, σ, there exists an efficient regular coding scheme Enc :

Fk × Fσ 7→ Fk+2σ, Dec : Fk+2σ 7→ Fk ∪ {⊥} that is a strong (0,
(
k+1
q

)σ
)-AMD code.

Proof. Let f : Fk × F 7→ F be defined as

∀m ∈ Fk, a ∈ F, f(m, a) := ak+2 +

k∑
i=1

mia
i ,

where m = (m1, . . . ,mk) such that mi ∈ F for i ∈ [k]. Then consider the coding scheme is defined as

∀m ∈ Fk, x ∈ Fσ,
Enc(m,x) := (m,x, f(m,x1), . . . , f(m,xσ)) ,

The decoding function Dec on input m′ ∈ Fk, x′ ∈ Fσ, y1, . . . , yσ ∈ F checks whether yi = f(m′, x′i) for i ∈ [σ].
If there exists an i such that yi 6= f(m′, x′i), then Dec(m′, x′, y1, . . . , yσ) = ⊥, else Dec(m′, x′, y1, . . . , yσ) = m′.

Clearly the coding scheme is regular. We now proceed to show that the scheme is secure.
For any m ∈ Fk, α ∈ Fk, β ∈ Fσ, γ ∈ Fσ, and a uniform X ∈ Fσ we need to bound

Pr(Dec(Enc(m,X) + (α, β, γ)) /∈ {m,⊥}) .

Notice that if α = 0, then the above probability is 0, since by definition, for any m,β, γ, Dec(Enc(m,X) +
(α, β, γ)) is either m or ⊥. Also, if α 6= 0, then Dec(Enc(m,X) + (α, β, γ)) is either m+α 6= m, or ⊥. Thus,
it is sufficient to bound

Pr(Dec(Enc(m,X) + (α, β, γ)) 6= ⊥)

for any m ∈ Fk, α ∈ Fk \{0}, β ∈ Fσ, γ ∈ Fσ, and a uniform X ∈ Fσ. Using the independence of X1, . . . , Xσ,
we have that

Pr(Dec(Enc(m,X) + (α, β, γ)) 6= ⊥)

=

σ∏
j=1

Pr

(
Xk+2
j +

k∑
i=1

miX
i
j + γj = (Xj + βj)

k+2 +

k∑
i=1

(mi + αi)(Xj + βj)
i

)

=

σ∏
j=1

Pr

(
Xk+2
j +

k∑
i=1

miX
i
j + γj − (Xj + βj)

k+2 −
k∑
i=1

(mi + αi)(Xj + βj)
i = 0

)

≤
(
k + 1

q

)σ
,

6



since

P (Xj) = Xk+2
j +

k∑
i=1

miX
i
j + γj − (Xj + βj)

k+2

−
k∑
i=1

(mi + αi)(Xj + βj)
i

is a non-zero polynomial in Xj of degree at most k + 1. To see that the polynomial is non-zero, note
that if βj 6= 0, then the co-efficient of Xk+2

j in P (Xj) is zero, and that of Xk+1
j is (k + 2)βj 6= 0. On the

other hand, if βj = 0, then let t be the largest index such that αt 6= 0. Note that one such index exists since
α 6= 0. Then, the coefficients of Xk+2

j , . . . , Xt+1
j in P (Xj) are 0, and that of Xt is −αt 6= 0.

The desired result follows.

The following corollary immediately follows from Lemma 3 and Theorem 1.

Corollary 1. For any positive integers k < q − 2, σ, and 0 < ρ < 1
2 , there exists an efficient regular coding

scheme Enc : Fk ×Fσ 7→ Fk+2σ, Dec : Fk+2σ 7→ Fk ∪ {⊥} that is a strong (ρ, qρ(k+2σ)−σ(k+ 1)σ)-AMD code.

We remark that assuming q � k, as long as ρ < σ
k+2σ the above construction is secure.

The last expression is equivalent to 2ρ(k+ 2σ) +k < 2σ+k. This, since the code rate for Enc, κ = k
k+2σ ,

may be rewritten as 2ρ + κ < 1. This formulation is the most interesting for us since it clearly states the
postulated tradeoff between ρ and κ.

Now we will construct weak AMD codes without any leakage. Notice that a construction with similar
parameters was already shown in [3]. We include the construction here for completeness. In Section 5, we
show that the parameters obtained in this construction are optimal.

Theorem 2. Let k be a positive integer, and let the characteristic of F be greater than 2. Then there exists
an efficient regular coding scheme Enc : Fk 7→ Fk+1, Dec : Fk+1 7→ Fk ∪{⊥} that is a weak (0, 1q )-AMD code.

Proof. Let g : Fk 7→ F be defined as

∀m ∈ Fk, g(m) :=

k∑
j=1

m2
j .

where m = (m1, . . . ,mk) such that mj ∈ F for j ∈ [k]. Then consider the coding scheme is defined as

∀m ∈ Fk, Enc(m) := (m, g(m)) ,

The decoding function Dec on input m′ ∈ Fk, y ∈ F checks whether y = g(m′). If y 6= gi(m
′), then

Dec(m′, y) = ⊥, else Dec(m′, y) = m′.
For any α ∈ Fk, β ∈ F, and a uniform M ∈ Fk we need to bound

Pr(Dec(Enc(M) + (α, β)) /∈ {M,⊥}) .

Notice that if α = 0, then the above probability is 0, since by definition, for any β, Dec(Enc(M) + (α, β)) is
either M or ⊥. Also, if α 6= 0, then Dec(Enc(M) + (α, β)) is either M + α 6= M , or ⊥. Thus, it is sufficient
to bound

p = Pr(Dec(Enc(M) + (α, β)) 6= ⊥)

for any α ∈ Fk \ {0}, β ∈ F, and a uniform M ∈ Fk. Without loss of generality, let αi 6= 0. Then,

p = Pr

 k∑
j=1

(
(Mj + αj)

2 −M2
j

)
= β


= Pr

 k∑
j=1

(
2αjMj + α2

j

)
= β


= Pr(2αiMi = A) ,
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where A depends on M1, . . . ,Mi−1,Mi+1, . . . ,Mk, α1, . . . , αk, β, and is independent of Mi. Thus, using the
independence of Mi from M1, . . . ,Mi−1,Mi+1, . . . ,Mk, we see that p = 1

q .

The following corollary immediately follows from Lemma 4 and Theorem 2.

Corollary 2. For any positive integers k, and 0 < ρ < 1
k+1 , there exists an efficient regular coding scheme

Enc : Fk 7→ Fk+1, Dec : Fk+1 7→ Fk ∪ {⊥} that is a weak (ρ, qρ(k+1)−1)-AMD code.

Thus, as long as ρ < 1
k+1 , or in other words, ρ+ κ < 1, and ρ < κ, the above construction is secure.

5 Optimal Bounds on Leakage and Code Rate

In this section we show that the constructions in Section 4 are asymptotically optimal. In fact, even if we
allow that adversary is polynomial-time bounded (as long as the leakage is arbitrary), there still does not
exist a construction of leakage resilient AMD codes that allow a better tradeoff between the rate of the code
and the allowed leakage.

The following corollary is immediate from Lemma 2.

Corollary 3. Let FN be a finite field, and let A,B be uniform and independent in FN . Let y1, . . . , yt be
some fixed distinct elements of FN . Also, let S be a subset of FN . Then the probability that there exists
i ∈ [t] such that Ayi +B ∈ S is at least

t · |S|
N
− t2 · |S|2

2N2
.

Proof. Let E denote the main event described in the statement and also (for all i ∈ [t]) let Ei be the event

that Ayi + B ∈ S. Then, of course we have E = ∪ti=1Ei and Pr(Ei) = |S|
N . Now, all is set in such a way,

that the final result is a conclusion of a direct use of the Lemma 2. The only missing part is to show that
events E1, . . . , Et are pairwise independent:

To see this, note that for any a, b ∈ FN , and any i, j ∈ [t] such that i 6= j, we have that

Pr(Ayi +B = a,Ayj +B = b)

= Pr

(
A =

b− a
yj − yi

, B =
byi − ayj
yi − yj

)
(?)
= Pr

(
A =

b− a
yj − yi

)
Pr

(
B =

byi − ayj
yi − yj

)
=

1

N
· 1

N
= Pr(Ayi +B = a) · Pr(Ayj +B = b) .

(The step (?) follows from the independence of A and B.)
The above calculations finish the proof of the pairwise independence of E1, . . . , Et which also ends the

whole proof of the Corollary 3.

We are now ready to prove the optimality of our leakage-resilient AMD codes.

Theorem 3. For any ρ ∈ (0, 1), there does not exist a computationally secure strong (ρ, 3
16 )-AMD code

Enc : {0, 1}k × {0, 1}σ 7→ {0, 1}n, Dec : {0, 1}n 7→ {0, 1}k ∪ {⊥} with 2ρ+ k
n ≥ 1.

Proof. Let R be uniform in {0, 1}σ. Also, let t = 2(n−k)/2. We divide the proof in two cases.
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Case 1 There exists a message m such that the support of Enc(m,R) has cardinality at most t. Let C(m)
be the support of Enc(m,R). We define the set of good codewords G ⊆ C(m) such that

G :=

{
c ∈ C(m) : Pr(Enc(m,R) = c) ≥ 1

2t

}
.

The probability that Enc(m,R) /∈ G is less than 1
2t · t = 1

2 . Thus, the probability that C = Enc(m,R) ∈ G is
greater than 1

2 .
Now, we interpret the domain of the randomness of the Enc function, i.e., {0, 1}σ as a finite field of size

2σ, and let A,B be uniformly random variables in {0, 1}σ chosen by the adversary. Also, let y1, . . . , yt be
fixed and distinct elements of {0, 1}σ.

We define the random variable Z to be the index i ∈ [t] such3 that Enc(m,Ayi +B) = Enc(m,R). If no
such i exists, then Z is chosen to be an arbitrary index in [t]. Furthermore, we fix a codeword c∗ such that
Dec(c∗) /∈ {m,⊥}.

Then the function A(Z) chosen by the adversary is defined as

A(Z) = −Enc(m,AyZ +B) + c∗ .

Notice that Dec(Enc(m,R) + A(Z)) = Dec(c∗) if Enc(m,R) ∈ G and there exists an i ∈ [t] such that
Enc(m,Ayi+B) = Enc(m,R). Conditioned on the event that Enc(m,R) ∈ G (which happens with probability
greater than 1/2), the number of r ∈ {0, 1}σ such that Enc(m, r) = Enc(m,R) is at least 2σ

2t . Thus, using
Corollary 3, the probability that there exists an i ∈ [t] such that Enc(m,Ayi +B) = Enc(m,R) is at least

t

2t
− t2

2 · 4t2
= 3/8 .

Thus, Dec(Enc(m,R) + A(Z)) = Dec(c∗) /∈ {m,⊥} with probability 3/16.

Case 2 For every message m′, the support of Enc(m′, R) has cardinality greater than t. We fix a message
m ∈ {0, 1}k, and the codeword C = Enc(m,R).

Now, we interpret the code space, i.e., {0, 1}n as a finite field of size 2n, and let A,B be uniformly random
variables in {0, 1}n chosen by the adversary. Also, let y1, . . . , yt be fixed and distinct elements of {0, 1}n.
We define the random variable Z to be the index i ∈ [t] such that Dec(C +Ayi +B) /∈ {m,⊥}. If no such i
exists, then Z is chosen to be an arbitrary index in [t]. The function A(Z) chosen by the adversary is defined
as AyZ +B.

We now compute the probability that Dec(C + A(Z)) /∈ {m,⊥}. The number of strings x ∈ {0, 1}n such
that Dec(C + x) /∈ {m,⊥} is greater than (2k − 1)t since by assumption, for every message m′, the support
of Enc(m′, R) has cardinality greater than t. Thus, using Corollary 3, the probability that there exists an
index i ∈ [t] such that Dec(C +Ayi +B) /∈ {m,⊥} is at least

t2(2k − 1)

2n
− t4(2k − 1)2

2 · 22n
=

1

2
− 1

22k+1
≥ 3

8
,

for k ≥ 1.

Remark 1. We note that the adversary strategies considered in the proof of Theorem 3 are reminiscent of
the strategies used by Paterson and Stinson [19] to obtain bounds on the parameters of weak AMD codes. In
particular, Case 1 is similar to the Guess strategy where guessing the codeword or leaking the randomness
that generates the codeword is easy, and Case 2 is similar to the Random strategy where a randomly selected
offset will be successful with high probability.

Theorem 3 shows that if 2ρ + κ ≥ 1, where the leakage rate is ρ and the code rate is κ, then strong
leakage-resilient AMD codes are impossible. This, combined with Corollary 1, gives an (asymptotically)
tight characterization of code rate and leakage rate for which leakage-resilient strong AMD codes exist.

Next, we show that there is no leakage-resilient (even computationally secure) weak AMD code from
k-bit messages to n-bit codewords with leakage rate ρ such that ρ+ k

n ≥ 1.

3We note here, that index i has t values, thus by lemma 1, leakage Z fulfills our noisy leakage definition, and is in line with
definition 2.
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Theorem 4. For any ρ ∈ (0, 1), there does not exist a computationally secure weak (ρ, 38 )-AMD code

Enc : {0, 1}k 7→ {0, 1}n, Dec : {0, 1}n 7→ {0, 1}k ∪ {⊥} with ρ+ k
n ≥ 1 or ρ ≥ k

n .

Proof. Let M be chosen uniformly at random in {0, 1}k, and let C = Enc(M) be fixed. If ρ ≥ k
n , then let Z

be Dec(C), and let A(Z) be −Enc(Z) + Enc(m′) for some m′ ∈ {0, 1}k \ {M}. Then, it is easy to see that
Dec(C + A(Z)) = m′ /∈ {M,⊥} with probability 1. This shows that ρ < k

n .
Let t = 2n−k. We interpret the code space, i.e., {0, 1}n as a finite field of size 2n, and let A,B be uniformly

random variables in {0, 1}n chosen by the adversary. Also, let y1, . . . , yt be fixed and distinct elements of
{0, 1}n. We define the random variable Z to be the index i ∈ [t] such4 that Dec(C +Ayi +B) /∈ {M,⊥}. If
no such i exists, then Z is chosen to be an arbitrary index in [t]. The function A(Z) chosen by the adversary
is defined as AyZ +B.

We now compute the probability that Dec(C + A(Z)) /∈ {M,⊥}. The number of strings x ∈ {0, 1}n
such that Dec(C + x) /∈ {m,⊥} is 2k − 1, one corresponding to each message in {0, 1}k \ {M}. Thus, using
Corollary 3, the probability that there exists an index i ∈ [t] such that Dec(C + Ayi + B) /∈ {M,⊥} is at
least

t(2k − 1)

2n
− t2(2k − 1)2

2 · 22n
=

1

2
− 1

22k+1
≥ 3

8
,

for k ≥ 1.

Theorem 4 shows that if ρ + κ ≥ 1, where the leakage rate is ρ and the code rate is κ, then weak
leakage-resilient AMD codes are impossible. This, combined with Corollary 2, gives an (asymptotically)
tight characterization of code rate and leakage rate for which leakage-resilient weak AMD codes exist.

6 Breaking the ρ < 1
2 barrier for AMD codes in the Ideal Cipher

Model

In Section 5 we state an inequality 2ρ + k
n ≤ 1 that must hold for all strong (ρ, 3/16)-AMD codes as

introduced in Definition 2. The definition assumes that the leakage variable Z is arbitrary with the only
constraint being that the entropy of the codeword conditioned on the knowledge of Z is 1− ρ fraction of the
original entropy. However, as we will see in this section, our result does not necessarily hold if we impose
further conditions on the leakage variable Z.

We will work in the Ideal Cipher Model (abbr. ICM), which is equivalent to the Random Oracle Model,
see [20]). As a reminder: ICM is a model with a public oracle (accessible fully to all parties) that gives
access to a family {fi}i∈I of random (and independent) permutations. Any party may ask for fi(u) and for
f−1i (u) for any chosen i and u. For our application we can even simplify the model and assume that we have
only one random permutation f with access to both forward and inverse queries to the oracle for f .

We will consider the following simple encoding: Encbr(m, r) = (m, f(m, r)), where m ∈ Fk, f : Fk×Fσ 7→
Fk × Fk+σ is the oracle permutation from ICM described above and r ∈ Fσ is some (potentially huge
in comparison to m) randomness. Obviously the function Encbr is efficient and also there exists efficient
decoding function that may efficiently (using f−1 oracle) check if the codeword is correct.

Now we are ready for introducing the theorem about an interesting property of Encbr. Please note that
this time we assume something about Z from Definiton 2. More specifically: We assume that Z is computed
by some Turing Machine (called leakage oracle) that is bounded by the number of queries to the ICM oracle.

Theorem 5. The above Encbr is a strong (ρ, q−k + t/qσ−ρn))-AMD code in the Ideal Cipher Model if the
number of queries to ICM oracle (made together by both the adversary and the leakage oracle) is bounded by
t.

Proof. Let us assume that the adversary knows original m and let us denote by m′ the new value of the
message in the modified codeword. Also let us denote x = f(m, r). Now the goal of the adversary is to
construct e such that f−1(x+ e) = (m′, r′) for some r′.

4We note that index i has t values. By lemma 1, leakage Z fulfills the requirements set in definition 3.

10



During the execution, the adversary and the leakage oracle learned at most t values y1, . . . , yt such that
f−1(yj) = (m′, r′) for some r′. This means that if (x+ e) is not equal to any of such yj for j ∈ [t], then the
result is simply uniform at random so the probability of success is exactly q−k.

So, the only hope to make the probability of winning greater is to pick e such that x + e = yj for some

1 ≤ j ≤ t. However since H̃∞(x|Z) ≥ σ log q − ρn log q then this happens with probability less or equal to
t

2σ log q−ρn log q = t
qσ−ρn .

These two facts about two cases above together imply the statement.

Thus, this construction gives an AMD code in the Ideal Cipher Model with ρ ≈ σ
2k+σ , and κ = k

2k+σ . In
this case, we can achieve leakage arbitrarily close to 1 by having k � σ.

7 Conclusion

Theorem 3 and Corollary 1 show that strong leakage-resilient AMD codes exist if and only if 2ρ + κ < 1,
where the leakage rate is ρ and the code rate is κ.

Similarly, Theorem 4 and Corollary 2 show that weak AMD codes exist if and only if ρ+ κ < 1.
Our results are asymptotically tight, but it would be interesting to prove that our bounds are tight when

the message size is small. We leave this as an open question.
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