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Abstract. Hash Proof Systems or Smooth Projective Hash Functions
(SPHFs) are a form of implicit arguments introduced by Cramer and Shoup
at Eurocrypt’02. They have found many applications since then, in par-
ticular for authenticated key exchange or honest-verifier zero-knowledge
proofs. While they are relatively well understood in group settings, they
seem painful to construct directly in the lattice setting.
Only one construction of an SPHF over lattices has been proposed in
the standard model, by Katz and Vaikuntanathan at Asiacrypt’09. But
this construction has an important drawback: it only works for an ad-
hoc language of ciphertexts. Concretely, the corresponding decryption
procedure needs to be tweaked, now requiring q many trapdoor inversion
attempts, where q is the modulus of the underlying Learning With Errors
(LWE) problem.
Using harmonic analysis, we explain the source of this limitation, and
propose a way around it. We show how to construct SPHFs for standard
languages of LWE ciphertexts, and explicit our construction over a tag-
IND-CCA2 encryption scheme à la Micciancio-Peikert (Eurocrypt’12).
We then improve our construction and our analysis in the case where the
tag is known in advance or fixed (in the latter case, the scheme is only
IND-CPA) with a super-polynomial modulus, to get a stronger type of
SPHF, which was never achieved before for any language over lattices.
Finally, we conclude with applications of these SPHFs: password-based
authenticated key exchange, honest-verifier zero-knowledge proofs, and a
relaxed version of witness encryption.
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1 Introduction

Harmonic analysis is a powerful tool in geometry of numbers, especially in
combination with Gaussian measure, which has lead to important progress
on transference theory [Ban93]. Those tools also played a crucial role for the
foundation of lattice-based cryptography, being at the heart of proofs of worst-
case hardness for lattice problems, such as the Short Integer Solution problem
(SIS) and the Learning with Errors (LWE) problem [MR04, Reg05, GPV08].
Later, security proofs relied on a few convenient lemmas in a black-box manner,
and for most applications this was sufficient: lattice-based cryptography quickly
caught up with pairing-based cryptography, for example with the constructions
of (Hierarchical) Identity Based Encryption’s [GPV08, CHKP10, MP12] and
beyond [Boy13,GVW13,GVW15].

There nevertheless remains one primitive for which lattice-based cryptography
is still far behind: Hash Proof Sytems or Smooth Projective Hash Functions
(SPHFs) [CS02]. Beyond the original Chosen-Ciphertext secure encryption scheme
of Cramer and Shoup [CS98], SPHFs give rise to generalized classes of Authen-
ticated Key Exchange (Password-based, Language-based, . . . ) [GL06,ACP09,
KV11,BBC+13a]. They also have been used in Oblivious Transfer [Kal05,HK12],
One-Time Relatively-Sound Non-Interactive Zero-Knowledge Arguments [JR12],
and Zero-Knowledge Arguments [BBC+13b].

An SPHF can be seen as an implicit (designated-verifier) zero-knowledge
proof for a language. The most useful languages for SPHFs are the languages of
ciphertexts of a given plaintext M .

To our knowledge, there is only one construction of SPHF for a lattice-
based encryption scheme in the standard model, given by Katz and Vaikun-
tanathan [KV09]. There is also a subsequent work by Zhang and Yu who propose
an interesting new lattice-based SPHF in [ZY17]. But the language of the SPHF
relies on simulation-sound non-interactive zero-knowledge proofs which we do
not know how to construct just under lattice-based assumptions without random
oracle.

Unfortunately, the only standard-model lattice-based SPHF construction
in [KV09] has a main drawback: the language of the SPHF is not simply defined
as the set of valid standard LWE ciphertexts. Naturally, the set of valid ciphertexts
of 0 should correspond to the set of ciphertexts close to the lattice defined by
the public key. Instead, their language includes all the ciphertexts c such that at
least one integer multiple is close to the public lattice. This makes the decryption
procedure very costly (about q trapdoor inversions), and forbids the use of super-
polynomial modulus q. This limitation is a serious obstacle to the construction of
a stronger type of SPHF introduced in [KV11], namely word-independent SPHF
for which the projection key (which can be seen as the public key of the SPHF)
does not depend on the ciphertext c (a.k.a., word in the SPHF terminology).5

5 Word-independent SPHFs are also called KV-SPHF in [BBC+13b], in reference
to [KV11].
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This strongly contrasts with SPHFs in a group-based setting, which can handle
classical ElGamal or Cramer-Shoup encryption schemes —for example [CS02,
GL06]— without any modification of the decryption procedure. This is a technical
hassle to carry when building on top of such an SPHF.

We therefore view as an important question to determine whether this caveat
is inherent to lattice-based SPHFs, or if it can be overcome. We shall find an
answer by re-introducing some harmonic analysis.

Contributions. Our main contribution consists in constructing SPHFs for stan-
dard lattice-based encryption schemes. We provide general theorems to ease the
proofs of correctness and security (a.k.a., smoothness or universality) of SPHFs
over standard lattice-based encryption schemes. We detail two particular instanti-
ations: one over an IND-CCA2 encryption scheme à la Micciancio-Peikert [MP12],
and one over an IND-CPA restriction of the same scheme. While the second
instantiation is over a simpler language, it is a word-independent SPHF. To
our knowledge, this is the first word-independent SPHF over any lattice-based
language. We remark that while Zhang and Yu construct an interesting ap-
proximate word-independent SPHF over a lattice-based language in [ZY17], its
correctness is only approximate contrary to our SPHF; and its language also
relies on simulation-sound non-interactive zero-knowledge proofs, which we do
not know how to construct just from lattice assumptions in the standard model.

As with many zero-knowledge-type primitives in the lattice setting [Lyu08,
Lyu09] and as with the SPHFs of [KV09] and of [ZY17], there is a gap between
the correctness property and the smoothness property. Concretely, smoothness
holds for ciphertexts which do not decrypt to a given message, while correctness
holds only for honestly generated ciphertexts. However, contrary to [KV09], we
use a standard encryption scheme and do not need to tweak the decryption
procedure nor the language. We thus avoid the main caveat of the latter paper.

Applications. Having built these new SPHFs, we can now proceed with several
applications showing that the gap between smoothness (or universality) and
correctness is not an issue in most cases. We start by proposing an efficient
password-authenticated key exchange (PAKE) scheme in three flows. We do
so by plugging our first SPHF in the framework from [KV09]. Following the
GK-PAKE construction from [ABP15b] which is an improvement of the Groce-
Katz framework [JG04,GK10], we also obtain a PAKE in two flows over lattices
in the standard model. Finally, using our word-independent SPHF together
with simulation-sound non-interactive zero-knowledge proofs (SS-NIZK), by
following [KV11], we obtain a one-round PAKE.

Compared to the recent work of Zhang and Yu [ZY17], which proposes the first
two-round lattice-based PAKE assuming in addition SS-NIZK, our two-round
PAKE does not require SS-NIZK. While there exist very efficient SS-NIZKs in the
random oracle model for the languages considered by Zhang and Yu, constructing
SS-NIZK in the standard model under a lattice-based assumption remains an
important open problem. Our two-round PAKE is thus the first two-round PAKE
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solely based on lattice assumptions in the standard model. In addition, our
one-round PAKE assuming LWE and SS-NIZK is the first one-round PAKE in
this setting and closes an open problem of [ZY17].

In addition to PAKE, we also show how to construct honest-verifier zero-
knowledge proofs for any NP language from lattice-based SPHF. We conclude by
showing a relaxed version of witness encryption for some lattice-based languages.
Witness encryption is a very recent primitive introduced in [GGSW13] which
enables a user to encrypt a message to a given word of some NP language. The
message can be decrypted using a witness for the word.

Technical Overview. Let us now give a technical overview of our main contri-
bution, namely the constructions of new lattice-based SPHFs. We focus on the
language of dual-Regev ciphertexts c of 0: c = As+ e ∈ Zmq , where A ∈ Zm×nq

is a public matrix, while s ∈ Znq and e ∈ Zmq correspond to the randomness of
the ciphertext. The vector e is supposed to be small, i.e., c is close to the q-ary
lattice Λ generated by A.

Intuitively, an SPHF allows a prover knowing s and e to prove to a verifier that
c is indeed a ciphertext of 0. The naive and natural construction works as follows.6
The verifier generates a small random vector hk = h ∈ Zmq called a hashing key.
It then “hashes” the ciphertext into a hash value H = R(〈h, c〉) ∈ {0, 1}, where
R is a rounding function from Zq to {0, 1} to be chosen later. The verifier also
derives from hk = h, a projection key hp = p = Ath ∈ Znq that it sends to the
prover. The prover can then compute the projected hash value pH = R(〈p, s〉)
from the projection key p and the randomness of the ciphertext s and e. It can
send this projected hash value to the verifier which will accept the proof, if pH
matches its hash value H.

We remark that if indeed c = As+ e with e small enough (recall that h is
small as well):

〈h, c〉 = htAs+ hte ≈ htAs = 〈p, s〉 .
Hence, if R is carefully chosen, we can ensure that with high probability (e.g.,
at least 3/4), H = pH, and the verifier will accept the prover’s “proof.” This
property is called approximate correctness. An SPHF also needs to satisfy a
security property to be useful, called smoothness or universality, which ensures
that if c is far from the q-ary lattice Λ generated by A (in particular if it is an
encryption of 1), then given the projection key p (andA and c), the prover cannot
guess the hash value H with probability more than 1/2 + negl(n). In [KV09],
Katz and Vaikuntanathan argued universality for ciphertexts c, for which every
multiple of c is far from the lattice Λ. To be useful in their PAKE application,
the decryption procedure of the encryption scheme therefore needs to be tweaked
to try to decrypt not only the ciphertext itself but also all its multiples. In
particular, their construction cannot work with super-polynomial moduli.
6 Actually, what we construct in this overview are bit-PHF and not SPHF, i.e., the
hash value defined later is just a bit and the security property is universality instead
of smoothness. Classical SPHFs can be derived from these bit-PHFs. See Fig. 2 and
Section 2.3.
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The question we wish to answer is whether universality holds without this
tweak? In other words, is the condition that jc is far from Λ for all j 6= 0 truly
necessary or is it is an artifact of the proof? To approach this question, let us
discuss two case studies.

Two case studies. Let us first take a look at the special case where q is even, and
where c is a perfect encryption of 1: c = As+ (0, . . . , 0, q/2)t for some s ∈ Znq .
We observe that

〈h, c〉 = 〈p, s〉+ (hm mod 2) · q/2 ,

where hm is the last coordinate of h. In particular, the distribution of 〈h, c〉,
when h is drawn from a discrete Gaussian (over Zm), conditioned on A, c and
Ath = p, is concentrated on merely 2 values out of q and is therefore far from
uniform.

Yet, assuming the discrete Gaussian has large enough parameter (more
precisely, twice as large as the smoothing parameter of Z), we note that hm
is close to uniform modulo 2. In that case we observe that while 〈h, c〉 is not
itself uniform, the rounding R(〈h, c〉) is close to uniform when choosing the
typical rounding function R : x ∈ Zq 7→ b2x/qe mod 2, regardless of the value
of 〈p, s〉. So it seems that the rounding function does not only help in ensuring
approximate correctness, but it can also improve universality of the scheme as
well!

Unfortunately, we cannot always expect universality from this trick. Now
assume that q is divisible by 3, and set c = As+ (0, . . . , 0, q/3)t. This time,

〈h, c〉 = 〈p, s〉+ (hm mod 3) · q/3

is (almost) uniformly distributed over three values, separated by q/3. In particular
R(〈h, c〉) will take one value with probability (roughly) 1/3, and the other value
with probability (roughly) 2/3. Despite imperfect universality, this still guarantees
some entropy in Hash(h,A, c) knowing A, c, and p.

Harmonic analysis. The core of our work consists in using harmonic analysis to
better understand the caveat of [KV09], namely that universality is only proven
when all the multiples of the ciphertext are far from the lattice. For that, we
extend the rounding function R to a q-periodic signal R→ R.

We proceed to a general analysis (Theorem 3.1), which shows that universality
holds for ciphertexts c such that its multiples jc are far away from the lattice
Λ, for all non-zero integers j corresponding to non-zero real harmonics of the
rounding signal R.

This unravels the causes of the caveat in [KV09]: the weight of the j-th
harmonic of the naive rounding function R : x ∈ Zq 7→ b2x/qe mod 2 (seen as a
q-periodic signal, as in Fig. 1a) is as large as Θ(1/j) for odd integers j.

First solution (Universality, Approximate Correctness, § 3). Having identified
the source of the caveat, it becomes clear how to repair it: the rounding should
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Fig. 1: Probability that the rounding functions R(x) of Sections 3 and 4 output 1

be randomized, with a weight signal for which only the first harmonic is non-zero
(in addition to the average), namely with a pure cosine weight:

Pr[R(x) = 1] := 1
2 + 1

2 cos
(

2πx
q

)
.

This choice ensures universality as soon as just 1 · c = c is far from the lattice Λ
(Corollary 3.2 and Theorem 3.4).

This solution nevertheless only provides approximate correctness (correctness
holds with probability 3/4 + o(1), see Lemma 3.3), which is also problematic
for some applications. This can be solved using correctness amplification via
error-correcting codes, but at the price of preventing the resulting SPHF to be
word-independent.

Second solution (Imperfect Universality, Statistical Correctness, § 4). In our
second instantiation, we therefore proceed to construct an almost-square rounding
function (see Fig. 1d, � denotes the convolution operator), which offers statistical
correctness7 and imperfect universality (namely the probability that a prover
knowing only hp = p can guess the hash value H is at most 1/3+o(1), as proved in
Theorem 4.5). This instantiation requires a more subtle analysis, taking account
of destructive interferences.

We can then amplify universality to get statistical universality (i.e., the
above probability of guessing is at most 1/2 + negl(n) as in our first solution)
7 More precisely, the probability of error is poly(n, σ)/q, which is negl(n) for super-
polynomial approximation factors q/σ.
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while keeping a statistical correctness. Contrary to the correctness amplification,
this transformation preserves the independence of the projection key from the
ciphertext. In particular, if the ciphertexts are from an IND-CPA scheme such as
dual-Regev, then we get the first word-independent SPHF over a lattice-based
language.

We remark that our word-independent SPHF uses a super-polynomial modulus
q, to get statistical correctness. It seems hard to construct such an SPHF for a
polynomial modulus, as a word-independent SPHF for an IND-CPA encryption
scheme directly yields a one-round key exchange (where each party sends a
ciphertext of 0 and a projection key, and where the resulting session key is the xor
of the two corresponding hash values) and we do not know of any lattice-based
one-round key exchange using a polynomial modulus.

Open Question. We see as the main open question to extend our techniques
to their full extent in the ring-setting. More precisely, our SPHF only produces
one-bit hashes, and is easily extended to the ring-setting still asking with 1-bit
hash values. This requires costly repetitions for applications, and one would hope
that a ring setting variant could directly produce Θ(n)-bit hash values.

Another important open question is to understand whether our techniques can
further be refined to construct lattice-based IND-CCA encryption schemes without
trapdoor, using ideas from the Cramer-Shoup encryption scheme [CS98,CS02]
for example.

Road Map. We start by some preliminaries on lattices and SPHFs in Section 2.
In particular, we define several variants of lattice-based (approximate) SPHFs (in
particular universal bit-PHFs) and formally show various transformations which
were only implicit in [KV09]. We also define the IND-CCA2 encryption scheme “à
la Micciancio-Peikert” we will be using. In Section 3, we then show step-by-step
how to construct an SPHF for IND-CCA2 ciphertexts à la Micciancio-Peikert
and how to avoid the caveat of the construction of [KV09]. In Section 4, we
construct a word-independent SPHF for ciphertexts under an IND-CPA scheme
à la Micciancio-Peikert, when the modulus is super-polynomial. In Section 5, we
conclude by exhibiting several applications.

Figure 2 summarizes our results and the paper road map. All the notions in
this figure are formally defined in Section 2.

2 Preliminaries

2.1 Notations

The security parameter is denoted n. The notation negl(n) denotes any function
f such that f(n) = n−ω(1). For a probabilistic algorithm alg(inputs), we may
explicit the randomness it uses with the notation alg(inputs ; coins), otherwise
the random coins are implicitly fresh.
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Fig. 2: Summary of results

Column vectors will be denoted by bold lower-case letters, e.g., x, and
matrices will be denoted by bold upper-case letters, e.g., A. If x is vector and
A is a matrix, xt and At will denote their transpose. We use [A|B] for the
horizontal concatenation of matrices, and [A ; B] = [At|Bt]t for the vertical
concatenation. For x ∈ Rm, ‖x‖ will denote the canonical euclidean norm of x.
We will use B to denote the euclidean ball of radius 1, where, unless specifically
stated otherwise, the ball is m-dimensional. If x,y ∈ Rm, 〈x,y〉 will denote their
canonical inner product, and d(x,y) = ‖x − y‖ their distance. If E ⊂ Rm is
countable and discrete, we will denote d(x, E) = miny∈E d(x,y). For a function
f : E → C or f : E → R, f(E) will denote the sum

∑
x∈E f(x). For a, b ∈ R,

[a, b] = {x ∈ R | a ≤ x ≤ b} will denote the closed real interval with endpoints a
and b, bac, dae, and bae will respectively denote the largest integer smaller than
a, the smallest integer greater than a, and the closest integer to a (the largest
one if there are two). The xor of two bit strings a, b ∈ {0, 1}k is denoted by a⊕ b.
The cardinal of a finite set S is denoted |S|.

The modulus q ∈ Z will be taken as an odd prime, for simplicity.

2.2 Lattices and Gaussians

Lattices. An m-dimensional lattice Λ is a discrete subgroup of Rm. Equivalently,
Λ is a lattice if it can be written Λ = {Bs | s ∈ Zn} where n ≤ m, for some
B ∈ Rm×n, where the columns of B are linearly independent. In that case, B is
called a basis of Λ. Then, we define the determinant of Λ as det(Λ) =

√
det(BtB),

which does not depend on the choice of the basis B.
We define the dual lattice of Λ as

Λ∗ = {x ∈ SpanR(Λ) | ∀y ∈ Λ, 〈x,y〉 ∈ Z} .
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Recall the identity (Λ∗)∗ = Λ. Given A ∈ Zm×nq where m ≥ n, and modulus
q ≥ 2, we define the following q-ary lattices

Λ(A) = {As | s ∈ Znq }+ qZm , Λ⊥(A) = {h ∈ Zm | htA = 0t mod q} .

Note that up to a scaling factor, Λ(A) and Λ⊥(A) are dual of each other:
Λ(A) = q · Λ⊥(A)∗. For a syndrome p ∈ Znq , we define the coset of Λ⊥(A):

Λ⊥p (A) = {h ∈ Zm | htA = pt mod q} .

When there is no confusion about which matrix A is used, we will simply denote
these lattices Λ, Λ⊥, and Λ⊥p respectively.

Gaussians. If s > 0 and c ∈ Rm, we define the Gaussian weight function on
Rm as

ρs,c : x 7→ exp(−π‖x− c‖2/s2).

Similarly, if Λ is an m-dimensional lattice, we define the discrete Gaussian
distribution over Λ, of parameter s and centered in c by:

∀x ∈ Λ, DΛ,s,c(x) = ρs,c(x)
ρs,c(Λ) .

When c = 0, we will simply write ρs and DΛ,s. We recall the tail-bound of
Banaszczyk for discrete Gaussians:

Lemma 2.1 ([Ban93, Lemma 1.5], as stated in [MR04, Lemma 2.10]).
For any c > 1/

√
2π, m-dimensional lattice Λ and any vector v ∈ Rm:

ρs(Λ \ sc
√
mB) ≤ Cmρs(Λ) , ρs((Λ+ v) \ sc

√
mB) ≤ 2Cmρs(Λ) .

where C = c
√

2πe · e−πc2
< 1.

An important quantity associated to a lattice is its smoothing parameter,
introduced by Micciancio and Regev [MR04]:

Definition 2.2 (Smoothing parameter [MR04]). For ε > 0, the smoothing
parameter of a lattice Λ, denoted ηε(Λ), is the smallest s > 0 such that ρ1/s(Λ∗ \
{0}) ≤ ε.

The following lemma states that if the parameter of the discrete Gaussian is
above the smoothing parameter of the lattice, then the Gaussian weight of the
cosets of Λ are essentially the same:

Lemma 2.3 ([Reg05, Claim 3.8]). For any lattice Λ ⊂ Rm, c ∈ Rm, and
s ≥ ηε(Λ):

(1− ε)sm det(Λ∗) ≤ ρs(Λ+ c) ≤ (1 + ε)sm det(Λ∗) .
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The smoothing parameter of the dual of a random q-ary lattice can be
controlled using the following:
Lemma 2.4 (Corollary of [MP12, Lemma 2.4]). Fix parameters n, q a
prime, and m ≥ Θ(n log q). Let ε ≥ 2−O(n) and s > 2ηε(Zm). Fix 0 < δ ≤ 1.
Then, for A uniformly random in Zm×nq , we have s ≥ η2ε/δ(Λ⊥(A)) except with
probability at most δ over the choice of A.
To instantiate the above, we recall the smoothing parameter of Zm.
Lemma 2.5 (Corollary of [MR04, Lemma 3.3]). For all integer m ≥ 1,
ε ∈ (0, 1/2), the smoothing parameter of Zm satisfies ηε(Zm) ≤ C

√
log(m/ε) for

some universal constant C > 0.

Harmonic analysis. Let us recall the exponential basis of periodic functions
and their vectorial analogues:

ex : y 7→ exp(2iπxy) , ex : y 7→ exp(2iπ〈x,y〉) .

The Fourier transform of f : Rm → C is defined by:

f̂(ξ) =
∫
Rm

f(x)e−2iπ〈x,ξ〉dx .

The Fourier transform of the Gaussian weight function ρs is ρ̂s = smρ1/s.
Recall the time-shift-phase-shift identity: if g(x) = f(x)ez(x) for some z ∈ Rm,
then ĝ(ξ) = f̂(ξ − z). Similarly, if g(x) = f(x + t) for some t ∈ Rm, then
ĝ(ξ) = f̂(ξ)et(ξ). For two functions f, g : Rm → C, we will denote by f � g their
convolution product:

f � g(x) =
∫
Rm

f(y)g(x− y)dy .

The Fourier transform turns convolutions into pointwise products, and conversely:

f̂ � g(ξ) = f̂(ξ) · ĝ(ξ) , f̂ · g(ξ) = f̂(ξ)� ĝ(ξ) .

Finally, let us recall the Poisson summation formula:
Lemma 2.6 (Poisson summation formula). For any lattice Λ and f : Rm →
C, we have f(Λ) = det(Λ∗)f̂(Λ∗).

Learning with Errors.
Definition 2.7 (Learning with Errors (LWE)). Let q ≥ 2, and χ be a
distribution over Z. The Learning with Errors problem LWEχ,q consists in, given
polynomially many samples, distinguishing the two following distributions:
– (a, 〈a, s〉+ e), where a is uniform in Znq , e← χ, and s ∈ Znq is a fixed secret
chosen uniformly,

– (a, b), where a is uniform in Znq , and b is uniform in Zq.
In [Reg05], Regev showed that for χ = DZ,σ, for any σ ≥ 2

√
n, and q such

that q/σ = poly(n), LWEχ,q is at least as hard as solving worst-case SIVP for
polynomial approximation factors.
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Trapdoor for LWE. Throughout this paper, we will use the trapdoors intro-
duced in [MP12] to build our public matrix A. Define gA(s, e) = As + e, let
Gt = In ⊗ gt, where gt = [1, 2, . . . , 2k] and k = dlog qe − 1, and let H ∈ Zn×nq

be invertible.

Lemma 2.8 ([MP12, Theorems 5.1 and 5.4]). There exist two PPT al-
gorithms TrapGen and g−1

(·) with the following properties assuming q ≥ 2 and
m ≥ Θ(n log q):

– TrapGen(1n, 1m, q) outputs (T ,A0), where the distribution of the matrix A0
is at negligible statistical distance from uniform in Zm×nq , and such that
TA0 = 0, where s1(T ) ≤ O(

√
m) and where s1(T ) is the operator norm of

T , which is defined as maxx 6=0 ‖Tx‖/‖x‖.8
– Let (T ,A0) ← TrapGen(1n, 1m, q). Let AH = A0 + [0 ; GH] for some in-
vertible matrix H called a tag. Then, we have TAH = GH. Furthermore,
if x ∈ Zmq can be written as AHs + e where ‖e‖ ≤ B′ := q/Θ(

√
m), then

g−1
AH

(T ,x,H) outputs (s, e).

More precisely, to sample (T ,A0) with TrapGen, we sample a uniform Ā ∈ Zm̄×nq

where m̄ = m− nk = Θ(n log q), and some R← Dnk×m̄, where the distribution
Dnk×m̄ assigns probability 1/2 to 0, and 1/4 to ±1. We output T = [−R | Ink]
along with A0 = [Ā ; RĀ]. Then, given a tag H , we have: T (A0 + [0 ; GH ]) =
GH.

Tag-IND-CCA2 LWE encryption à la Micciancio-Peikert. For our ap-
plications, we will need a (labelled) encryption scheme that is IND-CCA2 (the
definition is given in Appendix A.1). This can be built generically and efficiently
from a tag-IND-CCA2 encryption scheme, as recalled in Appendix A.2. Below,
we describe a simplified variant of the scheme of [MP12, Sec. 6.3].

For this scheme, we assume q to be an odd prime. We set an encoding function
for messages Encode(µ ∈ {0, 1}) = µ · (0, . . . 0, dq/2e)t. Note that 2 · Encode(µ) =
(0, . . . , 0, µ)t mod q.

Let R be a ring with a subset U ⊂ R× of invertible elements, of size 2n, and
with the unit differences property: if u1 6= u2 ∈ U , then u1−u2 is invertible in R.
Let h be an injective ring homomorphism from R to Zn×nq (see [MP12, Section 6.1
and 6.3] for an explicit construction). Note that if u1 6= u2 ∈ U , then h(u1 − u2)
is invertible, and thus an appropriate tag H = h(u1 − u2) for the trapdoor.

Let (T ,A0) ← TrapGen(1n, 1m, q). The public encryption key is ek = A0,
and the secret decryption key is dk = T .

– Encrypt(ek = A0, u ∈ U , µ ∈ {0, 1}) encrypts the message µ under the
public key ek and for the tag u, as follows: Let Au = A0 + [0 ; Gh(u)]. Pick

8 The bound on s1(T ) holds except with probability at most 2−n in the original
construction, but for convenience we assume the algorithm restarts if it does not
hold.
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s ∈ Znq , e ← Dm
Z,t where t = σ

√
m · ω(

√
logn). Restart if ‖e‖ > B, where

B := 2t
√
m.9 Output the ciphertext:

c = Aus+ e+ Encode(µ) mod q .

– Decrypt(dk = T , u ∈ U , c ∈ Zmq ) decrypts the ciphertext c for the tag u
using the decryption key dk as follows: Output{
µ if g−1

Au
(T , 2c, h(u)) = 2e+ (0, . . . , 0, µ) where e ∈ Zm and ‖e‖ ≤ B′ ,

⊥ otherwise.10

Since dq/2e is the inverse of 2 mod q, we have

µ′ := Decrypt(T , u, c) 6= ⊥ ⇐⇒ d(c− Encode(µ′), Λ(Au)) < B′ .

Suppose that m ≥ Θ(n log q). Note that d(Encode(1), Λ(Au)) > B′ simultane-
ously for all u with overwhelming probability over the randomness of TrapGen (us-
ing a union bound, as in [GPV08, Lemma 5.3] for instance). Then, by Lemma 2.8,
the scheme is correct as long as B ≤ B′, or equivalently σm3/2 · ω(

√
logn) ≤ q.

Theorem 2.9. Assume m ≥ Θ(n log q). The above scheme is tag-IND-CCA2
assuming the hardness of the LWEχ,q problem for χ = DZ,σ.

The precise definition for tag-IND-CCA2 is detailed in Appendix A.1, and the
proof is given in Appendix A.3.

Remark 2.10. If a constant tag u is hardcoded in Encrypt and Decrypt, then the
resulting encryption scheme is just an IND-CPA scheme using trapdoors from
[MP12].

Lemma 2.11. Assume m ≥ Θ(n log q). With A0 sampled as above, except with
probability 2−n, it holds that for all u ∈ U , η2−n(Λ⊥(Au)) ≤ C

√
n for some

universal constant C.

Proof. Note that A0 is (about) uniform under the randomness of TrapGen, and
so is Au for a fixed u ∈ U . Apply Lemma 2.4 and Lemma 2.5 with ε = 8−n/2 and
δ = 4−n to Au, ensuring that η2−n(Λ⊥(Au)) ≤ C

√
n except with probability δ.

Conclude by the union bound over the 2n elements u ∈ U . ut

2.3 Approximate Smooth Projective Hash Functions

We consider approximate smooth projective hash functions (approximate SPHFs)
defined in [KV09].
9 This happens only with exponentially small probability 2−Θ(n) by Lemma 2.1.

10 Note that the inversion algorithm g−1
(·) can succeed even if ‖e‖ > B′, depending on

the randomness of the trapdoor. It is crucial to reject decryption nevertheless when
‖e‖ > B′ to ensure CCA2 security. We also recall that B′ := q/Θ(

√
m).
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Languages. We consider a family of languages (Llpar,ltrap)lpar,ltrap indexed by
some parameter lpar and some trapdoor ltrap, together with a family of NP
languages (L̃lpar)lpar indexed by some parameter lpar, with witness relation R̃lpar,
such that:

L̃lpar = {x ∈ Xlpar | ∃w , R̃lpar(x ,w) = 1} ⊆ Llpar,ltrap ⊆ Xlpar ,

where (Xlpar)lpar is a family of sets. The trapdoor ltrap and the parameter lpar are
generated by a polynomial-time algorithm Setup.lpar which takes as input a unary
representation of the security parameter n. We suppose that membership in Xlpar

and R̃lpar can be checked in polynomial time given lpar and that membership in
Llpar,ltrap can be checked in polynomial time given lpar and ltrap. The parameters
lpar and ltrap are often omitted when they are clear from context.

We are mostly interested in languages of ciphertexts.

Example 2.12 (Languages of Ciphertexts). Let (KeyGen,Encrypt,Decrypt) be a
labeled encryption scheme. We define the following languages (Setup.lpar =
KeyGen and (ltrap, lpar) = (dk, ek)):

L̃ = {(label, C,M) | ∃ρ, C = Encrypt(ek, label,M ; ρ)} ,
L = {(label, C,M) | Decrypt(dk, label, C) = M} ,

where the witness relation R̃ is implicitly defined as: R̃((label, C,M), ρ) = 1 if
and only if C = Encrypt(ek, label,M ; ρ).

Approximate SPHFs. Let us now define approximate SPHFs following [KV09].

Definition 2.13. Let (L̃lpar ⊆ Llpar,ltrap ⊆ Xlpar)lpar,ltrap be languages defined as
above. An approximate smooth projective hash function (SPHF) for these lan-
guages is defined by four probabilistic polynomial-time algorithms:

– HashKG(lpar) generates a hashing key hk for the language parameter lpar;
– ProjKG(hk, lpar, x ) derives a projection key hp from the hashing key hk, the
language parameter lpar, and the word x ;

– Hash(hk, lpar, x ) outputs a hash value H ∈ {0, 1}ν (for some positive integer
ν = Ω(n)) from the hashing key hk, for the word x ∈ Xlpar and the language
parameter lpar;

– ProjHash(hp, lpar, x ,w) outputs a projected hash value pH ∈ {0, 1}ν from
the projection key hp, and the witness w , for the word x ∈ L̃lpar (i.e.,
R̃lpar(x ,w) = 1) and the language parameter lpar;

which satisfy the following properties:

– Approximate correctness. For any n ∈ N, if (ltrap, lpar)← Setup.lpar(1n),
with overwhelming probability over the randomness of Setup.lpar, for any x ∈
L̃lpar,ltrap (and associated witness w), the value H output by Hash(hk, lpar, x )
is approximately determined by ProjKG(hk, lpar, x ) relative to the Hamming
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metric. More precisely, writing HW(a, b) the Hamming distance between two
strings a, b ∈ {0, 1}ν , the SPHF is ε-correct, if:

Pr
hk

[HW(Hash(hk, lpar, x ),ProjHash(hp, lpar, x ,w)) > ε · ν] = negl(n) ,

where the probability is taken over the choice of hk← HashKG(lpar) and the
random coins of Hash and ProjHash.11

– Smoothness. For any n ∈ N, if (ltrap, lpar) ← Setup.lpar(1n), with over-
whelming probability over the randomness of Setup.lpar, for all x ∈ X \Llpar
the following distributions have statistical distance negligible in n:{

(lpar, x , hp,H)
∣∣∣∣ hk← HashKG(lpar), H← Hash(hk, lpar, x ),

hp = ProjKG(hk, lpar, x )

}
,{

(lpar, x , hp,H)
∣∣∣∣ hk← HashKG(lpar), H← {0, 1}ν ,

hp = ProjKG(hk, lpar, x )

}
.

Finally, an approximate SPHF is called an SPHF if it is 0-correct. In that
case, we also say that the SPHF is statistically correct.

Approximate Word-Independent SPHFs. For some applications, in partic-
ular the one-round PAKE from [KV11], a stronger notion of SPHF is required,
where the projection key hp does not depend on the word x and the smoothness
holds even if the word is chosen adaptively after seeing the projection key. We
call such SPHFs approximate word-independent SPHFs and we formally define
them in Appendix B.1.

Approximate universal bit-PHFs. Instead of directly building (approximate)
(word-independent) SPHF, we actually build what we call (approximate) (word-
independent) universal bit-PHF.

Definition 2.14. An approximate universal bit projective hash function (bit-
PHF) is defined as in Definition 2.13 except that the hash values are bits (ν = 1),
and that approximate correctness and smoothness are replaced by the following
properties:

– Approximate correctness. The bit-PHF is ε-correct if for any n ∈ N, if
(ltrap, lpar)← Setup.lpar(1n), with overwhelming probability over the random-
ness of Setup.lpar, for any x ∈ L̃lpar,ltrap:

Pr
hk

[Hash(hk, lpar, x ) = ProjHash(hp, lpar, x ,w)] ≥ 1− ε ,

where the probability is taken over the choice of hk← HashKG(lpar) and the
random coins of Hash and ProjHash.

11 Contrary to previously known SPHFs, some of our SPHFs have randomized algorithms
Hash and ProjHash.
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– Universality.12 The bit-PHF is ε-universal if, for any n ∈ N, if (ltrap, lpar)←
Setup.lpar(1n), with overwhelming probability over the randomness of Setup.lpar,
for any word x ∈ X \Llpar, any projection key hp:∣∣∣∣2 · Pr

hk
[Hash(hk, lpar, x ) = 1 | hp = ProjKG(hk, lpar, x )]− 1

∣∣∣∣ ≤ ε ,
where the probability is taken over the choice of hk← HashKG(lpar) and the
random coins of Hash. The bit-PHF is said to be statistically universal if it is
negl(n)-universal. Otherwise, the bit-PHF is said to be imperfectly universal.

An approximate bit-PHF is called a bit-PHF if it is negl(n)-correct. In that
case, the bit-PHF is said to be statistically correct. Furthermore, an (approximate)
bit-PHF is called an (approximate) (word-independent) bit-PHF, if hp does not
depend on the word x .

From Bit-PHFs to SPHFs. In Appendix B.2, we show how to generically
convert an approximate ε-correct negl(n)-universal bit-PHF into an approximate
(ε + ε′)-correct SPHF (for any positive constant ε′) and then into an SPHF.
This is used in our first construction in Section 3. These transformations were
implicit in [KV09]. We should point out that even if the original bit-PHF was
word-independent, the resulting (approximate) SPHF would still not be word-
independent: its projection key depends on the word x . If there was way to avoid
this restriction, we actually would get the first one-round key exchange based on
LWE with polynomial modulus.

In Appendix B.2, we also show how to generically convert an ε-universal
word-independent bit-PHF into a word-independent SPHF, by amplifying the
smoothness or universality property (assuming 1− ε ≥ 1/ poly(n)). We should
point out that the original word-independent bit-PHF is supposed to be statis-
tically correct, contrary to the previous transformation where it could just be
approximately correct.

We recall that the above transformations were summarized in Fig. 2 together
with our results.

3 SPHF for IND-CCA2 Ciphertexts

As we have shown in Section 2.3, there exists a generic transformation from
approximate bit-PHF to a regular approximate SPHF or even classical SPHF. So,
in this section, we are going to focus on building such an approximate bit-PHF.
For the sake of simplicity, in this section we often call such an approximate
bit-PHF simply a bit-PHF.

12 Our definition of universality is equivalent to the one of Cramer and Shoup in [CS02],
up to the use of language parameters.
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3.1 Languages and Natural Bit-PHF

Languages. We want to construct an (approximate) bit-PHF for the language of
ciphertexts (Example 2.12) for our IND-CCA2 LWE encryption à la Micciancio-
Peikert described in Section 2.2. More generally our approach works with typical
trapdoored LWE encryption schemes [GPV08,CHKP10].

We first remark that it is sufficient to construct a bit-PHF for the tag-IND-
CCA2 version, i.e., for the following languages:

L̃ = {(u, c, µ) | ∃s, e, c← Encrypt(A0, u, µ; s, e)}
⊆ {(u, c, µ) | d(c− Encode(µ), Λ(Au)) ≤ B} ,

L = {(u, c, µ) | Decrypt(T , u, c) = µ}
= {(u, c, µ) | d(c− Encode(µ), Λ(Au)) ≤ B′} ,

where u ∈ U , c ∈ Zmq , µ ∈ {0, 1}, (ltrap, lpar) = (T ,A0)← TrapGen(1n, 1m, q) =
Setup.lpar(1n), and where Encrypt, Decrypt, B, and B′ are defined in Section 2.2.
Indeed, the signature parts, used to transform the tag-IND-CCA2 encryption
scheme into a labeled IND-CCA2 encryption scheme (see Appendix A.2), can be
publicly checked by anyone, therefore one can generically adapt the bit-PHF by
overriding Hash to a fresh uniform random value when the signature is invalid.

We can now fix the tag u ∈ U for the rest of this section, and will simply
denote A for Au and Λ for Λ(Au). Also, note that (u, c, 1) ∈ L̃ (resp. L ) is
equivalent to (u, c−Encode(1), 0) ∈ L̃ (resp L ). Therefore we can focus only on
the languages of ciphertexts of 0 for a fixed tag u, and we restrict our languages
to

L̃ = {c ∈ Zmq | ∃s, e, c← Encrypt(A0, 0, u; s, e)} ⊆ {c ∈ Zmq | d(c, Λ) ≤ B} ,
L = {c ∈ Zmq | Decrypt(T , c, u) = 0} = {c ∈ Zmq | d(c, Λ) ≤ B′} ,

for the rest of this section.

Natural Bit-PHF. A natural approach to define an approximate bit-PHF is
the following:

– HashKG(A) outputs hk = h← Dm
Z,s;

– ProjKG(h,A) outputs hp = p = Ath;
– Hash(h,A, c) outputs H = R(〈h, c〉);
– ProjHash(p,A, c, (s, e)) outputs pH = R(〈p, s〉);

where R is a rounding function to be chosen later and s > 0 is a parameter to be
chosen later too.

3.2 Universality

Naive approach. For now let us just assume R : Zq → Z2 to be the usual
rounding function R(x) = b2x/qe mod 2, as in [KV09]. We have:

〈h, c〉 = ht(As+ e) = 〈p, s〉+ 〈h, e〉 ≈ 〈p, s〉 ,
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which guarantees correctness whenever c ∈ L̃ . Indeed 〈h, c〉 is almost uniform
for large enough parameter s, therefore R(〈h, c〉) = R(〈p, s〉) will hold except
with probability ≈ 2|〈h, e〉|/q.

For universality, we need to prove that Hash(h,A, c) = 〈h, c〉 is uniform given
the knowledge of A,p and c, when c 6∈ L . Unfortunately, this seems to require
a stronger assumption than c 6∈ L , more precisely, that j · c 6∈ L for all j ∈ Z∗q :
this is the key lemma [GPV08, Lemma 5.3] (from [KV09, Lemma 2]).

The caveat is that it is necessary not only for c to be far from Λ, but also for
all its non-zero multiples modulo q: the language is extended to L ′ = {c | ∃j ∈
Z∗q , jc ∈ L }. Algorithmically, the price to pay is that the decryption function
must be changed, and that the usual LWE decryption now must be attempted
for each multiple jc of c to ensure universality for words outside L ′. This makes
the new decryption very inefficient since q is typically quite a large poly(n). This
change of language is also a technical hassle for constructing protocols above the
bit-PHF (or the resulting SPHF).

Note that the key lemma ensures uniformity of 〈h, c〉, while we only need the
uniformity of R(〈h, c〉). We show in the technical overview of the introduction
that this condition is truly necessary and is not an artifact of the proof, at least
for j = 3 by considering c = As+ (0, . . . , 0, q/3)t (with q assumed to be divisible
by 3 for the sake of simplicity).

But what should happen in more general cases?

Harmonic analysis. Let us fix p ∈ Znq and c ∈ Zmq . For the rest of the section,
we restrict the rounding function R to have binary values {0, 1}, yet this function
may be probabilistic.

We want to study the conditional probability P = Pr[R(〈h, c〉) = 1 | htA =
pt], where the probability is taken over the randomness of R and the distribution
of h (conditioned on htA = pt); we want P to be not too far from 1/2 when
c 6∈ L . For x ∈ Z, denote by r(x) the probability that R(x mod q) = 1. Because
r : Z→ [0, 1] is q-periodic, it can be interpolated over the reals by a function of
the form:

r =
∑
j∈Zq

r̂j · ej/q ,

where the complex values r̂j ∈ C are the Fourier coefficients of r : Z→ [0, 1]. Note
that as we are only interested in the restriction of r on Z (which is q-periodic),
we only need q harmonics to fully describe r. Also note that r(x) ∈ [0, 1] for all
x ∈ Zq, so that |r̂j | ≤ 1 for all j.

We rewrite:

P =
∑
h∈Λ⊥p

ρs(h)
ρs(Λ⊥p ) · r(〈h, c〉) = 1

ρs(Λ⊥p )
∑
j∈Zq

r̂j
∑
h∈Λ⊥

(ρs · ejc/q)(h+ h0) ,

where h0 is any vector of the coset Λ⊥p . We will now apply the Poisson Summa-
tion Formula (Lemma 2.6): f(Λ⊥) = det((Λ⊥)∗)f̂((Λ⊥)∗) = det( 1

qΛ)f̂( 1
qΛ). Set
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f(h) = (ρs · ejc/q)(h+ h0). We have:

f̂ = ρ̂s · ev · eh0 = smρ1/s,v · eh0 .

We proceed:

P = det((Λ⊥)∗)sm

ρs(Λ⊥p )
∑
j∈Zq

r̂j · (ρ1/s,jc/q · eh0)
(

1
q
Λ

)

P = det((Λ⊥)∗)sm

ρs(Λ⊥p )
∑
j∈Zq

r̂j ·
∑
y∈Λ

(ρq/s,jc · eh0/q) (y) .

Assuming s ≥ ηε(Λ⊥) for some negligible ε ensures that det((Λ⊥)∗)sm
ρs(Λ⊥p ) = 1 +O(ε)

by Lemma 2.3. We shall split the sum into three parts:

– j = 0, y = 0, contributing exactly r̂0 (where r̂0 = 1
q

∑
x∈Zq r(x) ∈ [0, 1]),

– j = 0, y 6= 0, contributing at most |r̂0|ρq/s(Λ \ {0}) in absolute value,
– j 6= 0, contributing at most |r̂j |ρq/s(Λ− jc) in absolute value for each j.

We can now bound P :∣∣∣∣ P

1−O(ε) − r̂0

∣∣∣∣ ≤ |r̂0|ρq/s(Λ \ {0}) +
∑

j∈Zq\{0}

|r̂j |ρq/s(Λ− jc) .

We now want to bound the right-hand side using Lemma 2.1, with c = 1
for simplicity. Fix j ∈ Zq \ {0}, and let α = q

√
m/s. If α < d(jc, Λ), then

(Λ− jc) \ αB = (Λ− jc). Also, note that ρq/s(Λ) = ρ1/s( 1
qΛ) = ρ1/s((Λ⊥)∗). So,

as long as s ≥ ηε(Λ⊥) for some negligible ε (which we already assumed earlier),
it holds that ρq/s(Λ) ≤ 1 + ε by definition of ηε(Λ⊥). Under those conditions,
ρq/s(Λ − jc) = ρq/s((Λ − jc) \ αB) ≤ 2Cmρq/s(Λ) ≤ 2Cm(1 + ε) is negligible.
Using Lemma 2.1, we deduce the following:

Theorem 3.1. Fix A ∈ Zm×nq , c ∈ Zmq , and p ∈ Znq , where m is polynomial in
n. Fix a probabilistic rounding function R : Zq → {0, 1} such that for all x ∈ Zq,

Pr[R(x) = 1] = r(x) =
∑
j∈J

r̂jej/q(x) ,

where J ⊆ Zq and r̂j ∈ C. Let s ≥ ηε(Λ⊥(A)) for some ε = negl(n). Assume
furthermore that

∀j ∈ J \ {0}, s · d(jc, Λ(A)) > q
√
m .

Denote P (c) = Pr[R(〈h, c〉) = 1 | htA = pt], where the probability is taken
over the randomness of R, and the distribution of h ← Dm

Z,s, conditioned on
htA = pt. Then :

|P (c)− r̂0| ≤ (2 +O(ε)) |J |Cm +O(ε) where C =
√

2πe · e−π < 1 .
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Setting up the rounding function. If one wishes to avoid having to attempt
decryption of many multiples of the ciphertext c, one should choose a probabilistic
rounding function with a small number of harmonics.

In particular, the typical deterministic rounding function R(x) = b2x/qe mod
2 —the so-called square-signal— and has harmonic coefficients r̂j decreasing
as Θ(1/j) in absolute value (for odd j ∈ {d−q/2e, . . . , bq/2c}). With such a
rounding function, one would still need to attempt trapdoor inversion for q/2
many multiples of c, as it was already the case in [KV09].

On the contrary, one may easily avoid costly harmonics by setting the rounding
function so that 2r(x) = 1 + cos(2πx/q), which has Fourier coefficients r̂0 = 1/2,
r̂1 = r̂−1 = 1/4, and r̂j = 0 for any other j.13 More precisely, we have the
following corollary by remarking that when c /∈ L and α = q

√
m/s < B′, we

have d(c, Λ) ≥ B′ and (Λ− c) \ (αB) = (Λ− c).

Corollary 3.2. Let A ∈ Zm×nq with m = Θ(n log q), and fix p ∈ Znq . Let
B′ = q/Θ(

√
m), and L = {c ∈ Zmq | d(c, Λ(A)) ≤ B′}. Suppose that R satisfies:

Pr[R(x) = 1] = r(x) = 1
2 + 1

2 cos
(

2πx
q

)
(1)

and let s ≥ ηε(Λ⊥(A)) for some ε = negl(n). Suppose also that: s > q
√
m

B′ .
Denote again P (c) = Pr[R(〈h, c〉) = 1 | htA = pt], where the probability is

taken over the randomness of R, and the distribution of h← Dm
Z,s, conditioned

on htA = pt. Then, for all c 6∈ L :

|2P (c)− 1| ≤ 2 (6 +O(ε))Cm +O(ε) ≤ negl(n) ,

where C =
√

2πe · e−π < 1.

3.3 Approximate Correctness

Let us check that the scheme above achieves approximate correctness, that
is, for all c ∈ L̃ , Hash(h,A, c) = ProjHash(p,A, c, (s, e)) with probability
substantially greater than 1/2. Using our rounding function R, this means that
we want R(〈h, c〉) and R(〈p, s〉) to output the same bit with some probability Q
substantially greater than 1/2, where the two applications of R use independent
coins.

Recall that r(x) is the probability that the rounding function R outputs 1
on input x, and that for c ∈ L̃ , we can write 〈h, c〉 = 〈p, s〉 + 〈h, e〉, where
c = As+ e. We argue that as long as 〈h, e〉 is small with respect to q, then our
scheme achieves approximate correctness:

13 Of course, one could also obtain perfect universality by setting a constant rounding
function r(x) = 1/2, and even avoid the first harmonic, but there is no way to reach
correctness even with amplification in that case.
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Lemma 3.3. Fix A ∈ Zm×nq and c = As+ e ∈ L̃ , where m and q are polyno-
mial in n, and where ‖e‖ ≤ B = 2t

√
m. Let s ≥ ηε(Λ⊥(A)) for some ε = negl(n).

Assume that R is the cosine rounding function (Eq. (1)). Let Q be the probability
that R(〈Ath, s〉; coins1) and R(〈h, c〉; coins2) output the same bit, over the ran-
domness of h← Dm

Z,s, and the randomness of the two independent coins coins1
and coins2 used by R. If tsm = o(q), then Q = 3/4 + o(1).

Proof. As s ≥ ηε(Λ⊥) for ε = negl(n), the distribution of htA, when h← Dm
Z,s,

is at negligible statistical distance from uniform.
Therefore,Q is negligibly close to Pr[R(x; coins1) = R(x+〈h, e〉; coins2)] where

the probability is taken over uniform x ∈ Zq, h← Dm
Z,s, and the randomness of

the two independent coins coins1 and coins2 used by R.
Then:

Q = 1
q

∑
x∈Zq

(r(x)r(x+ 〈h, e〉) + (1− r(x))(1− r(x+ 〈h, e〉))) + negl(n)

= 1
2 + 1

q

∑
x∈Zq

1
2 cos

(
2πx
q

)
cos
(

2πx+ 〈h, e〉
q

)
+ negl(n) .

As tsm = o(q), we have 〈h, e〉 = o(q) with overwhelming probability. As cos
is a Lipschitz continuous function, we can approximate the sum by an integral:

Q = 1
2 + 1

2

∫ 1

0
cos2(2πx)dx+ o(1) = 3

4 + o(1) .

This concludes the proof. ut

3.4 Wrap-up

Consider the bit-PHF described in Section 3.1 instantiating R with the cosine
rounding function (Eq. (1)), together with the encryption scheme of Section 2.2.
Let us now show that all the parameters can be instantiated to satisfy security and
correctness of the encryption scheme, simultaneously with statistical universality
and approximate correctness of the bit-PHF.
IND-CCA2. To base the security of the scheme described in Section 2.2 on
LWEχ,q for χ = DZ,σ and σ = 2

√
n,14 we apply Theorem 2.9 with m = Θ(n log q)

and t =
√
mn · ω(

√
logn).

Decryption Correctness. For the encryption scheme to be correct, we want B < B′,
recalling that B := 2t

√
m and B′ := q/Θ(

√
m).

Universality. In Corollary 3.2, we used the hypothesis s ≥ ηε(Λ⊥(Au)) for some
negligible ε. Assuming s ≥ Θ(

√
n), one can apply Lemma 2.11, to ensure the

14 This is the smallest parameter σ for which LWEχ,q is known reduce to a worst-case
problem. One may of course choose to use a different width for the LWE error, and
derive different appropriate parameters.



21

above hypothesis for ε = 2−n simultaneously for all u ∈ U except with probability
2−n over the randomness of TrapGen.

Still in Corollary 3.2, we also needed s > q
√
m/B′, where B′ = q/Θ(

√
m).

This holds for s = Θ(m).

Approximate correctness. For Lemma 3.3, we assumed that tsm = o(q). Equiva-
lently, it is sufficient that sm3/2n1/2ω(

√
logn) = o(q).

Summary. Therefore, all the desired conditions can be satisfied with q = Θ̃(n3),
m = Θ̃(n), s = Θ̃(n), and t = Θ̃(n). We have proved the following:

Theorem 3.4. Set parameters q = Θ̃(n3),m = Θ̃(n), s = Θ̃(n), t = Θ̃(n).
Define a probabilistic rounding function R : Zq → {0, 1} such that Pr[R(x) =
1] = 1/2 + cos (2πx/q) /2. Then, i) the encryption scheme of Section 2.2 is
correct and tag-IND-CCA2 under the hardness of LWEχ,q for χ = DZ,2

√
n; and

ii) the bit-PHF described in Section 3.1 achieves statistical universality and
(1/4− o(1))-correctness.

4 Word-Independent SPHF for IND-CPA Ciphertexts

4.1 Overview

In the previous section, we built a bit-PHF with negl(n)-universality but ap-
proximate correctness. Even though correctness can be amplified (as described
in Appendix B.2), the transformation inherently makes the new projection key
depend on the word we want to hash, even if that was not the case for the initial
bit-PHF.

We now build a bit-PHF with statistical correctness and K-universality for
some universal constant K < 1 (but using a super-polynomial LWE modulus
q). The main benefit of such a construction is that amplifying universality can
be done regardless of the word we want to hash, that is, the projection key will
not depend on the word (see Lemma B.4). When the tag u of the ciphertext
c is known in advance or is constant (in which case, the encryption scheme is
only IND-CPA instead of IND-CCA2), we therefore get a word-independent
bit-PHF which can be transformed into a word-independent SPHF. This is the
first word-independent SPHF for any lattice-based language.

We use the same natural approach as described in Section 3.1. The only
differences with the construction in the previous section are the probabilistic
rounding function we use, and the parameters necessary to argue correctness and
universality. Recall that in the last section, we used a rounding function with
only low order harmonics to get negl(n)-universality.

The starting point is the observation that, for the naive square rounding
introduced in the previous section, the correctness is statistical, but clearly not
negl(n)-universal, depending on which word c is hashed (as seen in the two case
studies in the technical overview in the introduction, where j · c is close to Λ for
some j ∈ Z∗q). However, the distribution of R(〈h, c〉) conditioned on htA might
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still have enough entropy to give us K-universality, for some constant K < 1. In
other words, we can hope that |2 · Pr[R(〈h, c〉) = 1 | p]− 1| ≤ K for all c ∈ Zmq .

Let R] be a rounding function defined by: R](x) = 1 + b2x/qe mod 2, that is:

∀x ∈ [−q/2, q/2], R](x) =
{

1 if |x| ∈ [−q/4, q/4) ,

0 otherwise.

Using this rounding function gives good correctness: when s ≥ ηε(Λ⊥), 〈h, c〉
is statistically close to uniform in [−q/2, q/2], and therefore R](〈h, c〉) is a uniform
bit up to some statistical distance O(ε + 1/q) (due to the fact that q is odd).
So for super-polynomial q, we get statistical correctness using R] as rounding
function, as long as 〈h, e〉 is sufficiently small with respect to q.

For universality, we express the probability distribution defined by R], seen
as a q-periodic function over R, as a Fourier series:

∀x ∈ [−q/2, q/2], r](x) := Pr[R](x) = 1] =
∑
j∈Z

r̂]j · ej/q(x) ,

where r̂]j are the Fourier coefficients of the q-periodic function r] : R→ R.
However, one can show that |r̂]j | = Θ(1/j) (for odd integers j). Therefore, it

is not clear how to show universality with a similar analysis as in Section 3.2: the
total contribution of harmonics j such that j · c is close to Λ could potentially
be arbitrarily large!

To solve this issue, we consider a new rounding function R, which has the
same probability distribution as R] but on a negligible fraction of integer points
(so that statistical correctness is preserved), and such that its Fourier coefficients
of high enough order have small enough amplitude.

Then, we use the observation that the set of integers j such that j · c is in Λ
is an ideal of Z, which is proper if c itself is not in Λ. More generally, the set of
small integers j ∈ Z such that j · c is close to Λ is contained in an ideal of Z;
furthermore, if c is far from Λ, then the smallest such ideal is a proper ideal of Z.
This will allow us to discard all harmonics whose order is not in this ideal. As
we will show, the remaining harmonics necessarily have destructive interferences,
which allows us to establish K-universality for some constant K < 1.

The roadmap follows. First, in Section 4.2, we smooth the discontinuities
of the probability distribution of the square rounding function r] so that the
Fourier coefficients of high order have small magnitude, but such that we keep
statistical correctness. Then to prove universality, in Section 4.3, we show that
for c far from Λ, the set of small j ∈ Z such that j · c is close to Λ is contained
in a proper ideal of Z. Finally, in Section 4.4 we show that the distribution of
R(〈h, c〉) conditioned on htA has some bounded min entropy.

4.2 Smoothing the Discontinuities: a New Rounding Function

In the following, unless specified otherwise, we will see Zq as embedded in
{d−q/2e, . . . , bq/2c}, and the canonical period we use for q-periodic functions
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will be [−q/2, q/2]. Recall that r] satisfies:

∀x ∈ [−q/2, q/2], r](x) =
{

1 if |x| ∈ [−q/4, q/4) ,

0 otherwise.

In particular, r] has two discontinuities on q/4 and on −q/4. To smooth those
discontinuities, we consider the convolution product of the square signal r] with
a rectangular signal of appropriate width T such that T/q = negl(n). More
precisely, consider the q-periodic function r[ defined on [−q/2, q/2] by:

∀x ∈ [−q/2, q/2], r[(x) =
{

1
2T if |x| ≤ T ,

0 otherwise.

We define a new rounding function R such that for all x ∈ R (see Fig. 1):

Pr[R(x) = 1] := r(x) := (r] � r[)(x) :=
∫ q/2

−q/2
r](u) · r[(x− u) du ,

where, in this context, � corresponds to the convolution of q-periodic functions.
Intuitively, this corresponds to replace the discontinuities on r](±q/4) by a

linear slope ranging from ±q/4−T to ±q/4 +T (see Fig. 1 on page 6). Therefore,
over [−q/2, q/2], the functions r and r] only differ on at most 4dT e integer
points (the points on the slope). Recall that if s ≥ ηε(Λ⊥) for some negligible ε,
then 〈h, c〉 is statistically close to uniform in {d−q/2e, . . . , bq/2c}. Therefore, if
〈h, e〉/q and T/q are negligible, then:

Pr[R(〈h, c〉) 6= R(〈p, s〉)] ≤ negl(n) ,

and we get statistical correctness using such a rounding function.

Lemma 4.1 (Correctness). Suppose that s ≥ ηε(Λ⊥) for some ε = negl(n),
tsm/q = negl(n), and T/q = negl(n). Assume that R satisfies: Pr[R(x) = 1] =
r(x) = (r]�r[)(x). Then the approximate bit-PHF defined in Section 3.1 achieves
statistical correctness.

Furthermore, r is q-periodic, and can therefore be expressed as a Fourier
series:

∀x ∈ [−q/2, q/2], r(x) =
∑
j∈Z

r̂jej/q(x) ,

with Fourier coefficients r̂j . As r = r] � r[, we have r̂j = q · r̂]j · r̂[j for j ∈ Z,
where r̂]j and r̂[j are the Fourier coefficients of the q-periodic functions r] and r[
respectively. Thus, r̂0 = 1/2, and for j ∈ Z \ {0}, the jth harmonic of r is:

r̂j = q

2π2Tj2 · sin(πj/2) · sin(2πTj/q) ≤ q

19Tj2 . (2)



24

4.3 Inclusion of Contributing Harmonics in a Proper Ideal

In the following, we focus on showing that even though we do not have negl(n)-
universality using this new rounding function, we still have some K-universality
for some constant K < 1 (that we can amplify).

We start by a simple useful lemma:

Lemma 4.2. Let N = kq/T for some k. Then
∑
j∈Z, |j|>N |r̂j | ≤ 1/k.

Proof. It follows from Eq. (2) and the fact that for all N > 2:
∑+∞
k=N

1
k2 ≤∑+∞

k=N

(
1

k−1 −
1
k

)
= 1

N−1 . ut

Suppose now that d(c, Λ) ≥ B′. Consider the set of j ∈ Z such that d(j ·c, Λ) ≤
δ for some appropriately chosen δ. Let P = P (c) = Pr[R(〈h, c〉) = 1 | htA = pt],
for our new rounding function R. For any h0 ∈ Λ⊥p , we can show similarly to
Section 3.2, that:

P = det((Λ⊥)∗)sm

ρs(Λ⊥p )
∑
j∈Z

r̂j
∑
y∈Λ

(ρq/s,jc · eh0/q)(y) , (3)

where det((Λ⊥)∗)sm
ρs(Λ⊥p ) = (1 + O(ε)) as long as s ≥ ηε(Λ⊥). Note that

∑
|j|≥N |r̂j |

can be made arbitrarily small for appropriate N , by Lemma 4.2. Thus only the
terms of the sum corresponding to |j| ≤ N will have a substantial contribution
to the sum above (recall that ρq/s(Λ − jc) ≤ 1 + ε for all c, for appropriate
parameters). Therefore we only consider those small j such that |j| < N for some
appropriately chosen N (with respect to q). Furthermore, for large enough δ, the
terms corresponding to indices j such that d(j · c, Λ) > δ also have a negligible
contribution to the sum by Lemma 2.1. For appropriate parameters N and δ to
be instantiated later, let:

J = {j ∈ Z | |j| < N ∧ d(j · c, Λ) ≤ δ} . (4)

As a subset of Z, J is contained in the ideal j0Z of Z, where j0 = gcd(J).
Let us show that it is a proper ideal of Z, i.e., j0 6= 1. To do so, we rely on the
existence of small Bézout coefficients.

Lemma 4.3 (Corollary of [MH94, Theorem 9]). Let a1, . . . , ak ∈ Z, and
let g = gcd(a1, . . . , ak). Then there exists u1, . . . , uk ∈ Z such that the following
conditions hold:

k∑
i=1

uiai = g ,

k∑
i=1
|ui| ≤

k

2 max |ai| .

We can now prove that J is a proper ideal of Z:

Lemma 4.4. Suppose that δN2 < B′. Then, for c ∈ Zmq such that d(c, Λ) > B′,
the set J = {j ∈ Z | |j| < N ∧ d(j · c, Λ) ≤ δ} is contained in a proper ideal of Z.
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Proof. Let j0 = gcd(J). By definition, J ⊆ j0Z. Suppose by contradiction
that j0 = 1. By Lemma 4.3, there exists a set of integers {uj , j ∈ J} such that∑
j∈J uj ·j = 1 and then

∑
j∈J uj ·(j ·c) = c. But by definition of J , d(j ·c, Λ) ≤ δ

for all j ∈ J , and therefore:

d(c, Λ) ≤ δ ·
∑
j∈J
|uj | ≤

δ · |J |
2 max

j∈J
|j| ≤ δN2 < B′ ,

which is absurd as we assumed d(c, Λ) > B′. ut

4.4 Imperfect Universality from Destructive Interferences

We now want to quantify how biased R(〈h, c〉) conditioned on htA can be when
c is far from Λ. We start from Eq. (3):

P = det((Λ⊥)∗)sm

ρs(Λ⊥p )
∑
j∈Z

r̂j
∑
y∈Λ

(ρq/s,jc · eh0/q)(y) ,

where det((Λ⊥)∗)sm
ρs(Λ⊥p ) = 1 +O(ε) as long as s ≥ ηε(Λ⊥).

We split the sum into three parts P = P1 + P2 + P3:

P1. |j| > N ∧ j 6∈ j0Z: those indices have a negligible contribution to the sum by
Lemma 4.2.

P2. |j| ≤ N ∧ j 6∈ j0Z: those indices contribute negligibly since ρq/s(Λ − jc) is
small as jc is far from Λ (by definition of δ and J ⊂ j0Z).

P3. j ∈ j0Z: the contributing terms. Unlike the previous ones we won’t use
absolute bounds for each term, and must consider destructive interferences.

It remains to study P3, for which a similar computation as in Section 3.2 gives:

P3 = det((Λ⊥)∗)sm

ρs(Λ⊥p )
∑
j∈j0Z

r̂j
∑
y∈Λ

(ρq/s,jc · eh0/q)(y)

=
∑
h∈Λ⊥p

ρs(h)
ρs(Λ⊥p )

∑
j∈j0Z

r̂jej/q(〈h, c〉) .

If we were to have j0 = 1 (i.e. j0Z = Z), we could compute the inner sum simply
by inverse Fourier transform, evaluating r at x = 〈h, c〉. Instead, we note that
selecting only the harmonics in j0Z, corresponds in the temporal domain to
averaging the function r over all its temporal shifts by multiples of q/j0. More
formally, recall the identity:

j0−1∑
k=0

ej/j0(k) =
{
j0 if j ∈ j0Z
0 otherwise.
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We may now rewrite:

∑
j∈j0Z

r̂jej/q(x) = 1
j0

∑
j∈Z

r̂jej/q(x)
j0−1∑
k=0

ej/j0(k) = 1
j0

j0−1∑
k=0

r(x+ k
q

j0
) ,

Note that 1
j0

∑j0−1
k=0 r](x + k q

j0
) is not too far away from 1/2: if j0 is even,

this is exactly 1/2 (for all x), and if j0 = 2k + 1, this is either k/j0 or (k + 1)/j0
(depending on x), which is at distance 1/(2j0) ≤ 1/6 from 1/2 (recall that j0 > 1
by Lemma 4.4). Furthermore, we have:

∀x ∈ [−q/2, q/2], r(x) = 1
2T

∫ T

−T
r](x+ u)du ,

which gives, for all x ∈ [−q/2, q/2]:∣∣∣∣∣ 1
j0

j0−1∑
k=0

r(x+ k
q

j0
)− 1

2

∣∣∣∣∣ ≤ 1
2T

∫ T

−T

∣∣∣∣∣ 1
j0

j0−1∑
k=0

r](x+ u+ k
q

j0
)− 1

2

∣∣∣∣∣ du ≤ 1/6 .

Therefore, P3 is also not too far from 1/2 as a convex combination of values not
too far from 1/2. More precisely we have |P3 − 1/2| ≤ 1/6.

Putting everything together, we can quantify the distance from P to 1/2:

Theorem 4.5 (Universality). Let A ∈ Zm×nq with m = Θ(n log q), and fix
p ∈ Znq . Let B′ = q/Θ(

√
m), and L = {c ∈ Zmq | d(c, Λ(A)) ≤ B′}. Let R be as

defined in Section 4.2 and let s ≥ ηε(Λ⊥(A)) for some ε = negl(n). Suppose also
that parameters T , N , δ, and k satisfy δ > q

√
m
s , N = kq

T , and δN2 < B′.
Denote again P (c) = Pr[R(〈h, c〉) = 1 | htA = pt], where the probability is

taken over the randomness of R, and the distribution of h← Dm
Z,s, conditioned

on htA = pt. Then, for all c 6∈ L :

|P (c)− 1/2| ≤ 1
6 + (1 +O(ε))

(
1
k

+ 4NCm
)

,

where C =
√

2πe · e−π < 1.

Remark 4.6. Informally, this theorem states that the second case study of the
technical overview of the introduction is essentially the worst case.

Proof. Writing P = P1 + P2 + P3 as above, we showed that |P3 − 1/2| ≤ 1/6.
Moreover, as s ≥ ηε(Λ⊥(A)), we have:

det((Λ⊥)∗)sm

ρs(Λ⊥p ) = 1 +O(ε) ,

and, for any j ∈ Z and c, we also have:∣∣∣∣∣∣
∑
y∈Λ

(ρq/s,jc · eh0/q)(y)

∣∣∣∣∣∣ ≤ ρq/s(Λ− jc) ≤ 1 + ε .
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Therefore, by Lemma 4.2, and as ε = negl(n), we have:

|P1| ≤ (1 +O(ε))(1 + ε)
∑
|j|>N

|r̂j | ≤
1 +O(ε)

k
.

Furthermore, as δ > q
√
m
s , and |r̂j | ≤ 1 for all j, Lemma 2.1 gives us that

|P2| ≤ 4NCm(1 +O(ε)), which concludes the proof. ut

4.5 Wrap-up
Let us now show that all the parameters can be instantiated to get approximate
smoothness and correctness for the SPHF, using a rounding function R defined
by Pr[R(x) = 1] = r] � r[(x).
IND-CPA. To apply Theorem 2.9 with Remark 2.10, we can use the fact that
m = Θ(n log q) and t =

√
mn · ω(

√
logn).

Decryption Correctness. For the encryption scheme to be correct, we want B < B′,
with B = 2t

√
m and B′ = q/Θ(

√
m).

Correctness. For correctness of the bit-PHF, we need a super-polynomial modulus
q, and require T/q to be negligible. Furthermore, we need tsm/q to be negligible,
so that 〈h, e〉 can only take a negligible fraction of values in Zq. Also, we need
s ≥ ηε(Λ⊥(Au)), which is satisfied with high probability by Lemma 2.11 for
ε = 2−n as long as s ≥ Θ(

√
n).

Bounding the amplitude of high frequencies. The parameterN which upper bounds
the elements of J must be taken so that

∑
|j|≥N |r̂j | is small. By Lemma 4.2, by

taking N = kq/T , this sum is ≤ 1/k.
Threshold distance to Λ defining J . The parameter δ, which denotes how close j ·c
is close to Λ for j ∈ J (Eq. (4)) has to be chosen so that N · ρq/s(Λ− v) must be
small whenever d(v, Λ) ≥ δ. As in the analysis for the cosine rounding function,
setting δ = q

√
m/s implies that ρq/s(Λ− v) ≤ 2Cm(1 +O(ε)) by Lemma 2.1.

Showing that j0 6= 1. We also required δN2 < B′ to conclude that J was included
in a proper ideal of Z. As we have δN2 = Θ

(
q3k
√
m

sT 2

)
, this holds as long as

s ≥ Ω(mk
2q2

T 2 ).
Putting everything together, we get the following theorem:

Theorem 4.7. Suppose q = O(2n) is superpolynomial in n, m = Θ(n log q). Set
parameters: i) T such that T/q and q/T 2 are both negligible in n (using T = q2/3

for instance), ii) k = Θ(n), and iii) s ≥ Θ(
√
n) such that s/q = negl(n) and

s = Ω(mk
2q2

T 2 ), which exists by construction of T . Define a probabilistic rounding
function R : Zq → {0, 1} such that Pr[R(x) = 1] = r] � r[(x). Then the bit-
PHF described in Section 3.1 achieves (1/3 + o(1))-universality and statistical
correctness.

Proof. The theorem follows from the discussion above and Theorem 4.5 using:
i) N = kq/T (in which case NCm is negligible in n), and ii) δ = q

√
m
s . ut
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5 Applications

In this section, we present several applications of our new construction. It
underlines the importance of revisiting this primitive.

5.1 Password-Authenticated Key Exchange

3-round PAKE. Gennaro and Lindell proposed in [GL06] a generic framework
for building 3-round PAKE protocols based on an IND-CCA2 encryption scheme
and an associated SPHF. Later in [KV09], Katz and Vaikuntanathan refined it to
be compatible with approximate SPHF over a CCA2-secure encryption scheme.

We can instantiate the construction in [KV09] using the encryption scheme à la
Micciancio-Peikert in Section 2.2 together with an approximate SPHF generically
derived (via the transformation in Appendix B.2) from the approximate bit-PHF
constructed in Section 3. This allows us to achieve a PAKE protocol in three
flows, with a polynomial modulus.

Moving to a 2-round PAKE. An interesting optimization in cryptography is
to reduce the number of rounds, so that each user only has to speak once. Is it
possible to achieve a PAKE, where each user sends simply one flow?

In [ABP15b], the authors revisited the Groce-Katz framework [GK10]. Their
construction (called GK-PAKE) uses a pseudo-random generator, an IND-CPA
encryption scheme, with a simple regular SPHF on one hand, and an IND-PCA
(Indistinguishable against Plaintext-Checkable Attacks) encryption on the other.

Every IND-CCA2 encryption being also IND-PCA, we can trivially meet the
requirements and achieve the expected 2-rounds efficiency, using our SPHF from
Section 3.15 Contrary to the construction of Zhang and Yu [ZY17], we do not
need a simulation-sound non-interactive proof (SS-NIZK), which we do not know
how to construct from lattice assumptions in the standard model.

Achieving a 1-round PAKE. Actually, if we allow ourselves to use SS-NIZK,
we can construct a 1-round PAKE by combining our word-independent SPHF
with the ideas in [KV11], which solves an open problem in [ZY17]. Concretely, we
use the first instantiation of [KV11], except that the ElGamal encryption scheme
and its associated SPHF are replaced by our IND-CPA LWE-based encryption
scheme à la Micciancio-Peikert and the word-independent SPHF is the one from
Section 4. The SS-NIZK can be a simple variant of the one in [ZY17]. Details are
provided in Appendix C.1.

15 In this application, as in our 3-round PAKE from [KV09], the gap between correctness
and smoothness is not an issue: the proof of the resulting 2-round PAKE works
exactly as in [ABP15b].
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5.2 Honest-Verifier Zero-Knowledge

Following the methodology from [BCPW15], using our SPHF in Section 3, we
can construct honest-verifier zero-knowledge proofs for any NP language of the
form L̈ = {ẍ | ∃ẅ , R̈(ẍ , ẅ)} where R̈ is a polynomial-size circuit. At a very
high level, the prover simply encrypts each wire of the circuit using an IND-CPA
encryption scheme16 and then shows the correct evaluation at each gate, using
SPHFs.

For the sake of simplicity, we suppose that all gates of the circuit R̈ are
NAND gates. We just need to construct an SPHF for the languages L̃ ⊆ L of
ciphertexts C1, C2, C3 encrypting values (b1, b2, b3) so that b3 = NAND(b1, b2),
such that L̃ is the set of encryptions of bi that fits the NAND gate evaluation,
while L is the set of ciphertexts whose decryptions fit the gate evaluation. We
can do that by combining our SPHFs using the classical techniques described
in [ACP09]. Details are provided in Appendix C.2.

5.3 Witness Encryption

Witness encryption [GGSW13] allows to encrypt a message, with respect to a
particular word x and a language L , instead of using a classical public key. If
the word is in the language, then a user knowing a witness for the word can
decrypt the ciphertext, otherwise the ciphertext hides the message.

An SPHF can be used to construct such a primitive as follows: To encrypt
a message M with respect to a word x and a language L , use an SPHF for
L to generate a hashing key hk, a projection key hp, and a hash value H, and
output the ciphertext C = (hp,H ⊕M). To decrypt such a ciphertext, simply
use the witness w associated with the word x together with the projection key
hp to compute the projected hash value and recover M . Details are available in
Appendix C.3.
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Appendix

A CCA2 and tag-CCA Security

In this section, we remind the definitions of IND-CCA2 and tag-IND-CCA2
encryption schemes, recall the generic transformation from the latter to the
former, before proving tag-IND-CCA2 security for the scheme of Section 2.2.

A.1 Definitions

Definition A.1 (Labeled Encryption Scheme). A (labeled) public-key en-
cryption scheme is defined by four algorithms:

– KeyGen(1n) takes as input a unary representation of the security parameter
and generates a pair of keys (dk, ek), where dk is the secret decryption key
and ek is the public encryption key;

– Encrypt(ek, label,M ; ρ) produces a ciphertext C on the input message M
under the label label and encryption key ek, using the random coins ρ;

– Decrypt(dk, label, C) outputs the plaintext M encrypted in C under the label
label, or ⊥;

and satisfies the following property:

– Correctness. For any security parameter n, with overwhelming probability
over (dk, ek)← KeyGen(1n), for any label label, for any message M , for any
ciphertext C ← Encrypt(ek, label,M ; ρ), we have Decrypt(dk, label, C) = M .

Definition A.2 (IND-CCA2 Security). An encryption scheme E = (KeyGen,
Encrypt,Decrypt) is IND-CCA2 if the advantage of any polynomial-time adversary
A in distinguishing Expcca−0

E,A (1n) from Expcca−1
E,A (1n) is negligible in the security

parameter n, where the experiments Expcca−b
E,A (1n) are depicted in Fig. 3. Infor-

mally, this notion states that an adversary should not be able to efficiently guess
which message has been encrypted even if he chooses the two original plaintexts,
and can ask several decryption of ciphertexts as long as they are not the challenge
one.

This IND-CCA2 notion can be relaxed into a weaker tag-IND-CCA2 security
notion.

Definition A.3 (Tag-IND-CCA2 Security). An encryption scheme E =
(KeyGen,Encrypt,Decrypt) is tag-CCA2-secure if the advantage of any polynomial-
time adversary A in distinguishing Exptag-cca−0

E,A (1n) from Exptag-cca−1
E,A (1n) is neg-

ligible in the security parameter n, where the experiments Exptag-cca−b
E,A (1n) are

defined as the experiments Expcca−b
E,A (1n) depicted in Fig. 3, except that:



33

Expcca−b
E,A (1n)

1. (dk, ek)← KeyGen(1n)
2. (label∗,M0,M1, st)← AODecrypt(dk,·,·)(ek)
3. C∗ ← Encrypt(ek, label∗,Mb)
4. b′ ← AODecrypt(dk,·,·)(st, C∗)
5. IF (label∗, C∗) ∈ CT RETURN 0
6. ELSE RETURN b′

7. Add (label, C) to CT
8. RETURN Decrypt(dk, label, C)

Fig. 3: Security Experiment for CCA2 security.

– The line 5 is replaced by:
6. IF (label∗, ·) ∈ CT RETURN 0.
In other words, the adversary is not allowed to query the decryption oracle
on a ciphertext with the same label label (also called a tag and denoted u in
this context) as the challenge one.

– In addition the adversary chooses the label label∗ before seeing ek, i.e., there
is a line 0:
0. (label∗, st0) $← A(1n)
and the line 2 is replaced by:
2. (M0,M1, st)← AODecrypt(dk,·,·)(st0, ek).

Finally, we recall that the weaker IND-CPA security notion is defined similarly
as the IND-CCA2 or tag-IND-CCA2 security notion, except that the adversary is
not given access to the decryption oracle ODecrypt. If the tag of a tag-IND-CCA2
encryption scheme is fixed to some public constant, then the resulting scheme is
IND-CPA.

A.2 From Tag-IND-CCA2 to IND-CCA2

We can convert a tag-IND-CCA2 encryption scheme (KeyGen′,Encrypt′,Decrypt′)
with message space {0, 1} and label (a.k.a., tag) space {0, 1}n into an IND-CCA2
encryption scheme (KeyGen,Encrypt,Decrypt) with message space {0, 1}ν (for
some ν polynomial in n) and label space {0, 1}∗, using [DDN03]. Concretely, we
suppose that we have a strongly unforgeable one-time signature scheme and we
define:

– KeyGen(1n) outputs (dk, ek)← KeyGen′(1n);
– Encrypt(ek, label ∈ {0, 1}∗,M ∈ {0, 1}ν) generates a signature key sk and

an associated verification key pk (for the strongly unforgeable one-time
signature, we suppose that pk can be represented as a n-bit string without
loss of generality), computes for 1 ≤ i ≤ ν, Ci ← Encrypt′(ek, pk,Mi),
and outputs C := (C1, . . . , Cν , pk, σ), where σ is a signature under sk of
(C1, . . . , Cν , pk, label);
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– Decrypt(dk, label ∈ {0, 1}∗, C) parses C as (C1, . . . , Cν , pk, σ), abort (i.e.,
return ⊥) if σ is not a valid signature of (C1, . . . , Cν , pk, label) under pk,
otherwise computes for 1 ≤ i ≤ ν, Mi = Decrypt′(dk, pk, Ci), and output the
bit string M ∈ {0, 1}ν corresponding to the concatenation of M1, . . . ,Mν .

A.3 Proof of Tag-IND-CCA2 Security of our Encryption Scheme
(Theorem 2.9)

The proof follows closely the proof of the original scheme in [MP12]. We proceed
with Hybrid games.

Hybrid H0. The first hybrid game H0 is the tag-IND-CCA2 game described in
Fig. 3.

Hybrid H1, Setup. In a second game H1, we set the public key to be A0 =
[Ā ; RĀ−G h(u∗)], where (T ,A)← TrapGen(1n, 1m, q), with u∗ = label∗ being
the label chosen by the adversary for the challenge ciphertext, T = [−R | I], and
A = [Ā ; RĀ]. Note that A0 is statistically close to uniform, so that this new
public key is statistically indistinguishable from the one from H0.

Hybrid H1, decryption queries. To handle decryption queries on tags u 6= u∗, the
reduction simply outputsµ if g−1

A0
(T , 2c, h(u− u∗)) = 2e+ (0, . . . , 0, µ) where e ∈ Zm

and ‖e‖ ≤ B′ with B′ := q/Θ(
√
m) ,

⊥ otherwise.

By the correctness of the g−1
A0

algorithm (Lemma 2.8), this procedure outputs µ
if and only if d(c− Encode(µ), Λ(Au)) < B′, which is exactly the same behavior
than in game H0.

Hybrid H1, challenge ciphertext. For the challenge ciphertext, choose µ ∈ {0, 1},
and set tag u = u∗. Choose s ∈ Znq , e ← Dm

Z,σ, and set b̄ = Ās + e. Define
Q = [Im̄ ; R]. Note that Qb̄ = Au∗s+Qe. We then set the ciphertext to be:

c = Qb̄+ ê+ Encode(µ) ,

where ê← Dm
Z,
√
Σ

and Σ = t2Im − σ2QQt.17 We note that

c = Au∗s+ e′ + Encode(µ) , where e′ = Qe+ ê .

We will argue that c is distributed as in game H0. For this, it suffices to show
that e′ is negligibly close to DZm,t. Because Qe belongs to Zm the distribution
Qe′ + DZm,

√
Σ of e′ is equal to DZm,t,Qe. It remains to apply the convolution

Theorem of Peikert [Pei10, Theorem 3.1], as already detailed in [MP12, Section
5.4].
17 The procedure to sample from such a distribution is described in [Pei10,MP12].
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Hybrid H2. In a third game H2, we only change the challenge ciphertext, and we
now pick b̄ uniformly random in Zm̄q , which is indistinguishable from the previous
game by the assumption of hardness of the LWEχ,q problem, for χ = DZ,σ.

InH2, the adversary receives c = Qb+ê+Encode(µ), withQb̄ = [b̄ ; Rb̄]t. But
(Ā,RĀ, b̄,Rb̄) is statistically negligibly close to uniform over the randomness
of R ← Dnk×m̄ by the leftover hash lemma. In particular, c is uniform and
independent from the public key A0 and the message µ, so the advantage of the
adversary is negligible in game H2. ut

B SPHF

In this appendix, we formally define approximate word-independent SPHFs
and describe the generic transformations of SPHFs sketched in Section 2.3 and
summarized in Fig. 2.

B.1 Formal Definition of Approximate Word-Independent SPHF

Definition B.1. An approximate word-independent SPHF is defined as in Defi-
nition 2.13 except that the algorithm ProjKG does not take as input the word x ,
approximate correctness is modified accordingly, and smoothness is replaced by
the following stronger property:
Adaptive smoothness. For any n ∈ N, if (ltrap, lpar) ← Setup.lpar(1n), with
overwhelming probability over the randomness of Setup.lpar, for all functions f
onto X \Llpar the following distributions have statistical distance negligible in n:{

(lpar, f(hp), hp,H)
∣∣∣∣ hk← HashKG(lpar), H← Hash(hk, lpar, f(hp)),

hp = ProjKG(hk, lpar)

}
,{

(lpar, f(hp), hp,H)
∣∣∣∣ hk← HashKG(lpar), H← {0, 1}ν ,

hp = ProjKG(hk, lpar)

}
.

An approximate word-independent SPHF is called a word-independent SPHF
if it is ε(n)-correct with ε(n) negligible in the security parameter n.

B.2 Generic Transformations of Bit-PHFs and SPHFs

From Approximate Bit-PHF to Approximate SPHF. This transforma-
tion is straightforward, we simply need to increase the size of the output of the
hash function, by sampling several independent hash keys hk, and concatenating
the output of all the corresponding Hash results.

Lemma B.2. Let (HashKG′,ProjKG′,Hash′,ProjHash′) be an ε-correct approx-
imate bit-PHF. Then the SPHF (HashKG,ProjKG,Hash,ProjHash) defined as
follows is an (ε+ ε′)-correct approximate SPHF, for any constant ε′ > 0.

– HashKG(lpar) generates a hashing key hk = (hk1, . . . , hkν) by running ν times
HashKG′(lpar), where ν = Ω(n);
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– ProjKG(hk, lpar, x ) derives a projection key hp from the hashing key hk, by
computing hpi = ProjKG′(hki, lpar, x ) (for i ∈ {1, . . . , ν}) and setting hp =
(hp1, . . . , hpν).

– Hash(hk, lpar, x ) outputs a hash value H ∈ {0, 1}ν , by computing the various
hash values Hi = Hash(hki, lpar, x ) (for i ∈ {1, . . . , ν}) and concatenating the
ouputs: H = H1‖ . . . ‖Hν ;

– ProjHash(hp, lpar, x ,w) outputs a projected hash value pH ∈ {0, 1}ν , by
computing the projected hash values pHi = ProjHash′(hpi, lpar, x ,w) (for
i ∈ {1, . . . , ν}) and concatenating them: pH = pH1‖ . . . ‖pHν ;

Proof. Approximate correctness. We have for every i:

Pr
hki

[Hash′(hki, lpar, x ) = ProjHash′(hpi, lpar, x ,w)] ≥ 1− ε .

Hence, the property on the concatenation, using the Hoeffding bound.
Smoothness. This follows from a classical hybrid argument by considering
intermediate distributions ∆i where the first i values Hi are random, and the
others are honestly computed, as each SPHF is independent and smooth. ut

From Approximate Correctness to Correctness. There exists a generic
transformation, implicit in [KV09], from an approximate SPHF to an SPHF. The
idea is quite simple, it requires the use of an error correcting code (noted ECC in
the following) capable of correcting an ε-fraction of errors.

Lemma B.3. Let (HashKG′,ProjKG′,Hash′,ProjHash′) be an ε-correct approxi-
mate SPHF (with hash values in {0, 1}ν) and ECC be an error correcting code
capable of correcting an ε-fraction of errors, and with Hlen-bit codewords. Then
the SPHF (HashKG,ProjKG,Hash,ProjHash) defined as follows is a (regular)
SPHF:

– HashKG(lpar) sets hk1 ← HashKG′(lpar), and picks a random value hk2 from
the input set of ECC. It then returns hk = (hk1, hk2);

– ProjKG(hk, lpar, x ) computes hp1 ← ProjKG′(hk1, lpar, x ), and computes c =
ECC(hk2),H′ ← Hash′(hk1, lpar, x ), and sets hp2 = c⊕ H′;

– Hash(hk, lpar, x ) simply outputs H = hk2;
– ProjHash(hp, lpar, x ,w) computes pH′ = ProjHash′(hp1, lpar, x ,w) and sets

pH = ECC−1(pH′ ⊕ hp2).

We stress that this transformation always gives a SPHF (but not a word-
independent SPHF), even if the original approximate SPHF is an approximate
word-independent SPHF, as the ProjKG algorithm requires to run the approximate
Hash′ algorithm, and therefore requires the knowledge of the word x .

Proof. Approximate-correctness. In an honest execution, the approximate
correctness guarantees that HW(pH′,H′) ≤ ε · n. In particular, this means that
HW(pH′ ⊕ hp2, c) ≤ ε · n. Now, the capacity of the error-correcting code leads to
the conclusion: pH = H.
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Smoothness. Smoothness of the original SPHF ensures that when x /∈ L , H′
is negligibly close to uniform even when knowing hp′. Therefore, it completely
masks c (in hp2) and thus H = hk2 is negligibly close to uniform even when
knowing hp1 = hp′ and hp2 = c⊕ H′. ut

From Imperfectly Universal Word-Independent Bit-PHFs to Word-
Independent SPHFs. The idea is quite simple: we first XOR the hash values
of several independent executions of the word-independent bit-PHF to amplify
universality and get a statistically universal word-independent bit-PHF. To con-
vert the resulting word-independent bit-PHF into a word-independent SPHF, we
then increase the output length using basic concatenation and parallel executions
as in Lemma B.2.

Lemma B.4. Let (HashKG′,ProjKG′,Hash′,ProjHash′) be a ε-universal word-
independent bit-PHF. Then the SPHF (HashKG,ProjKG,Hash,ProjHash) defined
as follows is a word-independent SPHF:
– HashKG(lpar) generates a hashing key hk = (hk(1,1), . . . , hk(η,ν)) by running
η · ν times the original hashing key generation HashKG′(lpar), where η =
ω(− logn/ log ε) and ν is the output length of the SPHF;

– ProjKG(hk, lpar) derives a projection key hp from the hashing key hk, by com-
puting hp(i,j) = ProjKG′(hk(i,j), lpar) and setting hp = (hp(1,1), . . . , hp(η,ν)).

– Hash(hk, lpar, x ) outputs a hash value H ∈ {0, 1}ν , by computing the various
hash values H(i,j) = Hash(hk(i,j), lpar, x ), and then Hj = H1,j ⊕ · · · ⊕ Hη,j
(for i ∈ {1, . . . , η}, j ∈ {1, . . . , ν}), and concatenating the ouputs: H =
H1‖ . . . ‖Hν ;

– ProjHash(hp, lpar, x ,w) outputs a projected hash value pH ∈ {0, 1}ν , by com-
puting the projected hash values pH(i,j) = ProjHash(hk(i,j), lpar, x ), and then
pHj = pH1,j ⊕ · · · ⊕ pHη,j (for i ∈ {1, . . . , η}, j ∈ {1, . . . , ν}), and concate-
nating the ouputs: pH = pH1‖ . . . ‖pHν ;

Proof. Correctness. Correctness is straightforward as the original word-indepen-
dent bit-PHF is statistically correct.
Smoothness. With overwhelming probability over lpar, for each j ∈ {1, . . . , ν},
for any projection key hp, we have:∣∣∣∣2 · Pr

hk

[
H1,j ⊕ · · · ⊕ Hη,j = 1

∣∣ ∀i ∈ {1, . . . , η}, hpi,j = ProjKG(hki,j , lpar)
]
− 1
∣∣∣∣

=
∣∣∣∣Ehk

[
(−1)H1,j · · · (−1)Hη,j

∣∣∣ ∀i ∈ {1, . . . , η}, hpi,j = ProjKG(hki,j , lpar)
]∣∣∣∣

=

∣∣∣∣∣ E
hk1,j

[
(−1)H1,j

∣∣∣ hp1,j = ProjKG(hk1,j , lpar)
]
· · ·

· · · E
hkη,j

[
(−1)Hη,j

∣∣∣ hpη,j = ProjKG(hkη,j , lpar)
] ∣∣∣∣∣

≤ εη = 2−ω(logn) ,
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where H(i,j) = Hash(hk(i,j), lpar, x ), E denotes the expectation, and the second
equality comes from the independence of the hashing keys hki,j . In other words, if
ν = 1, then we would have constructed a statistically universal word-independent
bit-PHF.

Smoothness follows immediately. ut

C Additional Content for Applications

We now give a little more details on the various possibles applications of our new
SPHFs.

C.1 One-Round PAKE

As explained in Section 5.1, we can construct a 1-round PAKE using our word-
independent SPHF from Section 4 by following the first instantiation in [KV11].
More precisely the construction uses the framework in [KV11]. This framework
requires an IND-CCA2 encryption scheme with an associated word-independent
SPHF. Unfortunately, we only know how to construct a word-independent SPHF
for an IND-CPA encryption scheme over lattices. So, as in [KV11, ZY17], we
use the Naor-Yung paradigm [NY90,Sah99]: an IND-CCA2 ciphertext consists
of two IND-CPA ciphertexts (under two different keys) and a simulation-sound
zero-knowledge (SS-NIZK) proof proving that both ciphertexts encrypt the same
value. Decryption of such a ciphertext consists in decrypting the first IND-CPA
ciphertext and checking the SS-NIZK. We already have an SPHF able to check
the first part (Section 4), while the second part can be publicly checked. Thus we
have the primitives required to use the framework of [KV11], with a very minor
difference: the gap between smoothness and correctness. But as in [KV09], this
is not an issue.

It remains to construct an SS-NIZK for the language of pairs of IND-CPA
ciphertexts à la Micciancio-Peikert (Section 2.2) which encrypts the same value.
We could use any generic construction.

But if we want a more efficient one, we can follow [ZY17]. Let us suppose first
that the plaintext is just one bit. In that case, we can use the SS-NIZK defined
in [ZY17, Section 5.3], where the matrix U is defined as

U =


0 0
...

...
0 0
0 dq/2e

 .

and w is just the bit message. We recall that this SS-NIZK is based on applying
the Fiat-Shamir transform [FS87] to an efficient three-round public-coin honest-
verifier zero-knowledge proof with quasi-unique responses.

For multi-bit messages, messages can be encrypted bit-by-bit twice using
the IND-CPA encryption scheme. The SS-NIZK needs to prove that each pair
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of ciphertexts encrypt the same value. The corresponding efficient three-round
public-coin protocols can be run in parallel. The resulting protocol is a three-round
public-coin honest-verifier zero-knowledge proof with quasi-unique responses for
the language we are interested in. And its Fiat-Shamir transform is an SS-NIZK
for this language.

C.2 Honest-Verifier Zero-Knowledge

Generic construction. Following the methodology from [BCPW15], using our
SPHF in Section 3, we can construct honest-verifier zero-knowledge proofs for any
NP language of the form L̈ = {ẍ | ∃ẅ , R̈(ẍ , ẅ)} where R̈ is a polynomial-size
circuit.

For the sake of simplicity, we suppose that all gates of the circuit R̈ are
NAND gates. We suppose that we have an IND-CPA encryption scheme and
an SPHF for the languages L̃ ⊆ L of ciphertexts C1, C2, C3 encrypting values
(b1, b2, b3) so that b3 = NAND(b1, b2), such that L̃ is the set of encryptions of
bi that fits the NAND gate evaluation, while L is the set of ciphertexts whose
decryptions fit the gate evaluation.

Our participants are going to interact in three rounds. First the prover commits
to every single wires. Then for each gate, the verifier computes a projection key
for an SPHF associated with a valid evaluation of the NAND gate, and sends the
corresponding projection keys, while keeping the XOR of the hash values. Finally,
the prover using his witnesses evaluates the various projective hash values, and
sends the XOR to the verifier that can then compare it with its own evaluation.
The scheme is described in Fig. 4.

Common reference string: Encryption key ek for an IND-CPA encryption
scheme.
Wire commitments: For each wire i in the circuit R̈ evaluated on the word
ẍ for the argument and a witness ẅ , the prover is going to encrypto its value b
in Ci ← Encrypt(ek, b), and keeps the corresponding randomness (or witness)
ρi = wi. He then sends the ciphertexts C = {Ci}i.
Verifying the gates:
1. For each NAND gate j, linking the wires i1, i2 to i3, the verifier com-

putes hkj , hpj ,Hj for the SPHF described in the text and the word
x = (Ci1 , Ci,2, Ci3 ). The verifier then sends hp = {hpj}j .

2. For each hpj , the prover using wi1 , wi2 and wi3 can now recover pHj , he
then computes pH =

⊕
j

pHj and sends it to the prover.

Validation:
– The verifier computes H =

⊕
j

Hj , and accepts if H = pH.

Fig. 4: Honest-verifier zero-knowledge argument from SPHFs
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Completeness comes directly from the correctness of the underlying SPHFs,
while soundness comes from their smoothness. A simulator (for the honest-verifier
zero-knowledge property) would encrypt dummy values, and compute pH using
the hashing keys hkj . Under the IND-CPA security of the encryption scheme,
this simulation is computationally indistinguishable from the real experiment,
ensuring that the previous construction is indeed honest-verifier zero-knowledge.

Instantiation. It remains to show how to construct SPHFs for the above
language L̃ ⊆ L from our SPHF in Section 3, when the IND-CPA encryption
scheme is our IND-CCA2 encryption scheme à la Micciancio-Peikert of Section 2.2.

We remark that a set of wire values (b1, b2, b3) corresponds to a valid evaluation
of a NAND gate (b3 = NAND(b1, b2)) if and only if (b1 = 0 ∧ b2 = 0 ∧ b3 =
1)∨(b1 = 0∧b2 = 1∧b3 = 1)∨(b1 = 1∧b2 = 0∧b3 = 1)∨(b1 = 1∧b2 = 1∧b3 = 0).
Therefore, we can express similarly L̃ /L in term of the languages L̃i,b/Li,b

(defined as the language of tuples of ciphertexts (Cj)j , such that the ciphertext
Ci encrypts / decrypts to b) for i ∈ {i1, i2, i3}. These languages can be handled
by the SPHF presented in Section 3.

It is therefore sufficient to show how to combine SPHFs for the languages
L̃i,b ⊆ Li,b to get an SPHF for the language L̃ ⊆ L . For that we can use
the techniques introduced in [ACP09] to handle combinations of SPHFs (for
conjunctions “∩” and disjunctions “∪”).

Combination of SPHF We recall, and transpose the constructions described
in [ACP09].

Conjunctions and disjunctions of SPHFs. We assume to be given two
smooth projective hash functions SPHF1 and SPHF2, on the sets corresponding to
the languages L̃lpar1 and L̃lpar2 : SPHFi = (HashKGi,ProjKGi,Hashi,ProjHashi).

For a given x ∈ X , we naturally define hk1, hk2, hp1, hp2 as before.
A smooth projective hash system for the language L̃ = L̃lpar1 ∩ L̃lpar2 is then

defined as follows, if x ∈ L̃lpar1 ∩ L̃lpar2 and wi is a witness that x ∈ L̃lpari , for
both i = 1, 2:

– HashKG
L̃lpar

(lpar) = hk = (hk1, hk2);
– ProjKG

L̃lpar
(hk, lpar, x ) = hp = (hp1, hp2);

– Hash
L̃lpar

(hk, lpar, x ) = Hash1(hk1, lpar1, x )⊕ Hash2(hk2, lpar2, x );
– ProjHash

L̃lpar
(hp, lpar, x , (w1,w2)) =

ProjHash1(hp1, lpar1, x ,w1)⊕ ProjHash2(hp2, lpar2, x ,w2).

Smoothness is then guaranteed for words outside L = Llpar1,ltrap1∩Llpar2,ltrap2 .
Similarly, a smooth projective hash system for the language L̃ = L̃lpar1∪L̃lpar2

is defined as follows, if x ∈ L̃lpar1 ∪ L̃lpar2 and w is a witness that x belongs to
one of the languages.
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– HashKG
L̃lpar

(lpar) = hk = (hk1, hk2);
– ProjKG

L̃lpar
(hk, lpar, x ) = hp = (hp1, hp2, hp∆)

where hp∆ = Hash1(hk1, lpar1, x )⊕ Hash2(hk2, lpar2, x )
– Hash

L̃lpar
(hk, lpar, x ) = Hash1(hk1, lpar1, x );

– ProjHash
L̃lpar

(hp, lpar, x ,w) ={
ProjHash1(hp1, lpar1, x ,w) if x ∈ L̃lpar1 ,

hp∆ ⊕ ProjHash2(hp2, lpar2, x ,w) if x ∈ L̃lpar2 .

Once again, smoothness is then guaranteed for words outside L = Llpar1,ltrap1∪
Llpar2,ltrap2 .

C.3 Witness Encryption

Another application would be in the domain of witness encryption [GGSW13] for
statements derived from the language of ciphertexts as defined in Example 2.12.18

Definition C.1. Let (L̃lpar ⊆ Llpar,ltrap ⊆ Xlpar)lpar,ltrap be languages defined as
before. A witness encryption scheme for these languages is defined by the two
probabilistic polynomial-time algorithms: (EncryptWE,DecryptWE), where:

– EncryptWE(1n, x ,M) generates a ciphertext C from a plaintext M , a security
parameter n, and a word x ∈ X .

– DecryptWE(C,w) decrypts the ciphertext C into M using the witness.

It has to satisfy the two following properties:

– Correctness. For any security parameter n, message M ∈ {0, 1}, and
x ∈ L̃lpar such that R̃(x ,w) holds, we have

Pr[DecryptWE(EncryptWE(1n, x ,M),w) = M ] ≥ 1− negl(n) .

– Soundness. For any probabilistic polynomial-time adversary A, there ex-
ists a negligible function negl(.) such that for any n ∈ N, if (ltrap, lpar) ←
Setup.lpar(1n), with overwhelming probability over the randomness of Setup.lpar,
for any x /∈ Llpar,ltrap:

Pr
A

[EncryptWE(1n, x , 0) = 1]− Pr
A

[EncryptWE(1n, x , 1) = 1] < negl(n) .

In the original definition [GGSW13], there was a voluntary gap between the
soundness and correctness, as nothing is said for words in the language with no
known witnesses. Over lattice-based schemes, it is natural to extend the gap, by
considering L̃lpar for the correctness, while defining the soundness for Llpar,ltrap.
Another minor difference is the introduction of language parameters (ltrap, lpar),
18 The concept of using SPHF to generically build Witness Encryption was already

mentioned as folklore in the introduction of [ABP15a], but as far as we know it was
not properly detailed anywhere.
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as we are considering only restricted languages (and not NP-complete languages as
in [GGSW13]). We point out that our construction achieves statistical soundness
(i.e., against any adversary) and therefore also satisfies (up to this additional gap
and the language parameters) adaptive soundness as defined in [BH15].

Concretely, here is our construction. Assuming an SPHF on the language
L̃lpar, we can build a witness encryption as follows:

– EncryptWE(1n, x ,M) outputs C = (hp,H ⊕M), by running HashKG(lpar),
ProjKG(hk, lpar, x ), Hash(hk, lpar, x ) to compute hk, hp,H.

– DecryptWE(C,w) recovers M = P ⊕ pH by parsing C as C = (hp, P ), and
computing pH = ProjHash(hp, lpar, x ,w).

Theorem C.2. The above construction is a correct and statistically sound wit-
ness encryption scheme.

Proof. Under the correctness of the underlying SPHF, one obtains:

Pr [DecryptWE(EncryptWE(1n, x ,M),w) = M ] ≥ 1− negl(n) .

It is interesting to note, that in case of an ε-approximate SPHF, one can still
achieve an ε-approximate correctness for the encryption.

The smoothness of the SPHF, ensures that for x not in the language, H is
seemingly random from the point of view of an adversary, hence H⊕M is too,
which guarantees the desired soundness. ut
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