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Abstract. The main bottleneck of all known Fully Homomorphic Encryption schemes lies in
the bootstrapping procedure invented by Gentry (STOC’09). The cost of this procedure can be
mitigated either using Homomorphic SIMD techniques, or by performing larger computation
per bootstrapping procedure.
In this work, we propose new techniques allowing to perform more operations per boot-
strapping in FHEW-type schemes (EUROCRYPT’13). While maintaining the quasi-quadratic
Õ(n2) complexity of the whole cycle, our new scheme allows to evaluate gates with Ω(logn)
input bits, which constitutes a quasi-linear speed-up. Our scheme is also very well adapted
to large threshold gates, natively admitting up to Ω(n) inputs. This could be helpful for
homomorphic evaluation of neural networks.
Our theoretical contribution is backed by a preliminary prototype implementation, which can
perform 6-to-6 bit gates in less than 10 seconds on a single core, as well as threshold gates
over 63 input bits even faster.
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1 Introduction

Since the first scheme of Gentry [17, 16] a lot of effort has been made to push Fully Homomor-
phic Encryption (FHE) toward practicality. A first line of research followed the initial approach
of Gentry, by bootstrapping FHE from a Somewhat Homomorphic Encryption (SHE) scheme sup-
porting arbitrary circuits of bounded depth. This bootstrapping step consists in homomorphically
evaluating the decryption procedure, to refresh ciphertexts. After successive theoretical and prac-
tical improvements [32, 8, 22], this bootstrapping procedure has been made feasible in practice, but
remains quite expensive, taking several minutes on a single core. Fortunately, this cost can be mit-
igated thanks to SIMD techniques, allowing to perform the same homomorphic computation on
several data sets for the price of one.

A second line of FHE schemes arose from the SHE scheme of Gentry-Sahai-Waters [20]. This
SHE scheme supports a different class of functions, including branching programs, and this was
also proved sufficient to bootstrap it to FHE via Barrington’s theorem [5]. Interestingly, this ap-
proach theoretically allows obtaining FHE from a weaker version of the LWE assumption (namely
the approximation factor decreases from super-polynomial to polynomial). On the efficiency front,
Alperin-Sheriff and Peikert [3] showed how to avoid the costly use of Barrington’s transformation
by implementing the homomorphic decryption procedure more directly. Then, Ducas and Miccian-
cio [13] adapted the construction to the ring-setting. Providing parameters and implementation,
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they demonstrated this approach to be feasible with a proof of concept scheme (FHEW): the boot-
strapping procedure could be run in under a second on a single core. While their parameters allow
one binary gate per bootstrapping, they noted it should be possible in principle to perform slightly
larger gates, such as the add-with-carry gate (3-inputs, 2-outputs). This idea was implemented
in [6].

Further improvements and generalization were proposed in [15, 10], leading to a scheme named
TFHE. In particular they contributed two improvements of the bootstrapping step, accelerating it
by a polylog factor. In practice, this leads to bootstrapping in less than 0.1 second, allowing the
same bootstrapped gates as in FHEW [13].

FHE from Homomorphic Accumulator. The core idea in FHE schemes from this second line is to
tailor the SHE scheme precisely to the decryption procedure. Namely, the decryption procedure of
an LWE ciphertext c = (a, b) ∈ Zn+1

q under key s ∈ Znq for a plaintext space Zt is given by:

m = bt(b− 〈a, s〉)/qe mod t ∈ Zt.

Given the ciphertext c, this procedure can be split into a Zq-linear step Lc : s 7→ b−〈a, s〉, followed
by a non-linear function N : Zq → Zt. Note that one can embed an arbitrary post-decryption
transformation f : Zt 7→ Zt by setting Nf : x 7→ f(btx/qe mod t).

Assume that we have an SHE scheme that precisely supports the class of functions that can
be written as Nf ◦ Lc (a notion formalized as a homomorphic accumulator in [13]), and such that
the output is again an LWE ciphertext. Then, taking t = 4 one can construct an FHE scheme,
performing any binary gate g over encryptions of bits (b1, b2) for each bootstrap operation. Indeed,
using the linearity of LWE ciphertexts, one can compute an encryption of m = b1 + 2b2, and
construct the appropriate function f such that f(m) = g(b1, b2).

In more detail, messages m are encoded as powers of a q-th root of unity Xm. With such an
encoding, the linear step Lc is performed by sequential ciphertext multiplications. The non-linear
part Nf is performed by computing a subset-sum of the coefficients of the polynomial E = Xm =∑
eiX

i, by exploiting the identity f(m) =
∑
f(i)ei.

As the useful computation is provided by the function f : Zt → Zt, a larger plaintext modulus
t allows to perform more computation between each bootstrap operation. Namely, one can build
arbitrary k-bit to 1-bit gates if t ≥ 2k, and, if we restrict to certain classes of gates, even larger
ones (e.g. threshold gates only require t ≥ k + 1). For most k-to-1 bit functions, this corresponds
to a speed up of Ω(2k/ log k) = Õ(t), according to the classical circuit lower-bound of Riordan and
Shannon [30]. It is therefore worth increasing the size of the plaintext modulus t in order to perform
much more computations per bootstrap operation.

Parameter constraints and efficiency. In the set-up of [13, 6, 10], the constraints for correctness
impose asymptotically that t ≤ O(q/n).3 Taking q = Θ(n), this gives a quasi-quadratic runtime
for the whole process, but allows quite small plaintext size: t ≤ O(1). In practice, this t cannot be
made much larger than 4, maybe up to 6 as done in [6].

Looking more precisely at the complexity of each step, we note an imbalance between the cost
of the linear and non-linear steps. Indeed, the linear part requires Θ̃(n) operations over Rq, while
the non-linear part requires only Θ(log n) such operations.

3 More precisely, t ≤ q/
√
n · log 1/pfail, where pfail is the failure probability. In this paper, we will always

aim for exponentially small failure probability.
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This work. We aim to improve the performance of this line of FHE schemes by increasing the
plaintext modulus t. Having remarked the imbalance of the costs of the linear and non-linear steps,
we proceed to increase the cost of the non-linear step while maintaining the overall quasi-quadratic
complexity.

Our approach consists in choosing a ciphertext modulus of the form pq for co-primes p, q, and
to perform the linear-step Lc in a CRT fashion. During this linear-step, our SHE scheme only works
with the ringsRp = Z[X]/(Xp−1) andRq = Z[Y ]/(Y q−1) separately, for a cost of Õ(n(p+q)). Then
we proceed to a CRT reconstruction by tensoring the two rings: Rp ⊗Rq ' Rpq = Z[Z]/(Zpq − 1),

noting that Xa ⊗ Y b = Zaq+pb mod pq. This raises the cost of the non-linear part to Θ̃(pq). Setting
p, q = Θ(n) we maintain the quasi-quadratic complexity, but reach a larger plaintext-modulus
t = Θ(n). This is somehow a reminiscence of the approach of [3], adapted to the ring-setting.

One (not so) novel technical aspect is that we choose in this work to use convolution rings
Z[X]/(Xp − 1), as in the NTRU schemes [24] rather than cyclotomic ones. The reason is that we
need to use some non-power of 2 roots of unity to ensure co-primality of p and q. Indeed, if (say)
p is prime, the fact that Xp−1 = −1−X − · · · −Xp−2 in the p-th cyclotomic ring Z(X)/(Φp(X))
makes the non-linear step described above quite problematic.4 Yet, we show that the switch to
convolution rings can be done without affecting security, by formalizing what we call the NTRU
trick.5 More precisely, an appropriately defined version of Ring-LWE over convolution rings is as
secure as the usual cyclotomic version of Ring-LWE from [25].

Our work also relies one of the improvements of [10], namely, the use of an “external multiplica-
tion” GSW× LWE→ LWE replacing the GSW×GSW→ GSW operation used in [20, 3, 13, 6], which
saves a log factor on time and memory. It turns out that the trick of [15, 10] of implementing a
mux-gate, is not compatible with our circulant ring set-up, but we instead propose to exploit the
Galois action6 for a similar logarithmic speed-up.

In addition, we propose to use an alternative Gadget matrices based on the Chinese Remainder
Theorem, an idea already presented in [21] for different purposes. We show that such gadgets
permit a logarithmic speed-up when dealing with gadget inversions of tensored ciphertexts; this
contribution may find theoretical and practical applications in other contexts.

To summarize our theoretical construction, we provide schematics in Figure 1, omitting some
extra tweaks for practical efficiency that are deferred to Appendix B. We hope this overview may
guide the reader through our paper.

Circular security. We recall that all the FHE literature, including our work, relies on (sometimes
implicit) circular-security assumptions [16], that may be different from one scheme to the next.
Understanding those assumptions is arguably the most important theoretical question in this field.

One particular property of our scheme is that this circular security assumption can not be
avoided even when relaxing the scheme to a leveled FHE scheme [16]. Indeed, the careful reader
may notice that “External Inner-product in the Exponent” step (ExtExpInner, Section 4.3) requires
circular encryption.

4 And maybe even impossible due to dimensionality constraints.
5 We wish to clarify that our scheme does not require the NTRU assumption, namely the assumption that
f/g mod q is indistinguishable from random even for small f and g. Up to the usual circular-security
assumption, our scheme is based on a ring-LWE type of assumption.

6 This idea was originally suggested by Daniele Micciancio.
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Fig. 1. Scheme overview.
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On the left side, there are the k input bits m1, · · · ,mk that get combined into m ∈ Zt. On the right side
we have the two Homomorphic Accumulator ExtExpInner, which perform the linear part Lc of the boot-
strapped computation in a CRT fashion. After tensoring it is fed to the non-linear part of the computation
Nf : x 7→ f(btx/qe mod t), i.e. FunExpExtract, where f is the function to be homomorphically evaluated.
The computation is intrinsically done with the bootstrapping process, so the final output can directly be
used as input.
Grey boxes represent operations, white square boxes represent ciphertexts, and rounded white boxes repre-
sent key material. The linear step Lc and the non-linear step Nf discussed in introduction are highlighted
by dashed red circles.
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Instantiation and implementation. To attest to the feasibility of our approach, we also provide
an instantiation supporting7 6-to-6 bit gates, at a security level of about 100 bits. Its current
implementation runs this 6-to-6 bits bootstrapped gate in about 10 seconds.

Related work. Recently Chillotti et al. [11] also proposed the construction of large homomorphic
gates, using a quite different approach. They claim impressive performances, such as a 16-to-8
bit homomorphic gate running in about 2 seconds. Admittedly, our current implementation is
significantly slower. One case for which our approach might be advantageous is the case of threshold
gates: for example, our 6-bit scheme can natively support threshold gates over 63 input bits with
the same performance.

Impact. Our implementation should certainly not be understood as publicity for the practical ef-
ficiency of this overall design. It nevertheless serves the purpose of demonstrating that our new
building blocks can be used inside a reasonable scheme. It is therefore plausible that our contribu-
tions are not only of theoretical interest, but may as well find some use in future practical FHE
designs.

Plan. We begin in Section 2 with preliminary results and notations. Then we introduce the under-
lying encryption schemes at hand in Section 3. Section 4 presents in detail the building blocks of
the gate, leading to the overall description in Section 5. Finally Section 6 reports implementation
details and performances.git

In addition, Appendix A provides the hardness proof for Circulant-LWE and the cpa-security
proofs of the associated cryptosystems. Appendix B provides several useful optimization of our
scheme for its concrete efficiency.
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2 Preliminaries

2.1 Subgaussian Random Variables

Definition 1. We say that a real random variable X is subgaussian with parameter δ (or δ-
subgaussian) if E[X] = 0, and for all t, E[exp(tX)] ≤ exp

(
t2δ2/2

)
.

Subgaussian random variables have the following well known properties (see [33] and [31]):

Theorem 1. Let X1 and X2 be subgaussian random variables with parameters δ1 and δ2, respec-
tively.

– X1 +X2 is (δ1 + δ2)-subgaussian.

7 https://github.com/gbonnoron/Borogrove
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– If X1 and X2 are independent, X1 +X2 is
√
δ21 + δ22-subgaussian.

– aX1 is (|a|δ1)-subgaussian.
– Subgaussian tail estimate: P (|X1| ≥

√
2λδ1) ≤ 2 exp(−λ).

Note that [33] also defines non-centered subgaussian variables. However, in this work, we only
consider centered ones, ie. with E[X] = 0.

2.2 Rings

Our FHE scheme uses circulant convolution rings (or, for short, circulant rings). Circulant rings
of degree d will be denoted with indeterminate T : Rd = Z[T ]/(T d − 1). We fix two distinct odd
primes p and q. When speaking specifically of rings Rp, Rq, and Rpq we shall use indeterminates

X,Y and Z, respectively. We write R̃d for the cyclotomic ring Z[T̃ ]/Φd(T̃ ) where Φd(T̃ ) is the d-th
cyclotomic polynomial; if d is prime, Φd(T̃ ) = 1 + T̃ + T̃ 2 + . . .+ T̃ d−1. We identify a ring element
a ∈ Rd with its lowest degree representative a0 +a1T + . . .+ad−1T

d−1 ∈ Z[T ] and call a0, . . . , ad−1
the coefficients of a. We identify a ∈ Rd/QRd with its lowest degree representative with coefficients
a0, . . . , ad−1 ∈ [−Q/2, Q/2). We define the following norms for ring elements:

Definition 2. Let a ∈ Rd (or Rd/QRd). We define the coefficient norm of a as ‖a‖ = ‖(a0, . . . , ad−1)‖ =√∑d−1
i=0 a

2
i .

Definition 3. Let a ∈ Rd (or Rd/QRd). We define the operator norm of a as |a| = maxb∈R\{0} ‖ab‖/‖b‖.
We expand this notion to vectors x ∈ Rnd by maximizing y over Rn \ {0} and replacing the multi-
plication with the inner product over Rd.

Definition 4. We define the (normalized) trace function8 as follows: We let Tr∗Rd/Z : Rd → Z, a 7→
a0. If d is clear from context, we simply write this function as Tr∗. We let Tr∗Rpq/Rp : Rpq → Rp
be the linear function defined by

Tr∗Rpq/Rp
(
Zk
)

=

{
Xk/q if q|k
0 otherwise

The following property is easy to see:

Lemma 1. Tr∗Rd/Z and Tr∗Rpq/Rp are linear, and Tr∗Rp/Z ◦Tr∗Rpq/Rp = Tr∗Rpq/Z.

Definition 5. A random variable A ∈ Rd is δ-subgaussian if, for every b ∈ R \ {0}, Tr∗(Ab)/‖b‖
is δ-subgaussian.

In Section 4, we need to bound the subgaussinity parameter of e + 〈d, e〉 where e and the
components of e are independent γ- and δ-subgaussian variables over Rd, and d is a random
variable over Rnd , independent of e, such that for some constant k, |di| ≤ k. Note that we do not
assume that e and d are independent. Thus, if we apply Theorem 1 in a straightforward way, we
obtain a subgaussinity parameter of γ + k

√
nδ. However, we can do better: The following lemma

shows that we can bound the parameter by
√
γ2 + k2nδ2.

8 This is simply a special case of the usual definition of the trace function, but we do not need the general
definition here.
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Lemma 2. Let e be a γ-subgaussian variable over Rd and e = (e1, . . . , en) be a vector of inde-
pendent δ-subgaussian random variables over Rd. Let d be a random variable over Rnd such that
|di| ≤ k for all i. If d and e are independent and e and e are independent, then e + 〈d, e〉 is√
γ2 + k2nδ2-subgaussian.

Proof. We first consider the case where e = 0 and d is a fixed vector instead of a random variable. For
every b ∈ Rd and every i, we have Tr(dieib)/‖b‖ ≤ kTr(ei(dib))/‖dib‖ which is (kδ)-subgaussian.
From the independence of the ei, it follows that Tr(〈d, e〉b)/‖b‖ is (

√
nkδ)-subgaussian.

If d and e are random variables independent of e, it holds for every b ∈ Rd that

E[exp(tTr(eb+ 〈d, e〉b)/‖b‖)]

=
∑
e∗,d∗

P [e = e∗,d = d∗] · E[exp(tTr(eb+ 〈d, e〉b)/‖b‖) | e = e∗,d = d∗]

=
∑
e∗,d∗

P [e = e∗,d = d∗] · exp(tTr(e∗b)/‖b‖) · E[exp(tTr(〈d∗, e〉b)/‖b‖)]

≤
∑
e∗,d∗

P [e = e∗,d = d∗] · exp(tTr(e∗b)/‖b‖) · exp
(
t2nk2δ2/2

)
= E[t exp(Tr(eb)/‖b‖)] · exp

(
t2nk2δ2/2

)
≤ exp

(
t2
(
γ2 + nk2δ2

)
/2
)

which concludes the proof.

Finally, we show that if we trace down a subgaussian random variable over Rpq down to Rp,
the result is a subgaussian random variable over Rp.

Lemma 3. Let A be a δ-subgaussian random variable over Rpq. Then Tr∗Rpq/Rp(A) is δ-subgaussian
as well.

Proof. Let b ∈ Rp. Then, Tr∗Rp/Z
(
Tr∗Rpq/Rp(Ab)

)
/‖b‖ = Tr∗(Ab)/‖b‖ which is δ-subgaussian by

assumption.

2.3 Gadgets

Throughout this exposition we use a binary decomposition operation on ring elements, and the
reverse. For simplicity we adopt the notation of gadget vector and matrix.

Definition 6. The gadget vector gT of size K is set to
(
1 2 22 · · · 2K−1

)
∈ RKd . Reciprocally, we

define g−T as a function such that, for w ∈ Rnd , V = g−T (w) is a (K × n)-matrix whose entries
are ring elements with coefficients in {0, 1} such that gTV = w.

Definition 7. For some integer n ≥ 1, the gadget matrix Gn is defined by Gn = In+1 ⊗ g ∈
R(n+1)K×(n+1)
d .

GT
n =


1 2 · · · 2K−1 0 0 · · · 0 · · · 0 0 · · · 0
0 0 · · · 0 1 2 · · · 2K−1 · · · 0 0 · · · 0

...
...

...
...

0 0 · · · 0 0 0 · · · 0 · · · 1 2 · · · 2K−1


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We define G−1n similarly to g−T : for a ∈ Rn+1
d , we let d = G−1n (a) ∈ R(n+1)K

d be the vector whose
entries have coefficients in {0, 1} such that dT ·G = a. For convenience we write Gn = G as n is
typically clear from context.

2.4 Circulant LWE and reduction to Ring-LWE

It is well known that the naive decisional version of Ring-LWE is insecure over circulant rings,
simply by exploiting the CRT decomposition. Say that d is prime, and note that Rd/QRd '
R̃d/QR̃d×Z/QZ if Q is coprime to d, so one may mount an attack on the Z/QZ part (projecting to
this part corresponds to evaluate the polynomial at 1, and therefore maintain smallness of the error).
However, this does not mean that such rings are inherently insecure: the NTRU cryptosystems [24,
23] use circulant rings, choosing the secret key and errors that evaluate to a fixed known value (say
0) at 1.

This suggests a strategy to construct a variant of Ring-LWE over circulant rings that would be
as secure as the cyclotomic Ring-LWE, simply by lifting all elements x̃ ∈ R̃d/QR̃d to x ' (x̃, 0),
yet this reverse CRT operation may not keep small elements small. In Appendix A.1 we show how
to circumvent this obstacle, and discuss error sampling in practice in Appendix A.3.

3 Encryption schemes

3.1 LWE Encryption

We recall the definition of the most basic LWE symmetric encryption scheme (see [7, 29, 4]). LWE
symmetric encryption is parametrized by a dimension n, a message modulus t ≥ 2, a ciphertext
modulus Q = nO(1) and an error distribution χ. The message space of the scheme is Zt. (Typically,
e ← χ satisfies the condition |e| < Q/2t, and t = 2 is used to encrypt message bits.) The (secret)
key of the encryption scheme is a vector s ∈ ZnQ, which may be chosen uniformly at random, or as
a random short vector. The encryption of a message m ∈ Zt under key s ∈ ZnQ is

c = (a, 〈a, s〉+ bQ/tem mod Q) ∈ Zn+1
Q (1)

where a← ZnQ is chosen uniformly at random. A ciphertext (a, b) is decrypted by computing

m′ = bt(b− 〈a, s〉)/Qe mod t ∈ Zt. (2)

We write c ∈ LWEt|Qs (m) to denote that c is an LWE-encryption of m, and c ∈ LWEt|Qs (m;E) if
c is a random LWE-ciphertext such that c = (a, 〈a, s〉 + bQ/tem + e) where e is a subgaussian

random variable with parameter E. The error of c = (a, b) ∈ LWEt|Qs (m) is err(c) = (b − 〈a, s〉 −
bQ/tem) mod Q, reduced modulo Q to the centered interval [−Q/2, Q/2).

Notice that the error err(a, b) depends not just on (a, b), but also on s, Q, t and m. By the
subgaussian tail estimate, if e = err(c) is subgaussian with parameter E, then |e| <

√
2λE except

with probability at most 2 exp(−λ). Thus, if t divides Q and E ≤ Q/(2t
√

2λ), the decryption
procedure recovers the encrypted message with high probability:

bt(b− 〈a, s〉)/Qe mod t =

⌊
t

Q
·
(
Q

t
m+ e

)⌉
=

⌊
m+

t

Q
e

⌉
= m mod t

because t
Q |e| < 1/2 except with probability 2 exp(−λ).
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3.2 CLWE and CGSW Encryption Schemes

Below, we describe two encryption schemes, Circulant-LWE and Circulant-GSW9, which we need
for our homomorphic accumulator (see Section 4). We do not specify any decryption procedures
since these are not needed for the homomorphic accumulator.

CLWE Encryption Scheme.

Definition 8. We let R, R̃, d, and Q be as in Section 2.2. Let t ≥ 2 be the plaintext modulus. The
Circulant-LWE scheme over R consists of the following algorithms:

– KeyGen: Output a uniformly random element s of R̃.
– Encs(m) for m ∈ R/tR: Let (a, b) be a sample from the Circulant-LWE distribution over R

with secret s and output (a, b′ = b+ bQ/te ·m).

We also define an n-dimensional variant of the scheme where the key is s ∈ Rn, a is a random
vector in Rn and the product a · s is replaced by the inner product over R 〈a, s〉 =

∑n
i=1 ai · si.

Lemma 4. If the decisional R̃- LWE problem is hard, then the Circulant-LWE over scheme is cpa-
secure for messages of the form m = Xk.

We defer this proof to Appendix A.2.

CGSW Encryption Scheme.

Definition 9. We let R, R̃, d, and Q be as in Section 2.2 and G as in Definition 7. Furthermore,
let t ≥ 2 be the plaintext modulus and B an integer ≥ 2, let K be the smallest integer such that
BK ≥ Q.

The Circulant-GSW scheme is described by the following algorithms:

– KeyGen: Sample a uniformly random s from R̃.
– Encs(m) for m ∈ R/tR: Generate a matrix A ∈ R2K×2 where each row is a sample from the

Circulant-LWE distribution with secret s. Output A + bQ/te ·mG.

We also define a n-dimensional variant of the scheme where A ∈ R(n+1)K×(n+1) whose rows are
samples from the n-dimensional Circulant-LWE and where G1 is replaced by Gn.

Lemma 5. If the decisional R̃- LWE problem is hard, then the Circulant-GSW scheme is cpa-secure.

We defer this proof to Appendix A.2.

Ciphertext Spaces.

– We write c ∈ RdLWEt|Qs (m,E) if c = (a,ats +
⌊
Q
t

⌉
m+ e) for some random error vector e that

is E-subgaussian. We extend the notation to C ∈ RdLWEt|Qs (mT , E) for message m ∈ Rkt that

are vectors, meaning that the i-th column Ci of C is in RdLWEt|Qs (mi, E). Furthermore, we
write err(c) for the error term e in c.

– We write C ∈ RdGSWt|Q
s (m,E) if C = (a,as + e) +

⌊
Q
t

⌉
·mG, and the components of e are

independent E-subgaussian variables. We write err(C) for the error vector e in C.
9 Based on [20].
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4 Homomorphic Operations

Most of the operations presented below are meaningful both in the ring/circulant-setting or over
the integers. We consider the RLWE problem over rings Rd = Z[X]/(Xd−1) with d prime and over
R = Z (i.e., simply the LWE problem). However, most of the results presented in this section also
hold for cyclotomic rings. We assume that coefficients of ring elements in R/QR can be added and
multiplied in constant time since, in our implementation, each coefficient fits into a machine word.
Thus, adding two ring elements takes time O(d) and multiplying them takes time O(d log d) using
FFT.

4.1 Known Building Blocks

Let us first recall, within our formalism, known building blocks from the literature. The only novelty
is in this section concerns the FunExpExtract function: while this was already constructed in previous
work, in our set-up we will need to apply a trick from [19] to improve its efficiency.

Linearity.

Key Material: None
Runtime: O(nd) for addition, O(nd log d) for multiplication
Signature:

Add : RdLWEt|Qs (m; E)×RdLWEt|Qs (m′; E′)

→ RdLWEt|Qs

(
m+m′;

√
E2 + E′2

)
x ∈ Rd,Multx : RdLWEt|Qs (m; E)→ RdLWEt|Qs (xm; |x|E)

(3)

The error term in the result of Add holds when the error terms in the input ciphertexts are
independent. Otherwise, it is E + E′.

The Add operations are computed by simply adding the ciphertexts component-wise. The Multx
operations work by scalar multiplication with x. If e is subgaussian with parameter E, then x ·
e is subgaussian with parameter |x|E since, for all b, Tr∗(xeb)/‖b‖ ≤ |x|Tr∗(e(xb))/‖xb‖, and
Tr∗(e(xb))/‖xb‖ is E-subgaussian.

Modulus Switching.

Key Material: None
Runtime: O(d)

Signature: ModSwitchQ→Q
′

:

RdLWEt|Qs (m; E)→ RdLWEt|Q
′

s

(
m;

√
(kE)2 + 1 +

∑
i

|si|2
)

(4)

where s ∈ Rnd and k = bQ′/te / bQ/te ≈ Q′/Q.

The basic idea of modulus switching is to multiply the ciphertext withQ′/Q, or rather bQ′/te / bQ/te.
However, since this factor is not necessarily an integer, we instead use a randomized rounding func-
tion [x] = bxc+Br where Br is a Bernoulli random variable with Pr[Br = 1] = x−bxc. The rounding

10



error r = [x] − x is subgaussian with parameter 1. Let us write k = bQ′/te / bQ/te. Applying the
rounding function component-wise to k · (a, 〈a, s〉+ bQ/tem+ e), we obtain

(ka + r, k〈a, s〉+ bQ′/tem+ ke+ r′) = (ka + r, 〈ka + r, s〉+ bQ′/tem+ ke+ r′ − 〈r, s〉)

where r is the vector of rounding errors for ka and r is the rounding error for b. Thus, the error
term of the modulus-switched ciphertext is ke+ r−〈r, s〉. For each i, risi is |si|-subgaussian. Since
all terms in the sum are independent, the error parameter is

√
(kE)2 + 1 +

∑
i |si|2.

Remark 1. We only use modulus switching in the following two cases: when the dimension of the
key is n = 1, and for short keys in Zn, i.e., n-dimensional keys where |si| ≤ 1. In the first case, the
error parameter simplifies to

√
(kE)2 + 1 + |s|2, in the second case to

√
(kE)2 + n+ 1.

Key switching.

Key Material: S = [Si]i∈[n] where Si ∈ RdLWE
Q|Q
s′ (si · gT ; σ) (Size: O(nd log2Q))

Runtime: O(d log dn logQ)

Signature: KeySwitchs→s
′

S :

RdLWEt|Qs (m; E)→ RdLWE
t|Q
s′

(
m;
√
E2 + σ2d2nK

)
. (5)

where s ∈ Rnd , s′ ∈ Rd.

Algorithm 1 KeySwitchs→s
′

S (c): Transform an RdLWE ciphertext under key s into a ciphertext
under s′.
Require:

S = [Si]i∈[n] where Si ∈ RdLWE
Q|Q
s′ (si · gT ; σ).

A ciphertext (a, b) ∈ RdLWE
t|Q
s (m;E) for some m ∈ R/tR.

Ensure: A ciphertext c ∈ RdLWE
t|Q
s′
(
m;
√
E2 + σ2d2nK

)
if the error terms in c and S are independent.

return (0n′ , b)− g−T (a) · S

Lemma 6. Algorithm 1 is correct. Furthermore, if e = err(c) and ei = err(Si), then the error term
of the output ciphertext is e +

∑n
i=1 dTi ei, where each di is a vector whose entries have operator

norm at most d.

Proof. By definition of g−T , it is easy to see that the error term is e −
∑n
i=1 g−T (ai)ei and each

component of g−T (ai) is in Rd/2Rd. Thus, the second part of the lemma follows. The first part
holds because for every i, g−T (ai)ei is subgaussian with parameter at most

√
Kdσ. If the error

terms are independent, it follows that the error parameter is as stated in the algorithm.

Remark 2. In practice, the choice of the basis decomposition B for the gadget is important. It
allows to trade off key size and running time against error growth. We use

S =
[
RdLWE1,Q

s′ (Bjsi;σ)
]
i=1...n,j=0...K−1

,with K = dlogB Qe
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as key material. The key size decreases to O(nn′dK logQ), and the running time decreases to
O(d log dnn′K), while the output error parameter also increases to

√
E2 + σ2d2B2nK.

External Multiplication.

Key Material: None
Runtime: O(Kd log d)
Signature: ExtMult :

RdLWEt|Qs (Tm; E)×RdGSWt|Q
s (Tm

′
; E′)

→ RdLWEt|Qs

(
Tm+m′ ;

√
E2 + 2Kd2E′2

)
(6)

for s ∈ R if bQ/te is invertible modulo Q.

Algorithm 2 ExtMult(c,C): Multiply anRdLWE ciphertext and aRdGSW ciphertext into aRdLWE
ciphertext.

Require: A ciphertext c ∈ RdLWE
t|Q
s (Tm; E), and a ciphertext C ∈ RdGSWt|Q

s (Tm
′
; E′) with bQ/te

invertible modulo Q.

Ensure: A ciphertext c ∈ RdLWE
t|Q
s

(
Tm+m′ ;

√
E2 + 2Kd2E′2

)
.

return G−1
(
bQ/te−1 · c

)
·C

Lemma 7. Algorithm 2 is correct. Furthermore, for e = err(c) and e = err(C), the error term of
the output is Xk ·e+dTe for some k and a random vector d ∈ R2K

d independent of e with ‖di‖ ≤ d
for every i.

Proof. Write u = bQ/te, so c = (a, as + e + bQ/teTm) and C = (a, 〈a, s〉 + e) + uTm
′
G. Let

d = G−1(u−1 · c). We have:

dT ·C = dT · (a,as+ e) + uTm
′
dTG

= (dTa,dTas+ dTe) + uu−1Tm
′
(
a, as+ e+

⌊
Q

t

⌉
Tm
)

=

(
a′, a′s+ e′ +

⌊
Q

t

⌉
Tm+m′

)
where a′ = dTa+aTm

′
and e′ = dTe+eTm

′
. Each component of e is independent and subgaussian

with parameter E′, and d is a vector in R2K
d , where each entry has binary coefficients. Thus, for

every i, we have |di| ≤ d. By Lemma 2, the error parameter follows.

Exponent Function Extraction.
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Key Material: A key-switch key S from s(pq) ∈ R3
pq to s′ =

∑p−1
i=0 si+1X

i ∈ Rp ⊆ Rpq
(Size: O(p(q + n)K2)
Runtime: O(pq log(pq)K)

Signature: FunExpExtracts
(pq)→s
F,S :

RpqLWE
t|Q′

s(pq)
(Zm; E)→ LWEt|Q

′

s

(
F (m); |F |

√
E2 + 3σ2p2q2K

)
(7)

for some function F : Zpq → Zt where |F | =
∑
i∈Zpq |F (i)| and s ∈ Zp.

Let us first consider the function F0 that maps 0 7→ 1 and k 7→ 0 for k 6= 0. If we can extract
this function, we can extract any function by first multiplying the ciphertext with an appropriate
polynomial.

This extraction is easily provided by the trace function Tr∗ = Tr∗Rpq/Z (see Lemma 1). Indeed, if

(a, b) ∈ RpqLWEs(m), then (a,Tr∗(b)) ∈ LWEs(m0), where a, s ∈ Zpq are the vectors of coefficients
of a and s.

However, this leads to an LWE ciphertext with quadratic dimension pq = Θ(n2), that must
be key-switched to a much smaller dimension Θ(n). Such a key-switch without any ring structure
would require up to Θ̃(n3) running time, and as much key-material.

To circumvent this issue, we exploit the intermediate ring, following one of the tricks of [18].
Namely, we choose a key in Rp, which can also be viewed as an element of Rpq. Switching to this

key, exploiting the structure of Rpq, requires only Θ̃(pq) = Θ̃(n2) operations. Then, one can trace
a down to Rp, and b down to Z, and obtain the desired result.

Algorithm 3 FunExpExtracts
(pq)→s
F,S : Turn an RpqLWE encryption of Zm into an LWE encryption

of F (m).

Require:

A ciphertext c ∈ RpqLWE
t|Q′

s(pq)
(Zm;E),

A function F : Zpq → Zt,
A key-switch key S from s(pq) to s′ ∈ Rp ⊆ Rpq, where s′ =

∑p−1
i=0 s

(pq)
i+1X

i.

Ensure: A ciphertext c′ ∈ LWE
t|Q′
s

(
F (m); |F |

√
E2 + 3σ2p2q2K

)
.

f ←
∑
i∈Zpq F (i)Z−i mod pq ∈ Rpq

c← KeySwitchs
(pq)→s′

S (c) . ∈ RpqLWE
t|Q′
s′ (Zm)

c← Multf (c) . ∈ RpqLWE
t|Q′
s′ (

∑
i∈Zpq F (i)Zm−i mod pq)

(a, b)← Tr∗Rpq/Rp(c) (component-wise)

. ∈ RpLWE
t|Q′
s′ (

∑
i, st q|(m−i) F (i)Xm−i mod pq)

a← (a0, ap−1, ap−2, . . . , a1)
b← Tr∗Rp/Z(b)
return (a, b)

Lemma 8. Algorithm 3 is correct and runs in time O(pq log(pq) logQ′).
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Proof. We can compute Tr∗Rpq/Rp(x) by examining p coefficients of x, and Tr∗Rp/Z(x) is simply
the constant term of x. Thus, the runtime is dominated by the key-switch, which runs in time
O(pq log(pq)K). After the multiplication and key-switch, it holds that

c ∈ RpqLWE
t|Q′

s(pq)

(∑
i∈Zpq

Zm−i mod pq; |F |
√
E2 + 3σ2p2q2K

)

since |f | ≤ |F |. Using Lemma 3, the linearity of the trace function, and the fact that s′ ∈ Rp, we
conclude that after the trace,

(a, b) ∈ RpLWE
t|Q′
s′

(
Tr∗Rpq/Rp

(∑
i∈Zpq

F (i)Zm−i mod pq

)
; |F |

√
E2 + 3σ2p2q2K

)

It holds that

Tr∗(b) = Tr∗(a · s′) + bQ′/teTr∗Rpq/Z

(∑
i∈Zpq

F (i)Zm−i mod pq

)
+ Tr∗(e)

and by Lemma 1, Tr∗
(∑

i∈Zpq F (i)Zm−i mod pq
)

= F (j) ifm = j. Since Tr∗(as) = a0s0+
∑p−1
i=1 ap−isi =

〈a, s〉 and Tr∗ does not increase the error parameter, the correctness of our algorithm follows.

Remark 3. Note that we could reduce the error parameter in Algorithm 3 by performing the mul-
tiplication before the key-switch. However, doing the key-switch first allows to amortize the cost of
gates with multiple outputs, as we shall describe in section B.3.

4.2 New Building Blocks

Exponent Multiplication by Galois Conjugation.

Key Material: None
Runtime: O(nd)
Signature: Galoisα :

RdLWEt|Qs (Tm; E)→ RdLWE
t|Q
ψα(s)

(Tαm; E) . (8)

where α ∈ Z∗d and ψα is the automorphism of Rd defined by T 7→ Tα.

Given a RdLWE-ciphertext (a, as + bQ/teTm + e), by applying ψα component-wise, we obtain
(ψα(a), ψα(a) ·ψα(s) + bQ/teTαm +ψα(e)). Applying Galoisα does not change the error parameter
because Tr∗(ψα(e)b) = Tr∗(ψα(eψ−1α (b))) = Tr∗(eψ−1α (b)). The running time is O(d) because for
x ∈ R, ψα(x) is computed simply by permuting the coefficients of x. Even if the ciphertext is in FFT
representation, the runtime remains O(d), as ψα also acts on those representations by permutation.

Exponent CRT by tensoring.

Key Material: None
Runtime: O(pq)
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Signature: ExpCRT:

RpLWEt|Q⊗sp (Xmp ; Ep)×RqLWEt|Q⊗sq (Y mq ; Eq)

→ RpqLWEt|Q⊗s

(
Zm;

√
E2
p + E2

q + t
√

2λEpEq

)
(9)

if t · bQ⊗/te = 1 mod Q⊗, and where m = αmp + βmq is such that mp = m mod p and
mq = m mod q and s = (−ψα(sp)⊗ ψβ(sq), ψα(sp)⊗ 1, 1⊗ ψβ(sq)).

Note that the condition t · bQ⊗/te = 1 can be easily satisfied in our bootstrapping scheme
because we perform a modulus switch before and after ExpCRT.

Algorithm 4 ExpCRT
(
c(p), c(q)

)
Require: Ciphertexts c(p) ∈ RpLWE

t|Q⊗
sp (Xmp ;Ep) and c(q) ∈ RqLWE

t|Q⊗
sq (Y mq ;Eq).

Ensure: A ciphertext c ∈ RpqLWE
t|Q⊗
s (Zm;

√
E2
p + E2

q + t
√

2λEpEq) except with probability
2 min(p, q) exp(−λ) where s = (−ψα(sp) ⊗ ψβ(sq), ψα(sp) ⊗ 1, 1 ⊗ ψβ(sq)) for α = q−1 mod p and
β = p−1 mod q, and m is such that m mod p = mp and m mod q = mq.

(ap, bp)← Galoisα
(
c(p)

)
. ∈ RpLWE

t|Q⊗
ψα(sp)

(
Xαmp ;Ep

)
(aq, bq)← Galoisβ

(
c(q)

)
. ∈ RqLWE

t|Q⊗
ψβ(sq)

(
Y βmq ;Eq)

a← (ap ⊗ aq, ap ⊗ bq, bp ⊗ aq)
return (ta, tbp ⊗ bq)

We will need the following lemma to bound the tensor product of two subgaussian random
variables.

Lemma 9. Let A and B be independent subgaussian random variables on Rp and Rq, respectively,

with parameters γ and δ. Then, for every λ ∈ R, A⊗B is subgaussian with parameter
√

2λγδ except
with probability 2 min(p, q) exp(−λ).10

Proof. We want to show that for every y ∈ Rpq \ {0}, Tr∗((A ⊗ B)y)/‖y‖ is subgaussian (except

with a small probability). Let y ∈ Rpq \ {0}. We can write y =
∑q−1
i=0 yi ⊗ Y i. It holds that

‖y‖ =
√∑

i ‖yi‖2. Thus,

Tr∗((A⊗B)y)

‖y‖
=
∑
i

Tr∗(Ayi ⊗BY i)
‖y‖

=
∑
i

Tr∗(Ayi) · Tr∗(BY i)

‖y‖

Let Ei be the event that |Tr∗(Ayi)| ≥
√

2λγ‖yi‖. Applying the subgaussian tail estimate, we
conclude that for each i, p(Ei) ≤ 2 exp(−λ). By the union bound, it follows that, for E =

⋃
iEi,

p(E) ≤ 2q exp(−λ). We now proceed similarly to the proof of Lemma 2. For every fixed value

10 More formally, for some event E with p(E) ≤ 2 min(p, q) exp(−λ), when conditioning on E, A ⊗ B is
subgaussian with parameter

√
2λγδ.
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a ∈ Rp such that Tr∗(ayi) <
√

2λγ‖yi‖ for all i, we have

∑
i

Tr∗(ayi) · Tr∗(BY i)

‖y‖
=

Tr∗
(∑

iB Tr∗(ayi)Y
i
)

‖y‖

which is subgaussian with parameter∥∥∑
i Tr∗(ayi)Y

i
∥∥ δ

‖y‖
=

√∑
i Tr∗(ayi)2δ√∑
j ‖yj‖2

<

√
2λγδ

√∑
i ‖yi‖2√∑

j ‖yj‖2
=
√

2λγδ

We can then use the independence of A andB to conclude that, conditioned on E, Tr∗((A⊗B)y)/‖y‖
is (
√

2λγδ)-subgaussian, as claimed.

Using a similar argument, this time writing y =
∑p−1
i=0 X

i ⊗ yi, it also follows that Tr∗((A ⊗
B)y)/‖y‖ is (

√
2λγδ)-subgaussian except with probability 2p exp(−λ). This proves our claim.

Lemma 10. Algorithm 4 is correct and runs in time Θ(pq).

Proof. Let m′ = αqmp + βpmq mod pq. It holds that m′ mod p = mp and m′ mod q = mq. Thus,
by the Chinese Remainder Theorem, m′ = m. Let s′p = ψα(sp) and s′q = ψβ(sq). Let us write

b′p = uXαmp + ep and b′q = Q⊗Y
βmq/t+ eq. We have

tbp ⊗ bq = tapsp ⊗ bq + tb′p ⊗ aqsq + tb′p ⊗ b′q
= −taps′p ⊗ aqs′q + taps

′
p ⊗ b′q + tbp ⊗ aqs′q + tb′p ⊗ b′q

and tb′p⊗b′q = bQ⊗/teXαmp⊗Y βmq +Xαmp⊗eq+ep⊗Y βmq +tep⊗eq. Since Xαmp⊗Y αmq = Zm,
the error term is

epq = Xαmp ⊗ eq + ep ⊗ Y βmq + tep ⊗ eq.
Since ep and eq are independent, the sum of the first two terms is subgaussian with parameter√
E2
p + E2

q . The third term is subgaussian with parameter t
√

2λEpEq, except with probability

2 min(p, q) exp(−λ) by Lemma 9. In total, epq is subgaussian with parameter
√
E2
p + E2

q+t
√

2λEpEq

except with probability 2 min(p, q) exp(−λ).
Thus, with a = (ap ⊗ aq, ap ⊗ bq, bp ⊗ aq) and s = (−ψα(sp)⊗ ψβ(sq), ψα(sp)⊗ 1, 1⊗ ψβ(sq)) =

(−s′p⊗s′q, s′p⊗1, 1⊗s′q), an easy computation shows that tbp⊗bq−t〈a, s〉 = tb′p⊗b′q = bQ⊗/teZm+epq.
The algorithm is correct.

The running time is dominated by the cost of tensoring the ring elements, which takes time
Θ(pq).

4.3 Evaluating Inner Products in Exponents

This procedure allows evaluation of inner products in exponents with log d times less homomorphic
additions in exponents than in FHEW, also less key material.

As a subroutine, we construct an (External) Multiply-and-Add operation in the exponent, for a
public coefficient α ∈ Z∗d. We defer the error analysis of this step to the next algorithm (Theorem 2)
with ` = 1.

External Multiply-and-Add in the Exponent.
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Key Material: Key-switch keys Sα (from ψα(s) to s) and Sβ (from ψβ(s) to s), where
β = α−1 mod d (Size: O(Kd logQ))
Runtime: O(Kd log d)
Signature: ExtExpMultAddαSα,Sβ :

RdLWEt|Qs (Tm
′
; E)×RdGSWt|Q

s (Tm; E′)→ RdLWEt|Qs

(
Tαm+m′ ; E′′

)
.

where E′′ =
√
E2 + d2K(4σ2 + E′2).

Algorithm 5 ExtExpMultAddαSα,Sβ (c,C)

Require: α ∈ Z∗d, with inverse β = α−1 ∈ Z∗d
A ψα(s)→ s Key-Switching key Sα ∈ RdLWE

Q|Q
s

(
ψα(s) · gT ; σ

)
A ψβ(s)→ s Key-Switching key Sβ ∈ RdLWE

Q|Q
s

(
ψβ(s) · gT ; σ

)
A ciphertext c ∈ RdLWE

t|Q
s (Tm

′
; E). A ciphertext C ∈ RdGSWt|Q

s (Tm; E′)

Ensure: A ciphertext c′ ∈ RdLWE
t|Q
s (Tαm+m′ ; E′′).

c1 ← Galoisβ(c) . ∈ RdLWE
t|Q
ψβ(s)

(
T βm

′)
c2 ← KeySwitch

ψβ(s)→s
Sβ

(c1) . ∈ RdLWE
t|Q
s

(
T βm

′)
c3 ← ExtMult(C, c2) . ∈ RdLWE

t|Q
s

(
Tm+βm′

)
c4 ← Galoisα(c3) . ∈ RdLWE

t|Q
ψα(s)

(
Tαm+m′

)
c5 ← KeySwitch

ψα(s)→s
Sα (c4) . ∈ RdLWE

t|Q
s

(
Tαm+m′

)
return c5.

Remark 4. A similar speed-up was obtained in [10] using a different technique, namely a Mux oper-
ation. We are unfortunately unable to use it in our circulant set-up, essentially because encryptions
of 0 are not allowed: our ind-cpa-security guarantee (Lemma 4) only applies to encryptions of Xm

for some m ∈ Zd. Yet our technique is more general, precisely, we do not restrict the secret input
vector to have binary coefficients.

By chaining, this allows us to evaluate inner products 〈x,y〉 over Zd in the exponent, given

GSW encryptions RdGSWt|Q
s (T xi) and a public vector of coefficients y ∈ Z`d.

External Inner-product in the Exponent.

Key Material: Key-switch keys Sα from ψα(s) to s, for every α ∈ Z∗d. (Size: O(d2 log2Q))
Runtime: O(lKd log d)
Signature: ExtExpInner y[Sα]α :

⊕̀
i=1

RdGSWt|Q
s (T xi ; E′)→ RdLWEt|Qs

(
T 〈x,y〉;

√
2K`2d2σ2 + 2K`d2E′2

)
. (10)
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Algorithm 6 ExtExpInner y[Sα]α([Ci]i∈[l])

Require: A public vector y ∈ Z`d
A ψα(s)→ s Key-Switching key Sα ∈ RdLWE

Q|Q
s

(
ψα(s) · gT ; σ

)
for each α ∈ Z∗d

A ciphertext Ci ∈ RdGSWt|Q
s (T xi ; E′) for each i ∈ [`]

Ensure: A ciphertext c ∈ RdLWE
t|Q
s

(
T 〈x,y〉;

√
4K`2d2σ2 + 2K`d2E′2

)
if the error terms in the Ci are

independent.

c← (0, T 0) . ∈ RdLWE
t|Q
s (T 0; 0)

for i from 1 to ` where yi 6= 0 do
α = yi; β = α−1 mod d
c← ExtExpMultAddαSα,Sβ (c,Ci)

. ∈ RdLWE
t|Q
s

(
T

∑i
j=1 xjyj ,

√
4Ki2d2σ2 + 2Kid2E′2

)
end for
return c

Theorem 2. Algorithm 6 is correct and runs in time Θ(lKd log d).

Proof. By induction, we prove that the error term of c in the i-th iteration of the for-loop is of the
form e1 + e2 where e1 is (2id

√
Kσ)-subgaussian, and e2 =

∑i
j=1

〈
d(j), ψyj (e

(j))
〉

with the following

properties: e(j) is the error vector of Cj , and d(j) ∈ R2K
d is a random vector with |d(j)

n | ≤ d that is
independent of e(k) for all k ≥ j.

Clearly, our claim holds prior to the loop (with i = 0) since c has no error term at this point. Sup-
pose now that the claim holds for i−1. Let α = yi and β = α−1 mod d. During the ExtExpMultAdd
operation, we first apply a Galois operation, which results in an error term of ψβ(e1) +ψβ(e2). This
is followed by a key-switch, which, by Lemma 6, changes the error to ψβ(e1) +ψβ(e2) + eks,1 where

eks,1 is independent of ej for all j, and subgaussian with parameter
√
Kdσ. Next comes an ExtMult

operation which changes it to Xkψβ(e1) + Xkψβ(e2) + Xkeks,1 +
〈
d, e(i)

〉
for some k, where e is

the error in Ci, and d ∈ R2K
d is a random vector independent of e(j) for j ≥ i which satisfies

|dn| ≤ d for every n, by Lemma 7. After the second Galois and key-switch, the error term becomes
Xαke1 +Xαke2 +Xαkψα(eks,1) + ψα

(〈
d, e(i)

〉)
+ ψα(eks,2) where eks,2 is again subgaussian with

parameter
√
Kdσ. We can reorder the error terms and write

Xαke1 +Xαkψα(eks,1) + ψα(eks,2)︸ ︷︷ ︸
e′1

+Xαke2 + ψα(〈d, e(i)〉)︸ ︷︷ ︸
e′2

By the induction hypothesis and since eks,1 and eks,2 are subgaussian with parameter d
√
Kσ, it

follows that e′1 is (2id
√
Kσ)-subgaussian (because we do not assume that e1, eks,1 and eks,2 are

independent). Finally, it holds that

Xαke2 =

i−1∑
j=1

〈
Xαkd(j), ψyj

(
e(j)
)〉

and thus, setting d′(j) = Xαkd(j) for j < i and d′(i) = ψyi(d), we have e′2 =
∑i
j=1

〈
d′(j), ψyj (e

(j))
〉

which completes the induction step. Finally, by repeated applications of Lemma 2, we conclude
that the error term in the output is subgaussian with parameter

√
4K`2d2σ2 + 2K`d2E′2.
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It is easy to see that the algorithm has the claimed runtime by adding up the runtimes of the
algorithms used in ExtExpMultAdd.

Remark 5. The asymmetry in the error parameter
√

4K`2d2σ2 + 2K`d2E′2 with `2 on the left-
hand side and ` on the right is due to the fact that key-switch keys can be reused in multiple loop
iterations. Thus, the error parameter that we state in Algorithm 6 represents the worst case where
we have the same α in every loop iteration, and α = α−1 mod d. In practice, this will happen very

rarely, so we can expect an error parameter close to
√
K`d2

(
4σ2 + 2E′2

)
.

5 Joining the building blocks

In this section, we explain how the building blocks we described in Section 4 fit together to form
the homomorphic evaluation and bootstrapping procedure EvalBootstrap. See Fig. 1 for a schematic
overview. We build an algorithm that, given ciphertexts ci ∈ LWEs(mi;Ein), i ∈ {1, . . . , k} with
s ∈ ZpQ′ a short vector (i.e., si ∈ {−1, 0, 1} for all i), a function f : Zt → Zt, and coefficients

γ1, . . . , γk ∈ Zt such that
∑
i |γi| ≤ t, produces c ∈ LWEs(f(m);Eout) where m =

∑k
i=1 γimi. We

do not assume that the error terms in the ci are independent of each other, or independent of the key
material used by EvalBootstrap: if an input ci is the result of a previous application of EvalBootstrap,
then its error term is not independent of the error terms in the bootstrapping/evaluation key
material. We use the following parameters for the building blocks:

– n as the security parameter,
– p, q = Θ(n), Q = poly(n), K = dlogQe = O(log n), t = Θ(n) such that t ≤ √pq/4,
– λ = Θ(n) such that λ ≤ q as the failure parameter; the decryption and homomorphic evaluation

procedures should only fail with probability exponentially small in λ,
– σ as the error parameter used in the key material,
– Q′, Q⊗ = O(Q/

√
nσ), with t · bQ⊗/te = 1 mod Q⊗.

For mi ∈ {0, 1}, the algorithm can evaluate arbitrary k-bit gates if t ≥ 2k, using γi = 2i−1 and
an appropriately chosen f . We can compute a threshold gate if t > k by setting γi = 1 for all i.

Theorem 3. Algorithm 7 is correct and runs in time Õ(n2). Moreover, there exists Q = O(γ′|f |n6.5σ1.5)
such that the output of EvalBootstrap can be used as input for another execution of EvalBootstrap
with coefficients γ′1, . . . , γ

′
k such that γ′ =

∑
i |γ′i| (with failure probability exponentially small in n).

Proof. It is straighforward to verify the error parameters for each step in the comments of the
algorithm. There are two steps where failures might occur: the ExpCRT step, and the FunExpExtract
step. The failure probability for ExpCRT is 2 exp(−λ). FunExpExtract will not fail to extract the
value of F , but if the error term in c is too large, the output might not be an encryption of
f(m). The subgaussian tail estimate guarantees that the failure probability is at most 2 exp(−λ)
if
√
r2γ2E2

in + p+ 1 ≤ pq/(2t
√

2λ) where r = bpq/te / bQ′/te. Since t ≤ √pq/4 and λ ≤ q, this

condition is satisfied if
√
r2γ2E2

in + p+ 1 ≤
√

2p, or equivalently,

γEin ≤
√
p− 1

r2︸ ︷︷ ︸
T

= Θ

(√
Q′2

pq2

)
= Θ

(
Q

n2
√
σ

)
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Algorithm 7 EvalBootstrapf,γ1,...,γkS (c1, . . . , ck): Homomorphically evaluate a function and produce
a bootstrapped encryption of the result.

Require: ci ∈ LWE
t|Q′
s (m;Ein), f : Zt → Zt, γi ∈ Zt where γEin ≤ T for a certain T = Θ(Q/(n2√σ)),

and S is the required public key material consisting of:
– Bootstrapping keys BK

(d)
i ∈ RdLWE

t|Q
s(d)

(si mod d;σ) for i = 1, . . . , n and d = p, q, where |s(d)|+1 ≤ µ
– Key-switch keys Sd,α from ψα(s) to s for d ∈ {p, q} and α ∈ Z∗d
– A key-switch key S from s(pq) to s′ where s(pq) =

(
−ψα

(
s(p)
)
⊗ ψβ

(
s(q)
)
, ψα

(
s(p)
)
⊗ 1, 1⊗ ψβ

(
s(q)
))

for α = q−1 mod p, and β = p−1 mod q, and s′ =
∑p−1
i=0 si+1X

i

Ensure: c ∈ LWE
t|Q′
s

(
f
(∑k

i=1 γimi

)
;Eout

)
where Eout = O

(
|f |n4.5σ

)
, except with probability exponen-

tially small in n.

c←
∑k
i=1 ci . ∈ LWE

t|Q′
s (m; γE

)
c← ModSwitchQ

′→pq(c) . ∈ LWE
t|pq
s (m;

√
r2γ2E2 + (p+ 1)2) where r = bpq/te / bQ′/te(

a(p), b(p)
)
← c mod p(

a(q), b(q)
)
← c mod q

c(p) ← Xb(p) · ExtExpInner−a(p)

[Sp,α]α

([
BK

(p)
i

]
i

)
. ∈ RpLWE

t|Q
s

(
Xb−〈a,s〉 mod p;O

(
n2.5σ

))
c(q) ← Y b

(q)

· ExtExpInner−a(q)

[Sq,α]α

([
BK

(q)
i

]
i

)
. ∈ RqLWE

t|Q
s

(
Y b−〈a,s〉 mod q;O

(
n2.5σ

))
c(p) ← ModSwitchQ→Q⊗

(
c(p)

)
. ∈ RpLWE

t|Q⊗
s(p)

(
Xb−〈a,s〉 mod p;O

(
n
√
σ
))

c(q) ← ModSwitchQ→Q⊗
(
c(q)

)
. ∈ RqLWE

t|Q⊗
s(q)

(
Y b−〈a,s〉 mod q;O

(
n
√
σ
))

c(pq) ← ExpCRT
(
c(p), c(q)

)
. ∈ RpqLWE

t|Q⊗
s(pq)

(
Zb−〈a,s〉;O

(
n3.5σ

))
c(pq) ← ModSwitchQ⊗→Q

′(
c(pq)

)
. ∈ RpqLWE

t|Q′

s(pq)

(
Zb−〈a,s〉;O

(
n3.5σ

))
F ← (x 7→ f(btx/qe mod t)) . F : Zpq → Zt, |F | = |f |pq/t = O(|f |n)

c← FunExpExtracts
(pq)→s
F,S

(
c(pq)

)
. ∈ LWE

Q′|t
s

(
f(m);O

(
|f |n4.5σ

))
return c

20



The runtime is dominated by ExtExpInner and FunExpExtract, which run in time O(nKd log d)
and O(Kpq log(pq)), respectively. Given our asymptotic parameter choices, both of those are Õ(n2).

If we want to use outputs of EvalBootstrap as inputs for another execution of EvalBootstrap,
where the absolute values of the coefficients sum up to γ′, we require that γ′Eout ≤ T . From the
asymptotic formulas for Eout and T , it is easy to see that this inequality can be satisfied by a Q in
O(|f |γ′n6.5σ1.5).

6 Implementation

In addition to the formal analysis, we developed a complete implementation of the scheme. Our
objective was to make it efficient and usable. We present below the key techniques that enable us
to evaluate a 6-bit gate in roughly 6.4 seconds on a laptop.

6.1 Implementation details

FFT The most intensive computations throughout the scheme are the multiplications of ring ele-
ments. For efficiency this is classically done in the frequency domain. The cost for a multiplication
decreases from Θ(nc) down to Θ(n log n), where c = log(3) in the case of Karatsuba algorithm for
example. Since we are dealing with circulant ring elements, we may wish to run the FFT operation
in the ring dimension exactly. But our ring dimensions are prime, which is the worst case for FFT
efficiency. We ran some benchmarks and it turned out that it was much faster to use a bigger
dimension (with small prime factors), and do the polynomial reduction afterwards. Also we do not
meet the conditions to apply NTT (our moduli are not primes), so our choice was to stick with
FFT computations and we use the FFTW library [14] for the forward and backward transforms.

More challenges arose with FFT computations since our biggest modulus is Q = 256 and the
FFT works with double precision numbers (i.e. 53 bits mantissa). So we have to split the ring
coefficients into two halves of 28 bits each and apply the FFT transformation on each to prevent
rounding errors. We perform this splitting trick only when needed, ie when the ring element is not
small. For example, in ExtMult products of ring element are computed where one of the operands
is the output of a Gadget decomposition. This operand needs not be split before FFT forward
transform because it is very small.

Pre-computations In order to minimize the evaluation time of the gate, a maximum of heavy
computations are done in the setup phase. Consequently all keys materials: bootstrapping keys, key-
switching keys, among others, are computed ahead of time and in FFT domain. Our CirculantRing
class allows to transparently manipulate ring element in FFT or coefficient representation which
greatly contribute to both performance and code readability.

Further optimization The implementation has been done in C++11, using its most convenient
and efficient features. For example, all classes are extensively defined with template parameters
(dimension, moduli, basis decomposition...). This trick allows the computer to know, at compile
time, the values of many variables (eg. loop ranges). The compiler then produces dedicated and
highly optimized binaries.

On our benchmark laptop with gcc 7.1.1, we also tweaked the optimization flags to save 5%
more time than the usual -O2, which already saves 75%.
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Open-source Many efforts have also been made for general availability and usability. The whole
code is documented with Doxygen and many unitary tests are provided. With under 4,000 lines of
code, it remains accessible to whoever wants to tweak or improve it. The implementation is publicly
available and open-source 11.

At the first start (and only then), heavy computations are performed by the FFTW components,
in order to optimize the FFT for the current computer.

6.2 Parameters

For our first implementation, we targeted a 6-bit input gate. The parameters of the scheme are as
follows:

– For 6 input bits, the plaintext modulus t = 26.

– The ring dimensions p and q are 1439 and 1447, so pq = 2, 077, 892.
Hence the FFT dimensions are dFFT1 = 3072 = 3 · 210 for Rp,Rq and dFFT2 = 4, 194, 304 = 222

for Rpq.
– The modulus in ExtExpInner and the LWE are Q,Q′ = 256.

– Errors and secrets are sampled according to Section A.3. Secrets are ternary, one third of the
coefficients are set to -1, another to 1 and the rest to 0. Errors have variance 4.

For ExpCRT we want a small inverse to bQ⊗/te mod Q⊗. Hence we choose Q⊗ = (219 − t + 1)2.
Finally, for the gadget decomposition we use B = 28 and K = 7 for ExtExpInner and FunExpExtract
and their key material.

We also have extra parameters related an to optimization presented in Appendix B.1. Namely,
we apply an extra KeySwitch over LWE ciphertext to decrease the length l of the decryption inner-
product from l = p = 1439 down to l = 600. This key-switch happens with modulus Q = 256, error
standard deviation 233, and gadget parameters B = 26, K = 10.

Error growth and Correctness To choose the parameters, we simulated the error growth throughout
the gate, using heuristic error propagation assumption, described in Appendix B.2. This simulation
script is provided with the code as file scripts/parameters.sage. We compared the predicted
variance of each step to the experimental one, and found them to be corroborated. From the final
variance, and according to a central limit heuristic, we predict a failure probability of only 2−74

for the above parameter set. In practice we have tested our scheme hundreds of time on different
inputs, and never observed failure.

Security To estimate the concrete security of our parameter set, we use the lwe-estimator from
Albrecht [2]. All the LWE instances behind our LWE, RpLWE, RqLWE ciphertexts given as part
of the evaluation key offers at least 100 bits of security, according to the estimator as of commit
cc5f6e8, which includes the latest result of [1] for small secrets. Therefore we feel safe to claim at
least 80 bits of security.

11 https://github.com/gbonnoron/Borogrove
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6.3 Performances

We run our test on a punchy laptop: Core i7-6500U (2.50 GHz, 4MB L2 cache), 16 GB RAM with
a GNU/Linux Fedora 26 installed on a SSD. The computation is single-threaded and we got the
following timings:

– FFTW wisdom computation (only once per computer): 68 minutes
– Key pre-processing (once per user key pair): 38 seconds
– 6-bit input, 1-bit output gate evaluation: 6.4 seconds

The gate time breaks down into: 0.60 s per ExtExpInner (the two could be run in parallel), 4.0 s for
the KeySwitch in FunExpExtract and only 0.55 s for the output bit related operations. Consequently,
computing another function (1 more output bit) on the same 6 input bits would add only 0.55 s,
and so on. For 6-to-6 bit gate it yields just above 10 seconds. On the memory front, we need 9.2
GB of RAM to store all key materials for the computation.

Optimisations This first implementation includes only those on ExtExpInner described in Section
B.1. Over the total gate evaluation time, 60% (3.8 s) are spent on FFT forward and backward
transforms. The 3.8 seconds break down into 0.9 sec for more than 350k FFT in dimension dFFT1

(Rp and Rq), and 2.9 sec for only around 250 FFT in dimension dFFT2 for Rpq. We estimate that
the optimisations of Appendix B.4 will bring these 2.9 seconds down to 1 or 1.5 second at most. This
rough estimate is based on partial implementation, soon to be confirmed after complete integration.
The overall gate time should drop below 6 seconds and the cost of additional output bits become
negligible.

References

1. Martin R. Albrecht. On dual lattice attacks against small-secret LWE and parameter choices in HElib
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A More details on Circulant LWE

A.1 Circulant LWE and reduction to Ring-LWE

In all this subsection, we assume d to be prime. It is well known that the naive decisional ver-
sion of Ring-LWE is insecure over circulant rings, simply by exploiting the CRT decomposition
Rd/QRd ' R̃d/QR̃d × Z/QZ when Q is coprime to d, and mounting an attack on the Z/QZ
part (projecting to this part corresponds to evaluating the polynomial at 1, and therefore maintain
smallness of the error). However, this does not mean that such rings are inherently insecure: The
NTRU cryptosystems [24, 23] use circulant rings, choosing the secret key and errors that evaluate
to a fixed known value (say 0) at 1.

This suggests a strategy to construct a variant of Ring-LWE over circulant rings that would be
as secure as the cyclotomic Ring-LWE, simply by lifting all elements x̃ ∈ R̃d/QR̃d to x ' (x̃, 0),
yet this reverse CRT operation may not keep small elements small.

Instead, one can construct such a lift without working modulo Q, in order to preserve smallness
of coefficients (up to some reasonable distortion). We also note that such a lift should actually
start from the co-different ideal R̃∨d , so as to match the Ring-LWE instances admitting worst-case
hardness proofs [25], yet a reduction (with some loss on the error parameter) to Ring-LWE without
the co-different was given in [12].

Because 1 −X and Φd(X) are not coprime over Z[X] (their gcd is d, not 1), we do not have a
CRT decomposition of Rd as R̃d × Z. Yet, those polynomials are coprime over Q[X] which allows
to write

Kd = K̃d ×Q
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where Kd = Q[X]/(Xd − 1) and K̃d = Q[X]/Φd(X).12 We write L the canonical inclusion map
L : K̃d → Kd, which is explicitly given by

L :

d−1∑
i=0

aiX
i 7→

d−1∑
i=0

aiX
i − 1

d
(

d−1∑
i=0

ai)(

d−1∑
i=0

Xi).

Note that the above formula can be extended to a Q-linear map Kd → Kd, viewing K̃d as a
subspace of Kd according to the above isomorphism Kd = K̃d × Q. This extension of L is the
projection orthogonal to the all-1 vector in coefficient representation. Unfortunately the image
L(R̃d) is not included in Rd: the projection does not maintain integrality of coefficients. Yet, one
notes that a small ideal I ⊂ R̃d does have an integer lift: namely, the ideal Ĩ = (1−X)Rd satisfies
L(Ĩ) ⊂ Rd. Moreover, for a ∈ Ĩ, it holds that

∑
ai = 0, in particular L preserves sizes of elements

of Ĩ.
Also consider the lift L taken modulo Q (assuming Q is coprime to d), simply replacing 1

d ∈ Q
by the inverse of d in Z/QZ, denoted by LQ. Consider a Ring-LWE sample as defined in [12]:

(ã, b̃ = ãs̃+ ẽ) ∈ (R̃/QR̃)2 for small s̃, ẽ ∈ R. We lift this sample to R/QR:

a = LQ(ã), b = LQ((1−X)b̃). (11)

We define s = L((1 −X)s̃) and e = L((1 −X)s̃), and it holds that s = LQ((1 −X)s̃) mod Q
and e = LQ((1−X)ẽ) mod Q since s and e are integral. Therefore,

b = LQ((1−X)ã · s̃+ (1−X)ẽ)

= LQ(ã) · LQ((1−X)s̃) + LQ((1−X)ẽ)

= LQ(ã)s+ e mod Q

= as+ e mod Q

We also note that s, e are still small since the operator norm of 1−X is less than 2: these Circulant-
LWE samples are useful.

It remains to explain what this transformation does to uniform samples (ã, b̃) ∈ (R̃/QR̃)2.
Assume that Q is coprime to d, it then holds that Q and (1 − X) are coprimes over the integral
ring R̃d. Therefore, the multiplication by 1−X over (R̃/QR̃) is a bijection, so the sample (ã, (1−
X)b̃) ∈ (R̃/QR̃)2 is also uniform in (R̃/QR̃)2. Finally, the lift LQ is injective, so the final sample

(a, b) ∈ (R/QR)2 is uniform over (LQ(R̃/QR̃))2. One easily characterizes the image LQ(R̃/QR̃)

of LQ as the set Sd,Q = {
∑d−1
i=0 aiX

i |
∑
ai = 0 mod Q} of elements of R/QR whose coefficients

sums to 0 modulo Q.

Lemma 11 (Hardness of Circulant-LWE). Assume that d is prime, and Q is coprime to d. If it
is hard to distinguish samples (ãi, b̃i = ãis̃+ ẽi) ∈ (R̃/QR̃)2 from uniform where ẽi are independent
random variables drawn from a distribution ψ, then the samples (ai = LQ(ãi), bi = LQ((1−X)b̃i) ∈
S2d,Q ⊂ (R/QR)2 are also hard to distinguish from uniform samples in S2d,Q.

A.2 Security proofs for CLWE and CGSW Encryption schemes

Lemma 12 (Restatement of Lemma 4). If the decisional R̃- LWE problem is hard, then the
Circulant-LWE scheme is cpa-secure for messages of the form m = Xk.

12 While K̃d is a field, Kd is only a ring, but we keep this notation for coherence.
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Proof. If R̃- LWE is hard, then by Lemma 11, the Circulant-LWE distribution is indistinguishable
from the uniform distribution over S2d,Q. To prove cpa-security, it suffices to show that, for any

k ∈ Z/dZ and u = bQ/te, we have Sd,Q + uXk = Sd,Q + u. This then shows that a Circulant-LWE
encryption of m = Xk is indistinguishable from a uniformly random sample from Sd,Q× (Sd,Q+u).

Indeed, Sd,Q + u = {
∑d−1
i=0 aiX

i |
∑
ai = u mod Q} = Sd,Q + uXk.

Lemma 13 (Restatement of Lemma 5). If the decisional R̃- LWE problem is hard, then the
Circulant-GSW scheme is cpa-secure.

Proof. Let C be a Circulant-GSW ciphertext. Each row of C is of the form (a, b) + (0, uBim) or
(a, b) + (uBim, 0) where m = Xk and (a, b) is a Circulant-LWE sample, and thus indistinguishable
from a random element of S2d,Q. By the same argument as in the previous proof, each row of C

is indistinguishable from a uniformly random samble from either (Sd,Q + uBi) × Sd,Q, or Sd,Q ×
(Sd,Q + uBi) where i only depends on the row number, not on m.

A.3 Simpler error distribution in CLWE for practice

In practice, most FHE schemes do not follow precisely the Ring-LWE problem definition admitting
reduction to worst-case problem [25, 26]. For example, HElib [22] uses Ring-LWE with spherical
errors in the coefficient embedding, and very sparse ternary secrets, and ignoring the co-different
ideal R∨. The TFHE scheme [10] also relies on Ring-LWE with ternary secrets, which is not
know to reduce to the regular Ring-LWE. Cutting such corners appears quite crucial to error
growth management and therefore efficiency. We will follow this approach, and define adjust the
distributions as follows.

– we proceed to sample secrets and error isotropically in Sd,Q, while the above reduction leads to
errors with a distortion factor (1−X). This distortion seems to be an artefact of the proof, as it
breaks symmetries: one could choose a different way of breaking those symmetries by replacing
1−X by 1−Xe for any e coprime to d. Respecting the symmetries seems a better idea in the
light of recent analysis [9, 28].

This variant could also be proved secure (with a loss of a constant factor about
√

2 on the size
of the error), simply by adding more noise to make it spherical again, using the convolution
lemma of [27], but this would drag us away from the topic of this paper.

– we choose to use ternary secrets s, which, as in previous schemes leads to serious performance
improvements due to smaller error growth. It has recently been showed that such choices make
lattice attacks somewhat faster [1], especially when s is very sparse: we will account for this
refined analysis when measuring the concrete security of our proposed parameters.

Sampling of a. We sample a uniform in Rd/(QRd) under the constraint a(1) mod Q = 0 by
choosing all the coefficients ai at random for i ≥ 1, and setting a0 = −

∑
i>0 ai mod Q.

Sampling of s. When d is prime, we sample a a ternary s of density δ = 2/3 by choosing exactly
bδd/2c coefficients set to 1 and bδd/2c coefficients set to −1. This implies that s(1) = 0, and
‖s‖2 = 2bδd/2c. Indeed, we find it preferable to fix its length to avoid sampling sparse keys that
would be subtentially weaker.
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Sampling of e. We wish to sample errors e with variance σ in a way that ensures e(1) = 0. We set:

e =

σ2d/2∑
i=0

T ai − T bi ,

where the ai’s and bi’s’ are independant uniform exponents modulo d. One note that this distribution
is invariant by permutation over {1, T, . . . , T d−1} : we have preserved the symmetries of the ring.
Note that this procedure would get rather slow for large σ, yet we won’t exceed σ ≤ 8 in our
parameter choices.

Remark 6. The above procedure would not be adapted for composite degree d, as more care is
required to construct a lift as done in section A.1. Yet, while we will make use of circulant ring Rd
with composite degree d = pq, we will never directly construct ciphertexts over that ring. Indeed,
the ciphertext in Rd will be publicly constructed by tensoring two ciphertexts from Rp and Rq,
and are therefore no easier to decrypt than the original ciphertexts over Rp and Rq.

B Optimizations

In this section, we present some optimization of the scheme for practice. Our implementation
does include the optimizations from Sections B.1, B.2 and B.3. We left out the optimization from
Section B.4, which requires substential modifications to our code base.

B.1 Accelerating ExtExpInner

Factoring Galois-KeySwitch sequences We note that it is possible to factor some operations when

chaining ExtExpMultAddα and ExtExpMultAddα
′
, by applying Galoisαβ

′
rather than Galoisα followed

by Galoisβ (together with the appropriate Key Switches), cf Fig. 2.
Furthermore, if y ∈ Z`d contains repeated values, it is possible to re-index the inner product to

make equal values contiguous, and skip useless Galois1 operations. Those tricks also decrease the
final error E by constant factors.

Pushing this trick to its limits, if ` is large enough, one could re-index the inner product so
that the αβ′ all belong to a small13 subset Z∗d, allowing to decrease the size of the key material.
In combination with the following optimization, this should lead to reduce the overall key-size by a
significant factor.

Decreasing LWE dimension In our theoretical scheme, the homomorphic inner product in exponent
operation is done over vectors of length ` = p + 1 where p is the dimension of of the secret in the
LWE scheme.

In practice, we remark that this dimension is quite larger than needed for security, given the
amount of noise and the modulus pq of those ciphertexts. We therefore proceed with an extra
LWE key-switch just the combination of the LWE ciphertexts. In practice it allows to decrease the
dimension by a factor between 2 and 3, which accelerates the ExtExpInner operations by the same
factor. As a small added bonus, it also slightly decreases the error in the ciphertexts outputted by
this function.

13 of size roughly d/`+ 2 assuming the public vector y ∈ Z`d is uniformly random.
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Fig. 2. Optimized ExtExpInner (External Inner Product in Exponent) overview
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B.2 Heuristic error propagation

Our theoretical analysis of the scheme used sub-gaussian analysis [33] to provide bounds on error
propagation that are already significantly better than worst-case bounds. Yet those bounds are
asymptotic, without explicit constants, and for some operations may not be perfectly tight. As
in previous work [13, 10], when it comes to choose practical parameters, we rely on a tighter but
heuristic analysis of error propagation, essentially treating all random variables as independent
gaussians. More precisely, considering that the critical random variable for correctness is obtained
as the sum of many random variables, we only compute its variance as the sum of the variance
of its terms, and treat this final result as Gaussian in accordance with the central limit Theorem
(which is formally not applicable due to potential dependencies).

Linear Operations. For the linear operations Add, Mult and Galois operations, we use the same
equations (3), (8) as in our sub-gaussian analysis, since it is tight in this case, but apply it to the
standard deviation of each variable rather than the sub-gaussianity parameter.

Modulus Switching. For our analysis, we needed to randomize the rounding step to ensure sub-
gaussianity without resorting to the randomness of the input ciphertext. Instead, in practice we use
deterministic rounding and account for the randomness of the input ciphertext. Treating the round-
ing errors as independent uniform random variables in the interval [−1/2, 1/2] allows to heuristically
improve the error bound (4) down to

ModSwitch : RdLWEt|Qs (m; E)→ RdLWEt|Q
′

s

(
m;

√
Q′2

Q2
E2 +

‖s‖2
12

)
(12)
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Key Switching, External Multiplication and Inner Product in the Exponent. We first note that,
according to Remark 2, the bounds given by (5) and (6) must be amended to account for the use of
a Gadget matrix in base B rather than in base 2. Additionally, we note that this bound accounts
for the worst output of G−1. Instead, we treat the output of G−1 as a uniform random vectors with
coordinates uniform in the integer interval IB = {−

⌊
B−1
2

⌋
, . . . ,

⌈
B−1
2

⌉
}. Each such coordinate has

variance VB = 1
B

∑
i∈IB i

2 ≈ B2/12.
For our heuristic analysis, we therefore amend (5) to

KeySwitch : RdLWEt|Qs (m; E)→ RdLWE
t|Q
s′

(
m;
√
E2 + σ2dnKVB

)
. (13)

Similarly, (6) is heuristically changed to

ExtMult : RdLWEt|Qs (Tm; E)×RdGSWt|Q
s (Tm

′
; E′)

→ RdLWEt|Qs

(
Tm+m′ ;

√
E2 + E′2dKVB

)
. (14)

Note that assuming independence decreased the factor d2 to a factor d. Similarly, a factor 4`2 can
be decreased to 2`, ignoring the potential dependences discussed in Remark 5. The trick described
in section B.1 further decreases this 2` factor to `.

In conclusion, the accumulated error in the error propagation of the whole ExtExpInner opera-
tion (10) is now heuristically given by:

ExtExpInner :
⊕̀
i=1

RdGSWt|Q
s (T xi ; E′)→ RdLWEt|Qs

(
T 〈x,y〉;

√
dK`V (σ2 + E′2)

)
. (15)

Tensoring Looking only at the variance of individual coefficient, one may save the factor
√

2λ in
the error propagation of ExpCRT, namely, (9) becomes:

ExpCRT : RpLWEt|Q
′

sp (Xmp ; Ep)×RqLWEt|Q
′

sq (Y mq ; Eq)

→ RpqLWEt|Q
′

s

(
Zm;

√
E2
p + E2

q + t2E2
pE

2
q

)
. (16)

We could successfully confirm all these heuristic equations by measuring the actual errors in our
implementation.

B.3 Amortising FunExpExtract

The costly steps of the FunExpExtract algorithm consist in computing

c(pq) 7→ Tr∗Rpq/Rp(f ·G−T (c(pq)) · S)

where f represent the function F to extract, S is a Key-Switching Key (See Figure 1 and Algo-
rithm 7). We note here that the most expensive part of the computation G−T (c(pq)) · S can be
re-used for up to several different f ’s.

This amortization allows to extend our technique so that not only the input of the function is
large, but also its output.
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B.4 Accelerating FunExpExtract

As mentioned above, the practical cost of the FunExpExtract step as described in Section 4 is
prohibitive. The costly steps consist in the computation of

Tr∗Rpq/Rp(f ·G−T (x⊗ y) · S)

where f represent the function F to extract, x, y are the ciphertexts outputted by ExtExpInner, and
S is a Key-Switching Key. Naively, even using precomputations of f and S, this operation would
require 4K + 1 FFT’s in dimension pq: one forward FFT for each component of G−1(c), and one
FFT backward.14 We here show how to get completly rid of those large FFT’s, requiring only small
FFT’s (dimension p and q) and a few additions of vectors of dimension pq.

FFT of pure tensors. To tackle these costly FFT operations, one should first note that FFT and
⊗ can be commuted. Indeed, one may first rewrite x ⊗ y = (x ⊗ 1) · (1 ⊗ y), and note that the
FFT coefficients of x ⊗ 1 ∈ Rpq are easily derived from the FFT coefficients of x ∈ Rp by simply
repeating the coefficients q times (and similarly for 1 ⊗ y). This remark allows us to decrease the
naive cost of the FFT operation over pure tensors from Θ(pq log pq) to Θ(pq + p log p+ q log q).

The CRT-Gadget. To provide an asymptotic improvement for gadget inversion of pure tensors, we
need to rely on a different Gadget matrix construction, based on the Chinese-Remainder Theorem.
We describe it over the integers Z, yet it naturally extends coefficient-wise to any ring Rd.

Consider a modulus Q such that we can write Q =
∏K
i=1 qi where the qi are small coprime

integers. Consider the CRT isomorphism µ : r ∈ ZQ 7→ (r mod q1, . . . , r mod qK), and let g ∈ ZKQ
be the vector of the Bezout coefficients, i.e., the coefficients such that µ−1(x) = xTg mod Q. This
gadget also permits to efficiently find small pre-images. Indeed, define: g−T (x) = (x1, . . . xK) ∈ ZK
where xi is the representative of x mod qi in the range (−qi/2, qi/2].

Gadget inversion of pure tensors (in FFT format). This new gadget has the advantage that gadget
inversion is somewhat homomorphic. Let us write � for the coefficient-wise product of vectors.
While in general we have g−T (xy) 6= g−T (x)� g−T (y), it nevertheless holds that

(g−T (x)� g−T (y))g = xy mod Q.

It also hold that g−T (x)�g−T (y) is rather small, namely, its i-th coefficient has absolute value less
than q2i /4. This will allow us, at the cost of increased error propagation, to swap the gadget-inversion
and the tensoring.

More precisely, we define

g−T⊗ (x, y) = (g−T (x)i ⊗ g−T (y)i)i=1...k,

and note that it is a proper gadget inversion: g−T⊗ (x, y)g = x ⊗ y mod Q, and the coefficients of

g−T⊗ (x, y)i are less than q2i /4.

For inputs (x, y) ∈ Rp × Rq One may compute g−T⊗ (x, y) in FFT format in time Θ(Kpq +
Kp log p+Kq log q), that is in time linear in the size of the output. Indeed, one may compute each

14 This is assuming the FFT can handle numbers of bit-size Θ(log(n)). In practice more FFT at double

precision will be needed to avoid numerical errors.
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(g−T (x)i,g
−T (y)i), convert them to FFT format, and then only perform the tensoring step using the

remark above. In comparison, the naive algorithm would have cost Θ(Kpq log pq): asymptotically,
our new trick improves the complexity by a logarithmic factor Θ(log pq). The impact in practice
may quite substantial also considering the large hidden constants in FFT operations.

Tracing down in the FFT domain. At last, we note that the trace operation Tr∗Rpq/Rp can also be
performed directly in the FFT domain in time Θ(pq) by summing the appropriate FFT coefficients.
The allows to replace the final large backward FFT (in dimension pq) by a cheap backward FFT
in dimension p. The cost of this step decreases form Θ(pq log pq) down to Θ(pq + p log p).
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