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Abstract

Multidimensional linear cryptanalysis of block ciphers is improved in this work by
introducing a number of new ideas. Firstly, formulae is given to compute approximate
multidimensional distributions of encryption internal bits. Conventional statistics like
LLR(Logarithmic Likelihood Ratio) do not fit to work in Matsui’s Algorithm 2 for large
dimension data, as the observation depend on too many cipher key bits. So, secondly,
a new statistic which reflects the structure of the cipher round is constructed instead.
Thirdly, computing the statistic values which fall into a critical region is presented as
an optimisation problem for which an efficient algorithm is suggested. The algorithm
works much faster than brute forcing all relevant key bits to compute the statistic.
An attack for 16-round DES was implemented. We got an improvement over Matsui’s
attack on DES in data and time complexity keeping success probability the same.

1 Introduction

Linear Cryptanalysis is a statistical approach in the cryptanalysis of symmetric ciphers. It
is a known plain-text attack which does not require any special plain-text/cipher-text pairs
and therefore is a very important tool in practical decryption. It was introduced by Matsui
in [17, 18] as an attack to DES. Another approach in statistical cryptanalysis was earlier
published in [16]. Linear Cryptanalysis exploits the fact that an xor of certain plaint-text,
cipher-text and key bits is zero with some a priori computed probability different from
1/2. Such combinations were called ”linear approximations” in [17]. The probability itself
somehow depends on the cipher key. The method is more efficient if the probability is
far from 1/2, one says a ”linear approximation” is more biased in this case. The attack
is characterised by the number of necessary plain-text/cipher-text pairs(data complexity),
by the complexity of ranking relevant sub-keys according to the value of a statistic and the
size of the final brute force(time complexity), and by success probability.

Two attacks Algorithm 1 and Algorithm 2 were suggested in [17]. Algorithm 1 uses
r-round approximations, while Algorithm 2 uses r − 1 or r − 2-round approximations to
attack r-round cipher. In Algorithm 2 an observation on ”linear approximations” may
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depend on some key bits from the first and the last rounds of the cipher and the ”linear
approximations” themselves are generally more biased. So one may recover more cipher
key bits at a lower price, in other words, the method requires a lower amount of plain-
text/cipher-text pairs and is more efficient.

For 16-round DES, Matsui shows how to determine candidates for relevant key bits or
key bit linear combinations by Algorithm 2 with n = 243 plain-text/cipher-text blocks and
success probability 0.85, then 243 trials are run to get the correct key [18]. The success
probability was found experimentally for 8-round cipher with 104 attack applications and
then extrapolated to 16-round DES. Two 14-round ”linear approximations” were there
used together.

Only few improvements with relation to DES have been published since Matsui’s work.
In [15] a chosen plaint-text linear attack was suggested and in [5] time complexity of the
attack first stage was reduced by using Fast Fourier Transform. It was experimentally
found in [6, 7] that time complexity of Matsui’s attack on DES may be decreased with a
better ranking of the values of relevant sub-key bits, though data complexity and success
probability remain the same. However, the success probability was determined experimen-
tally with only 21 attack applications, which does not seem enough to justify the figure
0.85.

How to improve Algorithm 1 with more than two ”linear approximations” the distribu-
tion of which depend on the same key bits was shown in [14]. In [1] a framework for using
many ”linear approximations” considered statistically independent was proposed, though
no practical cryptanalysis of 16-round DES was presented. The sub-keys relevant to the
observations on ”linear approximations” were considered disjoint as in [18]. Linear crypt-
analysis was further extended in different ways in [9] and [10], see [13]. For instance, [10]
made use multidimensional analysis instead of one-dimensional. A good survey of publica-
tions on using multiple ”linear approximations” is in [11]. Recently, a series of papers on
linear cryptanalysis of PRESENT were published, see for instance [4, 3, 2], which provide
with a new insight into the area of multivariate and multidimensional linear cryptanalysis
of block ciphers. Most of the methods are based on the assumption that the ”linear ap-
proximations” are statistically independent, which may be true only to some extent. On
the other hand, no algorithm for computing joint a priori distributions(approximate joint
distributions) of multiple ”linear approximations” in block ciphers was published. As a pri-
ori distribution is unknown, it looks difficult to predict the success probability of relevant
statistical attacks. An attack with low success probability has limited usefulness even if
has a low complexity. The same limitation holds in multidimensional linear cryptanalysis
of [10]. The present work solves this deficiency by giving formulae to compute multidimen-
sional probability distributions in Feistel ciphers, see Section 7. Similar formulae hold for
SPN type ciphers, though that is not presented in the paper.

Two open problems related to Algorithm 2 were posed in [1]. First, how to merge data
from different ”linear approximations” efficiently. Second, how to compute the success
probability as a function in the number of available plain-texts and the number of trials
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in the search phase. A solution to these problems was found in [24]. In particular, an
attack for 16-round DES with 243 data and same amount of the final brute force trials,
and with success probability 0.89 was there described. The probability was predicted by
theoretical means and the prediction was found correct experimentally for a similar method
in case of 8-round DES with 105 method applications. The attack uses 10 best 14-round
”linear approximations”, considered statistically independent. The distributions of those
”linear approximations” and observations on them depend on 53 DES key bits. By solving
a particular optimisation problem(stated in its generality in Section 5 of the present work)
one finds a set of size 240 of 53-bit key-candidates at price ≈ 240 computations, that is
without brute forcing 253 values of the statistic. The probability that a correct 53-bit
sub-key is in this set is 0.89.

The present work is far and away generalisation of [24]. Instead of ”linear approxima-
tions” certain projections(sub-strings of bits or multidimensional linear functions) of the
encryption internal states are used. In contrast with [24] we do not here suppose the pro-
jections to be statistically independent. We are able to compute their approximate joint
a priori distributions and therefore predict correctly success probability of the attack in
addition to other things. We implemented our method and got improvement over Matsui’s
result on 16-round DES in data and time complexity while success probability remains the
same, see Section 3.

2 The Problem

Let x be a vectorial random variable which incorporates some bits from the encryption
first round output and some input bits to the last round as x = (X,Y ) in Fig.1. Like in
Matsui’s linear cryptanalysis, an approximate distribution of x may be a priori computed
from the encryption algorithm specification. It commonly depends on a relatively low
number of the cipher key bits(linear combination of the key bits) denoted key. On the
other hand, the observation on x depends on the available plain-text/cipher-text blocks
and some key bits from the first and the last rounds denoted Key. Assume one guesses
relevant key bits K̄ = key, Key. If the guess was correct, then the observation follows a
priori distribution. If not, then the observation follows a distribution which is close to the
uniform distribution. We assume it is uniform by ignoring the case when the guess on Key

was correct but the guess on key was not. In that case the observation usually follows a
permuted a priori distribution. The assumption was used by many authors before and its
correctness is supported by experiments with DES in the present work as well.

A multidimensional variation of the linear cryptanalysis developed in [12, 10] may be
applicable. One can use a logarithmic likelihood ratio (LLR) statistic, which depends on
both the distribution and the observation, so it depends on K̄. That provides the most
powerful statistical test to distinguish correct and incorrect values of K̄. However the
method is not efficient if the size(rank) of K̄ is large. Really, one is to range 2|K̄| values of

3



X

Y

K1K1

K16

K2..K15

PL-TEXT

CH-TEXT

Figure 1: A 16-round Cipher Cryptanalysis

the key bits according to the value of the statistic.
At the same time the distribution of the projections(functions) hi(x) and observations

on them may depend on a much lower number of the key bits K̄i = keyi, Keyi. At least that
holds for DES, see Section 8 below, and other modern block cipher based on small S-boxes.
For DES the values of K̄i are linear projections of a K̄-value. The sub-keys K̄i which
affect the distributions and the observations for the projections hi may partly coincide or
be linearly dependent. In this paper we consider how by observing the values of several
projections hi(x) reconstruct a set of K̄-candidates which contains the correct value with
a prescribed success probability. We show that can be accomplished by solving efficiently
an optimisation problem without brute forcing the values of K̄. Also we answer what the
size of set of K̄-candidates is. To this end we will use a novel statistic which reflects the
structure of the cipher round. The new statistic is a linear combination of LLR statistics
for different projections and we do not need that they are statistically independent.

3 Our Contributions

This paper contains the following contributions

1. An approximate probabilistic description of a Feistel ciphers is suggested in Section
7. A convolution type formula for computing approximate probability distribution of
multidimensional random variables x constructed with internal bits of the encryption
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is there derived.

2. A novel statistic which combines the LLR statistics for different projections hi(x) is
used in this cryptanalysis, see Section 4. The statistic is approximately separable,
which allows to analyse the observation on different projections separately. If several
statistically independent x are available, several such separable statistics may be used
simultaneously. In this cryptanalysis of DES we use two vectorial random variables
x1, x2 produced by DES symmetry and considered independent, see Section 8, so two
separable statistics are used.

3. The distribution of the statistic under a correct value of K̄ is determined in Section
4.2. We find the distribution of the statistic under incorrect key assumption. Also
a critical region and the success probability of the attack are defined in Section 6.1.
The latter is the probability that the value of the statistic computed under the correct
value of K̄ falls into this region. The number of incorrect values of K̄ for which the
value of the statistic falls into the region is computed as well. Those values are to be
brute forced.

4. We represent the problem of reconstructing K̄-values which fall into the critical region
from K̄i-values as an optimisation problem stated in Section 5. So a general algorithm
to solve the problem described in Section 5.2 is applicable. It is based on the idea of
gluing of K̄i-values developed in [22, 21].

5. Our approach allows to find the number of necessary plain-text/cipher-text blocks,
given desired success probability and the number of K̄-candidates to be brute forced.

6. The attack was implemented for 16-round DES, see Section 9. We used two indepen-
dent separable statistics, each based on 14 of 10-bit projections with 54 DES key bits
involved overall. With n = 241.8 plain-text blocks and success rate 0.85(computed
theoretically) we found 239.8(also predicted theoretically) key-candidates to 54-bit
DES sub-key. That makes 241.8 of 56-bit DES keys to brute force. Though search
tree to compute statistics values which fall into the critical region incorporated 245.5

nodes, constructing one node(checking two linear inequalities with real numbers) is
an inferior operation in comparison with one DES encryption. So the attack provides
an improvement over Matsui’s cryptanalysis of DES in [18].

4 Separable Statistics

Let an observation ν = (ν1, . . . , νm) on m projections( functions) hi(x) be available, where
νi denotes a vector of observations on the outcomes of hi(x). We do not assume the
projections are statistically independent. In this cryptanalysis νi is a function in available
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plain-text/cipher-text blocks and K̄i. By the statistic we mean a function which depends
on the observation ν. A statistic S(ν) is called separable if it can be represented as

S(ν) =
m∑
i=1

Si(νi). (1)

This property allows analysing data ν in parts by analysing νi separately. The notion was
introduced in [20] to study statistical test to distinguish polynomial distributions. One
decides the value of K̄ is correct if S(ν) > z for some threshold z. That defines a critical
region. If the distribution of S is known, then the value z is determined by a prescribed
success probability. One can also determine the average number of wrong values of K̄
which pass the test as well. That defines the complexity of the attack.

The values of K̄i which agree on common key bits or, more generally, common linear
subspaces of the key bits are to be combined to get a value of K̄ which falls into the critical
region. That is an instance of the optimisation problem described in Section 5. An efficient
algorithm to solve it is introduced in Section 5.2. The algorithm takes advantage of the
fact that the statistic is separable. The algorithm implements walking over a search tree by
creating new nodes if certain linear inequalities, implications of S(ν) > z, are satisfied. The
computation cost is much lower than 2|K̄|. One may take advantage of several statistically
independent x, so several statistics of that kind may be used simultaneously.

Another statistic is derived in Appendix 2. That is based on a more direct application
of Neyman-Pearson approach. However it is separable only for statistically independent
projections. That is not true for the bunches of the projection (27) and (28) in this
cryptanalysis of DES as all the projections inside each bunch are statistically dependent.
Therefore, the second statistic does not fit well within this cryptanalysis and won’t be used.

4.1 Notation

Let x be a random variable with N outcomes denoted 1, 2, . . . , N . Assume x may have two
probability distributions: P = (p1, . . . , pN ) and Q = (q1, . . . , qN ). Let

v(n) = (v1, v2, . . . , vN )

denote outcome frequencies for x after n trials, so that
∑N

j=1 vi = n. Also let hi, i =
1, . . . ,m be functions defined on {1, 2, . . . , N} with values in {1, 2, . . . , Ni}. We call them
projections and let

νi = νi(n) = (νi1, . . . , νiNi), i = 1, . . . ,m,

denote outcome frequencies for hi(x) after n trials, so
∑Ni

j=1 νij = n. We therefore have
νib =

∑
hi(a)=b va. Also let ν = ν(n) = (ν1, . . . , νm).
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4.2 Main Statistic

Let x have distribution P . Then Pi = (pi1, . . . , piNi) denotes the distribution of hi(x),
where

pib = Pr(hi(x) = b) =
∑

hi(a)=b

pa.

Similarly, if x is distributed according to Q, then Qi = (qi1, . . . , qiNi) is the distribution of
hi(x). For each i and b we assume pib, qib 6= 0. Consider the LLR statistic for hi

LLRi(νi) =

Ni∑
b=1

νib ln

(
qib
pib

)
=

N∑
a=1

va ln

(
qihi(a)

pihi(a)

)
. (2)

By a standard argument, see for instance [12], LLRi(νi) =
∑n

j=1Rit, where Rit are iden-
tically distributed random variables. Let µiP , σiP denote the expectation and the variance
of Rit under condition that νi follows the distribution Pi. By [12], if the distributions P
and Q are close enough, then µiP ≈ −µiQ and σiP ≈ σiQ. We will prove a more general
statement.

Let s(ν) = (LLR1(ν1), . . . , LLRm(νm)). Then s(ν) =
∑n

t=1Rt, whereRt = (R1t, .., Rmt)
are identically distributed vectorial random variables. The expectation of Rt under condi-
tion that ν follows the distribution P is µP = (µ1P , . . . , µmP ). Let CP denote the covariance
matrix of Rt. Let the distributions P and Q be close enough, then µQ ≈ −µP and CP ≈ CQ
by the following Lemma.

Lemma 1 Let qa = pa + εa, where |εa/pa| ≤ δ for a = 1, . . . , N . Then µP = −µQ +O(δ3)
and CP = CQ +O(δ3) for small enough δ.

Proof By definition, µiQ =
∑Ni

b=1 qib ln
(
qib
pib

)
and µiP =

∑Ni
b=1 pib ln

(
qib
pib

)
. By expanding

ln,

ln

(
qib
pib

)
= ln

(
1 +

εib
pib

)
=
εib
pib
− 1

2

ε2
ib

p2
ib

+O(δ3), (3)

where εib =
∑

hi(a)=b εa and as

|εib| = |
∑

hi(a)=b

εa| = |
∑

hi(a)=b

pa(εa/pa)| ≤ δ
∑

hi(a)=b

pa = δpib.

Then

µiQ + µiP =

Ni∑
b=1

(qib + pib) ln

(
qib
pib

)

=

Ni∑
b=1

(2pib + εib)

(
εib
pib
− 1

2

ε2
ib

p2
ib

+O(δ3)

)
= O(δ3).
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That implies µP = −µQ + O(δ3). Similarly, we get µiP = O(δ2) and so µiQ = O(δ2). Let
x have distribution P . By cijP we denote an entry of CP , the covariance between Rit and
Rjt. It does not depend on n. From (2)

cijP =
∑
a

pa ln

(
qihi(a)

pihi(a)

)
ln

(
qjhj(a)

pjhj(a)

)
− µiPµjP . (4)

So

cijQ − cijP =
N∑
a=1

εa ln

(
qihi(a)

pihi(a)

)
ln

(
qjhj(a)

pjhj(a)

)
+O(δ5)

as by above µiQµjQ = µiPµjP +O(δ5). By (3), ln
(
qib
pib

)
= O(δ) and by condition |εa| ≤ δpa.

Therefore, cijQ − cijP = O(δ3). That proves the lemma.
By Central Limit Theorem, for large enough n the vector s(ν) is distributed as multi-

variate normal random variable N(nµP , nCP ) or N(nµQ, nCQ). To distinguish between P
and Q by observing the value of ν one may distinguish between the normal distributions
above. Assume the matrices CP and CQ are invertible. Then the normal distributions have
densities. That always happens in our experiments with DES. A normalised logarithmic
likelihood ratio statistic is

S(ν) =
1

4n

(
− [s(ν)− nµQ]C−1

Q [s(ν)− nµQ]T + [s(ν)− nµP ]C−1
P [s(ν)− nµP ]T

)
.

Generally, it is a quadratic function in s(ν). As C = CP ≈ CQ the statistic is approximately
linear. Let µ = µQ. We take into account that µP ≈ −µ. By expanding brackets in the
expression for S(ν) we get

S(ν) ≈ s(ν)C−1µT =

m∑
i=1

Si(νi), (5)

where Si(νi) = ωiLLRi(νi) for some coefficients ωi, entries of C−1µT . Denote a =
nµC−1µT , then a > 0. The expectation of S(ν) is ≈ ±a and its variance is ≈ a. So
if x follows Q, then S(ν) is distributed approximately as N(a, a). If x follows P , then S(ν)
is distributed approximately as N(−a, a). Therefore the approximation (5) to the statistic
S(ν) is separable. That property will be used in the search algorithm in Section 5.2 and
in the cryptanalysis of DES, see Section 9.

5 Optimization Problem

Let Ai, i = 1, ..,m be matrices of size ri × n over binary finite field and of rank ri which
are relatively low in comparison with n. Let X be a vector of unknowns of length n. We
consider a system of inclusions(a system of MRHS equations according to [21])

AiX ∈ {ai1, .., aiti}, (6)
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where {ai1, .., aiti} are vectors of length ri over the same field. Let Si be a weight function on
the right hand side vectors in (6). The function Si may be vectorial of the same dimension
for every i and have negative entries. Let A be a basis of the space generated by the rows
in all Ai. To simplify the notation we assume that rank(A) = n. The problem is to find
all values X = x such that the following vectorial inequality holds

m∑
i=1

Si(Aix) > z (7)

for some vectorial threshold z. One can consider that problem over any field, the only
limitation is the number of vectors in the right hand side of (6) is finite. The problem
may be solved by brute force in case of a finite field by trying all values of X. We now
suggest a method that works faster. General case rank(A) ≤ n is reducible to the case
where rank(A) = n by rewriting (6) in new variables Y = AX.

5.1 Example of the Problem

Let a system of 3 MRHS equations with weights be given.

x1 + x3 x2 S1

0 0 0.1
0 1 0.2
1 0 0.3
1 1 0.1

,

x1 + x2 S2

0 0.5
1 0.1

,

x1 x2 + x3 S3

0 0 0.4
0 1 0.5
1 0 0.7
1 1 0.1

.

One is to find all x1, x2, x3 such that

S1(x1 + x2, x3) + S2(x1 + x3) + S3(x1, x2 + x3) > 1.3. (8)

The solution is x1, x2, x3 = 1, 1, 1.

5.2 Algorithm

The algorithm is described in terms of linear functions not vectors. Thus AiX is a vectorial
linear function. Let AX be a basis of the linear space generated by all entries in AiX.
That is A is a basis of the linear space generated by rows in all Ai. Assume a sequence of
the subspaces generated by linearly independent basis functions Tj such that

〈0〉 = 〈T0〉 ⊆ 〈T1〉 ⊆ 〈T2〉 ⊆ . . . ⊆ 〈Tr〉 = 〈AX〉. (9)

One can assume that Tj−1 is a subset of Tj . The choice of (9) affects the time complexity
of the algorithm below. It is important to keep the growth of the dimension stable, for
instance, dim〈Tj〉 − dim〈Tj−1〉 = 1.
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1. (precomputation) For each j, i one defines the subspace 〈Tji〉 = 〈Tj〉 ∩ 〈AiX〉 by its
basis Tji. For each value Tji = a the maximum of Si achieved upon that fixation of
Tji is stored. We denote that maximum by dj,i(a). If Tji = 0, then the maximum is
denoted dj,i. For each j and i one keeps 2|Tji| ≤ 2ri numbers dji(a).

2. We start the search with j = 1 and implement the following recursive step. Let for
some j ≥ 1 the value of Tj−1 = b be already determined. We will determine a value
for Tj . Take any value Tj = a that extends the value of Tj−1 = b. For each i, as
〈Tji〉 ⊆ 〈Tj〉, compute the value Tji = ai and look up dji(ai). Check

m∑
i=1

dji(ai) ≥ z. (10)

Let (10) hold. If j = r, then as 〈Tr〉 = 〈AX〉 a solution is found. Another value for
Tr is then examined or one backtracks, that is j ← j− 1 and one repeats the step. If
j < r then j ← j + 1 and one repeats the step. If (10) does not hold, then another
value for Tj is examined or one backtracks.

The algorithm is an adaptation of a gluing type algorithm from [23]. It is justified by the
following lemma.

Lemma 2 Let the value Tj = a be an extension of the value Tj−1 = b, then

m∑
i=1

dj−1,i(bi) ≥
mt∑
i=1

dj,i(ai)

for any i.

Proof. If the value Tj = a is an extension of the value Tj−1 = b, then dj−1,i(bi) ≥ dji(ai)
for any i. That implies the statement.

As 〈Tr〉 = AX, we have dri(ai) = Si(a) for any value Tr = a. By Lemma 2, the
inequalities

∑m
i=1 Si(ai) ≥ z imply the inequalities (10) for any j. Therefore we won’t

reject a solution a by the decision rule (10) for any j = 1, . . . , r if it satisfies S(a) ≥ z.

5.3 Example of the Problem Solution

Let T1 = {x1}, T2 = {x1, x2}, T3 = {x1, x2, x3}. We define

T11 = {0}, T12 = {0}, T13 = {x1},
T21 = {x2}, T22 = {x1 + x2}, T23 = {x1},
T31 = {x1 + x3, x2}, T22 = {x1 + x2}, T23 = {x1, x2 + x3}.
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After the precomputation

d1i

d11 0.3
d12 0.5
d13(0) 0.5
d13(1) 0.7

,

d2i

d21(0) 0.3
d21(1) 0.2
d22(0) 0.5
d22(1) 0.1
d23(0) 0.5
d23(1) 0.7

,

d3i

d31(00) 0.1
d31(01) 0.2
d31(10) 0.3
d31(11) 0.1
d32(0) 0.5
d32(1) 0.1
d33(00) 0.4
d33(01) 0.5
d33(10) 0.7
d33(11) 0.1

.

The search tree is presented in Fig. 2. We demonstrate how it is constructed. To construct
the first node one sets x1 = 0 and checks if

d11 + d12 + d13(0) > 1.3 .

This is false, one backtracks, sets x1 = 1 and checks

d11 + d12 + d23(1) > 1.3 .

This is true, one extends x1, x2 = 10 and checks

d21(0) + d22(1) + d23(1) > 1.3 .

This is false, one backtracks, puts x1, x2 = 11 and checks

d21(1) + d22(0) + d23(01) > 1.3 .

This is true, so one puts x1, x2, x3 = 110 and checks

d31(11) + d32(0) + d23(11) > 1.3 .

This is false, so one backtracks, puts x1, x2, x3 = 111 and checks

d31(01) + d32(0) + d23(10) > 1.3 .

That is true, so x1, x2, x3 = 111 is the only solution to the problem. The complexity is
determined by the number of constructed nodes. The tree in Fig. 2 incorporates 6 nodes
besides the root and one is to check 6 inequalities. The brute force requires to check 8
inequalities (8).
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Figure 2: The Search Tree

6 Application in Cryptanalysis

Let a number of statistically independent vectors xt be given along with their projections
hti(xt), i = 1, . . . ,mt. For instance, x1, x2 are 14-bit vectors (24) and (26) in the cryptanal-
ysis of DES below. They depend on different internal bits of the encryption and therefore
may be considered independently distributed. We use their 10-bit linear projections.

Let n plain-text/cipher-text pairs be available. The observation on hti(xt) is a string
of frequencies νti of length Nti. In this cryptanalysis of DES Nti = 210. Let’s denote
K̄ti = keyti, Keyti, where keyti are key bits which affect a priori distribution of hti(xt), and
Keyti are those key bits from the first and the last round keys which affect the observation
on hti(xt). Therefore K̄ti are linear functions(at least in case of DES) in unknown cipher
key bits. Let K̄ be a list of linearly independent functions in all K̄ti. For DES cryptanalysis
with x1, x2 we have rank(K̄) = 54.

For each possible value K̄ti one computes the value Sti(K̄ti) = ωtiLLRti(νti, K̄ti). One
then combines the values of K̄ti into a value of K̄ such that

mt∑
i=1

Sti(K̄ti) ≥ zt (11)

for all t and some thresholds zt to be defined later. One can easily represent all (11) together
as a vectorial inequality (7). Therefore the algorithm from Section 5.2 is applicable.

We call a value of K̄ which passes the test (11) a K̄-candidate. After the test each
K̄-candidate is extended to a key-candidate(56-bit key in case of DES). All such key-
candidates are to be brute forced. The algorithm’s success is that (11) is true for the
correct value of K̄. We now analyse the success probability of the method and the number
of K̄-candidates.

6.1 Success probability and the number of K̄-candidates

Assume the value of K̄ is correct. Then the value of K̄ti is correct too. The observation
on every hti(xt) has a distribution derived from a priori distribution of xt. The statistic
St(νt) =

∑mt
i=1 Sti(νti) on the left hand side of (11) has then normal distribution N(at, at)
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for every t if νt follows a priori distribution. Here at = nµtC
−1
t µTt , where nµt and nCt are

the expectation and covariance matrix of the vectorial random variables st(νt) constructed
with LLR statistics for hti(xt), i = 1, ..,mt, see Section 4.2. For each t the success is not to
miss the correct value of K̄t, where the probability of success is computed by

1− βt = Pr(N(at, at) ≥ zt) =
1√

2atπ

∫ −zt
−∞

e
− (y−at)

2

2at dy. (12)

As xt are independent, the success probability of the whole method is then
∏
t 1− βt.

If the value of K̄ is incorrect we assume that all K̄t are not correct. Otherwise, the
number of K̄-values for which the latter is not true is negligible. So one can assume that
the observation on every hti(xt) is uniformly distributed and the statistic

∑mt
i=1 Sti(νti) has

normal distribution N(−at, at). The fraction of incorrect K̄t which pass the test for one t
is

1− αt = Pr(N(−at, at) ≥ zt) =
1√

2atπ

∫ −zt
−∞

e
− (y+at)

2

2at dy. (13)

The fraction of incorrect K̄ which pass the test for all t is
∏
t 1−αt as xt are independent.

The number of K̄-candidates is on the average

2|K̄|
∏
t

1− αt. (14)

So the number of the cipher key values to brute force, that is the number of key-candidates,
is 256

∏
t 1 − αt in case of DES. Assume one wants to brute force 2s key candidates. One

searches for zt such that
∏
t 1− αt = 2s−56 to maximise the success probability

∏
t 1− βt.

7 Multivariate Probability Distribution in Feistel Ciphers

Based on the analysis of the encryption algorithm we get a priori probability distributions
of internal bits in Feistel Ciphers.

7.1 Notation

Let Y be a bit string of some length, then we denote Y {i, j, .., k} = Y [i]⊕Y [j]..⊕Y [k] and
Y [i, j, .., k] = [Y [i], Y [j], .., Y [k] ] . Let Yi, Yj , .., Yk be bit strings of the same length then
Y{i,j,..,k}[r] = Yi[r]⊕ Yj [r]⊕ ..⊕ Yk[r].

Let X0, X1 be plain-texts blocks of bit-length r each and Ki, i = 1, . . . , n round keys
of bit-length s. Then for i = 1, . . . , n the blocks Xi−1, Xi is an input to the i-th round of
the encryption algorithm, where Xi+1, Xi is the output, and Xi+1 = Xi−1⊕Fi(Xi,Ki) for
some function Fi see Fig.3. The output of the n-th round Xn+1, Xn is the cipher-text.
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Figure 3: One Feistel round

In case of DES we have r = 32 and s = 48, and the number of encryption rounds is
16. We keep the notation of [17]. All bit string entries are numbered from right to left,
starting with 0. In case of DES the key bits numbered as in its specification: ki, where
i = 1, .., 63 and i 6= 0 mod 8. Besides, we ignore the initial permutation.

7.2 Multivariate Distributions

Assume the plain-text X0, X1 is taken uniformly at random from the set of all 2r-bit strings
and the cipher key we want to recover is fixed. The cipher-text Xn+1, Xn and any internal
bits in the encryption algorithm are then random variables. Our first goal is to compute a
priori distribution of

Z = X0[σ0], X1[σ1], Xn[σn], Xn+1[σn+1], (15)

which is to be used in this cryptanalysis below. (15) is a vectorial random variable of
|σ0|+ |σ1|+ |σn|+ |σn+1| bit length. The sought distribution depends on the cipher key and
its exact calculation is a very difficult task. Instead, we will construct an approximation
to that distribution which depends on a lower number of the key bits.

7.3 Exact Probabilistic Description of a Feistel Cipher

Let X0, X1, . . . , Xn+1 be now random independently generated r-bit blocks and K1, . . . ,Kn

fixed round keys of bit-length s. Let’s consider the event C:

Xi−1 ⊕Xi+1 = Fi(Xi,Ki), i = 1, . . . , n. (16)

By induction, Pr(C) = 2−rn. The exact probability of an event E which happens in the
encryption algorithm is

Pr(E|C) =
Pr(EC)
Pr(C)

= 2rnPr(EC).
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The event C depends on the whole cipher key, so it is difficult to calculate Pr(E|C) by this
formula. Instead, a relaxed version of (16) will be used.

7.4 Approximate Probabilistic Description of a Feistel Cipher

We define a larger event Cα, which means C implies Cα, see for instance (17) below and

then put Pr(E|C) ≈ Pr(E|Cα) = Pr(ECα)
Pr(Cα) . That is an approximate description of the

cipher. It depends on the event Cα. Obviously, by taking another event we will have
another approximate description of the cipher. Our goal is to compute an approximate
distribution of (15). So a relevant event Cα is to be taken. The accuracy of so defined
approximate description is unclear. It is even unclear how to measure that accuracy. In
spite of this, the approach gives good results in practice and was already implicitly used
in [17], see Section 7.5.

For Z defined by (15) and a bit string A of the same length, we will derive a formula
to compute the exact value of Pr(Z = A|Cα) for certain Cα defined by

Xi−1[αi]⊕Xi+1[αi] = Fi(Xi,Ki)[αi], i = 1, . . . , n. (17)

We see Pr(Cα) = 2−
∑n
i=1 |αi|. One says α = (α1, . . . , αn) are output masks for multivariate

round approximations( called round sub-vectors here) in n consecutive rounds respectively.
Let’s denote by βi input masks. The sequence of αi, βi defines a trail, see Section 7.6 for
definitions. Trails are classically used to compute probability distributions of one-bit ”linear
approximations” for DES in [17]. The approximate distribution of (15) does not depend
on the input masks βi in the internal rounds, that is for i = 2, . . . , n−1, if the trail satisfies
some natural conditions, see Section 7.6. Such trails will be called regular. We remark the
probability Pr(Z = A|Cα) only depends on the key bits involved in the right hand sides of
(17).

7.5 Approximate Distributions in Matsui’s work

A similar approach was implicitly used by Matsui [17] when computing the distribution of
one-bit ”linear approximations” to DES encryption algorithm. He used the event C′α:

Xi−1{αi} ⊕Xi+1{αi} = Fi(Xi,Ki){αi}, i = 1, . . . , n,

where αi were output masks for round approximations. For instance, for 3-round DES in
Figure 4 of Matsui’s work one wants to compute the distribution of

f = X0{7, 18, 24, 29} ⊕X4{7, 18, 24, 29} ⊕X1{15} ⊕X3{15} ⊕K1{22} ⊕K3{22}. (18)

Let n = 3, and α = ({7, 18, 24, 29}, ∅, {7, 18, 24, 29}). Under assumption that X0, . . . , X4

are uniformly and independently distributed, the probability of C′α is 1/4. We find Pr(f =
0|C) ≈ Pr(f = 0|C′α) ≈ 0.70 as stated in [17], see Appendix 1 for details.
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7.6 Regular Trails

Let αi, βi, γi ⊆ {0, 1, . . . , r − 1} and δi ⊆ {0, 1, . . . , s − 1}. The sequence of |αi| + |βi|-bit
strings

Xi[βi], Fi[αi], i = 1, . . . , n (19)

is called a trail. The members of the trail are called round sub-vectors. The distribution of
round sub-vectors are easy to derive from the definition of the round function as it was done
in [17] for one-bit ”linear approximations”. Our goal is to compute the joint distribution
of some input and output bits (15) for n-round Feistel cipher by using a certain trail.

Let Ki[δi] and Xi[γi] denote the round key bits and input bits relevant to the function
Fi[αi]. For instance, in case of DES the key bits Ki[23..18] and input bits Xi[16..11] are
relevant to Fi[24, 18, 7, 29]. We call the trail (19) regular if

γi ∩ (αi−1 ∪ αi+1) ⊆ βi ⊆ γi, i = 1, . . . , n, (20)

where α0 = αn+1 = ∅. It is easy to check the following statement.

Lemma 3 Let n > 3, then for any strings of indicies σ0, σ1, σn, σn+1 in (15) there exists
a regular trail (20), such that

σ0 = α1, σ1 = α2 ∪ β1, σn = αn−1 ∪ βn, σn+1 = αn.

Proof. We put
i αi βi
1 σ0 γ1 ∩ σ1

2 σ1 γ2

3 ≤ i ≤ n− 2 any γi
n− 1 σn γn−1

n σn+1 γn ∩ σn
That proves the lemma.

For n = 3 a regular trail exists if and only if σ3 \ γ3 ⊆ σ1 and σ1 \ γ1 ⊆ σ3. Generally,
there is a large variety of certain auxiliary events Cα or equivalently regular trails for
computing approximations to the actual distribution of (15). Those trails produce generally
different distributions, and, in particular, the latter may depend on different key bits.

7.7 Convolution Formula for the Distribution

Assume a regular trail (19), where α = (α1, . . . , αn) are output masks. We now produce a
convolution type formula to calculate an approximate distribution of the vector

Z = X0[α1], X1[α2 ∪ β1], Xn[αn−1 ∪ βn], Xn+1[αn] (21)
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for that trail. We will see that the distribution does not depend on βi, where i = 2, . . . , n−1.
The method introduced in Section 7.3 is used. We give a formula to calculate Pr(Z =
A|Cα), where Cα is defined by (17). To simplify notation, we put α0 = ∅, αn+1 = ∅ and
denote

qi(b, a, k) = Pr(Xi[βi] = b, Fi[αi] = a |Ki[δi] = ki)

the probability distribution of round sub-vectors. In case of DES, if only non-adjacent
S-boxes are involved in the trail (19), then by the definition of Fi we have qi(b, a, k) =
qi(b ⊕ k, a, 0). We denote the latter by qi(b ⊕ k, a). The values of Z = X0[α1], X1[α2 ∪
β1], Xn[αn−1 ∪ βn], Xn+1[αn] are respectively denoted by A = A0, A1, An, An+1.

Theorem 1 Let (19) be a regular trail, then

Pr(Z = A|Cα) =
2
∑n−1
i=2 |αi|

2
∑n
i=1 |(αi−1∪αi+1)\βi|

∑
A2,...,An−1

n∏
i=1

qi(Ai[βi], (Ai−1 ⊕Ai+1)[αi], ki), (22)

where the sum is over Ai = Ai[αi−1 ∪ αi+1 ∪ βi] and Ki[δi] = ki.

Proof. By conditional and total probability formulas,

Pr(Z = A|Cα) = Pr(Cα)−1Pr(Z = A, Cα)

= Pr(Cα)−1
∑

A2,...,An−1

Pr (A1) (23)

= Pr(Cα)−1
∑

A2,...,An−1

Pr (A2) ,

where the sum is over Aj = Aj [αj−1 ∪ αj+1 ∪ βj ], j = 2, .., n− 2, and as the events

A1 =

 Z = A0, A1, An, An+1,
Xi[αi−1 ∪ αi+1 ∪ βi] = Ai, i = 2, . . . , n− 1,

Cα


and

A2 =


Xi[βi], Fi[αi] = Ai[βi], (Ai−1 ⊕Ai+1)[αi]
X0[α1] = A0,

Xi[(αi−1 ∪ αi+1) \ βi] = Ai[(αi−1 ∪ αi+1) \ βi],
Xn+1[αn] = An+1,

i = 1, . . . , n.


are equivalent. By E1 we denote the event

Xi[βi], Fi[αi] = Ai[βi], (Ai−1 ⊕Ai+1)[αi], i = 1, . . . , n,
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and by E2 the event

X0[α1] = A0, Xi[(αi−1∪αi+1)\βi] = Ai[(αi−1∪αi+1)\βi], Xn+1[αn] = An+1, i = 1, . . . , n.

By definition of regular trail, no variables inXi[(αi−1∪αi+1)\βi] are relevant toXi[βi], Fi[αi].
So the events E1, E2 are independent as they depend on different bits of Xi, i = 1, . . . , n.
We can now split the latter probability into a product. Then

Pr(Z = A| Cα) = Pr(Cα)−1
∑

A2,...,An−1

Pr (E1)Pr (E2) .

As Pr (E2) = 1/2|α1|+|αn|+
∑n
i=1 |αi−1∪αi+1\βi| and Pr (Cα) = 1/2

∑n
i=1 |αi| we get

Pr(Z = A| Cα) =
2
∑n−1
i=2 |αi|

2
∑n
i=1 |(αi−1∪αi+1)\βi|

∑
A2,...,An−1

n∏
i=1

qi(Ai[βi], (Ai−1 ⊕Ai+1)[αi], ki).

That finishes the proof.

7.8 Distribution Properties

The conditions of Theorem 1 are satisfied if, for instance, βi = γi∩(αi−1∪αi+1). That is an
extension of the conditions upon which the distribution of one-bit ”linear approximation”
was computed by Matsui. To calculate the distribution of

X0{α1} ⊕X1{α2 ∪ β1} ⊕Xn{αn−1 ∪ βn} ⊕Xn+1{αn}

by summing round approximations Xi{βi} ⊕ Fi{αi} the masks αi, βi are to satisfy αi−1 ⊕
αi+1 = βi, see [17]. We now study properties of regular trails and relevant distributions.

Lemma 4 Let (19) be a regular trail, then the distribution (22) does not depend on βi,
where

γi ∩ (αi−1 ∪ αi+1) ⊆ βi ⊆ γi, i = 2, . . . , n− 1.

Proof. Let β′i = γi ∩ (αi−1 ∪αi+1). Then β′i ⊆ βi and (αi−1 ∪αi+1) \ βi = (αi−1 ∪αi+1) \ β′i
by (20). The statement follows from∑

Ai[βi\β′i]

qi(Ai[βi], (Ai−1 ⊕Ai+1)[αi], ki) = qi(Ai[β
′
i], (Ai−1 ⊕Ai+1)[αi], ki)

as all other terms in (22) do not depend on Ai[βi \ β′i].
Lemma 4 implies that to reduce calculation cost one can take βi = γi∩ (αi−1∪αi+1) for

a regular trail (19). That produces the same distribution by (22). Also we call a regular
trail (19) reduced if

αi−1 \ βi = αi+1 \ βi.
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for all i = 2 . . . n− 1. It is not difficult to see that if the trail is not reduced, then one can
construct another trail which gives the same distribution for (21) or the distribution itself
degenerates into a distribution of a sub-vector of (21). This follows from the fact that the
bits Ai = Ai[αi−1 ∪ αi+1 ∪ βi] only affect

qi−1(Ai−1[βi−1], (Ai−2 ⊕Ai)[αi−1], ki−1),

qi(Ai[βi], (Ai−1 ⊕Ai+1)[αi], ki),

qi+1(Ai+1[βi+1], (Ai ⊕Ai+2)[αi+1], ki+1),

in (22). Therefore if αi−1 \ βi 6= αi+1 \ βi the trail (19) may be reduced and (22) gives the
same distribution with another trail or the distribution of a sub-vector of Z.

We say Hi holds if βi, αi = ∅, ∅ or round vector Xi[βi], Fi[αi] is uniformly distributed.
Similarly, one proves

Lemma 5 Let (19) be a regular trail and Hi, Hi+1 or Hi, Hi+2 hold simultaneously for
some i. Then (22) provides a uniform distribution.

7.9 Recurrent Formula

The computation with Theorem 1 might be tedious for n = 14 or 15. So one can use a
convolution type formula based on splitting the encryption into two parts. Let 1 < r < n
and the distribution of

Z1 = X0[α1], X1[α2 ∪ β1], Xr[αr−1 ∪ βr], Xr+1[αr],

Z2 = Xr[αr+1], Xr+1[αr+2 ∪ βr+1], Xn[αn−1 ∪ βn], Xn+1[αn]

be already computed. We denote α′ = (α1, . . . , αr) and α′′ = (αr+1, . . . , αn).

Corollary 1

Pr(Z = A0, A1, An, An+1 |Cα)

= 2|αr|
∑

Ar,Ar+1

Pr (Z1 = A0, A1, Ar[αr−1 ∪ βr], Ar+1[αr] | Cα′)

× Pr (Z2 = Ar[αr+1], Ar+1[αr+2 ∪ βr+1], An, An+1| Cα′′) .

Lemma 1 is proved by splitting the product in (22) and summing the first part over
A2, . . . , Ar−1 and the second part over Ar+2, . . . , An−1 and using the theorem again.

Fig. 4 shows theoretical and empirical a priori distributions for the 10-bit block
X2[24, 18, 7, 29], X7[16, 14], X8[24, 18, 7, 29] of DES internal bit. Approximate theoretical
distribution was computed with Corollary 1 by using an appropriate trail. This distribu-
tion depends on 3 key bits. The empirical distribution was produced by encrypting 239

randomly and independently generated 64-bit plain-text blocks for one randomly chosen
cipher key. We realise the distributions are very close, almost indistinguishable.
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Figure 4: Theoretical and empirical distributions in DES

8 Multinomial Distributions for 14-round DES

One of two best ”linear approximations” for 14-round DES found by Matsui in [17] is
X2{24, 18, 7} ⊕ X15{15} ⊕ X16{24, 18, 7, 29}. We took all those bits in above. More bits
may be added with increasing of the number of the key bits from the first and the last
round keys involved. We got 14-bit string

x1 = (X2[24, 18, 7, 29], X15[16, 15, 14, 13, 12, 11], X16[24, 18, 7, 29]). (24)

Approximate a priori distribution of x1 was computed by using Theorem 1 and Corollary
1 with the trail shown in Table 1. The computation took only a few seconds on a common
computer. The distribution depends on the value of 7-bit string:

Table 1: Trail for computing the distribution of (24)

round i βi, αi
2, 6, 10, 14 ∅, ∅

3, 5, 7, 9, 11, 13 {15}, {24, 18, 7, 29}
4, 8, 12 {29}, {15}

15 {16, . . . , 11}, {24, 18, 7, 29}

K{3,5,7,9,11,13}[22]⊕K{4,8,12}[44],K15[23, 22, 21, 20, 19, 18]. (25)
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We denote that by key1. The distribution of (24) is a permutation of the distribution,
where key1 is a zero-string. In the known-plain-text attack we do not observe the bits of
(24). The latter are internal to the encryption algorithm and depend on the first and the
last round keys

X2[24, 18, 7, 29] = X0[24, 18, 7, 29]⊕ S5(X1[16..11]⊕K1[23...18]),

X15[16] = X17[16]⊕ S3(X16[24...19]⊕K16[35...30]),

. . . ,

X15[11] = X17[11]⊕ S8(X16[4...31]⊕K16[5...0]),

and X16[24, 18, 7, 29]) is a part of the cipher-text. Thus the observation depends on some
plain-text/cipher-text bits, 36 bits of the last round key K16 and 6 bits of the first round
key K1. As some key bits repeat, the observation effectively depends on a 39-bit sub-key
denoted Key1. In theory, one can apply a multidimensional linear analysis developed in
[10]. Likelihood ratio statistic will then depend on key1, Key1: overall 44 key bits and one
linear combination of the key bits. That makes 245 variants for key1, Key1 to range by the
value of the statistic and won’t give any advantage over Matsui’s analysis of DES even if
one uses Fast Fourier Transform to compute the statistic. By DES symmetry one gets the
distribution of

x2 = (X15[24, 18, 7, 29], X2[16, 15, 14, 13, 12, 11], X1[24, 18, 7, 29]), (26)

which depends onK{4,6,8,10,12,14}[22]⊕K{5,9,13}[44],K2[23, 22, 21, 20, 19, 18] denoted by key2

The observation on (26) depends on a 37-bit sub-key from K1 and K16 denoted Key2.

X15[24, 18, 7, 29] = X17[24, 18, 7, 29]⊕ S5(X16[16..11]⊕K16[23...18]),

X2[16] = X0[16]⊕ S3(X1[24...19]⊕K1[35...30]),

. . . ,

X2[11] = X0[11]⊕ S8(X1[4...31]⊕K1[5...0])

X1[24, 18, 7, 29] is a part of the plain-text. As above we can not afford using x2. Instead
of x1, x2, two bunches of their 10-bit projections will be defined in this section. We get
overall 28 14-round input/output sub-vectors, whose multinomial distributions will be used
to attack 16-round DES later in this paper. As x1 and x2 depend on disjoint sets of the
encryption algorithm internal bits, they are here considered independently distributed.
The observation on two bunches of 10-bit sub-vectors (27) and (28) below are considered
independent too.

8.1 Another Trail

Another approximate distribution of x1 was computed by using another trail shown in
Table 2. It has a negligibly larger quadratic imbalance. However we remark that in the
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trail presented in Table 2 the masks βi, αi are generally larger sets than relevant masks in
Table 1. So this approximation depends on a significantly larger number of the key bits.
The distribution is marginally different from the distribution produced with the trail in
Table 1. For those reasons the distribution is not used in the present analysis.

Table 2: Another trail for computing the distribution of (24)

round i βi, αi
2 ∅, ∅

3, 5, 7, 9, 11, 13 {16, 15, 14}, {24, 18, 7, 29}
4, 6, 8, 10, 12, 14 {29, 24}, {16, 15, 14}

15 {16, . . . , 11}, {24, 18, 7, 29}

8.2 First Bunch of 14-round Input/Output Sub-Vectors

Instead of x1 we use the projections

X2[24, 18, 7, 29], X15[i, j], X16[24, 18, 7, 29], (27)

for different i, j ∈ {16, 15, 14, 13, 12, 11} except i = 16, j = 11, where the distribution of (27)
is uniform. When it is not uniform the distribution depends on 3 key bitsK{3,5,7,9,11,13}[22]⊕
K{4,8,12}[44],K15[i′, j′], where K15[i′, j′] denotes a key-mask for X15[i, j] in the 15-th round.
We will use 14 such 10-bit vectors. The observation on (27) depends on 12 bits of K16

and 6 bits of K1, that is at most 18 key bits. Therefore one is to examine the values of at
most 20 key bits and one linear combination of the key bits. That makes 221 variants of
the observation and distribution on (27) and that number is affordable.

8.3 Second Bunch of 14-round Input/Output Sub-Vectors

By DES symmetry, 10-bit projections

X15[24, 18, 7, 29], X2[i, j], X1[24, 18, 7, 29], (28)

of x2 may be used for the reason above. The distribution of (28) depends onK{4,6,8,10,12,14}[22]⊕
K{5,9,13}[44],K2[i′, j′], where K2[i′, j′] denotes a key-mask for X2[i, j] in the 2-nd round.

9 Implementation Details for 16-round DES

Two independent separable statistics constructed from the above projections of x1 and x2

are used. The statistics are identically distributed as one-variate normal random variable
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N(a, a) for a = nµC−1µT , where µ and C are computed from a priori distribution of
x1(same for x2) .

We fix required success probability 0.85 and find the threshold z such that the number
of plain-text/cipher-text pairs n equals to the number of 56-bit keys for the final brute
force by solving the system

(1− β1)2 = 0.85

256(1− α1)2 = n,

where β1 and α1 are defined by (12) and (13). Remark that t = 2, and β1 = β2, α1 = α2.
In particular, we get n ≈ 241.8.

9.1 One of 28 Projections

Let h1 denote the projection X2[24, 18, 7, 29], X15[16, 15], X16[24, 18, 7, 29]. The observation
and distribution of h1 depend on K̄1 which incorporates 20 unknowns

x63, x61, x60, x53, x46, x42, x39, x36, x31,

x30, x27, x26, x25, x22, x21, x12, x10, x7, x5,

x57 + x51 + x50 + x19 + x18 + x15 + x14,

where xi denote key bits of 56-bit DES key. For each value K̄1 = k1 the value of S1(k1) =
ω1LLR1(k1) is kept, 220 values overall. LLR1(k1) for all values k1 are shown in Fig. 5.
With n = 241.8 plain-text/cipher-text pairs the expectation of LLR1 for correct k1 is 4.6649,
for incorrect −4.6638. Experimental value for the correct key is 2.2668, it is presented by a
vertical line in Fig. 5. There are 23370 values higher than that. We remark that using only
h1 in the cryptanalysis is not efficient enough. One is to brute force 236 × 23371 > 250.5

key-candidates before finding the correct 56-bit DES key. That won’t give any advantage
over Matsui’s results. Similar is true for other 27 projections.

9.2 Search Tree Complexity

54 DES key bits K̄ which affect our statistics are

x2, x19, x60, x34, x10, x17, x59, x36, x42, x27, x25,

x52, x11, x33, x51, x9, x23, x28, x5, x55, x46, x22,

x62, x15, x37, x47, x7, x54, x39, x31, x29, x20, x61, (29)

x63, x30, x38, x26, x50, x1, x57, x18, x14, x35, x44,

x3, x21, x41, x13, x4, x45, x53, x6, x12, x43.

They are taken in an order defined by how many K̄i those key bits are relevant to. We say
a key-bit x relevant to K̄i if the rank of K̄i drops upon the fixation of x by a constant. For
instance, x2 relevant to 14(maximal number) of K̄i, etc.
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Figure 5: LLR-values for h1

To construct the search tree one first chooses a sequence T1, T2, . . . , T54, where Tj+1 is
produced from Tj by adding one unknown key-bit, which is relevant to the most of K̄i and
which is not in 〈Tj+1〉. The choice is not unique. We use the order defined by (29). That
is T1 = {x2},T2 = {x2, x19},T3 = {x2, x19, x60},.. The choice of Tj affects significantly the
complexity(the number of nodes) of the tree. Search algorithm from Section 5.2 is then
run.

The number of examined values of Tj(tree nodes at level j), j = 38, ..54, in log2 scale
are presented in Fig. 6. Overall number of nodes is 245.5 << 254. So the complexity of
finding K̄-candidates is much lower than brute forcing all values of K̄. The final num-
ber of K̄-candidates is 239.8, so the number of 56-bit DES keys to brute force is 241.8

again as it was predicted by our theory. Constructing one node requires few bit xor’s
and few additions with low precision real numbers, see Section 6. So search tree complex-
ity(constructing 245.5 nodes) is lower in bit operations than final brute force of 241.8 DES
keys. In fact, our implementation works slower than that as we need to access external
memory where precomputation results, that is the numbers dji(a), are kept. At the same
time DES encryption is very straightforward. One needs to keep around 226 low precision
real numbers.

9.3 Possible Improvements

There are several direction in improving the method practically and theoretically.

1. Obviously, one can get better result by using larger strings x = (X,Y ) of encryption
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Figure 6: Search tree complexity

internal bits, see Fig.1.

2. There are several practical ways to reduce the number of nodes in the search tree,
e.g. by taking a larger threshold z in (10) for low levels(low j) of the tree. However
those methods do not guarantee theoretical success probability as Lemma 2 does not
apply any more.

3. The number of nodes in the search tree may probably be further reduced by choos-
ing more carefully the sequence of Tj . We do not know how to choose an optimal
sequence.

4. One can use another statistics for the projections h1, .., hm. For instance, let K̄0i ⊂
K̄i, where the key bits K̄0i affect a priori distribution of hi, and

LLR∗i (K̄i \ K̄0i) = max
K̄0i

LLRi(K̄i).

Using LLR∗i instead of LLRi looks better in practice and in line with Matsui’s anal-
ysis. However the distribution of (LLR∗1, . . . , LLR

∗
m) is unknown and therefore the

success probability of the method is difficult to predict. One can probably try to com-
pute it experimentally for a truncated cipher and then extrapolate to the full-round
one, as similar was done by Matsui in [18, 19].
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10 Appendix 1. On Matsui’s Probability Calculation

In this section we show that the distribution of one-bit ”linear approximations” used in
[17] may be computed only based on X0, X1, . . . , Xn+1 are independently and uniformly
generated and under condition of the auxiliary event C′α:

Xi−1{αi} ⊕Xi+1{αi} = Fi(Xi,Ki){αi}, i = 1, . . . , n (30)

for some αi. We will do that in case of 3-round DES represented in Figure 4 of Matsui’s
work [17]. The general case is similar. We want to compute the distribution of (18). Let
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n = 3 and α = (β, ∅, β), where β = {7, 18, 24, 29}. Then C′α is F1{β} ⊕X0{β} ⊕X2{β} =
0, F3{β} ⊕X2{β} ⊕X4{β} = 0. We have

Pr(f = 0|C) ≈ Pr(f = 0|C′α) =
Pr(f = 0, C′α)

Pr(C′α)
= 4Pr(f = 0, C′α)

= 4
∑
a,b,c,d

Pr



F1{β} ⊕X1{15} ⊕K1{22} = a,
F3{β} ⊕X3{15} ⊕K3{22} = b,

X1{15} = c,
X3{15} = d,

f = 0,
C ′α

 ,

where the sum is over binary a, b, c, d. We now take into account that f = [F1{β}⊕X1{15}⊕
K1{22}]⊕[F3{β}⊕X3{15}⊕K3{22}]⊕[F1{β}⊕X0{β}⊕X2{β}]⊕[F3{β}⊕X2{β}⊕X4{β}].
Let F̄1, F̄3 be produced from F1, F3 by the substitution X1{15} = c,X3{15} = d. Then

Pr(f = 0|C) ≈ 4
∑
a,c,d

Pr



F1{β} ⊕X1{15} ⊕K1{22} = a,
F3{β} ⊕X3{15} ⊕K3{22} = a,

X1{15} = c,
X3{15} = d,

F̄1{β} ⊕X0{β} ⊕X2{β} = 0,
F̄3{β} ⊕X2{β} ⊕X4{β} = 0.



= 4
∑
a,c,d

Pr


F1{β} ⊕X1{15} ⊕K1{22} = a,
F3{β} ⊕X3{15} ⊕K3{22} = a,

X1{15} = c,
X3{15} = d.


× Pr

(
F̄1{β} ⊕X0{β} ⊕X2{β} = 0,
F̄3{β} ⊕X2{β} ⊕X4{β} = 0.

)
The probability was split into a product by independence. The last term in the product is
1/4. Therefore,

Pr(f = 0|C) ≈
∑
a,c,d

Pr


F1{β} ⊕X1{15} ⊕K1{22} = a,
F3{β} ⊕X3{15} ⊕K3{22} = a,

X1{15} = c,
X3{15} = d.


=

∑
a

Pr

 F1{β} ⊕X1{15} ⊕K1{22} = a,
F3{β} ⊕X3{15} ⊕K3{22} = a.


=

∑
a

Pr(F1{β} ⊕X1{15} ⊕K1{15} = a)Pr(F3{β} ⊕X3{15} ⊕K3{15} = a)
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=

(
12

64

)2

+

(
1− 12

64

)2

≈ 0.70.

11 Appendix 2. Another Statistic

Denote ν(n) = (ν1, . . . , νm), a vector of length M =
∑m

i=1Ni, a concatenation of νi(n), see
notation in Section 4.1. We write

ν(n) =
n∑
i=1

Ri,

where Ri are independent identically distributed(as ν(1)) random variables. Assume that
x has distribution P . Then by µ′P and C ′P we denote the expectation and the covariance
matrix for ν(1). We have

µ′P = (µ′1, . . . , µ
′
m),

where µ′i =
(∑

hi(a)=1 pa, . . . ,
∑

hi(a)=Ni
pa

)
is the expectation of νi(1). We can split the

matrix C ′P into blocks C ′ij . Such block represents a covariance matrix for νi(1) and νj(1).
By the definition of covariance, it is not difficult to find that equals

C ′ij [b, c] =
∑

hi(a) = b
hj(a) = c

pa −
∑

hi(a)=b

pa
∑

hj(a)=c

pa

= Pr(hi(x) = b, hj(x) = c)−Pr(hi(x) = b)Pr(hj(x) = c).

If hi(x), hj(x) for i 6= j are independent random variables, then C ′P is diagonal, because
C ′ij are zero-matrices. Diagonal blocks C ′ii are covariance matrices for νi(1).

By Central Limit Theorem the distribution of ν−nµ(p)√
n

tends to a multivariate normal

distribution N(0, C ′P ) with 0 expectations and covariance matrix C ′P . Similarly, if x has

distribution Q, then ν−nµ(q)√
n

tends to N(0, C ′Q). To decide which distribution P or Q

is correct by observing the value of ν, one can apply Neyman-Pearson test. However as
the matrices C ′P , C

′
Q are singular, the distributions N(0, C ′P ) and N(0, C ′Q) do not have

densities. A standard solution is to consider a random variable νB for an appropriate
matrix B instead of ν. The variable νB−nµB√

n
is distributed as N(0, C ′′P ) or N(0, C ′′Q) for

µ = µ′P or µ′Q accordingly, where C ′′P = BC ′PB
T and C ′′Q = BC ′QB

T . If those matrices are
invertible, the distributions have densities. So Neyman-Pearson statistic S′(ν) is

1

n
(−
[
νB − nµ′P

]
C ′′−1
P

[
νB − nµ′P

]T
+
[
νB − nµ′Q

]
C ′′−1
Q

[
νB − nµ′Q

]T
). (31)

Let ν = (ν1, . . . , νm), where νi is an observation on hi(x). In case hi(x), i = 1, ..,m are
independent, the matrices C ′P , C

′
Q are diagonal, the matrices C ′′P , C

′′
Q are diagonal for some
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B too. Then

S′(ν) =
m∑
i=1

S′i(νi).

In this type of cryptanalysis the observations on νi depend on generally different sub-key
bits. Therefore one can first examine the values of those key bits separately for each i
and arrange them by the value of S′(νi). One then combines the values of the sub-keys to
provide S′(ν) ≥ z′ for some threshold z′ such that those values agree on common key bits
as above. However as the projections (27) are dependent(the same is true for (28)), the
use of the statistic S′ within this cryptanalysis does not seem to give any advantage.
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