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Abstract. In recent years, many leakage-resilient schemes have been
published. These schemes guarantee security against side-channel attacks
given bounded leakage of the underlying primitive. However, it is a
challenging task to reliably determine these leakage bounds from physical
properties.
In this work, we present a novel approach to find reliable leakage bounds
for side channels of cryptographic implementations when the input data
complexity is limited such as in leakage-resilient schemes. By mapping
results from communication theory to the side-channel domain, we show
that the channel capacity is the natural upper bound for the mutual
information (MI) to be learned from multivariate side-channels with
Gaussian noise. It shows that this upper bound is determined by the
device-specific signal-to-noise ratio (SNR). We further investigate the
case when attackers are capable of measuring the same side-channel
leakage multiple times and perform signal averaging. Our results here
indicate that the gain in the SNR obtained from averaging is exponential
in the number of points of interest that are used from the leakage traces.
Based on this, we illustrate how the side-channel capacity gives a tool
to compute the minimum attack complexity to learn a certain amount
of information from side-channel leakage. We then show that our MI
bounds match with reality by evaluating the MI in multivariate Gaussian
templates built from practical measurements on an ASIC. We finally use
our model to show the security of the keccak-f [400]-based authenticated
encryption scheme Isap on this ASIC against power analysis attacks.

Keywords: leakage-resilient cryptography, leakage model, mutual infor-
mation, channel capacity

1 Introduction

Side-channel attacks are a serious threat to cryptographic implementations
as they allow attackers to learn secret information processed inside a device
from observing its physical behavior, e.g., the power consumption. In order
to protect implementations from such attacks, one approach actively being
researched for several years now is leakage-resilient cryptography. Leakage-resilient
schemes are designed such as to resist a certain amount of side-channel leakage.



This means that if every invocation of the underlying primitive leaks λ bits of
information, leakage-resilient schemes guarantee that their overall leakage stays
within predefined bounds. In addition, the side-channel leakage λ is commonly
bounded by limiting the input data complexity to the internal primitives, as for
example in leakage-resilient encryption using the 2PRG primitive [15]. However,
it is an ongoing topic of research to specify concrete leakage bounds λ based on
the implementation and its physical properties.

For example, Medwed et al. [9] evaluated a set of practical differential power
analysis (DPA) attacks on simulated leakages from parallel implementations with
unknown in- and outputs. Their resulting success probabilities indicate that even
for identity leakage of the secret state, its exploitation is practically hard once
enough processes happen in parallel. While their specific results also suggest
security for limited data complexities, it is hard to derive a concrete leakage
bound λ in bits. On the other hand, Standaert et al. [14] suggested using the
mutual information (MI) from information theory as a general tool to concretely
state the amount of information learned from side-channel leakage in bits. While
the MI can only be exactly computed once the actual leakage distribution of an
implementation is known, Duc et al. [4] mention an upper bound for the MI for
univariate leakages that solely depends on the device- and measurement-specific
signal-to-noise ratio (SNR). It, however, remains unclear how this bound scales
for multivariate leakages that are exploited in practice.

For a single measurement of the side-channel leakage, physical constraints such
as the SNR will typically bound the MI to suit leakage-resilient schemes. While
most of these schemes indeed confine the attacker to a single measurement by
requiring a fresh initial state on every invocation, there are also schemes allowing
attackers to observe the same execution using the same data multiple times, e.g.,
as for multiple decryptions in Isap [3]. However, multiple measurements of the
same decryption process allow an attacker to perform signal averaging to increase
the SNR. This can allow unbounded side-channel attackers to distinguish tiny
variances in the signal to learn the complete secret state. However, in practice,
side-channel attackers are bounded by physical and computational resources.
This gives the interesting question of the actual attack complexity when the
side-channel attacker is capable of observing the same execution multiple times
and performing signal averaging.

Our Contribution. In this work, we present a new approach to give reliable
upper bounds for the leakage from side channels of cryptographic implementations
under a single data input. For this purpose, we map results from communication
theory to the side-channel domain. In particular, we show that the channel
capacity of n-to-m communication channels is the natural upper bound for
the MI in multivariate side-channel leakages with Gaussian noise. Without any
further leakage assumptions, we show that this bound depends on a device- and
measurement-specific SNR that is uniquely determined by the device’s statistical
leakage behavior in the m points of interest (POIs) in the leakage trace. In a
second step, we investigate the effect of signal averaging on this SNR and show
that averaging N leakage traces increases the SNR by a factor Nm. Our results
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provide both attackers and implementers with a tool for computing the expected
minimum attack complexity, i.e., the number of leakage traces required to learn
a certain amount of the processed state from side-channel information. We then
show that our model and results fit the reality by evaluating the MI in multivariate
Gaussian templates. For this purpose, we used power measurements from a real
system on chip (SoC) that features a keccak-f [400] engine that computes three
rounds per cycle. Last, we use our model to demonstrate the security of the
scheme Isap implemented on this SoC w.r.t. power analysis attacks.
Outline. This paper is organized as follows. Section 2 gives bounds for the
information leakage of multivariate side channels with Gaussian noise. We analyze
the case of signal averaging and provide a tool to compute the expected minimum
attack complexity for side-channel attackers in Section 3. The soundness of our
leakage model is shown in Section 4 based on power measurements of an ASIC,
and we finally conclude in Section 5.

2 Modeling Side-Channel Leakage as a Communication
Channel

In this section, we consider the case of leakage-resilient cryptography where an
attacker can use the side-channel information in a single leakage trace to learn the
secret state of a device. In particular, we adapt the results from communication
theory to fit side-channel leakages and use the channel capacity of n-to-m wireless
channels to give a leakage upper bound for multivariate side channels with
Gaussian noise independent of the underlying leakage function.

2.1 Attack Model

We consider an attacker trying to recover the secret state x from a single leakage
trace lx generated by an implementation I with input complexity q = 1. This
implies that the attacker is unable to perform multi-input attacks such as DPA.
Moreover, attackers are allowed to observe the operation using the secret state x
only a single time, i.e., they are not allowed to average traces to improve their
SNR. However, we consider a profiled attack setting, i.e., the attacker has the
opportunity to build templates before performing the actual attack.

2.2 Mutual Information

A common metric to assess the amount of information about a secret x contained
in the leakage lx is the mutual information (MI) [4,14]. We therefore introduce the
random variables X and Lx to denote the distributions of x and lx, respectively.
The mutual information is then defined as

MI(X;Lx) = H[X]−H[X|Lx]. (1)

Hereby, H[X] and H[X|Lx] denote the entropy of the random variable X and
the conditional entropy of X given the leakage Lx, respectively. Note however
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that the (conditional) entropy (and thus the MI) is an average metric depending
on the actual distribution of values xi ∈ X and lx ∈ Lx. This means that the
actual information learned from a side-channel leakage depends on the actually
processed value and might thus for some events even be higher than the MI. Yet,
the MI is a good metric to give bounds on the expected leakage behavior.

2.3 Linear Channel Model

For giving bounds on the MI of side channels, we consider an implementation that
transmits the single bits of a secret state to the attacker via a side channel. Hereby,
the physical leakage behavior and measurement effects define the mapping of the
single bits to the output samples of the side channel. We model this multivariate
side channel as an n-to-m linear communication channel with Gaussian noise, i.e.,
it transfers linear combinations of the bits of the secret state. While this linear
channel model allows to adapt results from communication theory, the resulting
bounds are yet independent from the concrete leakage behavior and Gaussian
noise is the sole assumption. Namely, our final bounds will only depend on the side-
channel signal observed by the attacker. Further note that non-linear mappings
can easily be added to this model similar as for regression techniques [13].

In our linear channel model, the attacker observes an m× 1 leakage trace lx
from the processing of the secret state x in the implementation I. Let x denote
the n× 1 vector consisting of the n bits of the secret state x. We then model the
leakage trace lx as the multiplication of the secret state vector x with a m× n
side-channel matrix H plus an m× 1 noise vector ν:

lx = Hx + ν. (2)

The i-th row of H specifies how the n bits of the secret state x map to the
i-th point of the measured leakage lx. The maximum MI that an attacker can
learn from the side-channel leakage according to Eq. 2 depends on the maximum
number of states that are distinguishable at the receiver of this channel. This
upper bound on the MI is typically called the channel capacity. In particular,
Telatar [16] states the channel capacity C as the maximum average mutual
information between in- and output over the choice of the input distribution, i.e.,

C = max
p(X)

MI(X,Lx). (3)

We observe that the side-channel leakage given by Eq. 2 bears some familiarity
with the notion of multi-input multi-output (MIMO) channels as used in wireless
communication. For a constant, known channel H, Goldsmith et al. [7] state the
channel capacity for signals in the domain of complex numbers as follows:

C = max
Σx:tr(Σx)=P

log2 |Im + HΣxH
H | (4)
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Hereby, Im and Σx denote the m × m identity matrix and n × n signal
covariance matrix, respectively. P is the total power constraint of the transmitter,
HH the complex conjugate of H, | · | the determinant, and tr(·) the trace of a
matrix. For Eq. 2 to hold true, the noise vector ν must consist of independent
samples of Gaussian white noise with variance σ2

ν = 1, i.e., the m × m noise
covariance matrix Σν is the identity matrix Im.

We can use the channel capacity of MIMO channels as an upper bound
for the MI in side-channel leakages according to Eq. 2. However, there are
different constraints for side channels than in wireless communication, requiring
some modifications of Eq. 4. For example, an attacker cannot influence the
signal covariance Σx such as to optimize the capacity C. Moreover, side-channel
attacks typically exploit real-valued information like the power consumption,
whereas signals in communication channels are represented in the domain of
complex numbers. This effectively halves the capacity for the side-channel case. In
practice, we also observe that the samples in the noise vector ν are not necessarily
independent and have different variances. According to [7], dependent samples in

the noise ν can be modeled via a modified channel matrix H̃ = Σ
−1/2
ν H given the

noise covariance matrix Σν . By adapting Eq. 4 according to these considerations,
we extract the special case of linear side channels as in Eq. 2 and state their
leakage upper bound:

C = max
p(X)

MI(X,Lx) =
1

2
log2 |Im +Σ−1

ν HΣxH
H |. (5)

2.4 Leakage Bound for Gaussian Side Channels

The side-channel matrix H is typically unknown but fixed. An interesting question
thus is how to determine the channel capacity if H is unknown. A common
approach to characterize a side channel are multivariate Gaussian templates.
Hereby, for each secret state x, the respective side-channel leakage lx is described
as a multivariate Gaussian distribution. This characterization gives a set of
templates (µi, Σν,i) with mean µi and noise covariance Σν,i for all states xi. The
means µi give an estimation of the n×n covariance matrix Σy of the side-channel
signal y = Hx. This covariance matrix Σy equals HΣxH

H from Eq. 5. Similarly,
assuming that the noise is independent from the signal and thus has constant
covariance (as in [11]), the single noise covariances Σν,i give an estimation of
Σν .3 Putting this together, we adapt Eq. 5 to derive our main result. Namely,
we use the signal and noise covariance matrices Σy, Σν to state the capacity of a
side channel characterized via multivariate Gaussian templates, or more generally,
of multivariate leakages with Gaussian noise.

3 The constant covariance assumption is invalid in case the covariance carries infor-
mation as, e.g., in masked implementations. However, leakage-resilient cryptography
aims to bound the leakage without the use of countermeasures like masking, and
thus noise will typically be independent from the signal.
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Main Result. (Leakage Bound of a Gaussian Side Channel) The mutual
information of a multivariate side channel with signal covariance Σy and Gaus-
sian noise Σν is bounded by

C =
1

2
log2 |Im +Σ−1

ν Σy|. (6)

Interestingly, the term Σ−1
ν Σy is an SNR taking noise and signal covariances

between the POIs into account. The capacity of the side channel is thus determined
by the actual power of signal and noise, and correlations in the samples of ν
and y. Such correlations typically mark redundancies that effectively reduce the
side-channel capacity. Moreover, note that the side-channel capacity given here
depends on the side-channel signal y only. This means that our result applies to
any leakage function/model having the properties given by Σy.

For univariate leakages or when the same leakage is observed in multiple POIs
within the leakage trace, the leakage bound in Eq. 6 can further be simplified.

Univariate Leakage. An attacker exploiting univariate leakage is confined to
the leakage in a single point of the execution of an implementation I. This means
that the side channel degenerates to

lx = hx + ν, (7)

where lx and ν are scalars and the 1× n channel vector h specifies the leakage
of the single bits of the state x. Let us now assume the channel vector h maps
the n bits in x to y according to the identity of the respective state variable x.
Intuitively, the MI between the secret state x and its leakage lx is here bounded
by the number of different states that an attacker can distinguish in the single
leakage point lx. This number depends both on the distance between the different
states along the measured signal range and the noise. When adapting Eq. 6 for
univariate leakage, we can observe exactly this dependence:

C =
1

2
log2

(
1 +

σ2
y

σ2
ν

)
=

1

2
log2 (1 + SNR) , (8)

where σ2
y is the variance of the signal y = hx and σ2

ν is the variance of the noise ν.
As also noted in [4, 10], this upper bound for the MI in univariate leakages solely
depends on the SNR and is better known as the Shannon-Hartley theorem [2].

Identical Leakage in Multiple Points. In many cases, an attacker will try to
exploit the leakage in multiple points of the execution to increase their success rate.
If these points are chosen to be in close vicinity within the leakage trace, these
POIs will often carry highly redundant information. An example where this case
occurs are attackers sampling the side channel at a very high rate and using several
consecutive sampling points in their attack. In such situation, one can assume the
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leakage to be the same for all points of the leakage trace. This case is equivalent
to single-input multiple-output (SIMO) channels in wireless communication. The
side-channel matrix is then expressed as the vector multiplication H = hgain · hl,
where hl states the 1× n side-channel vector mapping the n bits of x to a scalar
value and hgain is the m× 1 gain vector over the m POIs used by the attacker.
The capacity formula in Eq. 5 degenerates for such leakage behavior, but can
simply be expressed using the vector hgain only [6]:

C =
1

2
log2

(
1 + σ2

zh
H
gainΣ

−1
ν hgain

)
, (9)

where σ2
z is the variance of the signal z = hlx such that lx = hgainz + ν.

2.5 Description of Common Leakage Models

Our leakage model in Eq. 2 allows to easily describe linear side-channel leakages.
We now give several examples on how to map existing power models to Eq. 2.
Note that we give these examples without consideration of the effective signal
range in the leakage lx.
Identity Leakage. In identity leakage, the n-bit secret state x leaks linear to
the value x it represents. If x leaks the identity in the i-th sample of lx, the i-th
row in the side-channel matrix H takes the form h =

(
20 21 22 . . . 2n−2 2n−1

)
.

Hamming Weight Leakage. In Hamming Weight (HW) leakage, the secret
state x leaks the number of bits set to one. HW leakage in the i-th sample of
lx results in the i-th row of H to take the form h =

(
1 1 1 . . . 1 1

)
. Hamming

Distance (HD) leakage is modeled in the same way by setting the secret x to be
the xor of the leaking state before and after it toggles.
Time-Serialized Leakage. In time-serialized implementations, an attacker
collecting the side-channel leakage at different points in time will be able to
learn different information in the different POIs. One prominent example are
byte-oriented cryptographic implementations, where in each clock cycle a different
byte of the n-bit state x is processed and leaks. For simplicity, let us assume an
8-bit state and HW leakage of a 2-bit chunk processed in the respective clock
cycle. This will give a side-channel matrix of the form

H =


1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1

 .

Localized Leakage. Localized electromagnetic emanation (EM) attacks are a
powerful way to extract information from parts of the secret state. Such localized
EM leakage can in principal be modeled the same way as time-varying leakage.
For example, consider the leakages lx,1 and lx,2 observed in two different EM
positions. Moreover, assume that lx,1, lx,2 consist each of two samples leaking the
identity of the first or second half of a 4-bit state, respectively. Concatenating the
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two leakages lTx = (lTx,1l
T
x,2) means concatenating the respective channel matrices

H1,H2 to a combined side-channel matrix of the form

H =


20 21 0 0
20 21 0 0
0 0 20 21

0 0 20 21

 .

This model underlines the intuition that gathering additional leakage from
observing a parallel implementation in different locations and measuring a serial
implementation at different times is equivalent. In particular, it shows that
side-channel leakage becomes optimal if the leakages in the side-channel signal
y = Hx are independent. In the best case, the signal covariance matrix becomes
a diagonal matrix, i.e, Σy = diag(σ2

y1 , σ
2
y2 , ..., σ

2
ym). In the same way, noise effects

are canceled out the best if the noise samples in ν are independent, i.e., Σν is a
diagonal matrix as well.

3 Complexity of State Recovery

The side-channel capacity is an upper bound on the MI to be learned via a side
channel. This bound essentially depends on the implementation’s SNR. While
in most leakage-resilient schemes an attacker is restricted to a single leakage
trace for a specific state, there are schemes, e.g., Isap [3], that allow attackers to
observe the execution of an implementation processing the same data multiple
times. This gives attackers the option to perform signal averaging, which improves
the side-channel SNR and thus side-channel capacity.

In this section, we therefore consider an attacker capable of averaging multiple
leakage traces. We show how averaging improves the side-channel capacity in
multivariate attacks and provide attackers and implementers with a tool to
compute the expected minimum complexity to learn the secret state of a device.

3.1 Attack Model

As in Section 2, we assume an attacker trying to recover a secret state x from
side-channel leakages lx generated by an implementation I with input complexity
q = 1 and thus preclude multi-input attacks. However, the attacker is capable of
observing the same execution of I multiple times. This attack setting is observed
when a ciphertext, e.g., a firmware image, must be decrypted multiple times
using a leakage-resilient scheme like Isap.

3.2 Averaging Attacker

An attacker that observes the same processing of the secret state x multiple
times is capable of averaging the side-channel leakage lx to yield a better SNR
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and thus higher side-channel capacity. In general, averaging N observations gives
the averaged noise covariance matrix

Σν =
1

N
Σν , (10)

where Σν is the noise covariance matrix valid for a single leakage trace. This
means that the noise (co-)variances reduce linearly with the number of averaged
traces. Note here that for the univariate case Eq. 10 simplifies to the well-known

relation σ2
ν =

σ2
ν

N . Given the noise covariance matrix after averaging Σν , we can
now investigate the effect of averaging on the side-channel capacity. Inserting
Eq. 10 into the generic side-channel capacity given in Eq. 4 yields

C =
1

2
log2

∣∣Im +N ·Σ−1
ν Σy

∣∣ . (11)

Note that the SNR term N ·Σ−1
ν Σy is an m×m matrix and its determinant

behaves proportionally to Nm. This means that the side-channel capacity in-
creases stronger with the number of averaged traces the more POIs are used in an
attack. This is because each POI can potentially transfer completely independent
data as, e.g., for time-serialized and localized EM leakages.
Identical Leakage in Multiple Points. For identical leakage in all POIs, the
side-channel capacity behaves differently. Inserting Eq. 10 into the SIMO channel
capacity given in Eq. 9 yields

C =
1

2
log2

(
1 +N · σ2

z · hHgainΣ−1
ν hgain

)
. (12)

It shows that the number of traces N used for averaging has a linear influence
on the SNR and is independent of the number of POIs m.

3.3 Expected Minimum Attack Complexity

In the worst case, physical attackers have unbounded complexity. This means
they can measure and average an unlimited number of leakage traces N →∞,
leading to zero noise and virtually unlimited channel capacity and MI. This
can be thought of state differences causing vanishingly small differences in the
side-channel signal being distinguishable if the noise is eliminated completely.
It thus seems reasonable to set the side-channel capacity in relation with the
actual attack complexity, i.e., the number of leakage traces N , to learn a certain
amount of bits. This is also the common approach when assessing the security of
masked implementations.

It is yet difficult to determine such attack complexity since it is strongly
influenced by the implementation’s leakage behavior, which is commonly unknown.
For example, it is unknown to what extent information and noise in the single
points of a leakage trace correlate, and as shown in Section 2, these effects strongly
influence the side-channel capacity. However, the device- and measurement-specific
multivariate SNR = Σy ·Σ−1

ν takes exactly these effects into account and can thus
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be used to generically express the expected minimum complexity of a side-channel
attacker without any concrete leakage assumptions. In particular, we can rewrite
the multivariate channel capacity for averaging attackers (Eq. 11) as follows:

C =
1

2
log2N

m

∣∣∣∣ 1

N
Im +Σ−1

ν Σy

∣∣∣∣ . (13)

For a large number of averaged traces N , Eq. 13 can be further approximated
to give the side-channel capacity in dependence of a scalar device SNR.

C ≈ 1

2
log2

(
1 +Nm

∣∣Σ−1
ν Σy

∣∣) =
1

2
log2(1 +Nm · SNRm) (14)

An implementation will in practice give some side-channel SNRm = |Σy ·Σ−1
ν |

that is observed in m POIs in the leakage traces. This SNR takes into account all
kinds of correlations in both noise and side-channel leakage. For an implementation
that is expected to give a certain SNRm, designers and implementers can thus
compute the expected minimum attack complexity in terms of traces to measure
and average.

Fig. 1 gives an overview on the expected side-channel capacity for m = 1, 5, 10
POIs given the number of averaged traces. It shows that the side-channel capacity
rises quickly with the number of averaged traces for multivariate leakages. In
particular, it shows that if SNRm is not sufficiently low, a state of virtually any
size can theoretically be recovered with practical complexity. However, this effect
is also limited by the available POIs with sufficiently low signal correlations.
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4 Experimental Verification and Security Analysis

The previous sections introduced theoretical leakage upper bounds for multivari-
ate side channels with Gaussian noise. In this section, we show that these bounds
match the real leakage behavior by evaluating the MI on a hardware implemen-
tation of the keccak-f [400]-based scheme Isap [3] on the real system on chip
Fulmine. Our experiments further show the security of this implementation of
Isap in terms of power analysis attacks.

4.1 Evaluation Hardware: Fulmine

At FSE 2017, Dobraunig et al. [3] presented the sponge-based authenticated
encryption scheme Isap to inherently prevent DPA during both en-/decryption.
This is achieved by limiting the number of inputs processed under a single key by
one. To further express their scheme’s capability to cope with side-channel leakage
from a single data input, the authors proposed using the sponge parameters
themselves. However, in the view of Isap allowing for the multiple decryption of
the same ciphertext and tag, it is an open question how much information an
attacker can learn when averaging multiple leakage traces.

To verify the soundness of our leakage bounds and to evaluate the side-channel
resistance of Isap, we developed and fabricated the multi-core SoC Fulmine, a
prototype ASIC in the UMC 65 nm LL 1P8M technology. Fulmine, as shown in
Fig. 3, is based on the PULP platform [12] including four general purpose pro-
cessing elements (enhanced OpenRISC cores with DSP extensions [5,8]) and two
dedicated hardware accelerators: the Hardware Cryptography Engine (hwcrypt)
and the Hardware Convolution Engine (hwce). All processing elements share
the same 64 kB level-1 Tightly-Coupled Data Memory (TCDM) to support a fast
and efficient communication and to avoid single point-to-point channels.

hwcrypt is a flexible, software-programmable hardware accelerator sup-
porting various cryptographic primitive functions such as the keccak-f [400]
permutation [1]. Moreover, the accelerator supports high-level encryption schemes
such as Isap. The accelerator is designed to achieve maximum throughput. To
achieve that goal, the keccak-f [400] permutation utilizes three fully parallel
round instances to maximize the throughput but to also match the length of
the critical path of other parts of the accelerator. When using Isap, hwcrypt
supports a flexible configuration of the rate (from 1 bit to 128 bits in powers of
two) and the number of permutation rounds in multiples of three including 20
to flexibly trade-off between throughput and security. hwcrypt is configured
and monitored via a set of status registers. A flexible event and interrupt system
indicates other processing elements when an operation has finished.

4.2 Soundness of Model and Bounds

To verify the soundness of our model and the bounds in Section 2, we analyzed the
leakage behavior of the keccak-f [400] permutation on Fulmine. For this purpose,
we constructed multivariate Gaussian templates for the power consumption of
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Fulmine for 5- and 8-bit parts of the 400-bit state of keccak-f [400]. More
concretely, we target the intermediate state KState of keccak-f [400], depicted
in Fig. 3, such that Fulmine computes three rounds of the permutation before
and after the target state to preclude load-time leakages. The remaining state not
covered by our templates, i.e., 395 and 392 bits respectively, was held constant.
For each class, we used 1400 power measurements in the training phase. The POIs
were chosen as the points of highest variance fulfilling a certain minimum distance
within the leakage trace and include both register and combinatorial activity.
Based on these templates, we computed the side-channel capacity and evaluated
both the MI and the 1st-order success rate of classification. The evaluations were
done in dependence of the number of leakage traces used for signal averaging.

Our evaluation results in Fig. 4 suggest that the channel model used to
compute the side-channel capacity of multivariate leakages is sound. In particular,
for both 5-bit and 8-bit templates the MI between leakage and secret state
stays within the bounds given by the side-channel capacity. While there is a gap
between the MI and the channel capacity, the MI follows the shape of the side-
channel bound well. Moreover, the first-order classification rate rises accordingly.
However, Fig. 4a also shows that for higher numbers of averaged traces the
MI goes into saturation, and thus the gap between capacity and the learned
information gets bigger. In particular, it shows that once the MI converges to the
maximum number of bits that could be recovered using the trained template set,
i.e., 5 or 8 bits respectively, the increase in learned information for additional
numbers of averaged traces gets successively smaller. This indicates that the
side-channel information is not distributed to perfectly use the channel.

We further investigated how different channel models suit the actual leakage
behavior. We therefore compared the MIMO channel model used in the previous
evaluation with the SIMO channel model, which assumes identical leakages in
the POIs of a leakage trace, e.g., within a clock cycle. For the SIMO channel
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Fig. 4: Side-channel capacity, mutual information and success rate for the keccak-
f [400] permutation given the number of averaged traces and different numbers
of POIs and number of classes. The remaining state was held constant.
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model, we analyzed two cases: one taking noise correlations into account, and
one assuming independent noise. The channel capacities of the different channel
models were computed based on the 8-bit templates constructed in the previous
evaluation. In particular, for the SIMO model we used the signal variance in each
POI, but neglected signal covariances. The results of our evaluations are shown
in Fig. 2. These suggest that the leakages in the single POIs are not identical
and thus the MIMO channel model suits the leakage behavior clearly better than
the SIMO channel model. Moreover, from the plots using the SIMO model one
can observe that there is some noise correlation that lowers the channel capacity.

4.3 Security of ISAP

In most situations, designers and implementers want to assess the security of
a complete cryptographic implementation. However, the state sizes involved in
a cryptographic scheme like Isap are typically large and the channel capacity
computed from a low number of templates cannot be directly used since more
hardware will be active. On the other hand, it is impossible to build templates
for a 400-bit state that would allow to compute the channel capacity exactly.
Yet, we can use the experiments on the keccak-f [400] permutation to estimate
leakage bounds for the full state of Isap.

As we can see from Fig. 4, the channel capacity is practically the same for
both 5- and 8-bit templates. The reason for this is that the SNR we observed
on Fulmine using our measurement setup is the same. This gives the question
whether and how the SNR would change for 400-bit templates. Now if the same
measurement setup was used for constructing 400-bit templates, we can safely
say that the range of the measured noise will not decrease by orders of magnitude.
In the same way, the range of the side-channel signal will definitely not rise by
orders of magnitude using the same setup, especially since the diffusion of three
rounds of keccak-f [400] already causes large parts of the logic to become active
within the profiled clock cycle.

On the other hand, the side-channel capacity from a single power measurement
of Fulmine is very low, and thus, even if the channel SNR was 100 times higher,
the channel capacity would hardly rise. We thus scale the SNR with a factor γ to
get a security margin that allows to estimate how many traces an attacker will
at least require to recover the complete state or to exceed the leakage bounds.
Using the SNRm of the m-variate leakage from the 8-bit templates, we compute
the minimum number of traces needed to learn the state of size S:

N =

(
22S − 1

γ · SNRm

)1/m

. (15)

The authors of Isap state concrete leakage bounds for their re-keying function
and encryption scheme to still provide 128-bit security. We thus evaluated Eq. 15
on Fulmine for three different state sizes: the full state of keccak-f [400], the
leakage bound for the Isap re-keying function (272 bits), and the leakage bound
for the Isap encryption itself (128 bits). The results in Fig. 5 indicate that the
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Fig. 5: Minimum attack complexity as the number of measurements needed to
average to recover (parts) of the Isap state from Fulmine. As a security margin
we set γ = 100.

minimum attack complexity in terms of measurement traces is impracticable for
less than 20 POIs and all mentioned state sizes. However, for higher numbers of
POIs the minimum attack complexities tend towards practically feasible. Namely,
when using 100 POIs, 10 000 measurements can be enough to learn 128 bits of
the state, and 500 000 measurements are the minimum to recover the full state.

However, using that many POIs often hampers template building or leads to
overfitting effects reducing the classification rate. Besides, side-channel leakage
is not distributed such as to perfectly use the channel. This becomes visible
in the gap between channel capacity and MI in Fig. 4. While this might allow
an attacker to recover a few states more easily, in consideration of all possible
states the attack complexity yet stays above the bounds in Fig. 5. Namely, for
non-ideal distributions of the leakage, an attacker will, in general, require even
more measurements to learn the specified amount of information.

From a practical perspective, conducting such powerful attack would require
an attacker to successfully build templates on the respective state. In many cases,
this is however not possible, e.g., when the attacker does not have control over
the state on a suitable device. Even further, the complexity to build, measure,
and evaluate such large set of templates is clearly impractical. In this respect,
the implementation of Isap on Fulmine can for the used measurement setup be
considered secure against power analysis attacks also above the bounds in Fig. 5.

5 Conclusion

In this work, we presented a novel approach to determine leakage upper bounds
for side channels of cryptographic implementations under a single data input.
Without any further leakage assumptions we showed that the channel capacity
of transmission channels with multiple in- and outputs gives the natural upper
bound for information leakage in multivariate side channels with Gaussian noise.
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We then considered the case where attackers are capable of performing
multiple measurements of the same execution in order to improve their SNR. We
showed that the gain in the SNR of multivariate leakages resulting from signal
averaging is exponential in the number of POIs. This observation gives a tool
for attackers to learn about the feasibility of an attack and for implementors
to assess the minimum attack complexity of state recovery in leakage-resilient
schemes allowing for multiple decryptions like Isap. We verified the soundness of
our model and our bounds using the ASIC Fulmine implementing Isap and the
keccak-f [400] permutation. Finally, we gave lower bounds on the complexity for
recovering the Isap state using power analysis. The results indicate that recovery
of the Isap state on Fulmine is practically infeasible with power analysis and
the used measurement setup.
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