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Abstract. We put forward the notion of self-guarding cryptographic protocols as a countermeasure to
algorithm substitution attacks. Such self-guarding protocols can prevent undesirable leakage by sub-
verted algorithms if one has the guarantee that the system has been properly working in an initialization
phase. Unlike detection-based solutions they thus proactively thwart attacks, and unlike reverse firewalls
they do not assume an online external party. We present constructions of basic primitives for (public-key
and private-key) encryption and for signatures. We also argue that the model captures attacks with
malicious hardware tokens and show how to self-guard a PUF-based key exchange protocol.

1 Introduction
Classical security notions in cryptography, such as indistinguishability of encryptions, assume that the
involved cryptographic algorithms behave in the specified way. In the real world, however, we have
little control over, or insights into, the design criteria or the software implementing the algorithms, even
on our own systems. The idea that an adversary may tamper with the implementation, or embed a
backdoor in the specification, was suggested already 20 years ago by Young and Yung under the name of
kleptography [YY96, YY97]. In a kleptographic setting the adversary interacts with an implementation
of the cryptographic scheme which may be faulty, or let alone malicious, such that subliminal leakage of
confidential data may even go unnoticed. In terms of security, in such settings all bets are off.

1.1 Detecting Substitution Attacks

Recently, the topic of malicious implementations as a potential mean for mass surveillance has received
a lot of attention. The formal study of the so called algorithm substitution attacks (ASAs) was initiated
by Bellare, Paterson, and Rogaway [BPR14] with the example of symmetric encryption schemes. The
adversary’s goal is roughly formalized as being able to break security while remaining undetectable from
the users. Viewed the other way, resistance against ASAs therefore means that either data is not leaked,
or the leakage is detectable. The detectors were later given the catchy name watchdogs [RTYZ16].

Detecting algorithm substitution attacks can be hard, and sometimes even be impossible. It was shown
that randomized symmetric encryption is prone to ASAs that can leak the secret key, while avoiding detec-
tion by any efficient watchdog with black-box access to the algorithm [BPR14, BJK15]. Advanced attacks,
exploiting techniques such as input-triggered misbehavior and imperfect decryptability, indicate that re-
liable detection is indeed hard to achieve, as observed by Degabriele, Farshim, and Poettering [DFP15].
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Taking into account the impossibility results, some works have suggested to use deterministic schemes with
unique ciphertexts such that one can compare against the expected values [BPR14, BH15, BJK15, DFP15].

Even in situations where detection is theoretically possible, it is arguably very difficult to design proper
watchdogs in practice. A watchdog gets access to an implementation which, due to the nature of the attack,
may be arbitrarily subverted, and the watchdog has to decide if any efficient adversary is able to violate
its security. At the same time, different (algorithmic and software) versions do not allow to easily check
against a specific code. In other words, it is unclear which kinds of irregularities the watchdog should look
for. For instance, deterministic schemes are considered detectable by online watchdogs, since they can
compare the output of the possibly subverted algorithm with the expected output at runtime [DFP15].
Aside from being rather inefficient, this assumes that the watchdog has a good implementation of the same
algorithm at hand and that scans are performed while the system is active.

Furthermore, the perhaps trickiest attack arises when implementations behave honestly only as long as
they are under scrutiny, say, through an offline watchdog. However, malicious behavior can be triggered
to wake up at a later point in time. Such attacks are called time bombs and become active in some state,
or at some point in time. They have been discussed in the context of software and also in the domain
of cryptographic hardware backdoors and trojans, e.g., [WS11, DFS16]. To prevent against time bombs
in hardware tokens that implement a deterministic function, Dziembowski, Faust, and Standaert [DFS16]
make use of a semi-online watchdog that regularly tests the tokens against the specification that they are
supposed to implement, while malicious input triggers are prevented via masking, a technique which is
also useful in our setting.

Conceptually, a malicious software update can also be thought of as a time bomb. Two prominent
testimonies are the heartbleed vulnerability in the open source library OpenSSL and the Juniper Dual
EC incident. The heartblead bug has been introduced with version 1.0.1 in 2011 and went unnoticed for
approximately two years (see heartbleed.com). In 2015, Juniper Networks announced that the source
code of ScreenOS, the operating system of their VPN routers, was maliciously modified in 2012 [CMG+16].
Although one can speculate about whether these and similar attacks were inadvertent or not, they showcase
the possibility of substitution attacks being performed in the real world as a mean of mass-surveillance.

The problem of checking can even be acute if hardware components are involved. For example, in case
of physically unclonable functions (PUFs) this seems to be impossible: A good PUF ideally implements
a random and unclonable function (unlike hardware tokens considered by Dziembowski et al. [DFS16]
which implement a specified function), but the internal computations are not assessable. It is unclear
what the watchdog should check for, maybe except for basic properties such as the absence of collisions.
Furthermore, the watchdog may not be able to check output values later if it does not have access to the
PUF anymore. The infeasiblility of verifying security of hardware tokens recently motivated Camenisch,
Drijvers, and Lehmann [CDL17] to design an anonymous attestation protocol which achieves privacy even
with subverted trusted platform modules (TPM).

Another issue with watchdogs is that they need to be trustworthy entities and their implementations
also need to be reliable. If the watchdog colludes with a mass-surveillance agency or is subverted itself,
then detection may fail. Even worse, in some scenarios the detection algorithm requires access to the secret
key to check [BPR14, DFP15], introducing other potential security risks. The latter may make detection
also hard in case of hardware components, if keys are not allowed to leave the devices that they are stored
on.

1.2 Preventing Subliminal Channels

Considering the difficulty of detecting algorithm substitution attacks, a question that comes to mind is if
we can neutralize attacks without requiring to detect them first. While the watchdog approach is reactive,
it cannot obscure loss of crucial information, but only allows to detect it, we would expect a solution
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which proactively prevents leakage in the first place. Although neutralizing algorithm substitution attacks
is still a highly challenging task, it can be more promising than detection-based approaches in terms of
both security and efficiency.

Indeed cryptographic reverse firewalls, introduced by Mironov and Stephens-Davidowitz [MS15], follow
the approach of prevention [MS15, DMSD16]. The idea of reverse firewalls is to distribute the trust between
the party and a firewall. The outgoing communication, say, a signature, is first routed through the firewall
which may take further cryptographic steps, such as verifying the signature and re-randomizing it, in
order to prevent subliminal channels. As long as one of the two parties is trustworthy and has a proper
implementation, no information can be transferred through the firewall.

Reverse firewalls may not be readily applicable to every existing protocol. In fact, the goal of [MS15,
DMSD16] is to design protocols that can be used with reverse firewalls. How to design amenable protocols
for symmetric-key primitives, or when using hardware tokens, without complex detection mechanisms
remains open.

Another important work in the line of protection mechanisms instead of detection techniques is the
study of backdoored pseudorandom generators (BPRGs) by Dodis et al. [DGG+15]. They showed that
BPRGs can be immunized by applying a non-trivial function (e.g., a PRF or a seeded extractor) to the
outputs of a possibly backdoored pseudorandom generator. The setting, however, disallows the adversary
to replace the PRG algorithm, except for injecting a backdoor.

In two recent works by Russel et al. [RTYZ16, RTYZ17] the watchdog model is combined with some
prevention mechanism. Their approach is based on a split-program methodology, where an algorithm is
split into deterministic and probabilistic blocks that can be individually tested by the watchdog. This
allows prevention of for instance rejection-sampling attacks by combining two independent sources of
randomness, and prevention of input-triggered attacks by adding a random value to the input. Despite
remarkable improvements regarding the power that a watchdog in the split-program model gains, some of
our criticisms, e.g., requiring a good implementation and failing to detect state-dependent attacks, remain.

1.3 Self-Guarding Schemes

Our contribution is to provide an alternative defense mechanism to reverse firewalls which, too, proactively
thwarts ASAs, but does not depend on external parties. We focus on a setting where the party at some
point holds a genuine version of the algorithm, before the algorithm gets substituted by e.g., a malicious
software update, or before a time bomb triggers the malicious behavior of the algorithm. In other words,
our “security anchor” is the assumption of having a secure initial phase. We call a cryptographic scheme
that is secure despite making black-box use of possibly subverted underlying schemes self-guarding. Such
a scheme uses information (from now on called samples) gathered from its underlying primitives during
their good initial phase in addition to basic operations to prevent leakage later on, or to implement a new
protocol securely without implementing the required primitives securely from scratch. We emphasize that
subverting or exfiltrating samples (e.g., pairs of message and ciphertexts, which depend on users’ keys)
would require targeted attacks, which is a considerably more difficult attack to carry out in a large scale
than algorithm substitution attacks.

1.3.1 Related Approaches

Our approach shares the idea of a trusted initialization phase with several other methods in the literature.
In the area of program self-correction [BLR90] an algorithm can take advantage of a program which
computes incorrectly on a small fraction to always output correct answers with high probability. This
bootstrapping is similar to our idea here, only that we use temporary correctness (and security) of the
program. In self-correction, as well as program checking [BK89], it is important to not trivialize the
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problem by implementing a trusted program oneself. Instead, one should only use basic operations on top.
The same austerity principle applies in our setting.

The concept also appears in the context of digital certificates. A technique called HTTP Public Key
Pinning (HPKP) [EPS15], albeit argued about, is a trust-on-first-use technique for checking the validity
of certificates. On first usage certificates are declared as trustworthy (“pinned”) such that substitution of
certificates in subsequent executions becomes infeasible.

Finally, in interactive protocols involving physical unclonable functions (PUFs) or other hardware
tokens, the question of security in the presence of malicious tokens has been brought up (e.g., [OSVW13,
Rüh16, BKOV17]). Here, the sender of the token typically first holds a genuine version of the token. The
adversary may substitute the token later, when in transmission. This corresponds to our setting with
a trusted initialization phase and subversion afterwards, only that the protocol involves two parties and
hardware tokens.

1.3.2 Comparison to Watchdogs and Reverse Firewalls

As mentioned before, self-guarding schemes, as well as reverse firewalls, prevent leakage by construction.
The difference is how the security anchor is provided: In reverse firewalls it is ensured by trust distribution,
in self-guarding schemes it is based on a temporary trust phase. Self-guarding applies more smoothly to
symmetric primitives and hardware tokens, but for other primitives currently comes with a performance
inferior to today’s reverse firewall solutions.

At first glance one might think that the initialization phase of self-guarding schemes could simply be
executed by the watchdog with the specified program, such that we immediately get a detecting solution.
However, our self-guarding schemes will pass state between the phases, whereas watchdogs typically do
not forward data to individual users. Furthermore, although one could in principle combine our approach
with some detection mechanism, self-guarding does not allow to spot malicious behavior innately. Another
noteworthy difference between self-guarding and the watchdog model is that self-guarding schemes do not
even need the subverted algorithm in the beginning.

1.4 Constructions

We show how to build self-guarding solutions for some basic primitives, including public-key and private-
key encryption, and signatures. To show that our model applies to hardware tokens, too, we also discuss
how to self-guard PUF-based key exchange protocols if the adversary can substitute tokens in transmission.
While the general idea of passing samples of the primitive in question from the initialization phase to the
execution is shared by all solutions, the techniques differ in details and also in terms of security guarantees
and efficiency.

We first give a simple and efficient construction for a self-guarding IND-CPA-secure public-key en-
cryption scheme from any homomorphic encryption scheme, e.g., ElGamal encryption. Our scheme is
self-guarding even against stateful subversions of the underlying scheme. Yet, the downside is that, if the
subverted scheme is stateful, we are limited to only encrypting as many messages securely as we have
sample ciphertexts from the first phase. Our construction is inspired by an elegant idea by Russel et
al. [RTYZ17] to prohibit input-triggered attacks in encryption schemes. This is achieved by adding a
random message to the input of an encryption algorithm and sending the random message along with the
ciphertext.

The second construction provides a self-guarding symmetric-key encryption scheme for IND-CPA-
security, starting with any regular IND-CPA-secure scheme. Here the number of encryptions is again
limited by the number of available samples, and, moreover, the message space is bounded. Despite these

4



limitations, we find this construction quite intriguing, since the only other proposal for subversion-resisting
randomized symmetric encryption is in the split-program model [RTYZ17].

Our third construction is a self-guarding signature scheme. It is built upon any deterministic EUF-CMA-
unforgeable signature scheme. This time, however, the overhead is bigger than in case of encryption, and it
only self-guards against stateless subversion of the underlying scheme. In contrast, it can be securely used
to sign arbitrarily often after the substitution took place. Moreover, contrary to re-randomizing reverse
firewalls for signatures, as proposed in [AMV15], it does not rely on an honest implementation of the
verification algorithm for signing. Moreover, for our self-guarding signatures we neither need to restrict
the adversarial queries to random messages, nor do we rely on a (relaxed or perfect) verifiability condition,
a property roughly stating that signatures under the subverted signing algorithm must still be verifiable.
The latter property has been used in [AMV15]. In our case only basic operations and black-box calls to
the signing algorithm are required.

Finally we give a PUF-based key-exchange protocol that is self-guarding against subversion of the PUF
with malicious, stateful, and encapsulated PUFs. This is noteworthy as for more complex tasks such as
oblivious transfer there are negative results concerning such malicious PUFs [vDR12, DFK+14, Rüh16].
Our key-exchange protocol has 4 rounds and uses only a single genuine sample from the initialization phase
for deriving each key. It thus matches the non-self-guarding PUF-based protocols in terms of samples.

2 Security Model for Self-Guarding

2.1 Preliminaries

Notation. A string s is an element of {0, 1}∗. By |s| we denote the length of s, and s||s′ is the concate-
nation of strings s, s′. By {0, 1}` we denote the set of strings of length `. A special symbol ⊥ 6∈ {0, 1}∗
indicates an error. For a finite set S we let s $←− S denote a uniformly and independently sampled element
s from S. A queue Q is an abstract collection of ordered elements. A new element e can be added to
the queue using an enqueue function enq(Q, e), and the oldest element in the queue can be accessed and
removed from it using a dequeue function e ← deq(Q). This makes queues a first-in-first-out collection.
Using the function {0, 1} ← is-empty(Q) we can check whether the queue is empty, where we denote an
empty queue by [ ].

Syntax. To distinguish genuine from potentially malicious implementations, we use a notation similar
to [RTYZ16, RTYZ17], i.e, we use indices genuine for a trusted and genuine implementation, and subv
for a possibly malicious implementation.

We are interested in protocols Π which use a possibly subverted primitive Σ. We require Π to obey
a specific interface. In particular, it should provide means for generating parameters for the scheme and
sampling their algorithm interfaces. More formally, given a cryptographic scheme Σ, we define ΠΣ :=
(Π.GenΣ,Π.SampleΣ,Π.XΣ

1 , . . . ,Π.XΣ
n ) for some n ∈ N, where

• Π.GenΣ(1λ) $−→ κ = (κs, κp). On input of a security parameter 1λ, this probabilistic algorithm outputs
secret parameters κs and public parameters κp.

• Π.SampleΣ(κ) $−→ Ω. On input of parameters κ = (κs, κp), this probabilistic algorithm outputs a
collection Ω of N input-output samples of Π.XΣ

i for some 1 ≤ i ≤ n. The overall number N of
samples is determined by the protocol Π and may depend on the security parameter.

• Π.XΣ
i are placeholders for other functionalities of Π, for all i with 1 ≤ i ≤ n.

We remark here that Π can basically take two different roles. It can either attempt to provide a different,
possibly more complex functionality, while remaining secure despite using the subverted algorithm Σsubv,
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or it can simply immunize a possible attack in Σsubv. For the former role, one may think of Π as a
key exchange protocol using some cryptographic primitive Σ, and the security game may capture the
indistinguishability of the derived keys. Intuitively, the adversary’s goal is now to take advantage of the
algorithm substitution attack to break the security game. As an example of the latter case, Π and Σ can
have a similar functionality, for example providing the usual interfaces for encryption and decryption. In
this case, Π’s task is to neutralize a potential subversion attack on Σ.

Simplicity. In principle, preventing an attack is trivial to achieve in real executions, simply by having
Π deploy its own secure implementation of Σgenuine, ignoring the potentially substituted implementation
Σsubv. To avoid such issues we assume that Π makes only black-box use of Σ and only implements very
basic extra steps for the immunization. In other words, in a practical construction the internal part of
Π concerning the immunization, i.e., excluding the queries to Σ and possibly an own functionality, must
be as simple as possible. This assumption is important in order to keep the trusted component, i.e., Π,
as small as possible, such that it is easy to implement correctly and hence too hard for an adversary to
subvert.

Correctness. For a meaningful definition we require the genuine implementations, i.e., ΠΣgenuine , to
be correct. Since our main objective here is preventing ASAs, we generally do not expect a correct
functionality from ΠΣsubv , i.e., in the event of subversion. In particular, if Π detects subversion of Σsubv, it
may simply output an error message ⊥. However, for Π to be able to meaningfully use Σsubv as a black
box, we do assume that Σsubv respects the interface of the corresponding genuine scheme Σgenuine, i.e., it has
the same set of algorithms and the number and spaces of inputs and outputs.

2.2 Cryptographic Games

The advantage of a subverting adversary can be measured against its advantage in breaking the security
of a scheme Π (with primitive Σ) with respect to a security game Sec by substituting the original and
genuine implementation of the primitive Σgenuine by a malicious implementation Σsubv.

We follow [HH09] and [RTYZ16] in defining the security of standard cryptographic schemes. Our
definition will be general enough to capture both regular security games as well as self-guarding games,
such that we already include parameters κ and samples Ω as part of the input of the security game. For
an ordinary security game one may think of parameters κp and κs as being the public and secret key,
respectively, and Ω being empty.

Definition 2.1 (Cryptographic Game). A cryptographic game for a scheme Π is defined by a probabilistic
algorithm Sec and an associated constant δ ∈ [0, 1). On input of scheme parameters κ and potentially a
set of samples Ω, the algorithm Sec(κ,Ω) interacts with an adversary A(1λ) and outputs a Boolean won.
We denote the result of this interaction by won $←− SecΠ

A(κ,Ω). The advantage of an adversary A in the
game Sec is defined as:

AdvSec
Π,A(κ,Ω) = Pr

[
SecΠ
A(κ,Ω) = true

]
− δ.

Here the probability is over the random choices of the game, the adversary, and the values κ $←− Π.Gen(1λ)
and Ω $←− Π.Sample(κ).

We say that the scheme Π is Sec-secure if for any PPT adversaries A, the advantage AdvSec
Π,A(κ,Ω) is

negligible.

As explained in the introduction we assume that users in the security game have access to a genuine
version of algorithm Σ in the beginning. Hence, our self-guarding game allows the user to initially query
the correct (with respect to the intended behavior) algorithm Σgenuine and provide Π with some samples
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Ω that can be used to prohibit the adversary from winning Sec. The substitution may only happen after
the first phase.

2.3 Self-Guarding Schemes

To proceed to the definition of self-guarding schemes, we need to investigate more closely the role of the
parameter and sample generation step. In the self-guarding game SGuard we consider two phases. During
the first phase the challenger has access to a genuine version of algorithm Σgenuine. There, the challenger
can initialize ΠΣgenuine and have N samples from Σgenuine be created and stored in a collection Ω (which are
meant to be chosen and used by the user in the real execution).

Afterwards, the challenger starts the second phase of the self-guarding game by calling the adversary
A(subst, κp) on a command subst and the public parameters κp, giving A the opportunity to provide
an arbitrary (while still respecting the original interface as explained above) implementation Σsubv for Σ
and a state st ∈ {0, 1}∗, based on the public parameters κp and the knowledge about algorithm Σgenuine,
of course. In the subsequent steps the challenger will use the original algorithm Σgenuine or the subverted
version Σsubv. The choice is made according to a fixed value β. In either case the challenger will have the
adversary A(sec, κp, st), called on a command sec, the public parameters and the state obtained from the
subverting adversary, play the security game Sec for the scheme ΠΣβ with parameters (κ,Ω).

The self-guarding ability of Π under subversion of Σ now states that the adversary’s success probabilities
in winning the game Sec should not increase significantly with the subverted algorithm, i.e., should not
depend significantly on the value of β, which indicates if the original or the subverted algorithm is used.

SGuardΠΣ,β
Sec,A(1λ) with β ∈ {genuine, subv}

—— trusted setup phase ——

1 : κ = (κs, κp) $←− Π.GenΣgenuine(1λ)
2 : Ω $←− Π.SampleΣgenuine(κ)

—— subversion phase ——

3 : Σsubv, st $←− A(subst, κp)

4 : won $←− SecΠΣβ

A(sec,κp,st)(κ,Ω)
5 : return won

Figure 1: Game for self-guarding of Π against subversion of Σ.

Definition 2.2 (Self-guarding against Subversion). Let Σ and Π be cryptographic schemes, and let Sec be
a security game for Π. The advantage of an adversary A in the self-guarding game of Figure 1 is defined
by:

AdvSGuard,Sec
ΠΣ,A (λ) := Pr

[
SGuardΠΣ,subv

Sec,A (1λ) = true
]
− Pr

[
SGuardΠΣ,genuine

Sec,A (1λ) = true
]
.

We say that Π is self-guarding with respect to Sec against subversion of Σ, if for all PPT adversaries A,
the advantage AdvSGuard,Sec

ΠΣ,A (λ) is negligible.

Intuitively, the above definition requires that the security of a self-guarding scheme Π should not sig-
nificantly decrease if an adversary subverts the underlying primitive Σ. As discussed before, the simplicity
of the guarding performed by Π is crucial in practical applications. In particular, we assume that Π does
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not implement its own secure version of Σ, nor implement “heavy” detection procedures. This also implies
that Π is usually not able to verify correctness of Σ itself, still allowing the adversary to modify Σ at will.

Our definition is (almost) non-adaptive in the sense that the subverted algorithm is chosen before the
actual security game starts, but it may depend on the public parameters. This complies with some efforts in
the literature, such as the subversion-resistant signature scheme in [RTYZ16] where the subverted algorithm
may not even depend on the signer’s public key. The subversion attacks on symmetric encryption schemes
in [BPR14, DFP15] are also non-adaptive in nature. Such notions provide a basic level of robustness in
the setting of mass surveillance where dedicated attacks may be too cumbersome to mount. At the same
time, targeted attacks may still be an important aspect, e.g., when the signer is a certification authority
such that forging signatures allows to create arbitrary certificates. We stress that there are adaptive
notions in the literature, for example for the subversion-resistant signature schemes by Ateniese, Magri,
and Venturi [AMV15], but in general the distinction is not explicit.

Our notion is strong enough to capture time bombs and logical bombs in software. The former ones
are code parts which get executed at, or after, a certain point in time; the latter ones get executed if some
specific condition is met. The input-triggered subversion of Degabriele et al. [DFP15] is a special case of
the concept of logical bombs. While we do not have a notion of time in our model, the adversary in our
model can in principle provide an algorithm which uses the original algorithm as a subroutine and only
enters a special mode after some calls, if the algorithm can be stateful and, say, keep a counter value.
Logical bombs, such as input-triggers, can be implemented directly in the subverted algorithm.

3 Self-Guarding Public-Key Encryption
In this section we show how to build a self-guarding encryption scheme from any homomorphic encryption
scheme, to achieve substitution resistance against chosen-plaintext attacks. Its guarding mechanism is
simple, efficient, and for typical instantiations such as under ElGamal encryption it does not need to
perform any modular exponentiation, nor to change anything on the decryptor’s side. Another advantage
is that the solution enjoys security even in the case that the subverted encryption algorithm keeps state,
a property which is usually hard to achieve. The downside is that if the subverted scheme is stateful, we
can only encrypt as long as a sufficient number of fresh samples is still available, since a stateful algorithm
can store the old samples.

3.1 Preliminaries

Informally, homomorphic encryption schemes allow one to perform operations on encrypted messages by
performing efficient computations on their ciphertexts. Here we recall the formal definition. Below we
assume that the message spaceM with some efficiently computable operation “◦” forms a group (where
the message space usually depends on the security parameter or the public key, but we omit this reference
for sake of simplicity). Analogously, we assume that the ciphertext space C forms a group with some
efficiently computable operation “�”. Furthermore, one can efficiently compute inverses in the group.

Definition 3.1 (Homomorphic Encryption Scheme). A homomorphic public-key encryption scheme HE =
(Gen,Enc,Dec) with associated message group (M, ◦) and ciphertext group (C, �) consists of three proba-
bilistic polynomial-time algorithms:

• Gen(1λ) $−→ (sk, pk): On input the security parameter 1λ this algorithm generates a secret key sk and
a public key pk.

• Enc(pk,m) $−→ c: On input a public key pk and a message m ∈ M this algorithm outputs a cipher-
text c ∈ C.
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• Dec(sk, c)→ m: On input a secret key sk and a ciphertext c ∈ C, this deterministic algorithm outputs
a message m ∈M.

For any λ ∈ N, any (sk, pk) $←− Gen(1λ), any messages m,m′ ∈M the following conditions hold:

Correctness: Dec(sk,Enc(pk,m)) = m.

Homomorphism: Enc(pk,m ◦m′) has the same distribution as Enc(pk,m) � Enc(pk,m′).

The classical example is the ElGamal encryption scheme, where ciphertexts c = (gr, pkr ·m) are pairs
of elements from a group G = 〈g〉 of prime order q, and messages are from G as well. The operations are
multiplication in G for messages, and component-wise multiplication in G for ciphertexts.

3.2 Construction

The idea of our generic construction of a self-guarding scheme HEsg, described formally in Figure 2, is as
follows. In the sampling phase we generate multiple ciphertexts of random messages m$,i. At this point,
the encryption algorithm still complies with the specification, such that the samples are valid encryptions.
Since we do not need any specific order of these samples, we will assume that they are stored in a queue
structure and that we access the queue with the usual enq and deq commands, and check if the queue is
empty via is-empty.

Next, when encrypting a given messagem, we call the (potentially now subverted) encryption algorithm
to encrypt the messagem◦m$,i for a fresh messagem$,i from the sample list. The idea is that the subverted
algorithm then only gets to see a random (i.e., blinded) message for producing the ciphertext. Once we
obtain the ciphertext we aim to undo the message blinding via the homomorphic property, dividing out
the ciphertext for m$,i. For instance, when we use ElGamal encryption this corresponds to two modular
multiplications and an inversion in the group. Remarkably, we do not need to be able to distinguish valid
and invalid ciphertexts returned by the encryption algorithm, which saves us for example from performing
an exponentiation for such a check for ElGamal encryption. Note that although re-randomizing samples
allows for an unlimited number of secure encryptions, such involved techniques, which quasi means to
implement one’s own encryption algorithm, should be avoided.

HEsg.Gen(1λ)

(sk, pk) $←− HE .Gen(1λ)
return (sk, pk)

HEsg.Sample(pk)

Ω← []
for i = 1..N do
m$,i

$←−M
c$,i

$←− HE .Enc(pk,m$,i)
enq(Ω, (m$,i, c$,i))

return Ω

HEsg.Dec(sk, c)

m← HE .Dec(sk, c)
return m

HEsg.Enc(pk,Ω,m)

if is-empty(Ω) then
return ⊥

(m$, c$)← deq(Ω)
c $←− HE .Enc(pk,m ◦m$)
csg ← c � c−1

$

return csg

Figure 2: Self-guarding encryption scheme HEsg from homomorphic encryption scheme HE .

Correctness. As long as fresh samples are available and the underlying scheme HE is not under a
subversion attack, correctness of our encryption scheme HEsg follows immediately from correctness and
the homomorphic property of HEgenuine. Considering that the encryption algorithm HEsg.Enc practically
stops working afterwards, correctness beyond that point is clearly not provided.
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IND-CPAEA(κ,Ω)

b $←− {0, 1}
b′ $←− A∨(κ,Ω,b,·,·)(κp)
return (b = b′)

∨(κ,Ω, b,mleft,mright)

if |mleft| 6= |mright| then return ⊥
m0 ← mleft,m1 ← mright

c $←− E .Enc(κ,Ω,mb)
return c

Figure 3: IND-CPA game for encryption schemes E .

3.3 Security

The notion of IND-CPA follows the common left-or-right security game and is given in Figure 3 in our
terminology. We capture both public-key and private-key encryption simultaneously, by setting κp = pk
and κs = sk resp. κp = ⊥ and κs = k. Looking ahead, the notion for private-key encryption will be used
in Section 4. Recall once more that the game basically describes the second phase of substitution attacks.
Also, in the self-guarding game of Figure 1, if the adversary always chooses Esubv = Egenuine and we have an
empty list Ω we obtain the standard security notions without a substitution attack.

Theorem 3.2. The encryption scheme HEsg from Figure 2 is self-guarding with respect to IND-CPA-
security against subversion of HE, if HE is an IND-CPA-secure homomorphic encryption scheme.

Proof. Assume that adversary A plays the self-guarding game SGuardHE
sgHE ,β

IND-CPA,A defined in Figure 1. We
argue that A’s probabilities for predicting the secret bit b in the two settings, β = genuine and β = subv,
are almost equal.

The case β = genuine. Consider first the case that the security game uses the actual scheme HEgenuine.
Then A’s probability of predicting b is negligible close to 1

2 . To see this note that A, upon receiving pk,
provides the subverted algorithm HE subv. This encryption algorithm is then ignored. It follows that in
each challenge query mleft,mright of A, where the remaining number of samples is not exhausted yet, the
adversary receives an encryption of mleft or of mright, only computed as the product of genuine ciphertexts,
derived via Encgenuine. But since the homomorphic property says that this has the same distribution as a
fresh encryption of the message, it follows immediately that the probability of predicting b is negligibly
close to 1

2 by the IND-CPA-security of HE .

The case β = subv. Next, consider the case that the security game now uses the subverted algorithm
HE subv in the challenge queries. In each such query for a pair of messages mleft,mright we use a random
messagem$ to mask the challenge message and encrypt the masked message under the subverted algorithm.
The message m$ has been encrypted under the genuine algorithm Encgenuine(pk,m$) in the sampling phase.
The final ciphertext csg is derived by multiplying the first ciphertext with the inverse of the second one.

Suppose now that, instead of encryption m$ under Encgenuine for the second ciphertext in each challenge
query, we encrypt an independent random message m′$ in the second ciphertext and compute the final
ciphertext from that encryption. Then the adversary would only learn the random message m$ ◦mleft or
m$ ◦mright, possibly leaked through the subverted algorithm Encsubv, and the encryption of an independent
random message m′$. This also covers the case that the ciphertext in the challenge phase is malformed,
e.g., does not belong to the correct subgroup. In other words, each challenge query yields an answer which
is independently distributed from the bit b. The adversary’s success probability for predicting b is then at
most the guessing probability of 1

2 .
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It remains to argue that encrypting m′$ instead of m$ does not significantly add to A’s success prob-
ability. But this follows straightforwardly from the IND-CPA-security of HE . For this we use A to build
an adversary B against HE . The adversary B initially receives a public key pk and forwards it to A.
Adversary A then provides the subverted algorithm HE subv. Then B simulates the rest of the self-guarding
game, picking the bit b $←− {0, 1} itself, but trying to predict an external secret bit b′ in its IND-CPA-game.

Adversary B answers each challenge query mleft,mright of A for a message with a ciphertext csg, com-
puted as follows. Adversary B picks a random message m$

$←− M, computes m$ ◦ mleft (for b = 0)
resp. m$ ◦mright (for b = 1). It encrypts this message under Encsubv and pk to get a ciphertext c. It picks
another random message m′$ and forwards m$ and m′$ to its own challenge oracle to get a ciphertext c$.
It returns csg ← c � c−1

$ to adversary A.
When A eventually outputs a guess for bit b, adversary B checks if the guess is correct. If so, it outputs

the prediction 0 for bit b′, else it outputs 1.
For the analysis note that, if A’s success probability drops significantly from the case that one correctly

encryptsm$ to the case where one encryptsm′$, then this would immediate a contradiction to the IND-CPA-
security of HE . That is, letting B = 0 and B = 1 denote the events that B outputs 0 and 1, respectively,
and wonA denote the event that A predicts b correctly, we have:

Pr
[
B = b′

]
= 1

2 · Pr
[
B = 0

∣∣ b′ = 0
]

+ 1
2 · Pr

[
B = 1

∣∣ b′ = 1
]

= 1
2 + 1

2 ·
(
Pr
[
B = 0

∣∣ b′ = 0
]
− Pr

[
B = 0

∣∣ b′ = 1
])

= 1
2 + 1

2 ·
(
Pr
[
wonA

∣∣ b′ = 0
]
− Pr

[
wonA

∣∣ b′ = 1
])
.

The difference in the parentheses is non-negligible, by assumption, such that our algorithm B has a non-
negligibly larger prediction probability than 1

2 .

4 Self-Guarding Symmetric Encryption
In this section we present a self-guarding mechanism for randomized symmetric encryption. We do not
assume any restriction on the attack strategy. In particular, our construction is self-guarding against
biased-ciphertext attack (cf. [BPR14]) and stateful subversions. Unlike public-key encryption, a subverted
symmetric encryption algorithm has access to the secret key and can potentially leak it. Therefore, simply
masking the plaintext cannot fully neutralize the attack. Interestingly, we can thwart leakage by using a
random message to mask the output and appending the encryption of this random message so that the
resulting ciphertext is decryptable.

The computational overhead of the proposed scheme is small. For encryption we basically need a
reliable ⊕-operation, and for decrypting we need two calls to the decryption of the underlying scheme,
and again a trustworthy implementation of ⊕. On the downside, we can only encrypt securely as long as
a fresh sample is available. Moreover, the self-guarding decryption algorithm differs from the underlying
decryption algorithm, and also we can only encrypt messages that are shorter than the sample messages.

4.1 Construction

Our construction Esg from Figure 4 is built upon an arbitrary IND-CPA-secure encryption scheme E that
has a maximum ciphertext expansion e. Here, the ciphertext expansion describes the maximum number
of extra bits in the ciphertext to encrypt a message, e.g., to store a random IV.

In the sampling phase we generate multiple ciphertexts of random messages m$,i of bit length `. At
this point, the encryption algorithm still complies with the specification, such that the samples are valid
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Esg.Gen(1λ)

k $←− E .Gen(1λ)
return k

Esg.Sample(k)

Ω← []
for i = 1..N do
m$,i

$←− {0, 1}`

c$,i
$←− E .Enc(k,m$,i)

enq(Ω, (m$,i, c$,i))
return Ω

Esg.Enc(k,Ω,m)

c $←− E .Enc(k,m)
if is-empty(Ω)

or |m| > `− e− 1
or |c| > `− 1 then

return ⊥
(m$, c$)← deq(Ω)
csg ← [c||10`−|c|−1]⊕m$

return (csg, c$)

Esg.Dec(k, (csg, c$))

m$ ← E .Dec(k, c$)
c||10 . . . 0← csg ⊕m$

m← E .Dec(k, c)
return m

Figure 4: Self-guarding symmetric encryption scheme Esg built from a symmetric encryption scheme E
with maximum ciphertext expansion of e bits for each message.

encryptions c$,i. Similar to the previous section, we store the samples in a queue structure, where we
can access the queue with the usual enq and deq commands, and check if it is empty via is-empty. The
sample messages are used as a one-time-pad key to hide the ciphertext produced by a potentially malicious
implementation. This is intuitively the reason why we need sample messages that are at least as long as
the ciphertexts produced by E . To deal with potentially shorter ciphertexts we use the common padding
10 . . . 0 to expand all ciphertexts to equal length. To make sure that the receiver is able to decrypt, the
honest encryption of the sample message is sent along with the actual encryption.

In theory we are able to lift the restriction on the new message space by using a pseudorandom function
to expand the sample messages. However we decided to keep the construction simple and minimize the
number of trusted components.

Correctness. As long as fresh samples are available and the construction is not under a subversion
attack, correctness of our symmetric encryption scheme Esg for messages with maximum length of ` −
e− 1, follows immediately from correctness of the underlying symmetric encryption scheme Egenuine. Since
the encryption algorithm Esg.Enc essentially aborts if no more samples are left, correctness is not given
afterwards.

4.2 Security

Next we prove that our construction is self-guarding with respect to the IND-CPA game, given that the
underlying encryption scheme is IND-CPA during the initial trusted phase.

Theorem 4.1. The symmetric encryption scheme Esg from Figure 4 is self-guarding with respect to
IND-CPA-security against subversion of E, if E is a IND-CPA-secure symmetric encryption scheme.

Proof. Consider an adversary A playing the self-guarding game SGuardE
sgE ,β

IND-CPA,A defined in Figure 1. We
again show that A’s probability for predicting the secret bit b in the two settings, β = genuine and
β = subv, cannot differ significantly.

The case β = genuine. Consider first the case that the security game uses the actual scheme Egenuine.
ThenA’s probability of predicting b is negligible close to 1

2 , because the subverted algorithm Esubv is ignored,
such that each in challenge query mleft,mright of A (of at most ` − e − 1 bits) the adversary receives an
encryption of mleft or of mright, where the (padded) ciphertext is xored with a random message m$, which
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is at least as long as the ciphertext. The adversary also receives the genuine encryption of m$ (i.e., c$),
derived via Encgenuine.

For the genuine encryption algorithm Encgenuine we actually get a “twofold” secure encryption. First, and
this suffices for the formal argument, the encryption of the challenge message under the IND-CPA-secure
scheme Encgenuine already hides the secret bit b. This can be straightforwardly formalized by simulating the
extra layer of the encryption with m$ and creating the ciphertext c$ with the help of the encryption oracle
in the IND-CPA game, also keeping track of the number of available samples. At the same time, we could
also argue along the security of c$, hiding m$, which in turn is then used to mask the ciphertext. Hence,
we can conclude that the probability of predicting b in the self-guarding game for Encgenuine is negligibly
close to 1

2 by the IND-CPA-security of E .

The case β = subv. Next, consider the case that the security game uses the subverted algorithm Esubv

in the challenge queries. In each such query for a pair of messages mleft,mright we hence encrypt the
message under the subverted algorithm to get a possibly malicious ciphertext c. We check the validity
of the length of the ciphertext, and then add the message m$ to the (padded) ciphertext to obtain csg.
This result, together with the genuine encryption c$

$←− Encgenuine(k,m$), which was computed during the
sampling phase, is output as the final ciphertext (csg, c$).

Suppose now that, instead of encryption m$ under Encgenuine for the second ciphertext component in
each challenge query, we encrypt an independent random messagem′$

$←− {0, 1}`. Then the adversary would
only learn the encryption of an independent random message m′$, since c

sg is hidden by another random
message m$. In other words, each challenge query yields an answer which is independently distributed
from the bit b. The adversary’s success probability for predicting b is then at most the guessing probability
of 1

2 .
We are once more left to argue that encrypting m′$ instead of m$ does not significantly contribute to

A’s success probability. But this follows once more straightforwardly from the IND-CPA-security of E .
From adversary A we build an adversary B against E . Adversary A first provides the subverted algorithm
Esubv. Then B simulates the rest of the self-guarding game, picking the bit b $←− {0, 1} itself, but playing
against an external secret bit b′ in its IND-CPA-game.

Adversary B answers each challenge query mleft,mright of A of length at most ` − e − 1 as follows.
Adversary B checks the length restrictions and that the number of samples is not exceeded yet. If so, B
encrypts the message under Encsubv and xors the padded result with a randomly chosen message m$ ←
{0, 1}` to get a ciphertext csg. It picks another random message m′$ of the same length and forwards m$
and m′$ to its own challenge oracle to get a ciphertext c$. It returns (csg, c$) to adversary A.

When A eventually outputs a guess for bit b, adversary B checks if the prediction is correct. If so, it
outputs 0 for bit b′, else it outputs 1.

The analysis is now identical to the case of the public-key scheme and omitted here. By assumption,
our algorithm B therefore has a non-negligibly larger prediction probability than 1

2 .

5 Self-Guarding Signatures
A substituted signing algorithm may try to leak information about the secret key, or a different signature.
In the domain of reverse firewalls, the idea of Ateniese et al. [AMV15] is to have any signature created
by the signer verified by the (trusted) reverse firewall with respect to the public key and, if correct, re-
randomized before it is sent out.1 The combination of re-randomization and verification of signatures
prevents against subliminal leakage even when triggered by malicious inputs. For unique signatures, which

1Interestingly, Ateniese et al. [AMV15] define re-randomization with respect to the original signature algorithm, but the
solution presumably requires re-randomization of maliciously generated signatures under the subverted algorithm.
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have only one valid signature for each message under the public key, the re-randomization step is trivial
and can be omitted.

It is possible to apply the same idea in our self-guarding setting, if the verification step and the re-
randomization step can be implemented robustly. In this case, the signer generates a signature, verifies it
with the trustworthy verification step, and re-randomizes it securely. This approach may be viable in some
settings, e.g., when verifying FDH-RSA signatures with low exponents such as e = 216 + 1, where only
a few modular multiplications and, more critical, a hash evaluation would need to be carried out safely.
Still, in other scenarios implementing the full verification procedure securely may be beyond the signer’s
capabilities, whereas storing a number of message and signature pairs reliably is usually a much easier task
than correctly implementing cryptographic code. We therefore propose an alternative solution below.

5.1 Construction

The idea of our construction is as follows. We will use a regular deterministic signature scheme and consider
only stateless subversions. In the initialization phase we sign a random message m$ under this scheme to
get a signature sample σ$. We store this sample and then, if we are supposed to create a signature for a
given message m later, then we will have the (now potentially substituted) signing algorithm create one
signature for m$ and one for m$ ⊕ [m||σ$]. Including the signature σ$ in the second message prevents
combination attacks against unforgeability, and requires that m$ is long enough to range over m||σ$.2

We will hand over the two messages m$ and m$ ⊕ [m||σ$] in random order to the subverted signing
algorithm such that if the algorithm deviates for one of the two signatures, we will detect this with
probability 1

2 and abort forever. Recall that we assume that the substituted algorithm is stateless such
that both messages look equally random to it, even if we re-use the random message across multiple
signature creations. To increase the detection probability to overwhelming we will repeat the above λ
times with independent key pairs. The independence of the keys ensures that, even if the adversary
manages to leak information about some signing keys, the other keys are still fresh. Although the trusted
samples are used here to enforce security via detection, the detection strategy is very simple and avoids
the problems with usual detectors discussed in Section 1.1.

More formally, our self-guarding signature scheme Ssg = (KGensg, Sigsg,Vfsg) is based on a deterministic
signature scheme S = (KGen,Sig,Vf) and works as follows. The key generation algorithm KGensg(1λ)
creates λ key pairs (ski, pki) $←− S.KGen(1λ) of the underlying signature scheme. It sets sksg ← (sk1, . . . , skλ)
and pksg ← (pk1, . . . , pkλ) and outputs them together with a flag err initially set to false, indicating that
no invalid signature was detected.

In the initialization phase we pick λ random messagesm$,1, . . . ,m$,λ ← {0, 1}` and create the signatures
σ$,1, . . . , σ$,λ for all messages. We store the pairs (m$,i, σ$,i) in the sample queue Ω. The common bit length
` of the messages m$,i determines an upper bound on the messages m which can later be signed. Namely,
any message m can be at most the length of m$,i, minus the bit length for signatures, where we assume
without loss of generality that all signatures are of equal length s. Reserving some space for the mandatory
padding 10 · · · 0 of shorter messages, we must have that messages are of length `− s− 1 at most. Longer
messages m may be hashed first, outside of the signing algorithm. For sake of a cleaner presentation we
assume below that all input messages are tightly of length ` − s. The proof can be transferred to the
general case with padding easily.

Later, when signing a message m under the possibly subverted algorithm Sig, with the key sksg and
the samples Ω, do the following. If no invalid signatures were detected so far, i.e., err is still false, for each
i = 1, 2, . . . , λ pick a random bit bi $←− {0, 1} and call the signing algorithm twice, one time for ski,m$,i
and the other time for ski,m$,i ⊕ [m||σ$,i]. Use this order if bi = 0 and the reverse order if bi = 1. Let σi

2Note that deterministic signatures can produce shorter signatures, e.g., if first hashing the message; only the signature
value for a given message must be deterministically computed.
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be the returned signature for the message m$,i⊕ [m||σ$,i]. For each i check that the provided signature for
m$,i equals σ$,i. If not, abort after setting err to true. Else output σsg ← (m$,1, σ$,1, σ1, . . . ,m$,λ, σ$,λ, σλ)
as the signature.

Verification is straightforward. For each i build the message m$,i⊕ [m||σ$,i] from the given message m
and the data in the signature, and verify the signature σi with respect to pki, as well as the signature σ$,i
for m$,i. Accept iff all verification steps succeed.

Ssg.Gen(1λ)

for i = 1..λ do
(ski, pki) $←− S.KGen(1λ)

(sksg, pksg)← ((sk1, . . . , skλ), (pk1, . . . , pkλ))
err ← false
return (sksg, pksg, err)

Ssg.Sig(sksg,m,Ω, err)

if err = true or |m| 6= `− s then
return ⊥

Ω′ ← Ω
for i = 1..λ do

(m$,i, σ$,i)← deq(Ω′)
bi

$←− {0, 1}
if bi = 0 then

(m0,m1)← (m$,i,m$,i ⊕ [m||σ$,i])
else

(m0,m1)← (m$,i ⊕ [m||σ$,i],m$,i)
σ0 ← S.Sig(ski,m0)
σ1 ← S.Sig(ski,m1)
if σbi 6= σ$,i then

err ← true
return ⊥

σi ← σ1−bi

if |σi| 6= s then return ⊥
σ ← (m$,1, σ$,1, σ1, . . . ,m$,λ, σ$,λ, σλ)
return σ

Ssg.Sample(sksg)

Ω← []
for i = 1..λ do
m$,i

$←− {0, 1}`

σ$,i ← S.Sig(ski,m$,i)
enq(Ω, (m$,i, σ$,i))

return Ω

Ssg.Vf(pksg,m, σ)

σ = (m$,1, σ$,1, σ1, . . . ,m$,λ, σ$,λ, σλ)
d← [|m| = `− s]
for i = 1..λ do
d← d ∧ |m$,i| = ` ∧ |σ$,i| = s

d← d ∧ S.Vf(pki,m$,i, σ$,i)
d← d ∧ S.Vf(pki,m$,i ⊕ [m||σ$,i], σi)

return d

Figure 5: Self-guarding signature scheme Ssg with message space {0, 1}`−s built from signature scheme S
producing signatures of length s.

5.2 Security

For the security proof we need another property of the underlying signature scheme, namely, that the
(equal length) signature strings are never zero-bitstrings. This can be easily achieved by prepending or
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EUF-CMASA(κ,Ω)

M ← ∅
(m∗, σ∗) $←− ASig(κs,Ω,·)(κp)
if m∗ 6∈M and S.Vf(κp,m∗, σ∗) then

return true
return false

Sig(κs,Ω,m)

M ←M ∪ {m}
σ $←− S.Sig(κs,Ω,m)
return σ

Figure 6: EUF-CMA game for signature schemes S.

appending a bit ‘1‘ to any signature and verifying that this bit really appears in the signature. We call
such signature schemes zero evading.

The notion of EUF-CMA unforgeability is given by the standard security game in Figure 6. In the
self-guarding game of Figure 1, if the adversary always chooses Ssubv = Sgenuine and we have an empty list
Ω we obtain the standard security notion without a substitution attack.

Theorem 5.1. The signature scheme Ssg from Figure 5 is self-guarding with respect to EUF-CMA-
unforgeability against stateless subversion of S, if S is a deterministic, EUF-CMA-unforgeable, and zero-
evading signature scheme.

Proof. Consider an adversary A playing the self-guarding game. We can show that the advantage of A is
negligible by the security of the underlying signature scheme, implying that A cannot increase its success
probability noticeably with the help of substitutions.

In the attack, as well as in the reduction below, we denote the message in the j-th signature query bymj .
The i-th signature component in the j-th query for message m$,i⊕ [mj ||σ$,i] is denoted as σi,j . We assume
thatAmakes q signature queries. The forgery attempt is denoted bym∗ and (m∗$,1, σ

∗
$,1, σ

∗
1, . . . ,m

∗
$,λ, σ

∗
$,λ, σ

∗
λ).

Reduction to Signature Scheme. We construct an adversary B against the unforgeability of the
underlying signature scheme S via a black-box reduction. Algorithm B receives as input a verification key
pk. It first picks k $←− {1, 2, . . . , λ} at random and sets pkk ← pk. It generates all the other key pairs
(ski, pki) $←− S.KGen(1λ) for i 6= k itself. Then B picks the messages m$,i and creates the signatures σ$,i,
for i 6= k with the help of the signing key ski, and for i = k by calling the signature oracle. It starts the
attack of A.

Whenever B is supposed to create a signature it executes the same steps as the self-guarding algorithm
for any index i 6= k. In particular, it checks if the returned signature components for m$,i match the
previously sampled value. For the k-th index it uses the previously obtained oracle value σ$,k and it now
calls the external oracle to get a signature for m$,k ⊕ [m||σ$,k]; it does not need to check these answers.
Algorithm B uses all these data to assemble the signature in the same way our signing algorithm does.

If the adversary eventually outputs a forgery for messagem∗ and signature (m∗$,1, σ
∗
$,1, σ

∗
1, . . . ,m

∗
$,λ, σ

∗
$,λ, σ

∗
λ),

then B does the following:

• If m∗$,k = m$,k then output the message m∗$,k ⊕ [m∗||σ∗$,k] together with σ
∗
k as the signature.

• Else, if m∗$,k 6= m$,k ⊕ [mj ||σ$,k] for all j = 1, 2, . . . , q, then output the message m∗$,k with signature
σ∗$,k.

• Else, if m∗$,k = m$,k ⊕ [mj ||σ$,k] for some j, then output the message m∗$,k ⊕ [m∗||σ∗$,k] with the
signature σ∗k.
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Analysis. We first argue that the subverted signing algorithm, with overwhelming probability, must
output only valid signatures for one of the keys pki in the actual attack. To this end, call the i-th entries
σ$,i,j and σi,j in the j-th signature reply valid if they correspond to the signature for the messages under
the specified signature algorithm. Then we claim that, with overwhelming probability, there must be
some index i such that the signature entries in all queries are valid. In case of an abort, this refers to all
signatures created up to the aborting query (exclusively), and else this refers to all queries.

Suppose that for each i the subverted algorithm outputs an invalid signature in some query j. This
query may vary with the index i. Since the algorithm is stateless, the input messages m$,i,j and message
m$,i,j ⊕ [mj ||σ$,i,j ] both look random to the algorithm. Furthermore, the order of the signing request is
determined by a random bit bi, such that the algorithm creates an invalid signature for the sampled message
m$,i,j with probability 1

2 . Hence, our self-guarding signature algorithm will detect this with probability 1
2

and abort after setting err to true.
Any detected invalid signature will lead to an immediate abort and prohibits computing future sig-

natures, and for each key pki the detection probability is independent of the other case. Hence, if the
adversary tries to output an invalid signature in some query for any key pki, our algorithm will detect this,
except with probability 2−λ. We can therefore from now on condition on the event that for some index i
all signature entries in all queries are valid, losing only a probability 2−λ in A’s success probability.

If there is a good index i for which the subverted algorithm never outputs a wrong signature, then
B picks this index k = i with probability 1

λ . Given this, all signatures created via the external oracle
perfectly mimic the values returned by the subverted algorithm. From now on assume that this is the
case. Since any values of invalid length will lead to an abort, we assume that the signature values are of
correct length.

It remains to analyze the probability that, in a good simulation, adversary B creates a valid signature
for a fresh message. Note that a valid forgery of A must be for a new message m∗ and must consist of a
vector of valid signatures, such that each component carries a valid signature. We distinguish the three
cases for A’s output as in the output generation of B:

• If m∗$,k = m$,k (and, by determinism, therefore σ∗$,k = σ$,k for a valid signature), then we must have
that B’s output message satisfies

m∗$,k ⊕ [m∗||σ∗$,k] = m$,k ⊕ [m∗||σ$,k] 6= m$,k ⊕ [mj ||σ$,k]

for all j, since m∗ 6= m1, . . . ,mq for a successful forgery of A. Furthermore, since σ∗$,k = σ$,k 6= 0
by assumption about the zero-evasion of the signature scheme, B’s output message cannot match
m$,k either. We conclude that B has never queried its signing oracle about this message, neither in
the sampling phase, nor in a signing step. But since this message is checked against σ∗k under pkk,
adversary B would also win if A does.

• Else, if m∗$,k 6= m$,k ⊕ [mj ||σ$,k] for all j = 1, 2, . . . , q, then the message m∗$,k is new; it is distinct
from all queries in the signing step and also different from the query m$,k in the sampling step, by
the first case.

• Else, if m∗$,k = m$,k⊕ [mj ||σ$,k] for some j, the adversary A has swapped this message part from the
j-th query to the other signature position for the k-th entry. But in the signature verification one
checks in the other component that the message

m∗$,k ⊕ [m∗||σ∗$,k] = m$,k ⊕ [(m∗ ⊕mj)||(σ$,k ⊕ σ∗$,k)]

is valid. Since m∗ 6= mj this message cannot match m$,k for which B has called the oracle for the
sampling step. Moreover, zero evasion implies that σ∗$,k is not zero, and therefore σ$,k ⊕ σ∗$,k 6= σ$,k.
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It follows that B has not called its oracle about the output message in any of the signing requests
either.

In summary, we have

Pr
[
SGuardS

sgS ,subv
EUF-CMA,A(1λ)

]
≤ λ · AdvEUF-CMA

S,B (1λ) + λ · 2−λ.

This is negligible if we presume unforgeability of S.

6 PUF-based Key Exchange
In a key-exchange protocol two parties interact to derive a shared secret key, which they can use subse-
quently for example for establishing a confidential channel. The interesting aspect of using PUFs for such
protocols is that one can achieve information-theoretic security, when the PUF is ideal and one limits the
time during which the adversary has access to the PUF. There have been some proposals for PUF-based
key-exchange protocols in this line [VD10, Rüh11, BFSK11, vDR12]. These schemes do not withstand
substitution attacks as we briefly exemplify for the case of [vDR12] in Appendix A.1.

6.1 Preliminaries

A physically unclonable function (PUF) is a physical entity that is easy to evaluate, if one is in possession
of the PUF, and hard to predict otherwise. A PUF can be stimulated with so-called challenges to which
it responds with slightly noisy values, called responses. A fuzzy extractor can be applied to the response
to eliminate the noise. Hence, in our setting, we assume that PUFs (with a suitable fuzzy extractor)
deterministically return consistent answers. Moreover, we only consider PUFs that have exponential
challenge and response spaces and hence cannot be learned entirely in a short time. In fact, we assume
that the PUF has super-logarithmic input bit size and output size 5λ. If we have a PUF with only λ
output bits, then we can expand the output size via domain separation, and evaluate the PUF at points
000||x, . . . , 100||x, and concatenates the responses.

Due to uncontrollable variations in the manufacturing process, it is even for the manufacturer practi-
cally infeasible to clone a PUF. This property is referred to as unclonability. In our scenario we assume
an initialization procedure, create(), which creates a new PUF and returns a unique PUF identifier pid.
We denote the concrete PUF then as PUFpid, or following our subversion notations, as PUFgenuine.

Only the party (including the adversary) in possession of the PUF (identifier) can evaluate the PUF.
Besides the parties, another PUF may be “in possession” of the PUF, called encapsulated PUFs [BKOV17]
or PUF-inside-PUFs [Rüh16]. This outer PUF may then exclusively evaluate the inner PUF. The possibility
to encapsulate PUFs allows for example to bypass simple checks, such as challenge-response validation,
before evaluating the PUF on the actual data; a malicious PUF may switch only to a skewed mode after
the checks. We therefore also allow create to be called with a malicious algorithm A in which case the PUF
evaluates A on the input, or with an algorithm A and previously created PUF identifiers pid1, . . . ,pidn
in which case algorithm A may also call the PUFs with these identifiers as subroutine. We consequently
sometimes refer to such a malicious PUF as PUFsubv. We say that a PUF pid′ encapsulates a PUF pid if
pid′ has been created by including pid.

PUFs can have various properties that make them attractive for cryptographic schemes. A property
that we take advantage of is pseudorandomness of PUF responses [AMSY16]. This means that the PUF
approximates a random function. In some works PUFs are also treated as random functions per se, but we
prove the result to hold more generally also for (computationally) pseudorandom functions. In Figure 7,
we give a simplified and intuitive game for pseudorandomness that suffices for this paper. Note that the
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uncloneability is basically ensured by allowing the adversary to internally create further PUFs. The PUF
is pseudorandom if the probability of predicting the bit b is negligibly close to 1

2 in the game. A hybrid
argument implies that the same is true if we use n challenge-response values instead of only one, where
the advantage over 1

2 grows by the factor n.

INDPUF
A (1λ)

pid← create()
(done, st)← APUFpid,create(1λ)
c $←− C
r0 ← PUFpid(c); r1

$←− {0, 1}|r0|

b $←− {0, 1}
b′ $←− Acreate(st, c, rb)
return (b = b′)

Figure 7: Game for pseudorandomness of PUF responses.

For a more comprehensive and formal definition of PUFs and their security properties we refer to
[BFSK11] and [AMSY16].

6.2 Construction

In a simple PUF-based key-exchange protocol, Alice measures the PUF at a random challenge point and
sends her PUF to Bob. After assuring that Bob has received the PUF, she sends him the challenge through
an authenticated channel.3 Both parties use the PUF’s response on this challenge as their shared secret
key. An adversary, not yet knowing the challenge when getting access during transmission of the PUF,
may measure the PUF for at most polynomial many challenges. Then the adversary delivers the PUF
to the other party, therefore loses access, and only then learns the challenge used by the parties. With
high probability this challenge will not be among the ones used by the adversary before, implying that the
derived key looks random to the adversary. Instead of sending a fresh PUF for each key derivation, the
PUF may also be used multiple times. We denote the number of derived keys by N .

Considering that the physical channel used for transmitting the PUF may not be authenticated, the
adversary is now not only able to measure the PUF, but also replace it with a malicious one, potentially
even encapsulating the original PUF into the malicious one, e.g., send PUFpid∗ for pid∗ ← create(A,pid).
Even with an authenticated physical channel, a more powerful adversary may be able to gain physical
access to the PUF while it is in control of one of the parties for a short time, just enough to replace it.

Motivated by the above attack, we draw connections to algorithm-substitution attacks, which in this
scenario can be more accurately described as token-substitution attacks. In Figure 8 we propose a PUF-
based key-exchange protocol that self-guards against subversion of the PUF. It intuitively does so by
splitting the initially derived key y into a test part and an evaluation part. This splitting is done via
universal hash functions huniv, h′univ, where huniv(y) and h′univ(y) act as authentication codes of the key
(towards Bob resp. towards Alice), and an extractor hextr which is used to extract sufficiently many random
bits hextr(y) from the remaining bits. The sending party transmits huniv, h

′
univ, hextr, and huniv(y) over the

authenticated channel, and the receiving party checks that the authentication part matches its initially
derived key. The receiver replies with its authentication tag.

3See [BFSK11] for a discussion that an authenticated digital channel is necessary for reasonable protocols.
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In the protocol we denote by H5λ,λ[p] a family of hash functions with input bit size 5λ and output bit
size λ, having some property p. Here, p is either being 2−λ-universal, saying that for fixed x 6= x′ ∈ {0, 1}5λ
we have huniv(x) = huniv(x′) with probability at most 2−λ over the choice of huniv from the family. Similarly,
for property p being a (3λ, 2−λ)-extractor we have that (hextr, hextr(y)) has statistical distance 2−λ from
(hextr, z) for uniform z ∈ {0, 1}λ, as long as y has min-entropy at least 3λ. Since the loss of at most 2λ bits
through the authentication tags huniv(y) and h′univ(y), we still have this min-entropy left in the uniform
value y.

Our result holds with respect to malicious, stateful, and encapsulated PUFs. This is not subsumed
by any of the previous results, nor does it contradict any of the impossibility results so far. As for
positive results note that the oblivious transfer protocol of Brzuska et al. [BFSK11], in the version of
Dachman-Soled et al. [DFK+14], from which one could build a key exchange protocol, does not withstand
encapsulating and stateful PUFs. The impossibility result to build key exchange protocols by van Dijk
and Rührmair [vDR12] only applies to PUFs which are accessible by the adversary after the execution, a
property which we do not consider here.

6.3 Security

For our security claim we need to specify the security game. Since we assume authenticated digital
transmissions, the adversary may read but not tamper with the transmissions (beyond replacing the
PUF). We are interested in key confidentiality, namely, that the adversary cannot distinguish keys from
random, and robustness in the sense that, if both parties accept, then they also hold the same key. In the
security game we therefore give the adversary a transcript of a run of the key exchange protocol (where the
adversary may have replaced the PUF before, however), and hand over the N keys derived by one party,
or random values instead. The choice is made according to some secret bit b. We declare the adversary to
win if it either manages to predict b, or to make both parties accept with different keys (in which case we
hand over b, unifying the threshold to the guessing probability of 1

2 for both cases).
The game is formally described in Figure 9. Note that this game is needed in the second phase of

the self-guarding game. In the first phase, one creates the PUF, then possibly samples challenge and
responses, while in the second phase the adversary may subvert the PUF and then plays the robust key
indistinguishability game for a key-exchange protocol using either the original or the subverted PUF.

Theorem 6.1. Our key-exchange protocol KEsg from Figure 8 is self-guarding with respect to the robust
key indistinguishability game IND-KEY, against subversion of PUF, if the initial PUF is pseudorandom.

Proof. Consider an adversary A playing the self-guarding game SGuardKE
sgPUF,β

IND-KEY,A defined in Figure 1. We
argue that A’s success probability in distinguishing keys, established by the protocol, from random strings
is negligible, regardless of which value β takes. We let q denote the number of queries which A makes to
the original PUFgenuine itself.

We first note that, instead of using a pseudorandom PUFgenuine, we may equally well use a truly random
PUF. If this would decrease A’s success probability significantly, then we would immediately derive a
contradiction to the pseudorandomness of the PUF.

Next, we argue that, if the adversary does not encapsulate PUFgenuine in PUFsubv then, except with
negligible probability, neither party will accept in any of the N runs. To see this note that the probability
that A queries the PUF PUFgenuine on any of the N challenge values x, before some PUFsubv is delivered
to Bob, is at most Nq · 2−λ. Condition now on the event that such a query has not happened.

In the moment when PUFsubv is handed over, and by the authenticated “ok”-acknowledgement sent
by Bob this happens before the adversary gets to learn the challenges, each value y ← PUFgenuine(x) is
distributed independently of the function in PUFsubv. Here we use that PUFsubv does not encapsulate
PUFgenuine. Hence, for each challenge, except with probability 2−λ, the random response y is different from
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KEsg.Sample(pid)

Ω← []
for i = 1..N do
x$,i

$←− C
y$,i ← PUFpid(x$,i)
enq(Ω, (x$,i, y$,i))

return Ω

KEsg.Gen(1λ)

pid← create()
where PUFpid : {0, 1}λ → {0, 1}5λ

return pid

KEsg.KE(pid,Ω)

Alice(pid,Ω) Bob

PUFpid

“ok”

for i = 1..N do
(x, y)← deq(Ω)
huniv

$←− H5λ,λ[2−λ-universal]
h′univ

$←− H5λ,λ[2−λ-universal]
hextr

$←− H5λ,λ[(3λ, 2−λ)-extractor]
a← huniv(y)

x, huniv, h
′
univ, a, hextr

y ← PUFpid(x)
if a 6= huniv(y) then abort
a′ ← h′univ(y)

a′

if a′ 6= h′univ(y) then abort
k← hextr(y) k← hextr(y)

Figure 8: Self-guarding PUF-based key-exchange protocol KEsg, where PUF has challenge and response
space C = {0, 1}λ and R = {0, 1}5λ. Solid arrows denote authenticated digital transmissions, while the
dashed arrow denotes a physical transmission.
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IND-KEYKEA (κ,Ω)

(k0
1, . . . , k

0
N , transc) $←− KE .KE(κ,Ω)

b $←− {0, 1}
if k0

i,Alice 6= k0
i,Bob and k0

i,Alice, k
0
i,Bob 6= ⊥ for some i then a← b else a← ⊥ fi

(k1
1, . . . , k

1
N ) $←− KN

b′ ← A(κp, kb1, . . . , k
b
N , transc, a)

return (b = b′)

Figure 9: IND-KEY game with associated constant δ = 1
2 for key-exchange protocols KE . Here k0

i = k0
i,Alice

and k0
i,Bob denote the key output in the i-th execution by Alice and Bob, respectively. We assume that

keys are set to ⊥ for non-accepting executions; transc denotes the communication between by all parties
in all executions; K denotes the key space.

the response y′ computed by PUFsubv. In this case, with probability at most 2 · 2−λ by the property of
the universal hash functions huniv, h

′
univ (also chosen independently of y, y′), either of the authentication

tags a or a′ complies with the expected answer. Summing over all N challenges implies that only with
negligible probability A can afford to not encapsulate PUFgenuine and still make either party accept in any
execution.

If, on the other hand, PUFsubv encapsulates PUFgenuine, then the adversary cannot determine any of the
random value y ← PUFgenuine(x), since we have already ruled out that it has queried x before. Since the
value contains 5λ bits of min-entropy, and we lose at most 2λ bits through the two hash values a, a′, the
extractor ensures that k is 2−λ close to uniform, given hextr. The statistical distance of all N independent
samples is then given by N · 2−λ.

The same line of reasoning for the case that the substituted PUF does not encapsulate the original
one, shows that the adversary cannot make the parties accept but for different keys, except with negligible
probability. For this note that they can only derive distinct keys if they end up with different values y 6= y′.
Here, the universality of huniv and h′univ and the fact that the responses are determined independently of
the choice of the hash function again imply that the probability of such a collision with the expected value
a or a′ is at most 2 · 2−λ.

In conclusion, we obtain that the success probability of any adversary A in winning IND-KEY against
KEsg is negligibly close to 1

2 .

Note that the hashing steps are crucial for security. If one would, say, simply divide y into strings
a||a′||k of lengths λ, λ and 3λ, respectively, then the adversary could send an encapsulated PUF which
agrees upon the first 2λ bits but returns a different part k. In this case both parties would accept, but
with distinct keys. Even worse, Bob’s key part k may be easy to predict for the adversary.

7 Conclusion
Our results show that basic tasks can be made self-guarding. Protection against ASAs is a challenging task.
Currently, the biggest concern is to improve the efficiency of constructions. For our self-guarding public-
key and symmetric encryption schemes it is less the computational overhead, but rather that one can only
perform secure encryption as long as fresh samples are still available. Recall that involved techniques such
as sample re-randomization, which quasi means to implement one’s own encryption procedure, should
be avoided. Thus, a viable option may be to consider restricted subversion attacks, such as stateless
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algorithms Σsubv. One can also study the possibility of reusing samples after each system reboot to protect
against stateful subversions that can only use a volatile memory to store their states.

The idea of relaxing the admissible attack strategy works for our self-guarding signature scheme. It
can be applied an unbounded number of times for stateless subverted algorithms. Also, it requires many
calls to the signature algorithm and produces large signatures. Here, using specific signature schemes may
be helpful in overcoming these limitations.

In terms of efficiency, our self-guarding PUF-based key exchange protocol is reasonably fast. It remains
an interesting open question if other PUF-based protocols, e.g., for oblivious transfer (OT), can be self-
guarded. As for negative results, Rührmair [Rüh16] argues that the strategy of interleaving test and
evaluation challenges fails for the oblivious transfer protocol of Dachman-Soled et al. [DFK+14]. But this
attack is based on the specific oblivious transfer protocol where the adversary has some control over the
input to the PUFs. An option may be to use a different OT protocol where the adversary has less influence
on the inputs fed into the PUF.
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A Supplementary Material

A.1 Example Attack on PUF-based Key Exchange Protocol

Here we briefly argue that the common technique of checking validity of the PUF by verifying a challenge-
response pair is vulnerable to substitution attacks. The derived PUF is stateless and encapsulates the
original PUF. We describe the attack on the concrete protocol in [vDR12].

KE

Alice Bob

c $←− C, r ← PUF(c)
c∗ $←− C, r∗ ← PUF(c∗)

PUF

ok

(c, r), c∗

if r 6= PUF(c) then abort
k← r∗ else k← PUF(c∗)

Figure 10: PUF-based key-exchange protocol from [vDR12], vulnerable to PUF-substitution attack.

The attacker builds the substituted PUF by encapsulating the original PUF. When stimulated, the
malicious PUF flips a coin and either returns the original response, or the all-zero string. Then, with
probability 1

4 it will pass the check and make Bob output the all-zero key, thus breaking both robustness
and key indistinguishability. This process can be derandomized by using a 2-wise independent hash function
h outputting a single bit, returning the original response on challenge c if h(c) = 1, and the zero string if
h(c) = 0.
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A.2 Security Degradation

Roughly speaking, self-guarding of a scheme states that a scheme Π does not become insecure if the
underlying scheme Σ is substituted by a malicious implementation. However, it does not guarantee that
the security is not degraded. Consider for instance a substitution attack that manages to leak half of the
secret key to the adversary. Although the advantage from Definition 2.2 with respect to a full key recovery
game may remain negligible, the success probability grows exponentially. For scenarios, where one needs
to quantify an adversary’s gain more precisely, we suggest using the security degradation factor defined
below.

Definition A.1 (Security degradation under subversion). Let Σ and Π be cryptographic schemes, and let
Sec be a security game for Π with associated constant δ ∈ [0, 1) (used in defining the advantage). The
security degradation factor for an adversary A in the subversion game of Figure 1 is defined by:

ΘSGuard,Sec
ΠΣ,A (λ) :=

Pr
[
SGuardΠΣ,subv

Sec,A (1λ) = true
]
− δ

Pr
[
SGuardΠΣ,genuine

Sec,A (1λ) = true
]
− δ

.

We say that subverting Σ does not substantially degrade security of Π with respect to Sec, if for all PPT
adversaries A, we have ΘSGuard,Sec

ΠΣ,A (λ) ≤ poly(λ).
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