
Obscuro: A Bitcoin Mixer using Trusted Execution Environments

Muoi Tran1, Loi Luu1, Min Suk Kang1, Iddo Bentov2, and Prateek Saxena1

1National University of Singapore
2Cornell University

Abstract

Bitcoin provides only pseudo-anonymous transactions, which can be exploited to link payers
and payees – defeating the goal of anonymous payments. To thwart such attacks, several Bitcoin
mixers have been proposed, with the objective of providing unlinkability between payers and
payees. However, existing Bitcoin mixers are not under widespread use and can be regarded as
either insecure or inefficient.
We present Obscuro, a highly efficient and secure Bitcoin mixer that utilizes trusted execution
environments (TEEs). With the TEE’s confidentiality and integrity guarantees for code and
data, our mixer design ensures the correct mixing operations and the protection of sensitive data
(i.e., private keys and mixing logs), ruling out coin theft and de-anonymization attacks by a
malicious operator. A TEE-based implementation does not necessarily prevent the manipulation
of inputs (e.g., deposit submissions, blockchain feeds, TEE’s execution states) to the mixer,
hence Obscuro is designed to overcome such limitations: it (1) offers an indirect deposit
mechanism to prevent a malicious operator from rejecting benign user deposits; and (2) removes
the need for storing any operation states outside of the TEE, thereby denying the possibility of
state-rewind in conjunction with eclipse attacks. Obscuro provides several unique anonymity
features (e.g., minimum mixing set size guarantee, resistant to dropping user deposits) that are
not available in existing centralized and decentralized mixers.
Our prototype of Obscuro is built using Intel SGX, and we demonstrate its effectiveness in
the Bitcoin Testnet. Our implementation mixes 1000 inputs in just 6.49 seconds, which vastly
outperforms all of the existing decentralized mixers.

1 Introduction

Bitcoin and other cryptocurrencies allow users to transact digital coins without relying on any
centralized, trusted party. Although each Bitcoin user can stay pseudo-anonymous by generating
multiple cryptographic addresses that are used to receive funds, the users’ transaction records are
publicly available on the blockchain. In other words, Bitcoin’s pseudo-anonymity can be regarded as
publishing everyone’s credit card statements, with the names redacted but the “account numbers”
(i.e., cryptographic addresses) and payment amounts visible. The privacy of Bitcoin users can thus
be violated by an adversary who is able to link multiple transactions.

This is the authors’ full version, last update on December 31, 2018, of a paper that was first posted online on
October 5, 2017 and subsequently presented at ACSAC 18, December 37, 2018, San Juan, PR, USA.

https://doi.org/10.1145/3274694.3274750

1

https://doi.org/10.1145/3274694.3274750

Indeed, previous works have shown how to deanonymize a large fraction of Bitcoin addresses [55,
47]. For instance, Meiklejohn et al. introduced efficient heuristics for clustering Bitcoin addresses
that group all the addresses that are controlled by the same user [47]. This work linked 5000
addresses to users who publicly posted their information on public forums or websites.

Furthermore, without anonymous transactions, the fungibility of the Bitcoin currency is at risk.
This is because the coins in circulation could be considered tainted to certain degrees (see [54] for
a well-known legal case).

There are several proposals for Bitcoin mixing services (or mixers) that provide better privacy
for Bitcoin users [56, 45, 67, 34, 33]. At a high-level, these protocols are inspired by the mixing
networks (a.k.a. mixnet), an anonymous digital communication technique proposed by Chaum [24].
Specifically, such mixers randomly shuffle several sending and receiving addresses so that it is
difficult to identify which sending address is linked to which receiving address, given that all the
transacting amounts are the same. A strong mixing algorithm entails that linkability within the
anonymity set — the set of all possible outputs for a particular input — is hard.

Unfortunately, existing Bitcoin mixers are either known to be vulnerable to a number of at-
tacks that can be launched by malicious mixer operators, or inefficient due to prohibitive al-
gorithmic/communication overhead for large (e.g. hundreds or thousands) mixing set sizes. In
general, centralized Bitcoin mixers require the users to trust the mixer operators [20, 67], and
these mixers are susceptible to malicious operators who could steal the users’ coins (i.e., scam
mixers1) or break the anonymity guarantees by leaking the payer-payee address records. Even with
a zero-knowledge proof based mixer design which aims to remove the trust in the operator (e.g.,
TumbleBit [33]), centralized mixers still appear to be vulnerable to some de-anonymization attacks
launched by a malicious operator who can selectively accept or reject the users’ deposits (see Sec-
tion 2.3). Alternatively, there are several decentralized Bitcoin mixers that operate with mutual
distrust [45, 75, 56, 18]. However, decentralized mixers demonstrate limited scalability (e.g., only
mix among 50 peers [45, 56]), suffer from long wait times (e.g., a few hours) for finding other mixing
parties [18], or assume a fraction of honest mixing parties (e.g., 2/3 of parties are honest [75]).

Our solution. As a new design point in the space of Bitcoin mixers, we propose a mixing protocol
and system called Obscuro. Obscuro is designed to withstand an adversarial operator who aims
to steal coins submitted to the mixer, or aims to violate the promised anonymity guarantees (e.g.,
unlinkable transactions or guaranteed mixing set size).

To the best of our knowledge, Obscuro is the first design that achieves mixing time of a few
seconds for anonymity set sizes of thousands of users, while defeating a variety of well-known at-
tacks (see Table 1 for comparison to existing work) in a strong threat model. Further, the Obscuro
mixing protocol is much simpler than previous protocols that rely on complex cryptographic op-
erations to achieve similar or weaker security goals. Obscuro is Bitcoin compatible and does not
require any changes to the Bitcoin protocol.

Obscuro utilizes the hardware-based trusted execution environments (TEE) to protect its mix-
ing operations from potentially malicious software components (including the operating system) of
the mixer platform. Obscuro (1) isolates its codebase from malicious operators and prevents them
from disrupting the mixing operations (e.g., stealing users’ deposits); (2) allows users to verify the
correct implementation of the promised anonymity guarantees (unlinkability, minimum mixing set
size) before they submit their coin deposits; and (3) maintains a TEE-based simple protocol archi-

1This concern is real. There have been several reported cases where legitimate-looking Bitcoin mixing services
disappeared with the users’ deposits [1, 2].

2

tecture and thus exhibits extremely efficient mixing operations, so that its mixing set size is limited
only by the inherent Bitcoin block size.

Obscuro has a generic design that is compatible with various trusted execution environment
techniques. In this work, we implement Obscuro using a recent trusted computing capability
called Intel SGX [15, 46]. Intel SGX allows applications to be run in a special memory region,
called an enclave, isolated from all other software on the platform. The content of the enclave can
be remotely attested, and is encrypted during runtime when stored in RAM — which provides
strong memory integrity and confidentiality.

Challenges. Although trusted execution environments (specifically SGX in our paper) offer strong
memory isolation that can enhance the security and efficiency of Bitcoin mixers, malicious mixer
operators could still potentially control the entire worldview of the enclaved mixer, by manipulating
inputs that are sent to the mixer. This creates nontrivial design challenges. First, the malicious
mixer operator can selectively prevent benign users from participating in the mixing service, in
order to reduce the anonymity set size of a mixing operation. Second, the malicious mixer operator
can block or modify the blockchain feeds from the outside world to the enclaved mixer, with fake
or stale blocks that may “eclipse” the worldview of the enclave. Worse still, the eclipsed view may
then allow de-anonymization by a state-rewind attack [26, 65] on the SGX enclave (cf. Section 2.3).

To overcome these challenges, the Obscuro design removes all direct network interactions
between users and the mixer, by employing an indirect deposit method via the blockchain itself.
Since the users never communicate with the Obscuro server and instead interact only with the
decentralized Bitcoin network, benign user participation is assured, and IP-level de-anonymization
attacks are mitigated. Obscuro is also carefully designed to be stateless, eliminating the adver-
sary’s advantage from rewinding the mixer’s state to the past. We show that an eclipse attack
against Obscuro reduces to a simple denial-of-service attack by the malicious operator, which is
well handled by the Obscuro’s guaranteed refund mechanism.

We implemented a prototype of Obscuro and run several experiments on both Bitcoin Regtest
and Bitcoin Testnet. Our results show that Obscuro is efficient in mixing a large set of transac-
tions. For example, Obscuro takes only 6.49 seconds to mix 1000 transactions. We also demon-
strate that the SGX-induced performance overhead is negligible (i.e., 3 − 5% of mixing time).
This is significant since it simplifies the protocol and removes the need for complex cryptographic
operations.

Contributions. This paper makes the following contributions:

• We propose Obscuro, the first Bitcoin mixer that utilizes hardware-based trusted execution
environments. Our solution offers strong security and anonymity guarantees against malicious
mixer operators, which have not been achieved by any existing mixers.

• We address a family of powerful attacks that manipulate the worldview of the isolated mixer
operations in order to reduce the anonymity set sizes (e.g., the number of benign users in
mixing rounds). This is done by avoiding any direct communications between the users and
the mixer, and removing the need for state storage for the mixer operations.

• We implement a prototype of Obscuro with the Intel SGX technology, and demonstrate its
effectiveness in terms of mixing times for various sizes of anonymity sets. Our results show
that Obscuro is efficient and ready to be deployed in practice. We also consider various

3

operational issues and offer some practical suggestions (e.g., who should operate Obscuro
and collect mixing fees).

2 Problem Definition

In this work, we consider the problem of designing a Bitcoin mixer that transfers coins from a
set of sending addresses S = {s1, s2, . . . , sn} to a set of receiving addresses R = {r1, r2, . . . , rn},
while providing strong anonymity and security properties in the presence of a wide range of attacks
against the mixer. Particularly, a mixer must provide unlinkability between S and R. That is, when
the n pairs of addresses are all benign (i.e., belong to honest users), it is hard for an adversary
to determine who is sending to whom by inspecting the execution of the mixing protocol and the
transactions in the public ledger. Also, a mixer’s anonymity set size (i.e., the number of benign
address pairs among the n pairs) should not be affected by the adversary. Furthermore, the mixer
needs to be secure against a malicious operator of the mixing service, in the case that the operator
attempts to disrupt the mixer’s service (e.g., by stealing coins).

We begin by explaining why the Bitcoin protocol deficient in terms of unlinkability (Section 2.1),
and then define our threat model (Section 2.2). To motivate the challenges of designing a mixer
using trusted execution environments, we illustrate a baseline solution and highlight the non-trivial
remaining challenges (Section 2.3). We end the section by comparing our proposed mixer to existing
solutions (Section 2.4)

2.1 Bitcoin Primer

We first provide a brief background on Bitcoin [51], focusing on the lack of unlinkability in the
protocol. Bitcoin allows users to have pseudonymous identities called Bitcoin addresses, or simply
addresses, which are generated from their public keys.2 Users send coins by creating transac-
tions that specify the recipient’s Bitcoin address. The users (miners and network nodes) run the
Nakamoto consensus protocol [51, 32, 53] among themselves, in order to maintain a publicly shared
ledger that specifies the coins that each user owns. At the high level, a leader is picked periodically
from all miners via a random process that requires solving proof-of-work puzzles. The leader pro-
poses a block which includes a set of new transactions to append to the latest state of the ledger.
Blocks are cryptographically chained together, hence the term blockchain.

Bitcoin’s linkable transactions. Bitcoins are stored and spent in transactions. A Bitcoin
transaction may include multiple inputs and multiple outputs. A transaction input is a reference
to an unspent output of a previous transaction (i.e., coins that belonged to the sender), that is
determined by the previous transaction’s hash (a.k.a. TxID) and a specified index of the output
field. Each indexed output of a transaction contains the spending amount credit that goes to the
receivers. The total input amount is greater or equal to the total output amount (all funds are
spent), and the difference (in case of inequality) is paid to a miner as a transaction fee. Since all
the Bitcoin transactions are permanently stored on the public blockchain, a transaction can always
be linked (i.e., referenced) back to one or more previous transactions by anyone who observes the
network. Therefore, in many instances it is easy to associate all the transactions that belong to a
specific user, by performing blockchain analysis [55, 47].

2In the rest of this paper we consider a Bitcoin address to be an ECDSA public key, which should not be confused
with the ElGamal public key (pubkeymixer) that Obscuro will use for encryption.

4

Bitcoin scripts. Bitcoin uses a stack-based scripting language to express the conditions that allow
funds to be transferred in the transactions. In standard transactions, the scriptPubKey script in
each transaction output contains a hardcoded public-key that determines which user can spend the
coins in the next transaction, and the scriptSig script in each transaction input allows a user
to embed a signature (that is verified against the aforementioned public-key) and thereby spend
the coins. This means that anyone who knows the correct private key can spend the coins in the
next transaction. The scripting system also supports time locking via the OP CHECKLOCKTIMEVERIFY

opcode [66]. At a high level, using OP CHECKLOCKTIMEVERIFY with a time-lock value (block height or
block timestamp) can make a transaction output unspendable until a certain block has been reached.
Bitcoin scripts also support OP RETURN, a special opcode that allows adding to the blockchain up
to 80 bytes of arbitrary data per transaction [16].

Transaction mixing. There exist several operating Bitcoin mixers in the market, such as Bitcoin
Blender [6], Helix by Grams [11], and Bitcoin Fog [8]. These mixers first ask a sender with a Bitcoin
address si to send x Bitcoin to the centralized mixer address, along with her desired receiving
address ri. Upon receiving n transactions of x bitcoins each from {s1, s2, . . . , sn}, the mixer shuffles
the transaction input order so that the sending addresses si and the receiving addresses rj are
randomly permutated. The mixer then creates and publishes the n permutated output transactions
to the Bitcoin blockchain. Therefore, at the end of a mixing round, a user receives coins that are
not associated with a particular sender, which achieves unlinkability between her addresses (i.e., si
and ri).

2.2 Threat Model

We consider a strong adversary that has compromised the operating system (OS) of the mixer
platform, which we refer to as a compromised OS. A compromised OS can access any system
resource that is under its control (e.g., access any physical memory address). The adversary can
also leverage the compromised OS to actively read, modify, or drop any message that should be sent
or received by the mixer. In practice, the operator of the mixer platform (e.g., cloud provider) may
be malicious, and even if the operator is honest the mixer’s OS may be compromised by a remote
adversary. We further assume that the malicious OS can collude with a non-negligible fraction of
the Bitcoin miners. The fraction of computational power that is controlled by the adversary is
assumed to be below half, as otherwise the security of the Bitcoin system itself does not hold.

The compromised OS has several attack goals. It aims to steal coins that honest users submitted
to the mixer, deanonymize a targeted user transaction, or reduce the anonymity set size (i.e., the
number of benign deposits that are mixed in a mixing round).

2.3 Challenges and Solutions

To protect the mixing operations from a compromised OS and offer strong anonymity and secu-
rity guarantees, we consider utilizing a hardware-based trusted execution environment (TEE). A
hardware-based TEE offers significant benefits for our mixer design as it provides the ‘isolated
execution’ (i.e., the mixer is isolated from all other operations in the platform) and ‘remote attes-
tation’ (i.e., a third party can verify the correctness of the mixer’s operations) properties [74]; refer
to Section 3.3 for more detailed definitions.

In the following, we present a baseline mixer solution using TEE. In that, we highlight that
although the isolation and remote attestation properties are useful, a Bitcoin mixer with a naive

5

Trusted Execution Environment (TEE)

Centralized mixer

Blockchain User

2) pubkey'()*+,
𝑎𝑑𝑑𝑟'()*+

3) Send tx

6)
TX

1) Remote
attestation4) tx,

𝑬𝒏𝒄6789*:;<=>?(𝑎𝑑𝑑𝑟recv)

5) Block data

Operating System

Figure 1: A baseline solution using a hardware-based trusted execution environment (TEE). Com-
ponents in green background are trusted, while the ones in red stripped background are untrusted.

TEE implementation would fail to address a number of anonymity attacks, and even introduces
new vulnerabilities.
A baseline solution using TEE. In this baseline solution, we implement the centralized mixer
functions within a hardware protected TEE memory region (or simply TEE), as shown in Figure 1.
The mixer within a TEE interacts with its users and the blockchain, i.e., it accepts coin deposits
from users, shuffles the deposits, and publishes the mixed transaction to the blockchain.

1) A user requests remote attestation to ensure that the correct mixer implementation has been
loaded, and then establishes an authenticated channel with the mixer in the TEE.

2) The user receives the public key (pubkeymixer) and the Bitcoin address (addrmixer) of the mixer.

3) The user sends coins to addrmixer by broadcasting a transaction tx to the Bitcoin network.

4) Once the transaction tx is accepted by the blockchain, the user notifies the mixer by submitting
tx, together with a returning address addrrecv that is encrypted using the mixer’s public key.

5) The mixer retrieves latest blocks from the blockchain and validates that tx is included.

6) The mixer shuffles the returning addresses of all the users who submitted a deposit, and
publishes one big transaction TX that has the multiple deposit transactions as inputs and the
shuffled returning addresses as outputs. The address permutation is destroyed immediately
after each mixing round.

As expected, the strong memory isolation makes it hard for the malicious OS to tamper with the
mixer’s operations and learn the address permutation. Particularly, this baseline solution effectively
addresses the following two attacks:

(1) Coin theft. The adversary steals the submitted coins by tricking users to submit coins to the
adversary’s address, or by compromising the private key of the mixer’s Bitcoin address.

(2) Permutation leaks. The adversary directly learns the permutation between sending addresses
and receiving addresses, by reading the mixing logs.

6

The remaining anonymity set reduction attacks. Although TEE based security guarantees
are useful to address the two attacks above, there exist some remaining challenges. Even with the
strong memory isolation properties, the malicious OS can still control the complete worldview of
the mixer within a TEE, and can tamper with the messages that the TEE sends and receives (e.g.,
messages 1), 2), 4), 5), and 6) in Figure 1), in order to reduce the size of the anonymity set.

Let S and R be the sets of benign sending and receiving addresses in a mixing round, respec-
tively. Also, let SA and RA be the sets of adversarially-generated sending and receiving addresses
tumbled together with S and R in the same mixing round, respectively. When S and SA are
mixed together in the same mixing round, the honest users believe that the anonymity set size of
their mixing round is |S ∪ SA|, as they do not recognize malicious deposits. However, the effective
anonymity set size of the mixing round is in fact only |S|, since the adversary can de-anonymize
the Sybil deposits SA beforehand. Hence, if an adversary can reduce the size of benign deposits |S|
while increasing the Sybil deposits |SA|, she can effectively reduce the anonymity set size without
being detected by the honest users.

We present two strategies that reduce the effective anonymity set size: (1) the malicious OS
directly drops messages from/to certain users, and (2) the malicious OS forges the blockchain data
feeds to the mixer.

(A1) Forced-elimination of benign participants. In the baseline design, a malicious OS can
selectively drop the deposits made by honest users, effectively reducing the anonymity set to an
arbitrary size. In Figure 1, this can be achieved by dropping the message 1), 2), or 4) during the
communication with an honest user. When remote attestation fails due to the dropped message
1), a user would not proceed as the correct mixing operations cannot be ensured. Even if remote
attestation succeeds, when the public key and the address of the mixers in message 2) are dropped,
the user cannot submit her coins deposit. Moreover, even after a user successfully deposits her coins
on the blockchain, if she cannot provide the mixer with her encrypted receiving address addrrecv in
message 4), her deposit will not participate in the mixing round. When an adversary reduces the
number of benign deposits |S| by dropping messages from honest users, she can also increase |SA|
by generating Sybil that would facilitate her de-anonymization attack.

(A2) Blockchain rewinding. In this even stealthier attack, instead of directly limiting the
benign users’ participation, the malicious OS controls the blocks feed that is sent to the mixer,
by providing adversarially-generated Bitcoin blocks to the TEE; in other words, the adversary is
eclipsing the mixer from the rest of Bitcoin network [35]. This requires the adversary to possess
some significant amount of computational power (e.g., by colluding with some corrupt miners). In
the fake blocks, the adversary includes only a few targeted users’ transactions, along with many
Sybil transactions; i.e., the adversary reduces |S| and increases |SA| in the fake blocks. Once the
mixer gets the fake blocks, it performs the shuffling and outputs a mix transaction that corresponds
to the reduced anonymity set size. Following that, the adversary rewinds the state of the mixer to
the point right before she fed the fake block data; specifically, using state-rewind attacks on Intel
SGX [65, 43]. The mixer would then performs another mixing round with the real Bitcoin blocks
that include all the benign deposits, since it is incapable of detecting the state reversal. However,
the adversary has already has broken the anonymity of targeted users in the fake world. Worse
still, the adversary may first let the real mix go through on the Bitcoin mainnet, then rewind the
state of the mixer and feed it the fake blocks, as this would allow the adversary to generate the
PoW for the fake blocks at an arbitrarily slow pace.

7

Mixers
Permutation

leak
prevention

Coin theft
prevention

Resistant to
dropping

participants

Minimum
mixing
set size

guarantee

Join-then-
abort

resistance

Large
anonymity set

Minimum
mixing
time

D
e
c
e
n
tr

a
li
z
e
d

CoinJoin [45] 7§ 3 3 3 7 small/medium
set

1 block

CoinShuffle++ [57] 3 3 3 3 7 small set∗ 1 block

CoinParty [75] 3 2/3 users
honest

3 3 3 3 2 blocks

Xim [18] 3 3 3 7 3 3
several
blocks
(hours)

C
e
n
tr

a
li
z
e
d MixCoin [20] 7 7 (accountable)‡

7 7 3 3 2 blocks

BlindCoin [67] 3 7 (accountable)‡
7 7 3 3 2 blocks

TumbleBit [33] 3 3 7 7 (remix)†
3 3 2 blocks

Obscuro 3 3 3 3 3 3 2 blocks

Table 1: A comparison of Bitcoin mixers. SGX specific attacks are not shown as they are only
applicable to Obscuro. ‡ Only accountability is provided and thus coin theft cannot be prevented.
§ In CoinJoin, participants can de-anonymize each other’s transactions. †Users may need to remix
repeatedly until desired minimum mixing set size is achieved. ∗Small anonymity set because of
abort attacks and the complexity of the cryptographic protocol.

Scope. In Obscuro, we do not claim to address the inherent limitations of generic mixnet systems:
(1) Obscuro deters Sybil attacks by enforcing mixing fees (on top of the transaction fees), as with
other cryptocurrency mixers [33, 18, 57], (see the cost analysis of Sybil attacks in Section 4);
however, we do not prevent cost-insensitive adversaries from launching Sybil attacks that flood
the mixer with large numbers of adversarially-generated inputs; (2) Similarly to all the centralized
mixing services, Obscuro is susceptible to denial-of-service (DoS) attacks on the mixer’s server
(though users will never lose their funds, due to a refund mechanism). Decentralized mixers are
susceptible to a more severe form of DoS attack, namely join-then-abort by malicious users (cf.
Table 1 and Section 8). To mitigate DoS, many independent instances of the Obscuro service
can be operated by different reputable servers; and (3) Obscuro does not have special logic for
better anonymity across multiple mixing rounds. Thus, an adversary that reduces the anonymity
set size in a mixing round might be able to further exploit the data by carrying out an intersection
attack [23, 29, 40, 48], as in other mixnet based systems.

Our security analysis of Obscuro assumes the existence of a secure underlying TEE technique.
Specifically, side-channel attacks against Intel SGX have been actively studied in the past few
years [70, 62, 49, 41, 50, 59]. While direct attacks against TEE platforms are beyond the scope
of this work, in Appendix A.1 we extend the discussion on side-channel attacks against Intel SGX
and the proposed mitigation mechanisms.

Assumptions. We assume that the majority of Bitcoin miners are honest and thus the underly-
ing Bitcoin network is secure. We assume that users can verify the correctness of the Obscuro
codebase [13], which contributes an additional 2.4K source lines of code (SLoC) to the trusted
computing base; see Section 6.

8

2.4 Existing Solutions

Existing centralized mixers are susceptible to one or more of the above-mentioned attacks. First,
MixCoin [20] and many operating centralized mixers are vulnerable to permutation leak attacks
by malicious mixers. Second, all existing centralized mixers are susceptible to Sybil attacks with
targeted user selection because they do not prevent a malicious mixer/operator from selectively
accepting/dropping mixing requests. Third, some centralized mixers, such as MixCoin [20] or
BlindCoin [67], are also vulnerable to coin theft — they provide accountability for their mixing
services, but not theft prevention.

There exist several decentralized mixers that can defend against many (or even all) of the
aforementioned attacks. However, most decentralized mixers demonstrate limited scalability (e.g.,
mix with only 50 participants or less [45, 56, 57]), suffer lengthy waiting time (e.g., a few hours)
for finding other mixing parties [18], or require a strong assumption regarding the mixing parties
(e.g., 2/3 of the parties are honest [75]). This makes their large-scale adoption challenging.

Table 1 summarizes the comparison between the different mixing schemes in terms of their
anonymity and security against the attacks we mentioned, as well as other well-known attacks. Note
that (A2)–Blockchain rewinding is not present in the table as it is only applicable to Obscuro.
Detailed analysis of our proposed solution and the related work is given in Section 4 and Section 8,
respectively. We also review some public Bitcoin mixers in Appendix A.2, and show that the current
mixing services offer poor performance and weak anonymity/security guarantees.

3 Design

In this section, we state the goals of Obscuro and then describe the design of Obscuro in detail,
focusing on the two anonymity reduction attacks (A1) and (A2) that can be launched by the
compromised OS.

3.1 Design Goals

Obscuro is designed to offer the following strong security and anonymity properties that defeat
the two main attacks.

• P1. Indirect submission of deposits. Any user who wishes to participate in a mixing round
submits a deposit without direct interaction with the mixer. Rather, the user will submit
the deposit by interacting with the decentralized Bitcoin network. This guarantees that the
benign deposits will be included in the mixing round, in the case that a malicious OS attempts
to selectively prevent some users from participating in the mix.

• P2. Guaranteed minimum mixing set size. The mixer guarantees that no less than the
minimum number of Nmin transactions are shuffled in any mixing round. If the number of
submitted deposits in a block is insufficient, the mixer waits for more deposits from the
subsequent blocks. When the mixer selects a mixing set for each mixing round, it follows a
certain selection policy that has been announced to and verified by the participating users.

• P3. State-rewind resistance. Obscuro’s mixing operation has to resist state rollback attacks
that target the mixer’s TEE.

9

Obscuro

ECALL OCALL

Enclave

GenKey() ScanBlock()

Shuffle() SignTx()

Blockchain User

3) Block data

Blockheaders

Transactions

4)
TX

Remote
Attestation

𝑎𝑑𝑑%&'(), pubkey%&'()	&
enclave metadata

Fetch
information

1)

2) Send tx Remote
attestation

service
Public
Bulletin
Board

Operating System
Untrusted Functions

Figure 2: The Obscuro architecture. Components in the green background are trusted, while the
ones in the red stripe background are untrusted.

Additionally, Obscuro provides other useful security properties that allow a reliable mixing
operation:

• Guaranteed refund. For any user who submits a deposit to the mixer, if the deposit is not
mixed after a specified waiting time (e.g., when the mixer is under DoS), then the user is
guaranteed to have her deposit refunded.

• Network-layer anonymization. The mixer cannot learn the IP addresses (or the IP prefixes)
of the users during the entire mixing process, and it is also difficult for an external adversary
to de-anonymize (cautious) users by inspecting the communication at the IP level.

Obscuro is also designed to be efficient and scalable for its real-world adoption. That is, its
maximum mixing capacity must be large (e.g., several hundreds or thousands of inputs), in fact, it
should be limited only by the underlying blockchain’s constraints (e.g., maximum transaction size)
and not by the mixer’s protocol.

3.2 Protocol Overview

Figure 2 illustrates the Obscuro architecture using the Intel SGX capability, showing the commu-
nication between the mixer, the Bitcoin blockchain, and a user. We describe the use of Intel SGX
in Section 3.3.

At a high level, Obscuro has four phases: 1) bootstrapping, 2) indirect participation, 3)
block scanning, and 4) final announcement. First, in the bootstrapping phase, Obscuro randomly
generates a fresh public key pubkeymixer and a Bitcoin address addrmixer via GenKey(). Obscuro
then publishes the new pair (pubkeymixer, addrmixer) and some metadata to one or more public
bulletin boards, in order to facilitate the remote attestation. A user, after fetching the information
from any of the public bulletin boards, asks a public attestation service to verify whether the
correct trusted functions are loaded and being executed in the Obscuro’s machine. We discuss
the bootstrapping phase in detail in Section 3.4.

10

Second, if the attestation of Obscuro was successful, a user sends a deposit transaction tx to
the mixer address addrmixer during the indirect participation step. The user attaches her receiving
address (which is encrypted with pubkeymixer) that the mixed coins will be sent to. The transaction
tx also ensures the guaranteed refund property of Obscuro. We extend our discussion on this
phase in Section 4.1.

Next, in the block scanning phase, Obscuro connects to the Bitcoin network to download
and verify the up-to-date blockchain data, and extract information regarding the users’ deposits
via ScanBlock(). Obscuro searches for transactions that spent coins to its address addrmixer,
and decrypts the user’s returning addresses addrrecv from such transactions. Obscuro verifies
the integrity of the transactions of each block by recomputing their Merkle root. Obscuro also
validates each block header according to the Bitcoin consensus rules. The verification procedure
begins with a hardcoded block header hash of a recent blockchain checkpoint. To reduce the trust
assumption, Obscuro can also be hardcoded with the current difficulty parameter and the genesis
block, and fetch blocks from genesis when the execution starts. Note that it is not necessary to
keep all the block data from genesis, since Obscuro generates a fresh ECDSA keypair in every
enclave instance and only extracts deposits that were sent to the address addrmixer (that is derived
from this keypair).

In the final announcement phase, Obscuro waits to receive at least Nmin deposit transactions,
and then creates a giant transaction TX that has all the deposits as its inputs and the corresponding
return addresses as its outputs. Obscuro shuffles the outputs and signs TX using the trusted
functions Shuffle() and SignTx(), respectively. Our mixing policy includes several parameters to
determine the mixing set for each round: the minimum mixing set size Nmin; the maximum capacity
of a mixing round Nmax; the maximum number of blocks Obscuro will wait for deposits Bwait; and
the number of block confirmations of deposit transactions Bconfirm. We elaborate on the mixing
policy in Section 5. Lastly, Obscuro broadcasts the giant transaction TX to the Bitcoin network.

3.3 Use of Intel SGX in Obscuro

Intel’s Software Guard Extension (SGX) is a set of security capabilities that offer integrity and
confidentiality properties to user-level applications that run on untrusted operating systems or
hypervisors [15, 46]. An application implemented in the SGX programming model includes two
types of components: (1) trusted components that are loaded and executed inside an SGX enclave,
a special memory region that is isolated from the untrusted functions including privileged software
(e.g., OS), and (2) untrusted components that operate as a non-SGX application outside of the
enclave boundary. We summarize the two features of SGX that are particularly useful in our design
of Obscuro.

Enclaved execution. In the SGX model, the untrusted components start an enclave execution
by invoking an enclave call (i.e., “ECALL”) through well-defined call gates, and get the return
value of the enclave function. In many cases where a function running inside the enclave needs to
invoke system calls (e.g., disk I/O), it temporarily exits the enclave to outer call (i.e., “OCALL”),
an execution in the untrusted space. While the code inside an enclave is able to read/write the
application memory outside of the enclave as well as the enclave data in its unencrypted form, the
non-enclave code (e.g., the OS) cannot access the enclave’s memory. Therefore, the trusted part of
an SGX application is guaranteed to be executed with confidentiality and integrity.

Remote attestation. Intel SGX supports a remote attestation feature, which allows a third party

11

to be convinced that the correct application code has been loaded in an enclave [15]. In general,
a service provider issues an attestation challenge to the enclave application on behalf of a remote
user who wishes to attest the application. The enclave then provides a report, which is crypto-
graphically signed by the attestation key of the SGX hardware. The report contains the hash of
the enclave’s initial contents (i.e., the checksum of the application) and some data computed inside
the enclave (e.g., an enclave-generated public key). Next, the attestation report is forwarded by
the service provider and verified by the Intel Attestation Service, which is distributed globally [38].
By inspecting the return status, the service provider sees whether the correct application is being
executed inside an enclave. In Obscuro, we remove the reliance on a service provider, and instead
distribute the measurement report to some public bulletin boards so that the users can obtain and
verify the report independently.

3.4 Bootstrapping Phase

The goal of the bootstrapping phase is to initialize the Obscuro enclave and allow any user to
verify the correctness of the mixer’s information before joining a mixing round. Achieving this goal
seems easy on the surface but is rather tricky in the presence of the malicious OS that can drop any
attestation request of any users. Typically, this phase includes several small steps, as we explain
below.

First, when the enclave has been launched and the code is loaded, Obscuro randomly generates
a fresh ECDSA secret key with the corresponding Bitcoin address addrmixer, and a fresh ElGamal
secret key with the corresponding public key pubkeymixer. Since it is crucial to use a reliable
randomness source for these keys (see Section 4), we increase the entropy of our random seed in order
to reduce the trust in the hardware provider (i.e., Intel in our current implementation). Thus, in
addition to the trusted hardware-based randomness provided by the RDRAND to sgx read rand(),
we concatenate extra sources of randomness: OS provided randomness, the SGX trusted clock, and
the latest block hash from the Bitcoin blockchain. To predict the random seed that we feed to the
key generator, the adversary will need to control all the components that contribute to the seed.

Once pubkeymixer and addrmixer have been generated, the enclave produces some metadata for
the remote attestation. This metadata serves as the attestation measurement report from the
enclave, which can be used later on to prove that i) the metadata is generated by an SGX enclave;
ii) the enclave is running the correct implementation of Obscuro; and iii) the pair (pubkeymixer,
addrmixer) was generated by the enclave.

Then, the metadata and (pubkeymixer, addrmixer) are made available on some public bulletin
boards. Therefore, new users do not need to interact with the Obscuro enclave directly to perform
the remote attestation procedure before using the mixing service. These public bulletin boards are
used for the availability of the data and do not need to be trusted — any tampering with pubkeymixer,
addrmixer, or the metadata will lead to a failed verification by Intel Attestation Service. There are
several practical implementations of public bulletin boards, including IPFS [12], data servers with
replications, and public blockchains such as Bitcoin itself.

Finally, before using Obscuro, a user will visit a public bulletin board and fetch the metadata
and (pubkeymixer, addrmixer). The user will then ask the Intel Attestation Service to verify the
correctness of the metadata. If the verification passes, the user can proceed to submit her deposit
for the mixing round. Note, however, that the interaction with the IAS is optional for most of the
users since any user or a third party can distribute the attestation validation result from the IAS
so that users can verify the attestation report by themselves [36].

12

Note that pubkeymixer and addrmixer are unique in each instantiation of Obscuro, and live only
in the enclave memory; i.e., these values will not be stored on disk, and will not be recognized
by subsequent instantiations of the enclave. Obscuro uses this stateless design to defend against
state-rewind attacks on SGX; see Section 4.3 for further discussion.

For better usability, we also add a timestamp to the metadata, and recommend users to join the
mixing round only if the enclave’s metadata includes a recent timestamp. This is done to reduce
the likelihood that users would send a deposit to an address of a defunct enclave, as even though
they will get their money back (due to the guaranteed refund mechanism), it is undesirable to have
the funds locked for a lengthy period of time.

4 Security Analysis

Here, we show how Obscuro prevents the adversary from blocking honest participations (i.e.,
attack A1). Moreover, we analyze the cost of Sybil attacks against Obscuro to achieve a small
effective anonymity set size. We also show that the Obscuro design is not vulnerable to blockchain
rewinding (i.e., attack A2).

Throughout this section, we assume that the users are not exposed to IP-level attacks. This
assumption is reasonable as it is unlikely that an attacker that eavesdrops at the IP-level will be
able to link Obscuro transactions, due to the following reasons:

• The indirect deposit method (P1) makes it easy for a user to communicate from different
locations, since she interacts only with the cryptocurrency network and not with other users.

• Each user transmits only a single message with a deposit and a single message to withdraw her
funds (decentralized mixers require the participants to send many more messages), and the
user can treat her mix output as “cold storage” and withdraw her funds after an arbitrarily
long time period.

• It is possible to use Obscuro to make anonymous payments, e.g., Alice can buy an item
from Bob and encrypt Bob’s address as her mix output (hence the deposit will request using
Alice’s IP address and the withdrawal will be requested using Bob’s IP address).

Cautious users may also use an IP-level anonymizer (e.g., Tor [30]) for supplementary protection
when they deposit their inputs, and when they withdraw their outputs after the mix is done.

To clarify the prospects of a deanonymization attack, we first provide a simple lemma. Let
negl() denote a negligible function, i.e., for every positive polynomial p(·) there exists a sufficiently
large n such that ∀m > n : negl(m) < 1/p(m).

Lemma 1. Suppose that H is the number of honest participants in an Obscuro mix. Given an
input of an honest participant P , the adversary can guess the output of P in the mix with probability
1
H + negl(κ) at the most, where κ is the security parameter of an Obscuro instantiation.

Proof: Since the Obscuro enclave is executing correct code that shuffles all the outputs of
the mix by using a secure randomness source, the probability that any specific honest output
belongs to P is 1

H . The adversary controls all outputs except for the H honest outputs, and
therefore her guess will be correct with greater than 1

H probability only if she breaks the encryption
of the outputs that are attached to each deposit. Let E1 = {adversary guessed correctly} and

13

E2 = {adversary broke the encryption}. Since the security parameter of the encryption scheme is
κ, we obtain

Pr(E1) = Pr(E1 ∩ ¬E2) + Pr(E1 ∩ E2)

≤ Pr(E1|¬E2) + Pr(E2) ≤
1

H
+ negl(κ).

�
Let us note that it is quite plausible to assume that the adversary can break the cryptography

with only negl(κ) probability, rather than a less demanding side-channel attack. This is because
potential side-channel attacks on ElGamal encryption are an active area of research (with room for
improvements, see, e.g., [39]), and the severity of current attacks on the OpenSSL implementation
of ElGamal (that we use) is relatively low (cf. [72]).

Furthermore, we employ CCA secure variant of ElGamal encryption (cf. Section 5) to prevent
deanonymization attacks in which the adversary observes ciphertexts on the public blockchain
and uses Obscuro as a decryption oracle. Specifically, if we used (malleable) hashed ElGamal
encryption then the adversary could target an honest user’s ciphertext (gr, hash(yr)⊕m) by picking
(gr, hash(yr) ⊕m ⊕ δ) as her encrypted return address. At the cost of forfeiting her deposit, the
adversary would then deanonymize the user by finding two outputs whose xor is δ.

Given Lemma 1, we now turn to show that H will indeed be large.

4.1 Preventing Selective Dropping of Participants

Obscuro’s design prevents a compromised OS from selectively dropping participants, unless they
are incautious; that is, the attack (A1) is ineffective against prudent users. In Obscuro, a user
participates in the mix after (1) getting Obscuro’s information (i.e., pubkeymixer and addrmixer) and
metadata; and (2) using the metadata to verify that Obscuro is running the correct code inside
an enclave, and that (pubkeymixer, addrmixer) were generated by Obscuro’s enclave code. For (1),
the user fetches the information from public bulletin boards, instead of querying the mixer’s server
directly. We rely on multiple well-known bulletin boards, and recommend the users to participate in
the mix only if they see that the data was uploaded to several of these bulletin boards. Furthermore,
each user is advised to upload the data to additional public bulletin boards, in case she sees the data
on too few bulletin boards. If the malicious OS prevents Obscuro from publishing the metadata
to all of the public bulletin boards, then this would be a straightforward DoS attack, since no user
can participate. Once the user fetches the data, she verifies Obscuro’s code and the (pubkeymixer,
addrmixer) values by using the trusted remote attestation service — that the malicious OS cannot
tamper with.

The user participates in the mix by sending a deposit transaction to addrmixer. Obscuro’s
design removes any direct interaction with the user, by scanning the transaction from the blockchain
directly. This makes it hard and expensive to exclude benign users selectively. The malicious OS
can still try to drop users from the mix by conducting an eclipse attack that creates a fake blockchain
view to the enclave, but such a strategy would also become just a DoS attack (see Section 4.3).

Another subtle but feasible attack strategy is to influence the miners to include only adversarial
deposits in several consecutive blocks. This can be done by either colluding with a large number of
miners, or by paying considerably higher transaction fees (relative to normal transactions) to crowd
benign deposits out of the blocks. This is plausible because miners are mostly incentive driven,
hence they prefer to include transactions with high fees and de-prioritize normal transactions to

14

subsequent blocks. In Obscuro, we mitigate this risk by rejecting deposits that pay the miners
significantly more than the standard fee. Thus, if the adversary attempts to pay much higher fees to
have more Sybil transactions in the mix, Obscuro will reject these deposit transactions and waits
for other valid deposits. Admittedly, however, Obscuro cannot prevent direct collusion between
the adversary and the miners; this risk is inversely correlated to the degree of decentralization in
the Bitcoin network.

4.2 Guaranteed Minimum Mixing Set Size

A minimum mixing set size provides a lower bound on the quality of the mix. This assures the
users that the mixing set size will be large, before they send coins to the mixer. To the best of our
knowledge, all existing mixers do not provide this guarantee.

As suggested by TumbleBit [33], a user can always inspect the Bitcoin blockchain after each
mixing round, to see how many other users participated in the mix together with her. If the user is
not satisfied with the size of the mixing set, she can remix her transaction in one or more subsequent
mixing rounds (with additional mixing/transaction fees). This practice is far from ideal, as there
is no in-protocol guarantee regarding the mixing set size.

In Obscuro, we leverage the TEE integrity guarantee to enforce a minimum mixing set size
Nmin (cf. Section 5). This policy can be verified by inspecting the attested enclave code. Let us
note that it is desirable to refund the users’ deposits – rather than proceed with the mix – when
Nmin is not reached. The reason is that the honest users pay a considerable mixing fee in order to
be secure against Sybil attacks (see Section 4.4), hence they expect a large enough mix in return.

4.3 Eclipse and State-Rewind Attacks

Per (A2)–Blockchain rewinding, a malicious OS can carry out an eclipse attack by letting Obscuro
communicate only with the attacker’s Bitcoin node [35], and feed an adversarially-generated fake
blockchain to the Obscuro enclave. This can result in a fee-free deanonymization attack because
the adversary can pad the fake blocks with Sybil deposits for which she does not need to pay the
mixing fee, together with one (or few) deposit from an honest user, and then observe the output
of the mixer. Once the adversary de-anonymizes the honest user by using the fake blocks, she
rewinds the state of the enclave, and lets Obscuro prepare a new mixing round on the real Bitcoin
blockchain with a large set of deposits that includes the already de-anonymized benign deposit.

In any case, Obscuro completely prevents the risk of rewinding the enclave’s state, by having
a stateless design for the Obscuro enclave. Instead of storing some system state (e.g., less than
Nmin deposits that have been received so far) for permanent operation and recovery from reboots,
Obscuro stores no permanent states of the system. Each time that the enclave code is initialized,
it uses secure randomness sources (cf. Section 3.4) to generate a unique receiving address. The
indirect user deposits are then detected by parsing the blocks that the OS feeds to the enclave,
which implies that a set of inputs to a mix in one initialization of the enclave will be disjoint from
any other set of inputs in other initializations of the enclave. Hence, in the case that Obscuro is
restarted and the enclave code generates a unique receiving address, users who wish to deposit to
the new receiving address should encrypt a fresh output address and attach it to their deposit.

Eclipse attacks on Obscuro’s stateless enclave are therefore futile as a de-anonymization tech-
nique, and such attempts would amount only to a DoS attack on the mixer. To be specific, the
resulting giant mix transaction of any mixing operation on the fake blockchain will never be ac-

15

cepted by the Bitcoin network, because the validity of every transaction is verified according to the
Bitcoin consensus protocol (i.e., the giant mix transaction will be rejected because of its invalid
Sybil inputs). Honest users will instead get their deposits refunded after the timeout expires, due
to the OP CHECKLOCKTIMEVERIFY opcode in the deposit script.

The adversary may attempt to feed a fake chain and a valid chain to the mixer sequentially so
that the fake one (which is shorter and used to deanonymize the honest users) becomes naturally
abandoned by the Bitcoin consensus run by the stateless Obscuro. However, this attempt can be
easily detected by Obscuro checking if the blockchain contains fork and there exists a transaction
has been mixed in another fork.

4.4 Cost of Sybil Attacks

Sybil deposits in conjunction with the anonymity reduction attacks (A1) and (A2) are ineffective in
Obscuro. As stated in Section 2.3, Obscuro does not provide protection against cost-insensitive
Sybil attacks. Yet, to highlight the impracticality of such attacks, we believe that it is worth
analyzing the expected cost of Sybil attacks on Obscuro.

Let H and S be the number of honest and Sybil deposits submitted to Obscuro for the current
mixing round, respectively. We also have Nmax as the maximum mixing capacity of a single mixing
round; e.g., 430 transactions assuming a standard Bitcoin transaction size of 100 KB (see Section 6).
If the total number of mixing requests in this round does not exceed the maximum mixing capacity
(i.e., H + S ≤ Nmax), the effective anonymity set is guaranteed to have size H, due to the indirect
deposit submission property (P1). However, if the total number of deposits exceeds Nmax, some
requests must be excluded from the current mixing round. Since the TEE guarantees an unbiased
random selection of the mixing requests, the expected anonymity set size as a result of the random

selection is
(
Nmax
H+S

)
×H, which is inversely proportional to the size of the Sybil requests S. Thus,

attacks that aim to generate a small effective anonymity set size may require a prohibitively large
number of Sybil deposits S.

For example, consider a conservative scenario in which there are H = 200 benign requests and
an adversary that aims to reduce the effective anonymity set size to H = 20. Since benign deposits
cannot be eclipsed, the adversary will need to create 4800 Sybil deposits and thus force the 200
benign deposits to be included in 10 mixing rounds with an average of H = 20 per round (when
we assume Nmax = 500). With 2% mixing fees (where typical mixing fees on the market are in the
range of 1%− 3%), this attack costs 96 bitcoins, where the denomination of the mixing round is 1
bitcoin.

5 Implementation

In this section, we describe our Obscuro prototype implementation using Intel SGX. We implement
a proof of concept of Obscuro by modifying Bitcoin Core’s codebase version v0.13.1 [7], and
follow the programming model of Intel SGX applications. Porting the Bitcoin codebase into an
SGX enclave is nontrivial since SGX has several limitations on programming general purpose user
applications, such as no support for shared object calls in an enclave, and no support for standard
system library calls [25]. In our implementation, we utilize a recently proposed framework, called
Panoply, that consists of a set of API libraries and compiler extensions that allow enclaves to
perform system calls [64]. Moreover, we use the OpenSSL library [28], which was already ported

16

into the enclave by Panoply. Separately, we also port the ECDSA library libsecp256k1 [69] into
the enclave for transaction signing and signature verification. Since libsecp256k1 operates in
constant-time, we thus minimize the likelihood that an adversary will succeed to forge signatures
(via a side-channel attack) and steal the users’ deposits.

Indirect deposit submission. A user submits her deposit to Obscuro indirectly, by creating
a Pay-To-Script-Hash (P2SH) transaction. The user first chooses a P2SH address as the return-
ing address addrrecv and encrypts it with the pubkeymixer of Obscuro. The public-key encryption
scheme for Obscuro must be compact as the ciphertext should be shorter than 80 bytes, the size
of OP RETURN field of a Bitcoin transaction. In our implementation, we use the Elliptic Curve
Integrated Encryption Scheme (ECIES) over the secp256k1 elliptic curve. ECIES is CCA se-
cure [17, 22] and its ciphertexts are quite compact for 128 bit security; a ciphertext is a tuple
(R, c, d), where R is a 33-byte compressed elliptic curve point, c is the 20-byte encrypted addrrecv

with AES counter mode, and d is a 16-byte HMAC tag. With an extra byte as the identifier for
fast transaction scanning, a total of 70 bytes are used in the OP RETURN field.

1OP_IF
2<mixer_pubkey> OP_CHECKSIG
3OP_ELSE
4<time-lock> OP_CHECKLOCKTIMEVERIFY OP_DROP
5<user_pubkey> OP_CHECKSIG
6OP_ENDIF

Figure 3: Structure of the redeem script.

1Input:
2 scriptSig: <user_signature> <user_pubkey>
3Output:
4 Index: 0
5 Value: 0
6 scriptPubKey:
7 OP_RETURN <identifier> <encrypted_addr_recv>
8
9 Index: 1

10 Value: 1000000 %The denomination is 0.01 bitcoin
11 scriptPubKey:
12 OP_HASH160 <Hash160(redeem_script)> OP_EQUAL

Figure 4: Structure of the deposit transaction.

Next, the user constructs a redeem script that follows a predefined format (See Figure 3). This
script allows the mixer to spend the deposit, and allows the user to claim back the deposit after the
lock-time (if it has not been spent yet). The user then hashes the redeem script, puts the hash in
the scriptPubKey, and broadcasts the deposit transaction to the Bitcoin network (See Figure 4).

Trusted operations. We describe here the four main trusted functions in Obscuro, namely a key
generation function GenKey(), a block scanning function ScanBlock(), a random mixing function
Shuffle() and a transaction signing function SignTx(). The GenKey() function is used to generate
the secret keys for addrmixer (to be used as <mixer pubkey> in the redeem script) and pubkeymixer

(that is used by the users to encrypt their addrrecv). We use the existing codebase of Bitcoin Core
and libsecp256k1 to generate addrmixer, which is a fresh ECDSA public key. On the other hand,

17

...

N"#$
(e.g.,	430	transactions)

N"%&
(e.g.,	50	transactions)

Obscuro

mix	after 𝐵(#%)

never	mix

𝐵(#%) (e.g.,	100	blocks)

𝐵*+&,%-" (e.g.,	2	blocks)
Legend

Obscuro deposit

non-Obscuro
deposit

Scanning
deposits

Skipping
unconfirmed	

deposits

deposit	pool mixing	policy:	
mix	immediately

blockchain

Figure 5: Obscuro’s mixing policy.

pubkeymixer is an elliptic curve point (i.e., EC POINT) generated using OpenSSL. It is worth pointing
out that although Obscuro does not change addrmixer within one execution, the P2SH address used
in the deposit transaction is different for each user, since user’s public keys (i.e., <user pubkey>)
in the redeem script are unique.

The ScanBlock() function takes raw Bitcoin block data fetched from the blockchain, and ex-
tract all the Obscuro-compliant deposit transactions for future mixing. Upon receiving a block,
Obscuro verifies the validity and integrity of the block; specifically, that the block hash meets the
difficulty level, and Merkle root hash in the block header matches the transactions in the leaves
(this is done by recomputing the Merkle tree). Next, Obscuro scans the transactions of the block
and finds all the deposits from users. Due to the 1-byte identifier in the OP RETURN data field, we are
able to quickly skip irrelevant P2SH transactions. For each deposit transaction, Obscuro fetches
the user’s public key, reconstructs the redeem script, and verifies the redeem script’s hash. Ob-
scuro then decrypts the 69-byte ciphertext in the deposit’s OP RETURN data field, gets the return
address, and adds it — altogether with the deposit transaction — to the pool of pending mixing
requests.

Based on the mixing policy (see next), Obscuro determines the transaction set for a mixing
round. Obscuro crafts a giant transaction TX by putting all the selected transactions as the
inputs and the randomly shuffled return addresses as the recipients. We implemented the Shuffle()
function with the Fisher-Yates shuffle algorithm [19], using the trusted randomness generator. For
a transaction TX that has N outputs, the time complexity of Shuffle() is O(N).

Obscuro invokes the SignTx() function to sign the giant transaction TX using the ECDSA
signing algorithm of libsecp256k1. After all the inputs are signed, Obscuro broadcasts the
transaction TX to the Bitcoin network, and finishes the mixing round.

Mixing policy implementation. To specify precisely how the deposits should be collected and
when a mixing operation is executed, we introduce three system parameters, Nmax, Bwait, and Bconfirm,
in addition to the minimum mixing set size Nmin. In Figure 5, we illustrate how these parameters are
used to determine the mixing set for each round. Obscuro continuously monitors the blockchain
and collects deposits from the maximum Bwait blocks (excluding the Bconfirm most recent blocks)
since its last mixing operation, to be maintained in the deposit pool.

18

Obscuro decides whether to mix the deposits in the pool based on the size of the pool and the
number of blocks since the last mixing operation:

• If there are less than Nmin deposits in the pool after scanning Bwait blocks (since the last mix
operation), no mixing is done and the deposits are refunded.

• When the pool reaches Nmax deposits, the mixer immediately starts mixing with the Nmax

deposits.

• If there exist at least Nmin deposits after reaching Bwait blocks since the last mix operation,
the mixer performs the mix with all the available deposits.

Note that Bwait can be set as the time-lock value of the deposits (plus the few Bconfirm blocks for
confirmation), so that the user can get refunded immediately in the case that her deposit was not
mixed. The purpose of the block confirmation parameter Bconfirm is to avoid a possible invalidation
of the giant mix transaction due to chain reversal. The larger that Bconfirm is, the higher the
probability that the blockchain becomes irreversible and blocks with users’ deposits will not be
orphaned. Note that we consider Bconfirm =0 for fair comparison with other mixers in Table 1.

6 Evaluation

Here, we evaluate the bootstrapping, deposit scanning, and mixing operations of the Obscuro
implementation, as well as the on-blockchain practicality. We evaluate Obscuro on a Dell Latitude
E5570 laptop that is SGX-enabled with the 6th Generation Intel® Core™ i7-6820HQ CPU and
8GB of memory. We configure the laptop’s BIOS to allocate 128 MB memory for each SGX enclave.
We use the Linux 1.6 Open Source Beta version of Intel Software Guard Extensions SDK, Intel
SGX Platform Software (PSW), and a driver on Ubuntu Desktop-14.04-LTS 64-bits with Linux
kernel version 3.13. Obscuro is compiled with GCC v4.8 and built for SGX hardware pre-release
mode HW PRERELEASE with default optimization flags.

To evaluate the performance of our trusted functions inside the enclave, we test Steps 2), 3),
and 4) of the Obscuro protocol (see Figure 2) in Bitcoin Regression Test Mode (or Regtest). 3

We run each experiment 20 times with two versions of Obscuro, one in SGX application model
and one without SGX support, and the take the average results to measure the added complexity
of SGX-related operations.

Bootstrapping Bitcoin blockchain. We measure the time taken to prepare and verify the up-to-
date Bitcoin blockchain. This step is done only once per enclave instance (i.e., whenever Obscuro
is launched). As of this writing, the latest block is approximately 200, 000 blocks ahead of the most
recent blockchain checkpoint.4 We measure the time to fetch and verify the block headers of all
the blocks after the latest checkpoint. Figure 6a shows that it takes approximately 35 minutes and
30 minutes for the SGX and non-SGX versions, respectively. This is easily acceptable in practice,
since the bootstrapping happens only once.

Scanning for Obscuro deposits. We measure the time that it takes to scan Bitcoin blocks
and find valid Obscuro deposits, which also involves ECIES decryption operations. In particular,

3The Bitcoin Regtest allows us to set up hundreds of users, generate coins and blocks instantly.
4Based on https://blockchain.info and chainparams.cpp in Bitcoin Core’s codebase (September 2017).

19

https://blockchain.info

34.55

30.01

0

5

10

15

20

25

30

35

40

With	SGX Without	SGX

(a) Fetching and verifying 200, 000
blocks (minutes).

2.39

1.99

0

0.5

1

1.5

2

2.5

3

With	SGX Without	SGX

(b) Scanning transactions in 100
blocks (seconds).

Figure 6: Measured time for fetching blocks and scanning transactions with/without SGX.

●

0 200 400 600 800 1000

0
1

2
3

4
5

6
7

Input Size

M
ix

in
g

an
d

si
gn

in
g

(s
ec

on
d)

● ● ●
●

●

●

●

●

●

●

●

●

● ● ●
●

●

●

●

●

●

●

●

●●

●

With SGX
Without SGX

Figure 7: Obscuro signing and mixing time with/without SGX.

we assume a conservative scenario in which Obscuro should scan 100 blocks to search for 2000
Obscuro deposits among a total of 4000 transactions. Figure 6b shows that our implementation
scans the deposits very fast (2.39 seconds with SGX, 1.99 seconds without SGX).

Mixing and Signing transactions. We measure the running time of the mixing and signing
operations and show that i) Obscuro is scalable and efficient in mixing a large set of transactions;
and ii) operating Obscuro with trusted hardware causes negligible overhead. We test the shuffling
and transaction signing with different sizes of the mixing set, ranging from 5 to 1000 transactions.
Figure 7 shows that the operation time increases as the size of the mixing set increases and SGX
programming model causes a very small extra execution time (approximately 3%− 5%). Further-
more, Obscuro can mix one thousand input transactions within seconds (specifically, 1000 inputs
in 6.49 seconds). This means that a practical deployment of Obscuro can handle thousands of
deposits in a mixing round.

On-blockchain evaluation. Similarly, we deploy Obscuro on Bitcoin Testnet, a global testing
environment mimicking the mainnet. We also create multiple users, each with a separate Bitcoin
address. Every user sends 0.01 tBTC (testnet bitcoins) to a P2SH address. If the mix is successful,
Obscuro sends 0.0095 tBTC to their destination address. The difference between the input and

20

output amounts is due to the mixing fee. As a result, we successfully mix a large number of input
transactions: a standard transaction with 430 inputs5, and a non-standard transaction with 1000
inputs6. The sizes of these two transactions are 100 KB and 228 KB, respectively. Note that the
maximum size of a standard transaction is limited to 100 KB, meaning that any larger transaction
is considered non-standard. Nevertheless, such transactions can still be mined by paying a higher
transaction fee.

Trusted computing base. We measure the size of the trusted computing base (TCB) of our
prototype. Obscuro’s trusted functions contribute 1150 source lines of code (SLoC). Obscuro
also requires some changes in the Bitcoin Core implementation which contributes 1292 SLoC. Thus,
Obscuro contributes a total of 2442 SloC to the TCB. The entire TCB includes the Bitcoin Core
implementation, two widely used cryptographic libraries (i.e., libsecp256k1 and OpenSSL), and
the Panoply implementation [64], which users can audit to verify whether they are deviate from
their public codebases [13].

7 Discussion

We discuss some of the operational considerations of Obscuro; particularly, who should own
and operate the Obscuro instances. Let us first define the owner of an Obscuro’s codebase as
an individual or an organization that owns/maintains the codebase; e.g., the account holder of a
public Github repository of an Obscuro’s codebase. The collected mixing fees are sent to a Bitcoin
address under the owner’s control, and the address is hardcoded in the Obscuro codebase. The
owner should not be confused with the operator of an Obscuro instance, who controls the platform
that hosts the Obscuro instance (e.g., a cloud provider).

If the owner of Obscuro is malicious, she may break the anonymity guarantees regardless
of the correctness of the mixer operations. This is because imposing mixing fee (as an effective
deterrence to Sybil attacks) becomes ineffective when the recipient of the fees is malicious. That
is, a malicious owner can generate a large number of Sybil deposits without actually paying any
mixing fees, because these fees will be paid to herself. Deciding who should receive the mixing
fees is non-trivial, and has been rarely addressed in previous works. We discuss several practical
candidates for the recipient of the mixing fees in Section 7.1.

Further, we argue that users should be able to check if an Obscuro instance is operated by its
owner, rather than by a third party. Due to the need for public scrutiny and remote attestation, it
is essential for Obscuro to have an open-source policy, and therefore anyone can launch the same
Obscuro instance in any Intel SGX platform. Although such third party operators will not obtain
any financial benefit (as the mixing fees are sent to the owner’s address), this may result in DoS
attacks. We discuss this problem and propose some operational considerations in Section 7.2.

7.1 Recipient of the Mixing Fees

Obscuro enforces the mixing fees (e.g., 1–3 percent of deposit value) for each participant and the
fees are necessary for Sybil deterrence (see Section 4.4). Note that without mixing fees, rational
Sybil attacks become easier as the transaction fees alone may not be sufficient for deterrence.
However, if the recipient of the mixing fees is malicious, she can generate a large number of Sybil

5
https://www.blocktrail.com/tBTC/tx/59e1f4ffe3e6b735f279f340a088597af45f545e6bab4542c82a24d0014b59b9

6
https://www.blocktrail.com/tBTC/tx/f5230965145ef06eb65595e41ecb701af6c128802a174f34a7b65ac7d44dc9b8

21

https://www.blocktrail.com/tBTC/tx/59e1f4ffe3e6b735f279f340a088597af45f545e6bab4542c82a24d0014b59b9
https://www.blocktrail.com/tBTC/tx/f5230965145ef06eb65595e41ecb701af6c128802a174f34a7b65ac7d44dc9b8

transactions without paying any fees, as the mixing fees will be paid to herself after all. Thus,
deciding who should receive the mixing fees is tricky and has been rarely addressed in previous
works. We discuss several practical candidates for the recipient of the mixing fees.

The most secure method that guarantees Sybil deterrence is to “burn” the fees, i.e., send the fees
to an “unspendable” address (this can be done with a Bitcoin script that always returns False).

As a more economically viable solution that is less ideal in terms of security, some reputable
charity organizations or privacy advocacy organizations (e.g., EFF [10] or Tor [30]), which are
believed to be honest, can be set as the recipient of the mixing fee. It is even possible to allow each
user’s deposit to choose the recipient of the mixing fee from a list of several reputable organizations
(using the identifier byte in the OP RETURN output, cf. Section 5).

7.2 Multiple Obscuro Instances

Launching a new enclave is cheap and thus any third party can spawn an Obscuro instance
simply by getting our open-source codebase and running it on its SGX platform. The third party
can announce the metadata and keys of its Obscuro instance on some public bulletin boards,
just as the real owner of the Obscuro codebase does in the bootstrapping phase (see Section 3.4).
Users may thus see many Obscuro instances of the identical codebase that are correctly verified by
remote attestation as they are authentic Obscuro code running on SGX platforms. This does not
provide any economic gain to the third party operators, since the recipient of the mixing fees (i.e.,
the real owner’s address) is hard-coded in Obscuro’s codebase. However, an adversary can launch
and announce many Obscuro instances at a very low cost, causing honest users to become confused
and deposit their coins to adversary-initiated Obscuro instances — resulting in the shortage of
deposits at the owner-initiated Obscuro instance. The adversary can then prevent the actual
mixing operation from going through, in the instances that are under her control. Therefore, this
amounts to a DoS attack that does not have a substantial cost; e.g., only a handful of SGX-capable
Internet-connected machines.

To thwart this threat, the owner can provide a signature that certifies the Obscuro instance
that it is operating, along with the metadata that is published in the public bulletin boards. Then,
users are advised to deposit coins only to the address of the Obscuro instance that is run by the
reputable owner.

As mentioned in Section 2.3, it is useful to have multiple reputable owners who run their
Obscuro instances concurrently. If this is the case, then a DoS attack on one server that operates
an Obscuro instance will not disrupt the users who participate in a mix that is conducted by
another server.

8 Related Work

Several privacy-focused cryptocurrencies have been proposed and built recently [3, 58, 37, 31], but
Bitcoin still remains as the most popular cryptocurrency with the largest market capitalization.
By contrast, Obscuro to provide a secure and anonymous mixing service for Bitcoin transactions,
without any need to modify the current Bitcoin protocol.

Existing mixers can be classified into two main groups based on their design, namely centralized
and decentralized ones (see Table 1). In the centralized approach, there typically exists a centralized
mixer who receives coins from all the senders, and distributes the coins to all the receivers [20, 67,

22

34, 33]. Due to its simplicity, this approach is efficient and supports a large number of mixing
transactions. However, the centralized mixer becomes a security threat since the mixer may steal
users’ coins. To sidestep the problem, MixCoin [20] and its successor BlindCoin [67] give users signed
certificates to provide accountability. The certificate can hold the malicious mixer accountable for
theft by damaging the mixer’s reputation. While the accountability prospects are arguable, there is
also no guarantee that the mixing server in MixCoin will not violate anonymity; e.g., log the links
between the input and output addresses. Our solution guarantees that Obscuro stores no such
information and provides verifiability to users, i.e., the users can validate the remote attestation to
see whether Obscuro is running the intended implementation, before participating.

To tackle the theft and de-anonymization risks in centralized mixers, Blindly Signed Contracts
(BSC) combines blind signatures and smart contracts [34]. However, this approach requires protocol
changes and thus is not compatible with the current Bitcoin system. TumbleBit, which is inspired
by BSC, includes an untrusted intermediate payment hub between the payer and payee, involving a
cryptographic puzzle promise and solver protocol among them [33]. Although TumbleBit achieves
many desired security properties, it fails to defend against Sybil-based anonymity reduction attacks
as it allows a malicious tumbler (or its underlying OS) to selectively drop benign users; see A1–
Forced-elimination of benign participants in Section 2.3. Moreover, as the tumbler needs to create
a time-locked deposit for every escrow in its two-party mixing model, it is vulnerable to a liquidity
DoS attack that locks the tumbler’s coins for a long period of time (e.g., hours to days). For example,
a large number of escrow channels (which would cost some standard fees and mixing fees) for fake
receivers can temporarily exhaust all the capital of the tumbler. Some countermeasures exist (e.g.,
dynamic fee mechanisms, borrowing liquidity from others), but all of them may introduce new
vulnerabilities (e.g., allowing the adversary to manipulate the mixing fee structure of the system),
or incur an additional operating cost. Obscuro does not share the same kind of vulnerabilities,
since there are no capital constraints on the mixer.

Another line of research focuses on decentralized protocols, in which the participants to com-
municate among themselves to mix their transactions [56, 57, 45, 18, 75]. Since the final mix
transaction requires the approval of all the participants, these protocols are prone to join-then-
abort DoS attacks, where the adversary initially participates in the execution of the protocol, but
aborts before the end of the execution in order to disrupt the mixing of the honest users. Moreover,
the decentralized mixing protocols require a high communication overhead between the participants
(specifically, quadratic in the number of participants), which limits their scalability potential. For
instance, CoinShuffle [56] and CoinShuffle++ [57] only perform a mix of up to 50 participants.
CoinParty [75] relies on an assumption that 2/3 of the peers are honest, which could easily be
violated in practice.

Motivated by the need for Sybil- and DoS-resistance, Xim proposes a two-party protocol based
on fee advertisement, that the users are required to pay in order to participate [18]. The main
drawback of Xim is that the users need to promote themselves several times on the blockchain to
find partners, hence the protocol may take hours to terminate.

The trusted hardware, which is available in current commodity CPUs, has opened a new range
of research problems — including ones in cryptocurrency research. For instance, a recently proposed
off-chain micropayment channel, named Teechan, utilizes the trusted execution environment (e.g.,
Intel SGX) to scale up transaction throughput of Bitcoin transactions [42]. Town Crier relies on
Intel SGX to provide authenticated data to the Ethereum smart contracts system [73]. Tesseract
uses Intel SGX to build a trust-free cryptocurrency exchange [14].

23

9 Conclusion

As we are moving towards a digital economy, some sectors of our society already rely on the success
of cryptocurrencies. Yet, the fungibility of popular cryptocurrencies — notably Bitcoin — suffered
recently, as exchanges and merchants began to consider certain coins in circulation to be tainted.
Lack of fungibility harms fair trade and ultimately creates greater centralization pressures, whereas
strong anonymity aspects are the key to better fungibility. Obscuro’s efficient operation and
strong anonymity guarantees can contribute to the success of Bitcoin and other cryptocurrencies
that are exposed to fungibility risks.

10 Acknowledgments

We thank the anonymous reviewers of this paper for their helpful feedback. We also thank Dat
Le Tien, Hung Dang, Shweta Shinde and Amrit Kumar for useful feedback on an early version of
the paper. This research was partially supported by a grant from Singapore Ministry of Education
Academic Research Fund Tier 1 (R-252-000-624-133) and a grant from National Science Foundation
(CNS-1617676). This work is also supported in part by research grants to the NUS CRYSTAL
Centre.

References

[1] Beware of this scam site: Btcmixer.io. https://www.reddit.com/r/Bitcoin/
comments/4rx6fb/beware_of_this_scam_site_btcmixerio/, 2013. Online; ac-
cessed Sept 2017.

[2] https://bitcoin-mix.com/ scam exit. https://bitcointalk.org/index.php?topic=
1470554, 2013. Online; accessed Sept 2017.

[3] [xmr] monero - a secure, private, untraceable cryptocurrency. https://bitcointalk.org/
index.php?topic=583449, 2014. Online; accessed Sept 2017.

[4] How to deanonymize helix mixer transactions. https://www.reddit.com/r/
DarkNetMarkets/comments/2ogsgv/how_to_deanonymize_helix_mixer_
transactions/, 2015. Online; accessed Sept 2017.

[5] Beginner’s guide to bitcoin mixing. https://bitblender.io/guide.html, 2017. Online;
accessed Sept 2017.

[6] bitblender.io. https://bitblender.io/, 2017. Online; accessed Sept 2017.

[7] Bitcoin core version 0.13.1. https://bitcoin.org/en/release/v0.13.1, 2017. Online;
accessed Sept 2017.

[8] Bitcoin fog. http://foggeddriztrcar2.onion/, 2017. Online; accessed Sept 2017 via
Tor.

[9] Bitcoin mixers. https://darknetmarkets.co/category/btc-mixer-tumber/,
2017. Online; accessed Sept 2017.

24

https://www.reddit.com/r/Bitcoin/comments/4rx6fb/beware_of_this_scam_site_btcmixerio/
https://www.reddit.com/r/Bitcoin/comments/4rx6fb/beware_of_this_scam_site_btcmixerio/
https://bitcointalk.org/index.php?topic=1470554
https://bitcointalk.org/index.php?topic=1470554
https://bitcointalk.org/index.php?topic=583449
https://bitcointalk.org/index.php?topic=583449
https://www.reddit.com/r/DarkNetMarkets/comments/2ogsgv/how_to_deanonymize_helix_mixer_transactions/
https://www.reddit.com/r/DarkNetMarkets/comments/2ogsgv/how_to_deanonymize_helix_mixer_transactions/
https://www.reddit.com/r/DarkNetMarkets/comments/2ogsgv/how_to_deanonymize_helix_mixer_transactions/
https://bitblender.io/guide.html
https://bitblender.io/
https://bitcoin.org/en/release/v0.13.1
http://foggeddriztrcar2.onion/
https://darknetmarkets.co/category/btc-mixer-tumber/

[10] eff.org. https://www.eff.org/, 2017. Online; accessed Sept 2017.

[11] Helix by grams. http://grams7enufi7jmdl.onion/helix, 2017. Online; accessed Sept
2017 via Tor.

[12] ipfs.io. https://ipfs.io/, 2017. Online; accessed Sept 2017.

[13] Obscuro: A bitcoin mixer using trusted execution environments. https://github.com/
bitobscuro/obscuro, 2017. Online; accessed Sept 2017.

[14] Tesseract: Real-time cryptocurrency exchange using trusted hardware. https://www.cs.
cornell.edu/˜iddo/RTExchSGX.pdf, 2017.

[15] Ittai Anati, Shay Gueron, Simon Johnson, and Vincent Scarlata. Innovative technology for cpu
based attestation and sealing. In Proceedings of the 2nd international workshop on hardware
and architectural support for security and privacy, volume 13, 2013.

[16] Massimo Bartoletti and Livio Pompianu. An analysis of bitcoin op return metadata. arXiv
preprint arXiv:1702.01024, 2017.

[17] Mihir Bellare and Chanathip Namprempre. Authenticated encryption: Relations among no-
tions and analysis of the generic composition paradigm. J. Cryptology, 21(4):469–491, 2008.

[18] George Bissias, A Pinar Ozisik, Brian N Levine, and Marc Liberatore. Sybil-resistant mixing
for bitcoin. In Proceedings of the 13th Workshop on Privacy in the Electronic Society, pages
149–158. ACM, 2014.

[19] Paul E Black. Fisher-yates shuffle. Dictionary of algorithms and data structures, 19, 2005.

[20] Joseph Bonneau, Arvind Narayanan, Andrew Miller, Jeremy Clark, Joshua A Kroll, and Ed-
ward W Felten. Mixcoin: Anonymity for bitcoin with accountable mixes. In International
Conference on Financial Cryptography and Data Security, pages 486–504. Springer, 2014.

[21] Ernie Brickell, Gary Graunke, Michael Neve, and Jean-Pierre Seifert. Software mitigations to
hedge aes against cache-based software side channel vulnerabilities. IACR Cryptology ePrint
Archive, 2006:52, 2006.

[22] D Brown. Standards for efficient cryptography, sec 1: elliptic curve cryptography. Released
Standard Version, 1, 2009.

[23] Karthekeyan Chandrasekaran, Richard M. Karp, Erick Moreno-Centeno, and Santosh Vem-
pala. Algorithms for implicit hitting set problems. CoRR, abs/1102.1472, 2011.

[24] David L Chaum. Untraceable electronic mail, return addresses, and digital pseudonyms. Com-
munications of the ACM, 24(2):84–90, 1981.

[25] Intel Corporation. Intel software guard extensions programming reference. In Avail-
able online: https://software.intel.com/sites/default/files/managed/48/
88/329298-002.pdf, 2014.

[26] Victor Costan and Srinivas Devadas. Intel sgx explained. IACR Cryptology ePrint Archive,
2016:86, 2016.

25

https://www.eff.org/
http://grams7enufi7jmdl.onion/helix
https://ipfs.io/
https://github.com/bitobscuro/obscuro
https://github.com/bitobscuro/obscuro
https://www.cs.cornell.edu/~iddo/RTExchSGX.pdf
https://www.cs.cornell.edu/~iddo/RTExchSGX.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf

[27] Victor Costan, Ilia A Lebedev, and Srinivas Devadas. Sanctum: Minimal Hardware Extensions
for Strong Software Isolation. In USENIX Security Symposium, pages 857–874, 2016.

[28] Mark Cox, Ralf Engelschall, Stephen Henson, Ben Laurie, et al. The openssl project, 2002.

[29] George Danezis and Andrei Serjantov. Statistical Disclosure or Intersection Attacks on
Anonymity Systems, pages 293–308. Springer Berlin Heidelberg, Berlin, Heidelberg, 2005.

[30] Roger Dingledine, Nick Mathewson, and Paul F. Syverson. Tor: The second-generation onion
router. In Matt Blaze, editor, USENIX Security Symposium, pages 303–320. USENIX, 2004.

[31] Evan Duffield and Daniel Diaz. Dash: A privacy-centric crypto-currency, 2014.

[32] Juan Garay, Aggelos Kiayias, and Nikos Leonardos. The Bitcoin backbone protocol: Analysis
and applications. In Eurocrypt, 2015.

[33] Ethan Heilman, Leen Alshenibr, Foteini Baldimtsi, Alessandra Scafuro, and Sharon Goldberg.
Tumblebit: An untrusted bitcoin-compatible anonymous payment hub. Technical report, Cryp-
tology ePrint Archive, Report 2016/575, 2016.

[34] Ethan Heilman, Foteini Baldimtsi, and Sharon Goldberg. Blindly signed contracts: Anonymous
on-blockchain and off-blockchain bitcoin transactions. pages 43–60, 2016.

[35] Ethan Heilman, Alison Kendler, Aviv Zohar, and Sharon Goldberg. Eclipse attacks on bitcoins
peer-to-peer network. In 24th USENIX Security Symposium (USENIX Security 15), pages
129–144, 2015.

[36] Intel. Attestation Service for Intel® Software Guard Extensions: API Documen-
tation. https://software.intel.com/sites/default/files/managed/7e/3b/
ias-api-spec.pdf, 2017.

[37] Tom Elvis Jedusor. Mimblewimble. https://download.wpsoftware.net/bitcoin/
wizardry/mimblewimble.txt, 2016.

[38] SP Johnson, VR Scarlata, C Rozas, E Brickell, and F Mckeen. Intel software guard extensions:
Epid provisioning and attestation services, 2016.

[39] Eike Kiltz and Krzysztof Pietrzak. Leakage resilient elgamal encryption. In Masayuki Abe,
editor, Advances in Cryptology - ASIACRYPT 2010 - 16th International Conference on the
Theory and Application of Cryptology and Information Security, Singapore, December 5-9,
2010. Proceedings, volume 6477 of Lecture Notes in Computer Science, pages 595–612. Springer,
2010.

[40] Amrit Kumar, Clément Fischer, Shruti Tople, and Prateek Saxena. A traceability analysis of
monero’s blockchain. IACR Cryptology ePrint Archive, 2017:338, 2017.

[41] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hyesoon Kim, and Marcus Peinado.
Inferring fine-grained control flow inside SGX enclaves with branch shadowing. arXiv preprint
arXiv:1611.06952, 2016.

26

https://software.intel.com/sites/default/files/managed/7e/3b/ias-api-spec.pdf
https://software.intel.com/sites/default/files/managed/7e/3b/ias-api-spec.pdf
https://download.wpsoftware.net/bitcoin/wizardry/mimblewimble.txt
https://download.wpsoftware.net/bitcoin/wizardry/mimblewimble.txt

[42] Joshua Lind, Ittay Eyal, Peter Pietzuch, and Emin Gün Sirer. Teechan: Payment Channels
Using Trusted Execution Environments. In 4th Workshop on Bitcoin and Blockchain Research,
2017.

[43] Sinisa Matetic, Mansoor Ahmed, Kari Kostiainen, Aritra Dhar, David Sommer, Arthur Ger-
vais, Ari Juels, and Srdjan Capkun. ROTE: Rollback Protection for Trusted Execution. In
Online: http://eprint.iacr.org/2017/048.pdf, 2017.

[44] Mitsuru Matsui and Junko Nakajima. On the power of bitslice implementation on intel core2
processor. In CHES, volume 4727, pages 121–134. Springer, 2007.

[45] Gregory Maxwell. Coinjoin: Bitcoin privacy for the real world. In Post on Bitcoin Forum.
Available online: https://bitcointalk.org/index.php?topic=279249, 2013.

[46] Frank McKeen, Ilya Alexandrovich, Alex Berenzon, Carlos V Rozas, Hisham Shafi, Vedvyas
Shanbhogue, and Uday R Savagaonkar. Innovative instructions and software model for isolated
execution. In HASP@ ISCA, page 10, 2013.

[47] Sarah Meiklejohn, Marjori Pomarole, Grant Jordan, Kirill Levchenko, Damon McCoy, Geof-
frey M Voelker, and Stefan Savage. A fistful of bitcoins: characterizing payments among men
with no names. In Proceedings of the 2013 conference on Internet measurement conference,
pages 127–140. ACM, 2013.

[48] Andrew Miller, Malte Möser, Kevin Lee, and Arvind Narayanan. An empirical analysis of
linkability in the monero blockchain. CoRR, abs/1704.04299, 2017.

[49] Ming-Wei-Shih, Sangho Lee, Taesoo Kim, and Marcus Peinado. T-SGX: Eradicating
Controlled-Channel Attacks Against Enclave Programs. In NDSS 2017, 2017.

[50] Ahmad Moghimi, Gorka Irazoqui, and Thomas Eisenbarth. CacheZoom: How SGX amplifies
the power of cache attacks. arXiv preprint arXiv:1703.06986, 2017.

[51] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. bitcoin.org, 2009.

[52] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and countermeasures: the case
of aes. In Cryptographers Track at the RSA Conference, pages 1–20. Springer, 2006.

[53] Rafael Pass, Lior Seeman, and abhi shelat. Analysis of the blockchain protocol in asynchronous
networks. In Eurocrypt, 2017.

[54] Kenneth Reid. Banknotes and their vindication in eighteenth-century scotland. David Fox
and Wolfgang Ernst (eds), Money in the Western Legal Tradition (Oxford University Press,
2014, Forthcoming); Edinburgh School of Law Research Paper No. 2013/19, 2013.

[55] Dorit Ron and Adi Shamir. Quantitative analysis of the full bitcoin transaction graph. In
International Conference on Financial Cryptography and Data Security, pages 6–24. Springer,
2013.

[56] Tim Ruffing, Pedro Moreno-Sanchez, and Aniket Kate. Coinshuffle: Practical decentralized
coin mixing for bitcoin. In European Symposium on Research in Computer Security, pages
345–364. Springer, 2014.

27

http://eprint.iacr.org/2017/048.pdf
https://bitcointalk.org/index.php?topic=279249

[57] Tim Ruffing, Pedro Moreno-Sanchez, and Aniket Kate. P2P Mixing and Unlinkable Bitcoin
Transactions. 2017.

[58] Eli Ben Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian Miers, Eran
Tromer, and Madars Virza. Zerocash: Decentralized anonymous payments from bitcoin. In
2014 IEEE Symposium on Security and Privacy, pages 459–474. IEEE, 2014.

[59] Michael Schwarz, Samuel Weiser, Daniel Gruss, Clémentine Maurice, and Stefan Man-
gard. Malware Guard Extension: Using SGX to conceal cache attacks. arXiv preprint
arXiv:1702.08719, 2017.

[60] Jaebaek Seo, Byounyoung Lee, Seongmin Kim, Ming-Wei Shih, Insik Shin, Dongsu Han, and
Taesoo Kim. Sgx-shield: Enabling address space layout randomization for sgx programs. In
Proceedings of the 2017 Annual Network and Distributed System Security Symposium (NDSS),
San Diego, CA, 2017.

[61] Ming-Wei Shih, Sangho Lee, Taesoo Kim, and Marcus Peinado. T-sgx: Eradicating controlled-
channel attacks against enclave programs. In Proceedings of the 2017 Annual Network and
Distributed System Security Symposium (NDSS), San Diego, CA, 2017.

[62] Shweta Shinde, Zheng Leong Chua, Viswesh Narayanan, and Prateek Saxena. Preventing
page faults from telling your secrets. In Proceedings of the 11th ACM on Asia Conference on
Computer and Communications Security, pages 317–328. ACM, 2016.

[63] Shweta Shinde, Zheng Leong Chua, Viswesh Narayanan, and Prateek Saxena. Preventing
page faults from telling your secrets. In Proceedings of the 11th ACM on Asia Conference on
Computer and Communications Security, pages 317–328. ACM, 2016.

[64] Shweta Shinde, Dat Le Tien, Shruti Tople, and Prateek Saxena. PANOPLY: Low-TCB Linux
Applications with SGX Enclaves. In NDSS, 2017.

[65] Raoul Strackx and Frank Piessens. Ariadne: A minimal approach to state continuity. In 25th
USENIX Security Symposium (USENIX Security 16), pages 875–892, Austin, TX, 2016.

[66] Peter Todd. Bip 65: Op checklocktimeverify. Bitcoin improvement proposal, 2014.

[67] Luke Valenta and Brendan Rowan. Blindcoin: Blinded, accountable mixes for bitcoin. In Inter-
national Conference on Financial Cryptography and Data Security, pages 112–126. Springer,
2015.

[68] Nico Weichbrodt, Anil Kurmus, Peter Pietzuch, and Rüdiger Kapitza. Asyncshock: Exploiting
synchronisation bugs in intel sgx enclaves. In European Symposium on Research in Computer
Security, pages 440–457. Springer, 2016.

[69] P Wuille et al. libsecp256k1: Optimized c library for ec operations on curve secp256k1, 2015.

[70] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. Controlled-channel attacks: Deterministic
side channels for untrusted operating systems. In Security and Privacy (SP), 2015 IEEE
Symposium on, pages 640–656. IEEE, 2015.

28

[71] Yuanzhong Xu, Weidong Cui, and Marcus Peinado. Controlled-channel attacks: Deterministic
side channels for untrusted operating systems. In 2015 IEEE Symposium on Security and
Privacy, pages 640–656, 2015.

[72] Yuval Yarom, Daniel Genkin, and Nadia Heninger. Cachebleed: a timing at-
tack on openssl constant-time rsa. J. Cryptographic Engineering, 7(2):99–112, 2017.
https://ts.data61.csiro.au/projects/TS/cachebleed/.

[73] Fan Zhang, Ethan Cecchetti, Kyle Croman, Ari Juels, and Elaine Shi. Town Crier: An authen-
ticated data feed for smart contracts. In Proceedings of the 2016 ACM SIGSAC Conference
on Computer and Communications Security, pages 270–282. ACM, 2016.

[74] Fengwei Zhang and Hongwei Zhang. SoK: A Study of Using Hardware-assisted Isolated Exe-
cution Environments for Security. In Proceedings of the Hardware and Architectural Support
for Security and Privacy 2016, HASP 2016, 2016.

[75] Jan Henrik Ziegeldorf, Fred Grossmann, Martin Henze, Nicolas Inden, and Klaus Wehrle.
Coinparty: Secure multi-party mixing of bitcoins. In Proceedings of the 5th ACM Conference
on Data and Application Security and Privacy, pages 75–86. ACM, 2015.

A Appendix

A.1 Intel SGX side channel attacks and mitigation

Although side channel attacks against Intel SGX are beyond our scope (cf. Section 2.3), let us
summarize the recent proposed attacks and discuss the countermeasures — which can be directly
applied to Obscuro.

Several recent works have inspected the security of Intel SGX based on its use of public re-
sources [26], and uncovered drawbacks in the SGX security model that can lead to side-channel
attacks against the enclave. For example, a malicious OS can introduce page faults into the target
code, record the accessed pages when page faults occur, and infer the execution flow of the appli-
cation [71]. This Controlled-Channel attacks can be defeated at the application level [63], or by
using the Intel Transactional Synchronization Extensions (TSX) [61].

The adversary can also exploit the race condition among the running threads or synchronicity
bugs, and attack the application that runs inside the SGX enclave [68]. This threat can be mitigated
by enabling Address space layout randomization (ASLR) protection inside the enclave, as proposed
in SGX-Shield [60].

Various cache-timing side-channel attacks have been demonstrated recently, focusing on recov-
ering cryptography keys (of ciphers such as AES [50] and RSA [59]) from running SGX applications.
These attacks assume that there exist vulnerabilities in the cryptographic computation inside the
enclave (e.g., using mbedTLS library to compute RSA signatures [59]). The popular attack tech-
nique that is used is Prime+Probe, where the adversary evicts a cache set and measures the time
that the cache is replaced by the victim’s application. This allows the attacker to infers some secrets
of the victim, based on the memory accesses. One solution is to use non-vulnerable cryptography
libraries that are resistant to cache attacks [21, 44, 52], with some trade-off in performance. Further,
the hardware design can be improved to prevent cache-timing and other side-channel attacks [27].

29

Intel SGX does not clear the branch (i.e., control flow) history when switching between the
enclave and non-enclave mode, leaving another side-channel to be exploited. A recently proposed
attack, namely branch shadowing, can identify the control flows of the execution inside an en-
clave [41]. One can mitigate this threat at the application-level by using the Zigzagger compiler,
which obfuscates the branch instructions so that the branch executions are oblivious [41].

A.2 Public Bitcoin Mixers

Let us review some popular Bitcoin mixing services currently available in the market, including
Bitcoin Blender [6], Helix by Grams [11] and Bitcoin Fog [8]. We observed that a single mixing
round of these mixers usually takes anywhere from half an hour to several days (e.g., 102 hours).
For instance, Helix mixer requires at least two blocks (i.e., 20 minutes) for deposit confirmation
and additional mixing time of 10 minutes to 24 hours. Users of Bitcoin Fog must wait for coin
withdrawal from 2 to 102 hours [9]. Bitcoin Blender allows users to customize the coin return time
to avoid timing-based blockchain analysis, which usually spans across days (e.g., up to 99 hours) [5].

The centralized mixer operators assert that they delete all the logs from their server after
mixing rounds. Yet, there is no guarantee that coin theft and anonymity violation (e.g., secretly
logging links between transactions) will not happen. Worse still, all the mixing services that we
review do not have any guarantee regarding the anonymity set size. In fact, some de-anonymization
attacks have been demonstrated, showing the weak anonymity guarantee of current public Bitcoin
mixers [4].

30

	Introduction
	Problem Definition
	Bitcoin Primer
	Threat Model
	Challenges and Solutions
	Existing Solutions

	Design
	Design Goals
	Protocol Overview
	Use of Intel SGX in Obscuro
	Bootstrapping Phase

	Security Analysis
	Preventing Selective Dropping of Participants
	Guaranteed Minimum Mixing Set Size
	Eclipse and State-Rewind Attacks
	Cost of Sybil Attacks

	Implementation
	Evaluation
	Discussion
	Recipient of the Mixing Fees
	Multiple Obscuro Instances

	Related Work
	Conclusion
	Acknowledgments
	Appendix
	Intel SGX side channel attacks and mitigation
	Public Bitcoin Mixers

