
Symmetric Searchable Encryption with Sharing and Unsharing

Sarvar Patel∗ Giuseppe Persiano† Kevin Yeo‡

October 3, 2017

Abstract

We consider Symmetric Searchable Encryption with Sharing and Unsharing (SSEwSU), a notion that
models Symmetric Searchable Encryption (SSE) in a multi-user setting in which documents can be
dynamically shared and unshared among users. Previous works on SSE involving multiple users have
assumed that all users have access to the same set of documents and/or their security models assume
that all users in the system are trusted.

As in SSE, every construction of a SSEwSU will be a trade-off between efficiency and security, as
measured by the amount of leakage. In multi-user settings, we must also consider cross-user leakage
(x-user leakage) where a query performed by one user would leak information about the content of
documents shared with a different user.

We start by presenting two strawman solutions that are at the opposite side of the efficiency-leakage
bidimensional space: x-uz, that has zero x-user leakage but is very inefficient, and x-uL, that is very
efficient but highly insecure with very large x-user leakage. We give a third construction, x-um, that is as
efficient as x-uL and more efficient than x-uz. At the same time, x-um is considerably more secure than
x-uL. Construction x-um is based on the concept of a Re-writable Deterministic Hashing (RDH), which
can be thought of as a two-argument hash function with tokens that add re-writing capabilities. Sharing
and unsharing in x-um is supported in constant (in the number of users, documents, and keywords) time.
We give a concrete instantiation whose security is based on the Decisional Diffie-Hellman assumption.
We provide a rigorous analysis of x-um and show a tight bound on the leakage in the presence of an
active adversary that corrupts a subset of the users. We report on experimental work that show that
x-um is very efficient and x-user leakage grows very slowly as queries are performed by the users.

Additionally, we present extensions of x-um. We modify x-um to support a finer grained access
granularity, so a document can be shared to a user either only for reading (i.e., searching) or for writing
(i.e., editing). We also extend x-um to the bilinear setting to further reduce leakage.

∗Google, Inc., sarvar@google.com
†Google, Inc. and Università di Salerno, giuper@gmail.com
‡Google, Inc., kwlyeo@google.com

1

Contents

1 Introduction 3

2 Symmetric Searchable Encryption with Sharing and Unsharing 5
2.1 Security definition . 6

3 A construction based on DDH 7
3.1 The leakage function L . 10
3.2 Simulator . 13
3.3 Security of un-sharing . 13
3.4 Search and Editing rights . 14
3.5 Further reducing the leakage . 15

4 Experiments 15
4.1 Performance . 17
4.2 Leakage Growth . 17

A Re-writable Deterministic Hashing 19
A.1 Regular instances . 20
A.2 A regular RDH with minimum leakage . 22
A.3 A construction based on regular RDH . 25
A.4 Simulator . 26

2

1 Introduction

Symmetric Searchable Encryption (SSE) [13] has been the object of intensive research and study in the last
years. The original scenario consists of a Manager that has a corpus D of documents. Manager wishes to
store D on Server in encrypted form. At later times, Manager would like to be able to provide Server with
appropriate search tokens to select the ids (pointers) of the documents that contain given keywords. SSE
is symmetric (or private-key) in the sense that only the Manager can encrypt the documents. The security
consists of protecting the Manager (and his corpus D) from a curious Server.

We introduce the concept of a Symmetric Searchable Encryption with Sharing and Unsharing (SSEwSU)
where each document is shared by a subset of the users. Sharing is dynamic and a document can be
subsequently unshared from a user. Such scenarios rise naturally in large organizations where different
subsets of members of the organization collaborate on different documents at any give time. A document of
D is described by a tuple (d,Kw(d), metad) consisting of a document id d (or a pointer to the location of the
document), a list Kw(d) of keywords taken from the universe W of keywords (e.g., the English dictionary),
and some metadata metad (e.g., title, snippet, creation time). Each user u ∈ U can access a subset Access(u)
of the corpus D. The subset Access(u) of documents shared with user u varies over time as documents can
be added/removed. A search for keyword w performed by u returns all pairs (d, metad) such that w ∈ Kw(d)
and d is currently in Access(u). Typically, the user looks at the metadata of the documents returned by the
search to determine which document to download. Manager is not involved in searches and all users u can
perform queries on documents in Access(u) (and only on those) without further intervention of Manager.
Moreover, sharing and unsharing of documents should be efficient and require only the Manager and the
Server to be active.

Every SSE exposes some information, called the leakage, about the document corpus and queries. The
design of SSE is a balancing act between efficiency and security (that is, reducing leakage). In a SSEwSU,
because of its multi-user nature, it is possible that information leaked by a query of one user is carried over
across different users. We call this x-user leakage and pay special attention to it when analyzing the leakage
of our constructions. In this paper, we discuss three constructions and concentrate on the one which presents
a good balance of efficiency and security.

A construction with no x-user leakage. In a first construction, that we call x-uz (zero x-u), sharing is
implemented on top of any single-user SSE (supporting addition/deletion of documents) using an independent
instance for each user u. When a document d is shared with user u, d is added to the instance of single-
user SSE of u and it is removed when the document is unshared from u. As it can be easily seen, x-uz
has no x-user leakage since each user is independent. This construction requires space proportional to∑

u∈U

∑
d∈Access(u)

|Kw(d)| = O(|U| · |D| · |W|) which is very inefficient. The next constructions try to get an

efficient solution with limited x-user leakage.

An efficient construction. Following a dual approach, in a second construction, that we call x-uL (Large x-u),
we have an independent instance of single-user SSE for each document d. The secret key Kd of the instance
for document d is given to all users u with access to d. To perform a search, user u sends Server a search
token for each document d ∈ Access(u). The per-document partition is to ensure proper user access control.
Indeed the Server stores, for each document d, the current list of users that have access to d and, upon
receiving a search token for d, it checks if the user has access to d before actually performing the search.
The amount of memory required by x-um is O(|D| · |W|+ |D| · |U|) space.

Construction x-uL suffers from extensive x-user leakage that accumulates as queries are being performed.
For a simple example, suppose user u1 performs a query for keyword w1 by sending search tokens for each
document in Access(u1). The search tokens sent for a document d are generated by an algorithm using
Kd. Any other user u2 6= u1 with access to d, d ∈ Access(u2), would generate search tokens using the
same algorithm and Kd. So, Server can use these search tokens for all users in AccList(d). So, Server infers
information for every user u2 6= u1 such that d ∈ Access(u1)∩Access(u2). In other words, each query extends
the leakage to all the users, even to those users who never performed any query. If, subsequently, u2 searches
for w2 then, for all of Access(u1)∩Access(u2), Server knows exactly those documents with w1, w2, both and
neither.

3

Where does the problem come from? The x-user leakage of x-uL is due to two factors. First of all, the SSE
is partitioned according to the document d so to allow the Server to enforce the access list. Secondly, query
Q1 and Q2 of two different users, when restricted to the documents in the intersection, coincide. We see two
contrasting needs fighting here: for the sake of efficiency, we record keyword occurrences in documents in
a user-independent fashion but this forces the queries of different users to be the same. This has the effect
that when one user queries, it does so on behalf of all the other users.

To go around this apparent stalemate, we introduce an intermediate level that helps remove the user-
dependent part from a query to be matched with the user-independent encryption of the keyword-document
pairs. The intermediate level will be implemented by means of tokens that depend on the user and the
document. The absence of a token for a user and a document prevents a user for searching on the document
thus effectively implementing access control. The introduction of the extra level requires space O(|D| · |U|),
that is proportional to the size of the access lists, thus keeping overall efficiency.

An efficient construction with better leakage. The third construction, x-um (minimal x-u), is based on Re-
writable Deterministic Hashing (RDH). RDH is an enhancement of a hash function with the possibility of
constructing tokens that can maul hash values. Roughly speaking, we consider a two-argument hash function
H. With slight abuse of terminology, we call ciphertext the value obtained by evaluating H on two arguments,
which we refer to as plaintexts. For any two plaintexts A and B, it is possible to construct a token tokA→B
that, when applied to a ciphertext of A, returns a new ciphertext in which A is replaced with B and the
other plaintext stays unchanged.

Roughly, x-um can be described as follows. Manager computes H(w, d) for every w ∈ Kw(d) exactly once
independently of the number of users that can access d. So,

∑
d |Kw(d)| ciphertexts are produced. Manager

also produces authorization token toku→d for every d ∈ Access(u), thus
∑
u |Access(u)| tokens are produced.

All computed tokens and ciphertexts are given to Server for total space O(|D| · |W|+ |D| · |U|). A search is
then performed in the following way: user u computes query ciphertext H(u,w) and a pointer to toku→d
and sends it to Server. Server applies the toku→d to the query ciphertext. If u has access to d and d contains
w, Server has toku→d and the application to the query ciphertext H(u,w). produces H(w, d). If Server finds
H(w, d) among the ciphertexts received from Manager, then w ∈ Kw(d). The rewriting capability of the
tokens makes it unnecessary to duplicate the pair (w, d) for each user that has access to document d (greatly
improving on the efficiency of x-uz). When a match is found as a result of a search of user u1, nothing is
leaked about user u2 until u2 queries for the same keyword. The actual construction involves the use of
pseudorandom functions to prevent dictionary attacks (since H is deterministic and keywords and documents
come from a potentially small universe). Encoding the access control into tokens dispenses the need to keep
independent SSE for each user like x-uL.

Our contribution. Our main contribution is a general construction of SSEwSU based on RDH. We present
a notion of security for RDH and show that this notion is sufficient for an implementation of SSEwSU in
which Server uses

∑
d∈Access(u) |Kw(d)| +

∑
u |Access(u)| space (thus matching the leaky construction x-uL).

Our construction supports sharing and unsharing of document d in constant time. Both operations can be
carried out by the Manager or by any u ∈ AccList(d) by asking Server to update its internal data structure.
No other user is affected. Searches can be carried out by each user u without requiring Manager and in time
proportional to |Access(u)|. We extend the scheme to allow two levels document access: search access (users
are allowed to search for keywords) and edit access (users are allowed to add/remove keywords).

Our formal security setting follows the simulation-based abstraction of real vs. simulated games. We
consider an active adversarial Server that corrupts a subset of users, C, (thus gaining access to all the
information of the users in C, including the documents the users have access to) and show that its view can
be simulated given a precisely defined leakage profile on the corpus D and search queries.

We propose a construction of RDH whose security is derived from the Decisional Diffie-Hellman (DDH)
assumption. The instantiation of RDH under DDH is presented in the main body. We perform extensive
experimentation that show our proposal is practical. With more experiments, we show that the x-user
leakage for x-um is significantly slower compared to x-uL using real world data. Construction x-um hits the
middle ground between the two extremes by providing the same efficiency as x-uL while reducing the leakage
to an acceptable level. We also extend x-um to further reduce the leakage by going to a bilinear setting.

4

Related work. The notion of a Symmetric Searchable Encryption was introduced in [13] (in [1] for the
asymmetric case) and is an active research area. The original scenario consists of two parties that, in our
terminology, are Manager wishing to store an encrypted version of his data on Server and being able to
delegate searches to Server while protecting the privacy of the data and queries. This basic setting was
extended in [4], which considered the extension of multiple users authorized by Manager. The same setting
is considered in several subsequent papers (for example, [2, 3, 5, 7]). We mention the work in [2] was the
first to obtain sub-linear time for more general Boolean queries thus extending [4]. The recent work of [8]
extends this by providing a sub-linear time construction for all Boolean formulae. In the works cited above,
“multiple users” means users (other than the Manager) can perform searches using tokens provided by the
Manager. However, all users have access to the same set of documents. We are interested in allowing different
users access to different subsets of the documents. A public-key multi-user setting with restricted access
control structures was considered in [12]. The concept of a Multi-Key Searchable Encryption [11] is closer to
our setting. When used in the context of SSEwSU, Multi-Key Searchable Encryption would yield searches
with performance similar to our construction (that is, a user performing a search transfers a token of size
proportional to the number of document he has access to) but does not support efficient dynamic sharing
and unsharing of documents. The concept of RDH was implicit in [2] and was used to reduce the cost of
conjunctive keyword search.

The Database Management System (DBMS) of [9], even though much wider in scope, is also related to
our work. In the presence of many users, the focus is on security from unauthorized users. In this respect, it
differs from single-user SSE where users are trusted. The natural extension of [9] to multiple users, allowing
each user access to the whole database, requires all users to share a secret key hidden from Server. If Server
corrupts a single user, all security is lost. In our construction, corruption of a user leaks only documents
accessible by the corrupted user. Earlier proposals [10] for DBMS were similar to single-user SSEs as the
threat scenario focused on security against the curious Server.

Roadmap. Section 2 presents the concept of a SSEwSU and define its security notion. Section 3 describes
an implementation of SSEwSU in cyclic groups for which DDH is conjectured to hold. We identify the leakage
L that can be learned by Server when it corrupts a subset of users, C, in Section 3.1. We postpone the
proof of security to the appendix. Section 3.4 describes how to extend the basic construction to support
finer grained access control where users can have only search rights to a document or editing rights. We
present a modified construction of x-um using bilinear pairings in Section 3.5, which reduces x-user leakage.
In the appendix, we consider RDH and show how to construct SSEwSU from an RDH. Specifically, the notion
of RDH and its security notion is presented in Appendix A. An implementation of RDH is described and
proved under the DDH assumption in Appendix A.2. Section A.3 presents a general construction of SSEwSU
using RDH. The construction of x-um in Section 3 is obtained by plugging a special class of secure RDH.
Section A.4 shows that no more information is leaked to an adversarial Server by giving a simulator, which,
on input of L, outputs a simulated transcript that is indistinguishable from the real view of Server.

2 Symmetric Searchable Encryption with Sharing and Unsharing

We introduce the concept of a Symmetric Searchable Encryption with Sharing and Unsharing (SSEwSU)
and give an implementation based on the DDH assumption. A SSEwSU is a collection of six algorithms:
EncryptDoc, Enroll, SearchQuery; SearchReply, AccessGranting, AccessRevoking for three types of players: one
Manager, one Server, and several users. The algorithms interact in the following way.

1. Manager has corpus D consisting of triplets (d,Kw(d), metad) of document id d, the set of keywords Kw(d)
in document d, and document metadata metad. Manager computes an encrypted version xSet of D and a
master key K by running algorithm EncryptDoc(D). Manager sends xSet to Server and keeps K in private
memory. Manager instructs Server to initialize uSet to be empty. Both xSet and uSet are kept private by
Server.

2. Manager executes Enroll to add a new user u to the system. Keys Ku for u are returned by the algorithm.
Manager stores the pair (u,Ku) in private memory and sends Ku to u. When a user is enrolled, they do

5

not have any access rights, that is Access(u) = ∅.

3. To share document d with user u (that is, Access(u) := Access(u)∪{d}), Manager executes AccessGranting
on input the pair (u,Ku), document id d and master key K. AccessGranting outputs authorization token
Uu,d for u and d and keys Kd for document d. Uu,d is given to Server for inclusion to uSet and Kd is given
to user u.

AccessRevoking is used in a similar way by Manager to revoke user u’s access to document d. Instead,
Uu,d is given to Server to remove from uSet.

4. To search for all documents d in Access(u) that contain keyword w, user u executes SearchQuery on input
w, Ku and {(d,Kd}d∈Access(u) to construct the query qSet that is passed onto Server.

5. On input qSet, Server runs SearchReply using xSet and uSet to compute Result, which is returned to u.
Using the correct keys, u decrypts Result and obtains the ids and metadata of documents in Access(u)
which contain w.

We denote the set of users with access to document d by AccList(d). So, d ∈ Access(u) if and only if
u ∈ AccList(d). With slight abuse of notation, for a subset C of users, Access(C) is the union of Access(u) for
u ∈ C.

The definition is tailored for a static corpus of documents (no document is added and/or edited). This
is reflected by the fact that Manager computes the encrypted version of the corpus by using EncryptDoc at
the start. Section 3.4 discusses how to extend the construction to have users with editing rights that can
add/remove keywords from document. Users can also create a new document, d, where they will, initially,
be the only member of AccList(d).

2.1 Security definition

We give our security definition for SSEwSU by following the real vs. simulated game approach. In our trust
model, Manager is honest since he owns the corpus D whose privacy we wish to protect. We assume Server is
not malicious and computes query results as prescribed by SearchReply, stores xSet as received from Manager,
and updates uSet instructed by Manager. A malicious Servercan omit answers to queries or reply arbitrarily.
Little can be done against DOS attacks from a malicious Server. Checking that Server replies correctly to
queries is beyond the scope of our work. We assume that Server is curious with access to xSet, uSet and all
queries. In the multi-user setting, we have to consider that Server might corrupt a subset C of users gaining
access to the keys of users in C.

In the real game with a set of users U , we consider the server view, sViewU,C . Here, Server corrupts the
subset C ⊆ U of users gaining access to the set of keys {Ku}u∈C and {Kd}d∈Access(C). We assume no revocation
(unsharing) is made as a curious Server may keep all authorization tokens Uu,d provided. All queries are
assumed to be performed after all sharing operations as a curious server can always postpone or duplicate
the execution of a query. The view is relative to a snapshot of the system (that is xSet and uSet) resulting
from a sequence of sharing operations by Manager whose cumulative effect is encoded in Access(u) for all
u ∈ U . We define an instance of SSEwSU, I = {D, {d,Kw(d), metad}d∈D, {Access(u)}u∈U , {(ui, wi)}i∈[q]},
consisting of

1. a set of documents {d,Kw(d), metad}d∈D;

2. collection {Access(u)}u∈U of subsets of document ids;

3. the set of search queries Qi = (ui, wi), for i ∈ [q]; i-th query is performed by user ui for keyword wi.

We define the view with respect to security parameter λ of Server when corrupting set C of users on instance
I of SSEwSU, which is the output of experiment sViewU,C(λ, I).

6

sViewU,C(λ, I)
1. Set (xSet,K)←

EncryptDoc(1λ,D, {d,Kw(d), metad}d∈D);
2. Set {Ku}u∈U ← Enroll(1λ,U);
3. Set (uSet, {{Kd}d∈Access(u)}u∈U)←

AccessGranting({Ku}u∈U , {Access(u)}u∈U ,K);
4. For each i ∈ [q]

qSeti =
SearchQuery(wi,Kui

{(d,Kd,K
enc
d)}d∈Access(ui));

Resulti = SearchReply(qSeti);
3. Output (Ku,Ku)u∈C , xSet, uSet, (qSeti,Resulti,)i∈[q];

View of Server corrupting C for instance I

We slightly abuse notation by passing a set of values as a parameter to an algorithm instead of a single
value. By this, we mean that the algorithm is invoked on each value of the set received and that outputs are
collected and returned as a set. For example, “Enroll(1λ,U)” denotes the sequential invocation of algorithm
Enroll on input (1λ, u) for all u ∈ U .

Definition 1. We say that a SSEwSU is secure with respect to leakage L if there exists an efficient simulator
S such that for every coalition C and every instance I

{sViewU,C(λ, I)} ≈c {S(λ,L(I, C))}.

3 A construction based on DDH

In this section, we describe x-um, a construction of SSEwSU, based on the Decisional Diffie-Hellman As-
sumption. Our construction uses Server storage that is proportional to the number

∑
u |Access(u)| of pairs

(u, d) with d ∈ Access(d) and the number
∑
d∈D |Kw(d)| of pairs (d,w) with w ∈ Kw(d). Manager only needs

space proportional to the number of enrolled users and each user needs space proportional to the number of
documents they have access to. A query, produced by user u, has size proportional to |Access(u)|. Finally,
we mention that access granting (sharing) and revocation (unsharing) take constant time and only require
Server and Manager to collaborate. Additionally, a user with access can provide access to another user while
interacting with Server without Manager.

The security proof is postponed to the appendix and obtained as part of a more general framework. We
show that RDH (see Appendix A) can be used to construct SSEwSU. A construction of RDH under the
DDH Assumption is presented. The construction of x-um is a special case of the general construction and
its security follows from the general construction.
Decisional Diffie-Hellman Assumption. A group generator GG is an efficient randomized algorithm that
on input 1λ outputs the description of a cyclic group G of prime order p for some |p| = Θ(λ) along with a
generator g for G. We say that the Decisional Diffie-Hellman assumption holds for group generator GG if
distributions D0

λ and D1
λ are computational indistinguishable, where

Dξ
λ =

{
(g,G)← GG(1λ);x, y, r ← Z|G| : (gx, gy, gx·y+ξ·r)

}
.

In addition to assuming the DDH Assumption, our construction uses the following three cryptographic
primitives.

1. a pseudorandom family of functions {G(K, ·)}K∈{0,1}? such that, for each K of length λ, function
G(K, ·) takes λ-bit long inputs and returns strings of length λ;

2. a pseudorandom family of functions {F(K, ·)}K∈{0,1}? such that, for each K of length λ, function
F(K, ·) takes λ-bit long inputs and returns elements of Zp, for p prime of length Θ(λ);

7

3. a key-oblivious CPA secure private-key encryption scheme (Enc,Dec).

All of our cryptographic primitives are known to exist under the DDH Assumption.
An informal description. We start by describing a simple version that does not offer adequate security.
Assume that all document ids, d, user ids, u, and keywords, w, are mapped to elements of a group. The
occurrence of w ∈ Kw(d) is encoded by Manager by computing the x-pair, consisting of the product w · d
and of an encryption of metad. All x-pairs are given to Server. The fact that u ∈ AccList(d) is encoded by
computing authorization token d ·u−1 and giving it to Server. The set of all x-pairs and authorization tokens
produced by Manager are called the xSet and uSet respectively. To search for a keyword w in Access(u),
user u produces query u · w. Server multiplies the query by the corresponding authorization token. If the
result appears as a first component of an x-pair, the second component is returned to the user to decrypt.
Correctness is obvious but very weak security is offered. Suppose that two users u1 and u2 query for the
same keyword w thus producing qct1 = u1 ·w and qct2 = u2 ·w. Then the ratio qct1/qct2 can be used to
turn an authorization token for u1 to access document d into an authorization token for user u2 for the same
document. Indeed d/u1 ·qct1/qct2 = d/u2, so the server can extend queries of u2 to Access(u1)∪Access(u2).

So, we move to a group where DDH is conjectured to hold. Consider x-pairs consisting of an x-ciphertext
computed as gw·d along with a y-ciphertext that is an encryption of metad. Authorization tokens are
computed in the same way as before. A query is computed as gu·w and ids to authorization tokens. In
performing the search, Server uses the authorization tokens as an exponent for the query ciphertext (that is,
gu·w is raised to the power d/u). The value obtained is looked up as the first component of an x-ciphertext.
If found, the associated y-ciphertext is returned. Using the exponentiation one-way function in a group in
which DDH is conjectured to hold (and thus partial information is hidden) may not suffice as the set of
documents and keywords might be small enough for Server to conduct a dictionary attack. We shall use
pseudorandom functions computed by using document and user keys. Keys are distributed to whether a
document is shared with a user. The main technical difficulty is to prove that DDH and pseudorandomness
are sufficient to limit the leakage obtained by Server that has corrupted a subset of users. This means Server
has gained access to the xSet and uSet for documents shared to at least one corrupted user. Server also
knows the query patterns of all users.

We are now ready to formally describe x-um. In our construction, algorithms AccessGranting and
AccessRevoking use AuthComputing. For user u, on input of user keys Ku, K̃u, document id d, and mas-
ter keys K1,K2,K3, returns u’s authorization token Uu,d to access document d, identifier uidu,d and the
set of keys Kd for document d. Algorithm AccessGranting is executed by Manager to grant user u access to
document d. It consists in running AuthComputing to obtain Kd, that is sent to user u, and uidu,d, Uu,d that
are sent to Server for insertion of Uu,d at uSet[uidu,d]. Algorithm AccessRevoking runs AuthComputing and
sends uidu,d to Server for deletion of uSet[uidu,d]. Once Uu,d has been removed from uSet, user u can still
produce a query ciphertext qctd for document d in the context of searching for keyword w but Server will
not contribute y-ciphertext to Result even if w ∈ Kw(d).

8

EncryptDoc(1λ,D)
Executed by Manager to encrypt the corpus D

1. randomly select (g,G)← GG(1λ) and

initialize xSet = ∅;

2. randomly select three master keys

K1,K2,K3 ← {0, 1}λ;

3. for every document d with metadata metad

set Kd = F(K1, d), K̃d = F(K2, d),Kenc
d = G(K3, d);

for every keyword w ∈ Kw(d):

set x-ciphertext Xw,d = gF(K̃d,d)·F(Kd,w));

set y-ciphertext Yw,d = Enc(Kenc
d , metad);

4. all pairs (Xw,d, Yw,d) are added in random order to the array xSet;

5. return (xSet,K1,K2,K3);

Enroll(1λ, u)
Executed by Manager to enroll user u

1. randomly select user key Ku, K̃u ← {0, 1}λ;

2. return Ku, K̃u;

SearchQuery(w, (u,Ku, K̃u), {(d,Kd,K
enc
d)}d∈Access(u))

Executed by user u to search for keyword w

1. for each (d,Kd,K
enc
d)

(uidu,d, qctd) = (F(K̃u, d), gF(Kd,w)·F(Ku,d));

2. all query ciphertexts (uidu,d, qctd) are added in random order to the array qSet;

3. return qSet;

SearchReply(qSet)
Server replying to u’s search query consisting of s query ciphertexts

1. set Result = ∅;

2. for each query ciphertext (uidu,d, qctd) ∈ qSet

set ct = qct
uSet[uidu,d]
d ;

if xSet contains pair (ct, Y) ∈ xSet then

add Y to Result;

3. return Result;

9

AuthComputing((u,Ku, K̃u), d, (K1,K2,K3))
Executed by Manager to share document d with user u

1. compute Kd = F(K1, d), K̃d = F(K2, d), and Kenc
d = F(K3, d);

2. set authorization token Uu,d = F(K̃d, d)/F(Ku, d);

3. set authorization token id uidu,d = F(K̃u, d);

4. set Kd = (d,Kd,K
enc
d);

5. return (uidu,d, Uu,d,Kd);

3.1 The leakage function L
In this section, we formally identify the leakage L(I, C) that Server obtains about the instance I from the
view sViewU,C(λ, I) when corrupting users in C. In the security proof, we will show that nothing more than L
is leaked by our construction by giving a simulator that, on input L, simulates the entire view. Construction
x-um and its proof are a special case of the Regular RDH based construction from Appendix A.3. For the
sake of exposition, we outline the proof tailored for the construction based on DDH here.
Passive adversary. As a warm-up, we informally describe the leakage obtained by Server, starting from
the case of passive Server (that is, C = ∅ and no user is corrupted). We will then present a formal definition
of leakage for the general case. By looking ahead, the leakage for C = ∅ corresponds to items 0 and 7 in the
formal definition leakage.

If C = ∅, the Server observes xSet, uSet, the query ciphertexts and their interaction with xSet and uSet,
including whether each query ciphertext is successful. The size n := |xSet| leaks the number of pairs (d,w)
such that w ∈ Kw(d) and the size m := |uSet| leaks the number of pairs (u, d) such that d ∈ Access(u). Note,
the xSet by itself does not leak any information about the number of keywords in a document or the number
of documents containing a certain keyword (we will see, under the DDH, it is indistinguishable from a set
of random group elements). The length of each query ciphertext leaks the number of documents the querier
has access to. Note that leakage of (an upper bound on) the size of data is unavoidable.

The interaction of the query ciphertexts with xSet and uSet also leak some information. We set q to
be the number of queries, and denote l :=

∑
i∈[q] nqi where lqi := |qSeti|. A query ciphertext is uniquely

identified by the triple (u,w, d) of the user u, the searched keyword w, and the document d for which the
query ciphertext is searching.

Roughly speaking, we show that in x-um, Server only learns whether two query ciphertexts share two
of three components. We assume that no user searches for the same keyword twice and so no two query
ciphertexts share all three components. We remind the reader that in x-uL, Server would learn whether two
queries are relative to the same document and this allowed the propagation of x-user leakage. In contrast,
two query ciphertexts of two different users would only leak if they were for the same document and the
same keyword in x-um. In other words, the only way to have x-user leakage is two users with at least a
common document must perform a query for the same keyword.

A useful way to visualize the growth of x-user leakage is a graph G in which the users are vertices and a
query of a user u1 leaks about the documents of user u2 if and only if u1 and u2 are in the same connected
component. The larger the connected components in the graph, the more x-user leakage each query entails.
For both constructions, the graph starts with no edges and edges are added as queries are performed. In
x-uL, for every query of user u1 for keyword w, an edge is added to all vertices of users u2 that have at
least one document in common with u1, independently of w. In x-um, an edge is added to all vertices of
users u2 that have at least document in common with u1 and have performed a query for keyword w. Thus,
x-user leakage accumulates for every query in x-uL whereas in x-um x-user leakage grows slower and only
accumulates across users for queries for repeated keywords.

Let us now explain where the leakage comes from. Consider two query ciphertexts, (uid1, qct1) and

10

(uid2, qct2), identified by (u1, w1, d1) and (u2, w2, d2), respectively. Start by observing that if u1 = u2 = u
and w1 = w2 = w, then (uid1, qct1) and (uid2, qct2) are part of the same query qSet issued by user u
for keyword w. Thus, they can be easily identified as such by the Server. Next, consider the case in which
(uid1, qct1) and (uid2, qct2) are queries from the same user and relative to the same document. That is,
u1 = u2 = u and d1 = d2 = d but w1 6= w2. This can be easily identified by the Server since uid1 = uid2.
Note the leakage described so far is relative to queries from the same user. Suppose now that (uid1, qct1)
and (uid2, qct2) are for the same document and the same keyword; that is, w1 = w2 = w and d1 = d2 = d
but u1 6= u2. In this case, when qct1 and qct2 are coupled with Uu1,d and Uu2,d, respectively, they produce
the same value (that belongs to xSet if and only if w ∈ Kw(d)).

By summarizing, the leakage provides three different equivalence relations, denoted ≈d,≈w,≈u, over the
set [l] of the query ciphertexts defined as follows. Denote by (ui, wi, di) the components of the generic i-th
query:

1. i ≈d j iff ui = uj and wi = wj ; that is the i-th and the j-th query ciphertext only differ with respect
to the document; we have q equivalence classes corresponding to the q queries performed by the users;

2. i ≈w j iff ui = uj = u and di = dj = d; that is the i-th and the j-th query ciphertext only differ with
respect to the keyword. We denote by r the number of the associated equivalence classes D1, . . . , Dr.
Equivalence class Di can be seen of consisting of pairs of the index of a query ciphertext and the index
of an x-ciphertext.

3. i ≈u j iff wi = wj and di = dj ; that is the i-th and the j-th query ciphertext only differ with respect
to the user; we denote by t the number of the associated equivalence classes E1, . . . , Et. Equivalence
class Ei can be seen of consisting of pairs of the index of a query ciphertext and a token.

Note that the equivalence classes of ≈w can be deduced from those of ≈u but we keep the two notions for
clarity.
Active adversary. Consider the case where the adversarial Server corrupts a subset C 6= ∅ of users. All
information about documents shared to users in C are leaked to Server. For documents instead that are not
accessible by users in C, we fall back to the case of no corruption and the leakage is the same as described
above.

In determining the leakage of our construction, we make the natural assumption that a user u knows
all the keywords appearing in all documents d ∈ Access(u). This is justified by the fact that keywords are
taken from a potentially small space and that u could search for all possible keywords in the document d
(or u could just download d). If u is corrupted by Server, then we observe that Server is able to identify the
entry of the xSet relative to (w, d) and the entry of uSet relative to (u, d) (this can be done by constructing
an appropriate query ciphertext using the keys in u’s possession). From these two entries, and by using the

keys Ku, K̃u,Kd and K̃d in u’s possession, F(K̃d, d), F(Kd, w),F(K̃u, d) and F(Ku, d) can be easily derived.
Moreover, we assume that the set AccList(d) of users with which d is shared is available to u. In this case,
we make the assumption that for all v ∈ AccList(d), Server can identify the entry of uSet corresponding to
Uv,d from which the two pseudo-random values contributing to token Uv,d can be derived. In general, we
make the conservative assumption that knowledge of F(k, x) (or of any expression involving F(k, x)) and
k allows the adversarial Server to learn x by means of a dictionary attack; indeed in our construction the
argument x of a PRF is either a keyword or a document id. In both cases, they come from a small space
where dictionary attacks are feasible. We stress that these assumptions are not used in our construction (for
example, honest parties are never required to perform exhaustive evaluations) but they make the adversary
stronger thus yielding a stronger security guarantee. If this assumption is unsupported in a specific scenario,
our security guarantees still hold and stronger guarantees can be obtained for the same scenario.

We remind the reader that the view of Server when corrupting users in C for instance I, includes
(Ku, K̃u, Du)u∈C , where Du is {d,Kd,K

Enc
d }d∈Access(u). Additional the view contains xSet, uSet and the

set (qSeti,Resulti)i∈[q] of query ciphertexts and the results for each query. Without loss of generality, we
assume that no two queries are identical (that is, from the same user and for the same keyword).

11

First, Server learns from the view n, the number of x-ciphertexts (and y-ciphertexts), m, the number of
tokens, q, the number of queries, and lqi , the number of query ciphertexts for each query i ∈ [q], and if each
query is successful or not.

0) n,m, q and nqi = |qSeti| for i ∈ [q].

In addition, we make the natural assumption that Server learns the following information regarding docu-
ments and queries for each user u ∈ C.

1. the set Access(u) of documents that have been shared with u ∈ C;

2. the set Kw(d) of keywords and the metadata metad, for each d ∈ Access(C);

3. the set AccList(d) of users, for each d ∈ Access(C);

4. (ui, wi) for all i ∈ [q] such that ui ∈ C;

Therefore, Server obtains keywords, metadata, and set of users that have access, for all documents that can
be accessed by at least one Server corrupted user u ∈ C. Moreover, Server also knows all queries issued by
the corrupted users.

Consider x-ciphertext Xw,d = gF(K̃d,d)·F(Kd,w). If d ∈ Access(C), then w and d are available to Server by
Points 1 and 2 above. Therefore, Server knows exactly all the entries of the xSet corresponding to documents
in Access(C) and nothing more. This implies that if no query is performed, no information is leaked about
documents not available to the members of C.

More leakage is derived from the queries. Let us consider a generic query ciphertext,

uidui,d = F(K̃ui
, d), qctd = gF(Kd,wi)·F(Kui

,d)

for document d produced as part of the i-th query qSeti issued by user ui for keyword wi. If ui ∈ C, then

Kd,Kui
and K̃ui

are available to Server and thus (ui, wi, d) is leaked. If ui 6∈ C and d ∈ Access(C) then Kd is

available (whence, by our conservative assumption, wi is available too) but Kui
and K̃ui

are not available.
In this case, d and wi are leaked. We further observe that query ciphertexts from the same user ui 6∈ C and
document d ∈ Access(C) are easily clustered together since they all share exponent, F(Kui , d), and uidui,d,

F(K̃ui
, d). We define ûi to be the smallest index j ≤ i such that uj = ui and dj = d. We say that if ui 6∈ C

and d ∈ Access(C), then (ûi, wi, d) is leaked.
Suppose ui 6∈ C, d 6∈ Access(C) but Access(ui) ∩ Access(C) 6= ∅; that is ui shares document d′ 6= d with C.

Then qctd′ leaks wi (and d′ as discussed in the previous point) and this leakage is extended to all the query
ciphertexts from the same query. We say (ûi, wi,⊥) is leaked. Notice that identity of d 6∈ Access(C) is not
leaked.

Finally, let us consider ui 6∈ C and Access(ui) ∩ Access(C) = ∅, in which case we say that qctd is a
closed query ciphertext. This is the case described for the passive case (as in the case all query ciphertexts
are closed) and Server can cluster together the closed query ciphertexts that are for the same keyword and
document and those that are for the same user and document. We can thus summarize leakage derived from
query ciphertexts as follows.

12

5. for every query ciphertext qctd of i-th query qSeti for keyword wi performed by user
ui;

(a) if ui ∈ C, then (ui, wi, d) is leaked; the query is called an open query;

(b) if ui 6∈ C and d ∈ Access(C), then (ûi, wi, d) is leaked;

(c) if ui 6∈ C, d 6∈ Access(C) and Access(ui)∩Access(C) 6= ∅, then (ûi, wi,⊥) is leaked;
the query is called an half-open query;

6. Equivalence classes D1, . . . , Dr over the set of pairs of closed query ciphertexts and
ciphertexts.

7. Equivalence classes E1, . . . , Et over the set of pairs of closed query ciphertexts and
tokens.

In what follows we will denote by L(I, C) the leakage described in Point 0-7 above. In the proof (see
Appendix A) we will show that our construction does not leak any information about an instance I other
than L(I, C) where Server corrupts users in C. We do so by describing a simulator S for SSEwSU that takes
as input a coalition C of users along with L(I, C) and returns a view that is indistinguishable from the real
view of Server.

3.2 Simulator

In this section, we give an overview of the simulator that we use to prove security against passive Server; that
is, the case C = ∅. Specifically, the output of simulator Sim on in input the leakage L(I, ∅) of instance I is

indistinguishable from ViewU,∅(λ, I). The full proof of security with non-empty C is found in Appendix A.3.
We proceed through a series of hybrid experiments, with the first experiment being the real experiment,

GameR, that produces the view and the last being an experiment that can be efficiently performed by using
the leakage of the instance.

In the first game, Game0, we replace the pseudorandom functions F and G with completely random
functions R1 and R2. Authorization token ids uidu,d are computed using F(K̃u, d) exactly once. Therefore,
all uidu,d are chosen randomly. By the security of the pseudorandom function, the output of Game0 is
indistinguishable from GameR.

In the second game, Game1, the query ciphertexts are computed in the following way. First of all, Xw,d

is computed for all pairs (w, d) but only those for which w ∈ Kw(d) are added to xSet. Similarly, Uu,d is
computed for all pairs (u, d) but only those for which d ∈ Access(u) are added to the uSet. Finally, the query

ciphertext for (u,w, d) is computed as X
1/Uu,d

w,d . It is easy to see that the output of Game0 and Game1 are
identical.

Now observe that in the output of Game1, the value R1(Ku, d) appears only in the computation of Uu,d
and thus, choosing each Uu,d independently at random will not modify the the output distribution. We call
this game Game2.

Next, in Game3, we select all Xw,d’s independently at random. It is not difficult to see that, under the
DDH assumption, the output of Game3 is indistinguishable from the output of Game2. Finally, observe that
to execute Game3 we only need to know the size of the xSet and uSet (so that the right number of random and
independent elements can be chosen), the number of queries and their sizes, and the relation between query
ciphertexts, elements of uSet and elements of xSet which is encoded in the equivalence classes E1, . . . , Et. In
other words, the information needed to efficiently execute Game3 constitutes exactly the leakage. We thus
take Sim to be the efficient algorithm that performs Game3 on input of the leakage.

3.3 Security of un-sharing

In this section, we show that once document d has been unshared with user u (that is, token Uu,d has been
removed from uSet[uidu,d]) u cannot find out from Server if d contains a certain keyword w. This holds in

13

spite of the fact that a malicious u might still have Kd. Clearly, nothing can prevent a malicious Server
from not removing the entry from the uSet, thus effectively not unsharing d. Therefore, we offer security
guarantees for unsharing when Server is honest, but still curious. Of course, Manager is assumed to be honest.
We allow u to corrupt a subset C of the users. We assume that no member v ∈ C has access to d. Otherwise
u may use v’s keys to construct queries for d as user v.

The crux of the argument is if, K̃d were chosen at random, then it would be random even given the view
of any C for which d 6∈ Access(C). This implies that F(K̃d, d) is unpredictable and any coalition that manages

to produce a query ciphertext qctd can be used to break the pseudorandomness of F. K̃d is not random
though as it is computed as F(K3, d). However, since K3 is not part of the view of the coalition, by applying
a similar reasoning, we obtain that the ability of a coalition to produce a query ciphertext qctd contradicts
the pseudorandomness of F.

3.4 Search and Editing rights

In x-um described above, access to a document is binary: either a user has access to a document or it does
not. In some settings, one would like to be able to discriminate between users that have search access to
the document (so that the document can be returned as a result to a search query for a keyword) and edit
access (the user can add/remove keywords from the document). Edit capabilities can be easily added to the
construction in the previous section by stipulating that for user u to add keyword w to a document d shared
with him, it is sufficient to produce the query ciphertext authorization token id that when combined with the
token uSet[uidu,d] produced the x-ciphertext to be added to the xSet. User with access to the document can
remove keywords. Note that both adding and removing a keyword can be performed without the Manager.

In some settings, though, one would like a finer access control to documents and have the ability to give
users either search rights or search and edit rights. It does not make much sense to have edit rights but
not search rights. From now on, we will simply talk of edit rights. Let us denote by Search(u) and Edit(u)
the sets of documents to which user u has search rights and edit rights, respectively. We next describe a
modification that allows Manager to grant and revoke search and edit rights to users in an efficient way.
The data structure. Each document d is associated with four keys K̃d,K

s
d,K

e
d, and Kenc

d and the Server
maintains three sets: the xSet which has an entry for each pair (w, d) such that w ∈ Kw(d), the sSet which
has an entry for each pair (d, u) such that d ∈ Search(u), and the eSet which has an entry for each pair (d, u)
such that d ∈ Edit(u).

Similarly to the previous scheme, the xSet entry relative to (w, d) consists of an x-ciphertext gF(K
s
d,w)·F(K̃d,d)

and a y-ciphertext Enc(Kenc
d , metad). The (d, u) authorization in the sSet[F(K̃u, d)] is computed as F(K̃d, d)/F(Ku, d).

In a similar manner, the (d, u) authorization in the eSet[F(K̃u,K
e
d)] is computed as F(K̃d, d)/F(Ke

d,Ku). Files
are shared (and unshared) for searching and editing by the Manager by constructing the appropriate entries
for sSet (search) and for sSet and eSet (edit) and by asking Server to add/remove them to/from the current
data structure. Moreover, users are provided with Kenc

d and Ks
d for documents d shared only for searching

and with Kenc
d ,Ks

d and Kd
d for documents d shared for editing. It is also possible for u ∈ AccList(d) to grant

access to user v in a similar manner.
Searching for a keyword. The query ciphertext qctd for searching for keyword w is computed as ciphertext
gF(K

s
d,w)·F(Ku,d). Note, that a user needs only Ks

d, Ku and K̃u to compute the query ciphertext. Query
ciphertext are composed with tokens from the sSet and the resulting ciphertext is searched for in the xSet. If
a matching x-ciphertext is found, the corresponding y-ciphertext is returned. Proof of security can be easily
derived from the proof of security of the previous construction.
Editing a document. Let us now explain how user u adds a keyword w to a document d that has been
shared for editing with u (removing is achieved similarly). Keep in mind that the occurrence of w in d

is encoded by having x-ciphertext gF(K
s
d,w)·F(K̃d,d) in the xSet. We require user u to produce an editing

ciphertext that combined with the token in the eSet for u and d gives the desired x-ciphertext to be added to
xSet. The editing ciphertext needed to add w to document d is computed as gF(K

s
d,w)·F(Ke

d,Ku). It is easy to
see that when authorization F(K̃d, d)/F(Ke

d,Ku) is applied to the editing ciphertext one obtains x-ciphertext

gF(K
s
d,w)·F(K̃d,d). The y-ciphertext can be provided instead directly by u.

14

3.5 Further reducing the leakage

We present x-ump (for pairing x-um) that reduces the leakage at the expense of an increased computational
load for Server. In x-ump, the ciphertext queries are randomized. This has the consequence that Server
only learns whether two ciphertext queries from different users are for the same keyword w and the same
document d when w ∈ Kw(d) (that is, successful queries). We only provide a high-level construction and
proof since x-um and x-ump are quite similar. First, we define the bilinear setting of the construction and
the computational assumption for security.

An asymmetric bilinear setting is defined by an efficient algorithm GG that takes as input the security
parameter λ and outputs the description of three multiplicative cyclic groups G1,G2,GT of prime order p with
|p| = Θ(λ) and the description of an efficiently computable non-trivial bilinear mapping e : G1 × G2 → GT .
That is, for g1 ∈ G1 with g1 6= 1G1 , and g2 ∈ G2 with g2 6= 1G2 , e(g, g) 6= 1GT and for all a, b ∈ Zp, we have
e(ga1 , g

b
2) = e(g1, g2)ab.

We describe how the element of the xSet and of the uSet are constructed and how users perform queries.
Let g1 and g2 be two generators of G1 and G2, respectively, and set gT = e(g1, g2). The x-ciphertext Xw,d

is computed as Xw,d = g
F(K̃d,d)·F(Kd,w))
2 and authorization token uSet[uidu,d] is computed just as in x-um.

That is, uSet[F(K̃u, d)] = F(K̃d, d)/F(Ku, d). Just as in x-um, xSet includes all Xw,d with w ∈ Kw(d)
and uSet includes all Uu,d with d ∈ Access(u). User u computes the query ciphertext for keyword w and

document d, by randomly picking R ∈ Zp and returning
(
F(F̃u, d), gR1 , g

R·F(Kd,w)·F(Ku,d)
T

)
. Query ciphertext

(uidu,d, qct1, qct2) is successful if there exist x-ciphertext X ∈ xSet such that e(qct1, X) = qct
uSet[uidu,d]
2 .

Similar modifications from Section 3.4 may be applied for search and edit access separation.
Let us discuss the impact of randomized query ciphertexts. In x-um, the server checks if the value

obtained by raising the query ciphertext to uSet[uidu,d] is found in the xSet, requiring one exponentiation.
In contrast, in x-ump, the verification process must be repeated for every x-ciphertext. We stress that this
extra computation is performed by Server and the time needed by a user to compute a query ciphertext
remains constant and independent from the sizes of xSet and uSet. On the other hand, x-user leakage is
greatly reduced. Specifically, if two successful queries are for the same keyword w and document d, they will
be both hit x-ciphertext Xw,d. However, two unsuccessful queries for the same (w, d) will not be recognized
as such by the Server thanks to the random factor R. The proof of security is very similar to the one of x-um
and it only requires DDH to be hard in group G2.

4 Experiments

In this section, we investigate the costs of x-um and experimentally evaluate the growth of leakage as queries
are being performed. All experiments are conducted on two identical machines, one for the Server and one
for the user. The machines used are Ubuntu PC with Intel Xeon CPU (12 cores, 3.50 GHz). Each machine
has 32 GB RAM with 1 TB hard disk.

Our experiments will only measure costs associated with x-um. In practice, x-um is accompanied by some
storage system that allows retrieval of encrypted data. We ignore costs that would be incurred by such a
storage system.

All associated programs are implemented using C++ and do not take advantage of the multiple cores
available. We use SHA-256-based G and F and AES under Galois Counter Mode for (Enc,Dec). These
cryptographic functions implementations are from the BoringSSL library (a fork of OpenSSL 1.0.2). The
length of the keys used are 128 bits. All identifiers (document and user) are also 128 bits. We use the NIST
recommended Curve P-224 (which has the identifier NID secp224r1 in OpenSSL) as G. All group exponents
are serialized in big-endian form. Elliptic curve points are serialized to octet strings in compressed form
using the methods defined by ANSI X9.62 ECDSA.

15

(a) Upload Computation Time. (b) Upload Bandwidth.

(c) Search Computation Time. (d) Search Bandwidth.

(e) Enron Email Server Storage. (f) Ubuntu Chat Server Storage.

Figure 1: Performance Evaluation.

16

4.1 Performance

We measure the computation time and bandwidth of uploading and searching documents of x-um. As
expected, the upload and search metrics grow linearly in the number of unique terms and number of owned
documents respectively. Furthermore, we note that the amount a user’s computational time is much smaller
than the server. This is very important as single machine users are more limited in computational power
compared to large cloud service providers. The results can be seen in Figure 1.
Enron Email Dataset. We consider storing the Enron email dataset [6] generated by 150 employees using
x-um. Any user that is the sender, recipient, cc’d or bcc’d of an email will be given search access to that
email. The sender will be granted edit access. Every recipient of the email will be given edit access with 1

2
probability. The server storage required is 5-6 times the size of the emails being uploaded.

We remark that SSE might be insecure for emails. For example, the methods described in [15] show that
injections attacks leaks the contents of all emails stored. We use the dataset as a means to test practicality.
Ubuntu Chat Corpus. In a separate experiment, we store the Ubuntu Chat Corpus (UCC) [14] with over
700000 users using our scheme. Like emails, the chat logs provide an excellent framework for multi-user
searchable schemes. We split the chat corpus into days. That is, each day of history becomes a single file.
All users who appear in the chat log for a day will have read rights. Each of the appearing users will also
receive write rights with probability 1

2 . For this dataset, we also stem the input for each language. Stemming
removes common words as well as providing pseudonyms.

4.2 Leakage Growth

Through experiments, we attempt to compare the rate of leakage growth of x-uL and x-um as queries are
performed. Recall the graph G of users, described in Section 3.1. An edge between users u1 and u2 means
that queries by u1 or u2 leak information about documents in Access(u1) ∩ Access(u2). For x-um, an edge
(u1, u2) exists iff both users queried for the same keyword w and share at least one document in common.
On the other hand, an edge exists in x-uL if both users share at least one document in common and either
user ever queried. Furthermore, x-user leakage is transitive. If two users are in the same component, their
queries can leak information about their intersection.

As G becomes more connected, more x-user leakage exists. If G has no edges (and consists of |U| connected
components, one for each user), no x-user leakage exists. Conversely, the complete graph has x-user leakage
for every pair of users. One can consider the vector of connected component sizes of G and how it varies
as queries are performed. The initial vector consists of |U| 1’s (each vertex is in a connected component by
itself). We measure leakage by the length of the vector of connected component sizes of the current graph
G. We pad with 0’s to keep the vector of dimension |U|. We measure length by the L2 norm (the square
root of the sum of the squares of component sizes) and L∞ norm (the largest component size). We also plot
the total number of components.

Using 2500 days of UCC data with approximately 55000 users, we compute these metrics for x-uL and
x-um. Keywords are drawn from the global distribution of terms in UCC after stemming. The querying
user is drawn uniformly at random from all users. We see that x-um leakage grows significantly slower than
x-uL in all three metrics. In particular, for all three metrics, x-uL approaches a single connected component
with 100 queries. For x-um, it is possible to perform hundreds of thousands queries before this threshold
is reached. In fact, it takes at least 80000 queries to reach 1/3 of the metrics of a single component. The
results may be seen in Figure 2.

References

[1] D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Persiano. Public key encryption with keyword search.
In C. Cachin and J. L. Camenisch, editors, EUROCRYPT 2004, pages 506–522. Springer, 2004.

17

(a) Sqrt of Sum of Squares of Component Sizes. (b) Maximum Component Size.

(c) Number of Connected Components.

Figure 2: Leakage Evaluation.

18

[2] D. Cash, S. Jarecki, C. Jutla, H. Krawczyk, M.-C. Roşu, and M. Steiner. Highly-scalable searchable
symmetric encryption with support for boolean queries. In R. Canetti and J. A. Garay, editors, CRYPTO
2013, pages 353–373, 2013. Also Cryptology ePrint Archive, Report 2013/169.

[3] M. Chase and S. Kamara. Structured encryption and controlled disclosure. In M. Abe, editor, ASI-
ACRYPT 2010, pages 577–594, 2010. Also Cryptology ePrint Archive, Report 2011/010.

[4] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky. Searchable symmetric encryption: Improved
definitions and efficient constructions. In Proceedings of the 13th ACM Conference on Computer and
Communications Security, pages 79–88, 2006. Also Cryptology ePrint Archive, Report 2006/210.

[5] C. Dong, G. Russello, and N. Dulay. Shared and Searchable Encrypted Data for Untrusted Servers,
pages 127–143. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

[6] EDRM (edrm.net). Enron data set. http://www.edrm.net/resources/data-sets/

edrm-enron-email-data-set.

[7] S. Kamara and K. Lauter. Cryptographic cloud storage. In Financial Cryptography and Data Security:
FC 2010 Workshops, RLCPS, WECSR, and WLC 2010, Tenerife, Canary Islands, Spain, January
25-28, 2010, Revised Selected Papers. Springer Berlin Heidelberg, 2010.

[8] S. Kamara and T. Moataz. Boolean searchable symmetric encryption with worst-case sub-linear com-
plexity. In J. Coron and J. B. Nielsen, editors, EUROCRYPT 2017, volume 10212, pages 94–124, 2017.
Also Cryptology ePrint Archive, Report 2017/126.

[9] V. Pappas, F. Krell, B. Vo, V. Kolesnikov, T. Malkin, S. G. Choi, W. George, A. Keromytis, and
S. Bellovin. Blind seer: A scalable private dbms. In Proceedings of the 2014 IEEE Symposium on
Security and Privacy, SP ’14, pages 359–374. IEEE Computer Society, 2014.

[10] R. A. Popa, C. M. S. Redfield, N. Zeldovich, and H. Balakrishnan. Cryptdb: Protecting confidentiality
with encrypted query processing. In Proceedings of the Twenty-Third ACM Symposium on Operating
Systems Principles, SOSP ’11, pages 85–100, 2011.

[11] R. A. Popa and N. Zeldovich. Multi-key searchable encryption. Cryptology ePrint Archive, Report
2013/508, 2013.

[12] J. Shi, J. Lai, Y. Li, R. H. Deng, and J. Weng. Authorized Keyword Search on Encrypted Data, pages
419–435. Springer International Publishing, Cham, 2014.

[13] D. X. Song, D. Wagner, and A. Perrig. Practical techniques for searches on encrypted data. In Pro-
ceedings of the 2000 IEEE Symposium on Security and Privacy, pages 44–55, 2000.

[14] D. Uthus. Ubuntu chat corpus. http://daviduthus.org/UCC/.

[15] Y. Zhang, J. Katz, and C. Papamanthou. All your queries are belong to us: The power of file-injection
attacks on searchable encryption. Cryptology ePrint Archive, Report 2016/172, 2016. http://eprint.
iacr.org/2016/172.

A Re-writable Deterministic Hashing

In this section we introduce the concept of a Re-writable Deterministic Hashing scheme that can be seen as
an enhanced one-way function with re-writing capabilities. Roughly speaking, a Re-writable Deterministic
Hashing (RDH, in short) scheme operates on three types of objects, plaintexts, ciphertexts and tokens, and
consists of three deterministic algorithms:

1. H produces a ciphertext from a pair of plaintexts.

19

http://www.edrm.net/resources/data-sets/edrm-enron-email-data-set
http://www.edrm.net/resources/data-sets/edrm-enron-email-data-set
http://daviduthus.org/UCC/
http://eprint.iacr.org/2016/172
http://eprint.iacr.org/2016/172

2. GenToken produces a token from an ordered pair of plaintexts.

3. Apply applies a token to a ciphertext to get a ciphertext.

We assume that H is symmetric with respect to the plaintexts; that is, H(A,B) = H(B,A) for all plaintexts
A and B. The three algorithms are linked by the re-writing property.
Re-writing. For all plaintexts A,B,C we have that

Apply(H(A,B),GenToken(B,C)) = H(A,C).

A token tok can be applied to ciphertext ct if the token’s first plaintext is one of the two plaintexts of the
ciphertext. In this case, we say that ct and tok are compatible.
Security notion for a RDH. Security for a RDH is based on the real game, GameR, that receives as input
the security parameter, λ, and an instance I = (N, (ai, bi)i∈[n],
(cj , dj)j∈[m],Open) consisting of the number N of plaintexts, the indices of the two plaintexts in each of
the n ciphertexts, each of the m tokens and the subset of indices Open ⊆ [N] of revealed plaintext (which
we refer to as open ciphertexts). GameR samples and outputs a transcript T . In GameR, each plaintext is
randomly selected and the selected plaintexts are used to compute the specified ciphertexts and tokens. The
open plaintexts and all ciphertexts and tokens are given in output, each with the indication of which open
plaintext, if any, is involved in each of them.

GameR(λ, I)
0. For i = 1, . . . , N , randomly select Mi ← {0, 1}λ;
1. For i = 1, . . . , n, output cti = H(Mai , Mbi)

and Mx for x ∈ {ai, bi} ∩ Open;
2. For j = 1, . . . ,m, output tokj = GenToken(Mcj , Mdj)

and Mx for x ∈ {cj , dj} ∩ Open;
3. Output (i, Mi) for i ∈ Open;

GameR

Due to its deterministic nature, we consider security for RDH when plaintexts have large enough entropy.
GameR, described above, corresponds to the scenario where certain plaintexts are chosen at random from
the binary strings of a given length (the length λ of the plaintexts is the security parameter of experiment).
We make the pessimistic assumption that if a ciphertext or a token contains an open plaintext then this
information is leaked to an observer. This pessimistic assumption provides stronger security notions. We
are now ready to present our security definition for RDH.

Definition 2. RDH scheme is secure for class C of instances with respect to leakage function Leak if there
exists an efficient simulator S such that, for every I ∈ C

{GameR(λ, I)}λ ≈c {S(1λ, Leak(I))}λ.

A.1 Regular instances

We introduce the notion of a regular instance of a RDH and then we identify the leakage mL(I) that is
necessarily leaked by a transcript T of a regular instance I about the instance itself. We will then show,
in Appendix A.2, that there exists a construction of RDH that is secure for regular instances with respect
to leakage function mL, under the Decisional Diffie Hellman assumption. Thus, the construction can be
considered optimal with respect to leakage. Finally, in Appendix A.3, we show that it is sufficient to
consider regular instances of RDH for our application to SSEwSU with efficient sharing and un-sharing.

We start by introduction the following terminology. We classify the ciphertexts and the tokens of an
instance I = (N, (ai, bi)i∈[n], (cj , dj)j∈[m],Open) as open, half-open, closed depending on whether both, only
one or neither of the plaintexts belong to Open.

20

Definition 3. An instance I = (N, (ai, bi)i∈[n], (cj , dj)j∈[m],Open) is regular if the following conditions
hold:

1. no two tokens have the same first plaintext; that is, i 6= j implies ci 6= cj;

2. if ciphertext with plaintexts (a, b) is compatible with a token through plaintext b then plaintext a does
not appear in any token; that is, for all i ∈ [n], if bi = cj for some j ∈ [m], then ai 6= ck and ai 6= dk
for all k ∈ [m];

3. all tokens are either open or closed; that is, for all j ∈ [m], we have that |{cj , dj} ∩ Open| 6= 1.

Leakage from closed ciphertexts. By definition, open tokens are not compatible with closed ciphertexts.
Therefore, the only leakage that can derive from closed ciphertexts are from their interaction with closed
tokens.

Definition 4. We say that closed ciphertexts s and d of an instance I constitute match M = (s, t, d) with
token t if

Apply(cts, tokt) = ctd.

We call s the source ciphertext and d the destination ciphertext of match (s, t, d). In a match, by applying
the token to the source ciphertext, we get to the destination. In a closed collision, we have a similar situation
except the destination ciphertext is not part of the transcript.

Definition 5. We say that closed ciphertexts s1 and s2 of an instance I constitute a closed collision C =
(s1, s2, t1, t2) with tokens t1 and t2 of the same instance if for all transcripts of I

Apply(cts1 , tokt1) = Apply(cts2 , tokt2)

and Apply(cts2 , tokt2) 6= ctd, for all 1 ≤ d ≤ n.

Similarly to matches, we call cts1 and cts2 the source ciphertexts of C and H(Mas1 , Mdt1) = H(Mas2 , Mdt2) its
destination ciphertext. In the above definitions of matches and closed collisions, the equalities are intended
as equalities between the formal random variables of the ciphertexts and tokens. The real experiment
instantiates the random variables in sampling a transcript.
The graph GI of an instance. Matches and closed collisions of an instance are revealed by every transcript
of the instance and they give information about the instance itself. We encode the information in the graph
GI of instance I. GI contains one vertex for each of the n closed ciphertexts of the instance and for each
ciphertext which is the destination ciphertext of a collision. Graph GI contains directed edge from ct to ct′

labeled with token tok (necessarily a closed token) if and only if Apply(ct, tok) = ct′. We denote the edge

by writing ct
tok→ ct′.

The following properties of the graph GI of a regular instance will be useful in the proof of security.
Essentially they show that, even though GI has cycles, ciphertexts and tokens appear in cycles in a very
well-behaved way. Specifically, ciphertexts appear in at most one cycle and tokens (in the form of edge
labels) can appear in more than one cycle but, essentially, all cycles are the same cycle. Also, two edges of
GI are adjacent if they share one vertex.

Lemma 1. Every vertex of GI belongs to at most one cycle.

Proof. Direct consequence of the fact that each vertex has outgoing degree at most one.

Lemma 2. Consider two pairs of adjacent edges e0 and e1, and e′0 and e′1. If e0 and e′0 are labeled with the
same token tok0 then e1 and e′1 are also labeled by the same token tok1 6= tok0.

Proof. Suppose tok0 has plaintexts (b0, b1). Thus there exists a and a′ such that e0 and e′0 are the edges

(a, b0)
tok0→ (a, b1) and (a′, b0)

tok0→ (a′, b1).

Let tok1 be the token labeling the edge e1 and tok′1 be the token labeling edge e′1. Then both tokens
must have the same first plaintext b1 and thus, by regularity, it must be that tok1 = tok′1 and, obviously,
tok1, tok

′
1 6= tok.

21

Corollary 1. Let C1 and C2 be two cycles of GI that contain an edge labeled by token tok. Then C1 and
C2 contain the same number of edges and these edges are labeled by same set of tokens appearing in the same
order.

Corollary 2. No path of GI has two edges labeled by the same token.

Leakage from half-open ciphertexts. We start with the following definition.

Definition 6. We say that ciphertexts i1 and i2 of an instance I constitute a half-open collision C = (i1, i2)
for the same instance if

ai1 = ai2 and bi1 , bi2 ∈ R.

We observe that half-open collisions are revealed by a transcript. Indeed, if (i1, i2) is a half-open collision
then plaintexts Mbi1 and Mbi2 are available and thus it is possible to construct tok = GenToken(Mbi1 , B) and
tok′ = GenToken(Bbi2 , B), for any arbitrary plaintext B. Now, the application of tok to cti1 gives H(Mai1 , B)
which is equal to H(Mai2 , B) that can be obtained by applying tok′ to cti2 .

The half-open collisions allow to cluster the half-open ciphertexts according to the first ciphertext. Specif-
ically, it is possible to organize the information derived from half-open collisions in a n×N matrix L whose
entries are either ⊥ or the index of an half-open ciphertext and such that

• ciphertexts in the same column have the same first plaintext (which is not in Open);

• all the ciphertexts in row r have Mr as second plaintext (and r ∈ Open);

The necessary leakage function. By summing up the discussion above, the leakage mL(I) associated
with instance I = (N, (ai, bi)i∈[n], (cj , dj)j∈[m],Open) is defined as

1. the number n of ciphertexts and the number m of tokens;

2. Open ∩ {ai, bi}, for i = 1, . . . , n;

3. Open ∩ {cj , dj}, for j = 1, . . . ,m;

4. matrix L encoding the half-open collisions;

5. the instance graph GI .

A.2 A regular RDH with minimum leakage

In our construction the plaintexts and tokens are from Zp, for p prime of length Θ(λ), and ciphertexts
are element of a cyclic group G of order p in which the Decisional Diffie-Hellman problem is hard. Our
construction is inspired by a similar construction used in [2].

We will use the following equivalent assumption in which x← Zl0p , y ← Zl1p , r← Zl0·l1p , and x× y is an

l0 × l1 matrix whose (i, j)-entry is xi · yj . Moreover, for a matrix A = (ai,j) we set gA = (gaij).

Lemma 3. If DDH holds for GG then for any l0, l1 that are bounded by a polynomial in λ we have that
distributions D0

l0,l1,λ
and D1

l0,l1,λ
are computational indistinguishable, where

Dξ
l0,l1,λ

=
{

(g,G)← GG(1λ); x,← Zl0|G|,y,← Zl1|G|,

r← Zl0·l1|G| : (gx, gx, gx×y+ξ·r)
}
.

For every group generator GG, we consider RDHGG = (H,GenToken,Apply) defined as follows:

• H(A,B) = gA·B ;

• GenToken(C,D) = D/C;

22

• Apply(ct, tok) = cttok;

We note that all three algorithms share as an implicit input a randomly selected output (g,G) of the group
generator GG. We prove that if the DDH assumption holds for GG, then the construction is secure with
respect to regular instances by showing a simulator that outputs transcripts with same distribution as GameR
on input mL(I).

Game0(λ, I)
0. Sampling the plaintexts

for i ∈ [N], randomly select Mi ← Zp;
1. Computing the open ciphertexts

for each i ∈ oC, set cti = gMai
·Mbi ;

2. Computing the open tokens

for each j ∈ oT, set tokj = Mdj · M−1cj ;

3. Computing the half-closed ciphertexts

for each column c of matrix L:
set Ac = gMc ;
for each r such that L[r, c] = i 6=⊥;

set cti = A
Mbr
c ;

4. Computing the closed tokens

for each j ∈ cT, set tokj = Mdj · M−1cj ;

5. Computing the closed ciphertexts

Computing sink ciphertexts

for each sink ciphertext i, set cti = gMai
·Mbi ;

Breaking the cycles in GI
for each cycle i0, . . . , i`−1

set cti0 = g
Mai0
·Mbi0 ;

Completing GI
repeat until all ciphertexts have been computed

if ctk1
tokj→ ctk2 and ctk2 has been computed

set ctk1 = ct
1/tokj
k2

;

To see that Game0 above is equivalent to GameR, we make the following observations. Clearly, open cipher-
texts and all tokens are computed in the same way in the two games. If cti is half-open and L[r, c] = i then
by definition of the matrix L we have that Mr and Mc are the two plaintexts of cti. Let us now focus on the
closed ciphertexts. By Lemma 1, every vertex of the instance graph GI belongs to at most one cycle and
thus the procedure sets the value of the ciphertexts consistently. Now we prove that the output of Game1
above has the same distribution as the output of Game0. Observe that the tokens that label the edges of a
cycle of GI have the cumulative effect of re-writing a ciphertext into itself. This implies that the product
of the l tokens that appear in a cycle of GI is equal to 1. Since by Corollary 2 no two edges of a cycle
are labeled by the same token, we have that any set of l − 1 tokens appearing over the edges of a cycle of
length l depend on l− 1 plaintexts (their first plaintexts) that only appear as plaintext in these tokens. We
can thus conclude that any l − 1 tokens appearing in a cycle of length l are randomly and independently
distributed over Zp. The remaining token tok is the reciprocal of the product of the other l − 1. Moreover,
by Corollary 1, the value of the remaining token tok does not depend on the cycle chosen since all cycles
contain the same tokens. A similar and simpler observation holds for paths. Therefore, we can randomly
select all tokens independently at random from Zp under the only constraint that the product of tokens
appearing in the same cycle is 1.

In Game2, we select all sink ciphertexts and all ciphertexts used to break cycles (the cycle-breakers) at
random in G. We next show that, under the DDH assumption, Game1 and Game2 are indistinguishable
and we do so by means of a series of intermediate games in each one of which one more ciphertext is made

23

random. More precisely, for any subset S of sink and cycle-breakers, we define GameS to be Game1 in which
ciphertexts in S are chosen uniformly at random from G. Clearly Game∅ = Game1 and, if S? is the set of all
the sinks and cycle-breakers, we GameS? = Game2. We next prove that, for any ct = gMa·Mb , games GameS
and GameS∪{ct} are indistinguishable under the DDH assumption. Consider the algorithm that, on input

a DH challenge (X = gx, Y = gy, Z = gx·y+ξ·r) with x, y, r ← Zp and ξ ∈ {0, 1}, executes GameS with the
following exceptions:

1. ct is computed by setting it equal to Z;

2. for column c = a, Ac is set equal to X in Step 3;

3. for column c = b, Ac is set equal to Y in Step 3;

4. if any of Ma or Mb (but not both) is used to compute a sink or a cycle-breaker ciphertext not in the set
S, then X or Y , respectively, is used;

The above modifications have the effect of setting Ma = x and Mb = y. Since the sink and cycle-breakers are
closed ciphertexts, neither of Ma and Mb are needed in Step 3 as an exponent of Ac. It is easy to verify, if
ξ = 0 then we obtain GameS and if ξ = 1, then we obtain Game

S∪{ct} . This gives indistinguishability of the
two games.

Observe that in Game2, Ac is used only in Step 3 and thus we obtain the same distribution by choosing
it at random, which will be our final game, Game3, which is shown below with all changes being bolded.

Game3(λ, I)
0. Sampling the plaintexts

for i ∈ [N], randomly select Mi ← Zp;
1. Computing the open ciphertexts

for each i ∈ oC, set cti = gMai
·Mbi ;

2. Computing the open tokens

for each j ∈ oT, set tokj = Mdj · M−1cj ;

3. Computing the half-closed ciphertexts

for each column c of matrix L:
randomly select Ac ← G;
for each r such that L[r, c] = i 6=⊥;

set cti = A
Mbr
c ;

4. Computing the closed tokens

randomly select all closed tokens from Zp under
the constraint that the product of a cycle is 1;

5. Computing the closed ciphertexts

Computing sink ciphertexts

for each sink ciphertext i, randomly select cti ← G;
Breaking the cycles in GI

for each cycle i0, . . . , i`−1
randomly select cti0 ← G;

Completing GI
repeat until all ciphertexts have been computed

if ctk1
tokj→ ctk2 and ctk2 has been computed then

set ctk1 = ct
1/tokj
k2

;

Finally observe that Game3 can be executed with the following inputs:

1. list of open plaintexts;

2. list of open ciphertexts (each with the indices of the corresponding open plaintexts);

24

3. list of open tokens (each with the indices of the corresponding open plaintexts);

4. the matrix L;

5. the instance graph;

which is exactly the leakage information obtained by the simulator.
The construction is regular. The construction above uses an RDH scheme. In this section, we show that
all instances of RDH from the above construction are regular, except with negligible probability.

We start by observing that all tokens that are generated by the system are stored in the uSet and are
generated when a user u is granted access to a document. If two tokens have the same first plaintext, it must
be the case that there exist (u1, d1) 6= (u2, d2) such that F(Ku1

, d1) = F(Ku2
, d2). By the pseudo-randomness

of the function F this happens with probability negligible in λ.
For the second condition, we observe that the only ciphertexts that are compatible with the tokens are the

ciphertexts generated by the user during the search procedure. These ciphertexts have plaintexts F(Kd, w)
and F(Ku, d). Thus, for the second condition to be violated, there must be d for which F(Kd, w) appears as
a plaintext in a token. So, there exists (u, d′) such that either F(Ku, d

′) = F(Kd, w) or F(K1, d
′) = F(Kd, w).

By the pseudo-randomness of F both events have negligible probability.
For the third condition, observe that if one of the two plaintexts of a token is known, then the other can

be computed. A token is either closed or open and the instance contains no half-open token.

A.3 A construction based on regular RDH

We describe a construction of SSEwSU based on a regular RDH. When instantiated with the RDH of
Appendix A.2, gives the SSEwSU presented in Section 3.

EncryptDoc(1λ,D)
Executed by Manager to encrypt corpus D

1. initialize xSet = ∅;

2. randomly select four master keys

K1,K2,K3 ← {0, 1}λ;

3. for every document d with metadata metad

set Kd = F(K1, d), K̃d = F(K2, d);

set Kenc
d = G(K3, d);

for every keyword w ∈ Kw(d):

set Xw,d = H(F(K̃d, d),F(Kd, w));

set Yw,d = Enc(Kenc
d , metad);

4. all the pairs (Xw,d, Yw,d) are added in random order to the array xSet;

5. return (xSet,K1,K2,K3);

Enroll(1λ, u)
Executed by Manager to enroll user u

1. randomly select user key Ku, K̃u ← {0, 1}λ;

2. return Ku, K̃u;

25

SearchQuery(w, (u,Ku, K̃u), {(d,Kd,K
enc
d)}d∈Access(u))

Executed by user u to search for w

1. for each (d,Kd,K
enc
d)

set uidu,d = F(K̃u, d);

set qctd = H(F(Kd, w),F(Ku, d));

2. all the query ciphertexts (uidu,d, qctd) are added in random order to the array qSet;

3. return qSet;

SearchReply(qSet)
Server replying to u’s search with qSet

1. set Result = ∅;

2. for each query ciphertext qct ∈ qSet and for each token tok ∈ uSet

set ct = Apply(qct, tok);

if (ct, Y) ∈ xSet then

add Y to Result;

3. return Result;

AccessGranting((u,Ku, K̃u), d, (K1,K2,K3))
Executed by Manager to share d with u

1. compute Kd = F(K1, d), K̃d = F(K2, d), and Kenc
d = F(K3, d);

2. set uidu,d = F(K̃u, d);

3. set Uu,d = GenToken(F(Ku, d),F(K̃d, d));

4. set Kd = (d,Kd,K
enc
d);

5. return (uidu,d, Uu,d,Kd);

A.4 Simulator

In this section, we show that our construction does not leak any information other than L(I, C) to a coalition
C of users about an instance I. We describe a simulator S for SSEwSU on input of a coalition C of users along
with L(I, C), returns a view indistinguishable from a real view of C. We refer the reader to the discussion in
Section A.1 for a definition and explanation of the leakage function L.

Let IRDH be the instance of RDH associated with an instance I of SSEwSU. We start by showing how
mL(IRDH) can be constructed from L(I, C). This implies that S has what it needs to run simulator Sim for
IRDH and thus obtain simulated xSet, uSet and query ciphertexts.

The list of ciphertexts in IRDH is easily constructed by observing that IRDH include Nx x-ciphertexts and
NQ =

∑
i∈[q] |qSeti| query ciphertexts for a total of n = NQ. To compute the open plaintexts, S randomly

selects Kd, for d ∈ Access(C), and computes F(Kd, d) and F(Kd, w), for all w ∈ Kw(d). Then, it randomly
selecting Ku for u ∈ C and computes F(Ku, d) for d ∈ Access(u). The matrix L is easily computed by
using (ûi, wi) for all half-open query ciphertexts (we remind the reader that these are the only half-open
ciphertexts in IRDH). The matches for IRDH can be obtained from the (x̂i, t̂i) associated with the successful
query ciphertexts (see Point 5.d in the definition of L(I, C)) and the collisions are constructed from the
classes U1, . . . , Ul (see Point 6 in the definition of L(I, C)).

26

By running Sim with the leakage constructed for instance IRDH of RDH, S obtains all simulated x-
ciphertexts and query ciphertexts along with the tokens. To complete the simulation, S prepares the y-
ciphertexts in the following way: for each pair (d,w) such that d ∈ Access(C) and w ∈ Kw(d), S uses Kenc

d

to encrypt metad (see Point 2 in the definition of L(I, C)); for all remaining pairs (d,w) S picks a random
key Kenc

d,w and computes an encryption of 0` (we remind the reader that for all documents d, |metad| = `).
Finally, let us argue that the output of the simulator is indeed indistinguishable from the view of the

coalition. This is using the following intermediate games.

1. Game0: we modify the real game by replacing each uidu,d with a randomly chosen element of the

group. Since uidu,d is evaluated exactly once as F(K̃u, d), Game0 is indistinguishable from the real
game.

2. Game1: we modify Game0 by computing each y-ciphertext relative to a document d 6∈ Access(C) by
encrypting metad with a randomly chosen key instead of using the same key Kenc

d for the y-ciphertext
relative to the same document.

Since Kenc
d is not revealed for d 6∈ Access(C) in the real view then we can use the key obliviousness

property of Enc to prove indistinguishability of Game1 and the view of the coalition.

3. Game2: we modify Game1 by computing each y-ciphertext relative to a document d 6∈ Access(C) by
encrypting 0` with a randomly chosen key instead of encrypting the real metad.

Since Kenc
d is never revealed for d 6∈ Access(C) then we can use the CPA security of Enc to prove

indistinguishability of Game2 and Game1.

4. Game3: we modify Game2 by picking the closed plaintext at random (instead of computing them by
using F).

Since that the seed of F used to compute the closed plaintexts does not appear in the real view we can
thus use the pseudo-randomness of F to prove indistinguishability of Game3 and Game2.

5. Game4: we modify Game3 by computing the xSet, uSet and the qSeti using the simulator Sim for RDH
instead.

Indistinguishability of Game4 and Game3 follows directly from the property of Sim.

We conclude by observing that the output of Game4 is exactly the output of S.

27

	Introduction
	Symmetric Searchable Encryption with Sharing and Unsharing
	Security definition

	A construction based on DDH
	The leakage function L
	Simulator
	Security of un-sharing
	Search and Editing rights
	Further reducing the leakage

	Experiments
	Performance
	Leakage Growth

	Re-writable Deterministic Hashing
	Regular instances
	A regular RDH with minimum leakage
	A construction based on regular RDH
	Simulator

