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Abstract. We present new constructions of multi-input functional encryption (MIFE) schemes for
the inner-product functionality that improve the state of the art solution of Abdalla et al. (Eurocrypt
2017) in two main directions.
First, we put forward a novel methodology to convert single-input functional encryption for inner
products into multi-input schemes for the same functionality. Our transformation is surprisingly simple,
general and efficient. In particular, it does not require pairings and it can be instantiated with all
known single-input schemes. This leads to two main advances. First, we enlarge the set of assumptions
this primitive can be based on, notably, obtaining new MIFEs for inner products from plain DDH,
LWE, and Decisional Composite Residuosity. Second, we obtain the first MIFE schemes from standard
assumptions where decryption works efficiently even for messages of super-polynomial size.
Our second main contribution is the first function-hiding MIFE scheme for inner products based on
standard assumptions. To this end, we show how to extend the original, pairing-based, MIFE by Abdalla
et al. in order to make it function hiding, thus obtaining a function-hiding MIFE from the MDDH
assumption.
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1 Introduction
Functional Encryption (FE) [SW05,O’N10,BSW11] is an emerging cryptographic paradigm that al-
lows fine-grained access control over encrypted data. Functional encryption schemes come equipped
with a key generation mechanism that allows the owner of a master secret key to generate decryp-
tion keys that have a somehow restricted capability. Namely, each decryption key skf is associated
with a function f and using skf to decrypt a ciphertext Enc(x) allows for recovering f(x), with
the guarantee that no more information about x is revealed. The basic notion of functional encryp-
tion considers functionalities where all the inputs are provided and encrypted by a single party.
The more general case of multi-input functionalities is captured by the notion of multi-input func-
tional encryption (MIFE, for short) [GGG+14]. Informally, this notion can be thought of as an FE
scheme where n encryption slots are explicitly given, in the sense that a user who is assigned the
i-th slot can, independently, create a ciphertext Enc(xi) from his own plaintext xi. Given cipher-
texts Enc(x1), . . . ,Enc(xn), one can use a secret key skf to retrieve f(x1, . . . , xn), similarly to the
basic FE notion. This multi-input capability makes MIFE particularly well suited for many real
life scenarios (such as data mining over encrypted data or multi-client delegation of computation)
where the (encrypted) data may come from different and unrelated sources.

The security requirement for both FE and MIFE imposes that decryption keys should be collu-
sion resistant. This means that a group of users, holding different decryption keys, should not be able
to gain information about the encrypted messages, beyond the union of what they can individually
learn. More precisely, the standard notion of security for functional encryption is indistinguishabil-
ity. Informally, this states that an adversary that obtains the secret keys corresponding to functions
f1, . . . , fn should not be able to decide which of the challenge messages x0, x1 was encrypted, as long
as fi(x0) = fi(x1) for all i. This indistinguishability notion has been put forward in [BSW11,O’N10]
and it has been shown inadequate for certain cases (see [BSW11,O’N10] for details). They also pro-
posed an alternative simulation-based security notion which is also problematic as, for instance, it
cannot be satisfied in general.

As an additional security property, functional encryption schemes might also be required to
guarantee so-called function hiding. Intuitively, this means that a secret key skf should not reveal
information about the function f it encodes, beyond what is implicitly leaked by f(x). Slightly
more in detail, in the indistinguishability setting, this is formalized by imposing that the adversary

should not be able to decide for which of the challenge functions f
(0)
i , f

(1)
i it is holding secret keys, as

long as as f
(0)
i (x0) = f

(1)
i (x1) for all i. Over the last few years, functional encryption has attracted

a lot of interest, both in its basic and in its multi-input incarnations. Known results can be broadly
categorized as focusing on (1) feasibility results for general functionalities, and on (2) concrete,
efficient realizations for restricted functionalities of practical interest.

For the specific case of MIFE, which is the focus of this paper, constructions of the first type
[GGG+14,BGJS15,AJ15,BKS16] all rely on quite unstable assumptions, such as indistinguisha-
bility obfuscation or multilinear maps6. The only known construction of the second category has
been recently proposed by Abdalla et al. in [AGRW17]. There, they propose a (secret-key) MIFE
scheme for the inner product functionality that relies on the standard k-linear assumption in (prime-
order) bilinear groups7. Remarkably, their scheme allows for unbounded collusions and supports any

6Here we only consider schemes where unbounded collusions are allowed. See [BKS16] and references therein for
the bounded collusions case.

7As discussed in detail in [AGRW17], we stress that in the public key setting, MIFE for inner products is both
easy to achieve (from its single-input counterpart) and of very limited interest, because of its inherent leakage.
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(polynomially bounded) number of encryption slots. On the negative side, as in previous discrete-
log-based constructions of functional inner-product encryption schemes, it employs an inefficient
decryption procedure that requires to extract discrete logarithms and thus imposes serious restric-
tions on the size of supported messages. Moreover, the scheme is not function hiding as decryption
requires the function f to be provided explicitly in the clear.

1.1 Our Contributions

In this paper we propose new constructions of multi-input functional encryption schemes for the
inner product functionality that address the aforementioned shortcomings of the state-of-the-art
solution of Abdalla et al. [AGRW17].

MIFE for inner products without pairings. Our first contribution consists of (secret-key)
MIFE schemes for inner products based on a variety of assumptions, notably without the need of
bilinear maps, and where decryption works efficiently, even for messages of super-polynomial size.
We achieve this result by proposing a generic construction of MIFE from any single-input FE (for
inner products) in which the encryption algorithm is linearly-homomorphic. Our transformation is
surprisingly simple, general and efficient. In particular, it does not require pairings (as in the case of
[AGRW17]), and it can be instantiated with all known single-input functional encryption schemes
(e.g., [ABDP15,ABDP16,ALS16]). This allows us to obtain new MIFE for inner products from
plain DDH, composite residuosity, and LWE. Beyond the obvious advantage of enlarging the set of
assumptions on which MIFE can be based, this result yields schemes that can be used with a much
larger message space. Indeed, dropping the bilinear groups requirement allows us to employ schemes
where the decryption time is polynomial, rather than exponential, in the message bit size. From a
more theoretical perspective, our results also show that, contrary to what was previously conjectured
[AGRW17], MIFE for inner product does not need any (qualitatively) stronger assumption than
their single-input counterpart.

Our solution, in more detail. To better describe our solution, let us first explain the basic
ideas behind Abdalla et al.’s scheme [AGRW17]. Informally, the latter builds upon a clever two-
step decryption blueprint. The ciphertexts ct1 = Enc(x1), . . . , ctn = Enc(xn) (corresponding to slots
1, . . . , n) are all created using different instances of a single-input FE. Decryption is performed in
two stages. One first decrypts each single cti separately using the secret key skyi of the underlying
single-input FE, and then the outputs of these decryptions are added up to get the final result.

The main technical challenge of this approach is that the stage one of the above decryption
algorithm leaks information on each partial inner product 〈xi,yi〉. To avoid this leakage, their idea
is to let source i encrypt its plaintext vector xi augmented with some fixed (random) value ui, which
is part of the secret key. Moreover, skyi are built by running the single-input FE key generation
algorithm on input yi||r, i.e., the vector yi augmented with fresh randomness r.

By these modifications, and skipping many technical details, stage-one decryption then consists
of using pairings to compute, in GT , the values8 [〈xi,yi〉 + uir]T for every slot i. From these
quantities, the result [〈x,y〉]T is obtained as

n∏
i=1

[〈xi,yi〉+ uir]T · [−(

n∑
i=1

ui)r]T

which can be easily computed if [−(
∑n

i=1 ui)r]T is included in the secret key.

8Here we implicitly adopt the, by now standard, bracket notation from [EHK+13].
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Intuitively, the scheme is secure as the quantities [uir]T are all pseudo random (under the
DDH assumption) and thus hide all the partial information [〈xi,yi〉+uir]T may leak. Notice that,
in order for this argument to go through, it is crucial that the quantities [〈xi,yi〉 + uir]T are all
encoded in the exponent, and thus decoding is possible only for small norm exponents. Furthermore,
this technique seems to inherently require pairings, as both ui and r have to remain hidden while
allowing to compute an encoding of their product at decryption time. This is why the possibility
of a scheme without pairings was considered as “quite surprising” in [AGRW17].

We overcome these difficulties via a new FE to MIFE transform, which manages to avoid leakage
in a much simpler and efficient way. Our transformation works in two steps. First, we consider a
simplified scheme where only one ciphertext query is allowed and messages live in the ring ZL,
for some integer L. In this setting, we build the following multi-input scheme. For each slot i
the (master) secret key for slot i consists of one random vector ui ∈ ZmL . Encrypting xi merely
consists in computing ci = xi + ui mod L. The secret key for function y = (y1, . . . ,yn), is just
zy =

∑n
i=1〈ui,yi〉 mod L. To decrypt, one computes

〈x,y〉 mod L = 〈(c1, . . . , cn),y〉 − zy mod L

Security comes from the fact that, if only one ciphertext query is allowed, the above can be seen
as the functional encryption equivalent of the one-time pad9.

Next, to guarantee security in the more challenging setting where many ciphertext queries are
allowed, we just add a layer of (functional) encryption on top of the above one-time encryption.
More specifically, we encrypt each ci using a FE (supporting inner products) that is both linearly
homomorphic and whose message space is compatible with L. So, given ciphertexts {cti = Enc(ci)}
and secret key sky = ({skyi}i, zy), one can first obtain {〈ci,yi〉 = Dec(cti, skyi)}, and then extract
the result as 〈x,y〉 =

∑n
i=1〈ci,yi〉 − 〈u,y〉.

Our transformation actually comes in two flavors: the first one addresses the case where the
underlying FE computes inner products over some finite ring ZL; the second one instead considers
FE schemes that compute bounded-norm inner products over the integers. In both cases the trans-
formations are generic enough to be instantiated with known single-input FE schemes for inner
products. This gives us new MIFE relying on plain DDH [ABDP15], LWE [ALS16] and Composite
residuosity [ALS16,ABDP16]. Moreover, the proposed transform is security-preserving in the sense
that, if the underlying FE achieves adaptive security, so does our resulting MIFE.

Function-Hiding MIFE for inner products. Our second contribution are new MIFE schemes
for inner products that achieve function hiding. Our constructions build on the pairing-based solu-
tion from [AGRW17] and, as such, they also rely on pairings. More precisely, we propose transfor-
mations that, starting from the MIFE from [AGRW17], build function hiding MIFEs using single
input FE for inner products as additional building block. Ours transforms are generic with respect
to this latter component, in the sense that they can be instantiated using any single input FE
satisfying some natural additional requirements (details of which are given in Section 5).

Our methods build from the two-layer encryption technique recently developed by Lin [Lin17] to
generically achieve function hiding in the context of (single input) FE for inner products. Intuitively,
Lin’s idea consists in doing similar operations both at encryption and at key derivation time.
Starting from two independent instances of the underlying FE, an “inner” one and an “outer”

9We remark that a similar information theoretic construction was put forward by Wee in [Wee17], as a warm-up
scheme towards an FE for inner products achieving simulation security.
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one, the idea is to encrypt the plaintext x in two steps. One first uses the “inner” FE to compute
ct1 = Enc(msk1,x) and then “extracts” the key corresponding to ct1, i.e., ct2 = KeyGen(msk2, ct1).
Key derivation is done similarly, one first computes sk1 = KeyGen(msk1,y) and then encrypts sk1

using the outer scheme, i.e., sk2 = Enc(msk2, sk1).
If one encodes ciphertexts in G1 and secret keys in G2, then one can use pairings to compute

an encoding, in GT , of [〈ct2, sk2〉]T . Since decryption essentially performs inner product, the latter
computation actually decrypts also the inner ct1 component using secret key sk1, thus yielding
an encoding of 〈x,y〉. Moreover, since now y is encrypted, the FE security also provides function
hiding10.

An obvious drawback of Lin’s transformation is that, when applied generically, it would induce
an extra-level of multilinearity in the process. This means that, starting from a pairing-free FE for
inner products, one ends up with a scheme that is function hiding but also pairing-based.

We propose similar two-layer encryption techniques that do not, inherently, induce extra levels
of multi-linearity with respect to those of the underlying primitives. Our transforms achieve this
by using the MIFE from [AGRW17] as inner scheme and, several instances of, a single input FE,
one for each encryption slot, as outer schemes. In particular, by carefully exploiting the specific
algebraic properties of the MIFE, we manage to achieve function hiding from the Matrix Decisional
Diffie Hellman assumption over standard bilinear groups (i.e., without resorting to multi-linear
maps). Specifically, our schemes come in two flavors: a simpler one for selective security and a
more convoluted one achieving adaptive security. A high level overview of our technique appears
in Section 5. The MIFE schemes from Lin [Lin17] are selectively secure and function-hiding, but
are based on multi-linear maps (d− 1 slots require a multilinear map of degree d). In comparison,
our schemes support a polynomial number of inputs and achieve adaptive-security, while using only
pairings and while being based only on standard assumptions.

Generality of our approach. As mentioned above, our function-hiding transforms are not
entirely generic as they impose restrictions on the underlying MIFE. These restrictions, while
compatible with the pairing-based realization from [AGRW17], do not cope well with our newly
constructed MIFEs without pairings. Very informally, this is due to the fact that our transform relies
on the two-step decryption blueprint in which one learns [〈xi,yi〉+ zi], and each zi is “sufficiently”
random to guarantee security in the MIFE security experiment. Specifically, in Abdalla et al.’s
scheme zi = uir whereas in our new scheme zi = 〈ui,yi〉. While the latter value is sufficiently
random in the MIFE indistinguishability experiment, this is no longer the case in the function-
hiding experiment, where the adversary asks for pairs of keys (y0,y1), and zi = 〈ui,yβi 〉 may
actually leak information about which of the two keys was chosen (i.e. information about the value
of the bit β). With a different interpretation, if one sees [〈xi,yi〉+ zi] as a secret sharing of 〈x,y〉,
then in our new scheme this secret sharing depends on the function y whereas in [AGRW17] this is
function independent and more suitable for function-hiding. We believe that coming up with more
powerful transforms, capable of exploiting the potential of our efficient MIFEs, is a very natural
and interesting open problem.

Concurrent work on function-hiding. Concurrently and independently of our work, Datta et
al. [DOT18] proposed a multi-input function-hiding scheme for inner products. Their construction
uses the framework of dual pairing vector spaces and require the use of pairings. They achieve

10Actually the transform sketched here only manages to guarantee a weaker form of function hiding. However this
can be generically turned into standard function hiding [LV16], as described in Appendix B.
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slightly shorter ciphertexts and decryption keys (ciphertexts are shorter by 2 group elements, while
decryption keys require 2n+1 less group elements). However, this comes at the expense of a larger
master secret key, which contains 4n(m2 − 1) more group elements (a quadratic blow-up in m).

Interestingly, Datta et al. [DOT18] also provide a technique based on pseudorandom functions
to extend their multi-input function-hiding scheme to an unbounded number of slots. Although
their techniques also appear to be applicable to our schemes, hence capable of extending both the
pairing-free and the pairing-based constructions to the unbounded setting, we leave it as future
work.

2 Preliminaries

Notation. We denote with λ ∈ N a security parameter. A probabilistic polynomial time (PPT)
algorithm A is a randomized algorithm for which there exists a polynomial p(·) such that for every
input x the running time of A(x) is bounded by p(|x|). We say that a function ε : N → R+

is negligible if for every positive polynomial p(λ) there exists λ0 ∈ N such that for all λ > λ0:
ε(λ) < 1/p(λ). If S is a set, x ←r S denotes the process of selecting x uniformly at random in S.
If A is a probabilistic algorithm, y ←r A(·) denotes the process of running A on some appropriate
input and assigning its output to y. For a positive integer n, we denote by [n] the set {1, . . . , n}.
We denote vectors x = (xi) and matrices A = (ai,j) in bold. For a set S (resp. vector x) |S| (resp.
|x|) denotes its cardinality (resp. number of entries). Also, given two vectors x and x′ we denote
by x‖x′ their concatenation. By ≡, we denote the equality of statistical distributions, and for any
ε > 0, we denote by ≈ε the ε-statistical difference of two distributions.

2.1 Definitions for Multi-Input Functional Encryption

In this section we recall the definitions of multi-input functional encryption [GGG+14] specialized
to the private-key setting, as this is the one relevant for our constructions.

Definition 1 (Multi-input Function Encryption). Let F = {Fn}n∈N be an ensemble where
each Fn is a family of n-ary functions. A function f ∈ Fn is defined as follows f : X1×. . .×Xn → Y.
A multi-input functional encryption scheme MIFE for F consists of the following algorithms:

– Setup(1λ,Fn) takes as input the security parameter λ and a description of Fn ∈ F , and outputs
a master public key mpk11 and a master secret key msk. The master public key mpk is assumed
to be part of the input of all the remaining algorithms.

– Enc(msk, i, xi) takes as input the master secret key msk, an index i ∈ [n], and a message xi ∈ Xi,
and it outputs a ciphertext ct. Each ciphertext is assumed to be associated with an index i
denoting for which slot this ciphertext can be used for. When n = 1, the input i is omitted.

– KeyGen(msk, f) takes as input the master secret key msk and a function f ∈ Fn, and it outputs
a decryption key skf .

– Dec(skf , ct1, . . . , ctn) takes as input a decryption key skf for function f and n ciphertexts, and
it outputs a value y ∈ Y.

A scheme MIFE as defined above is correct if for all n ∈ N, f ∈ Fn and all xi ∈ Xi for
1 ≤ i ≤ n, we have

Pr

[
(mpk,msk)← Setup(1λ,Fn); skf ← KeyGen(msk, f);

Dec(skf ,Enc(msk, 1, x1), . . . ,Enc(msk, n, xn)) = f(x1, . . . , xn)

]
= 1,

where the probability is taken over the coins of Setup, KeyGen and Enc.

11In the private key setting, we think of mpk as some public parameters common to all algorithms.
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Security notions. Here we recall the definitions of security for multi-input functional encryption.
We give both one-time and many-time indistinguishability-based security definitions. Namely, we
consider several security notions denoted xx-AD-IND and xx-SEL-IND, where: xx ∈ {one,many}.
We also give simulation-based security definitions in Appendix A.

Definition 2 (xx-AD-IND-secure MIFE). For every multi-input functional encryptionMIFE
for F , every stateful adversary A, every security parameter λ ∈ N, and every xx ∈ {one,many}, we
define the following experiments for β ∈ {0, 1}:

Experiment xx-AD-INDMIFEβ (1λ,A):

(mpk,msk)← Setup(1λ,Fn)
α← AKeyGen(msk,·),Enc(·,·,·) (mpk)
Output: α

where Enc is an oracle that on input (i, x0
i , x

1
i ) outputs Enc(msk, i, xβi ). Also, A is restricted to

only make queries f to KeyGen(msk, ·) satisfying

f(xj1,01 , . . . , xjn,0n ) = f(xj1,11 , . . . , xjn,1n )

for all j1, . . . , jn ∈ [Q1] × · · · × [Qn], where for all i ∈ [n], Qi denotes the number of encryption
queries for input slot i. We denote by Qf the number of key queries. Note that w.l.o.g. (as shown
in [AGRW17, Lemma 3]), we can assume that for all i ∈ [n], Qi > 0. When xx = one, we also
require that A queries Enc(i, ·, ·) once per slot, namely that Qi = 1, for all i ∈ [n].

A private-key multi-input functional encryption MIFE for F is xx-AD-IND-secure if every
PPT adversary A has advantage negligible in λ, where the advantage is defined as:

Advxx-AD-IND
MIFE (λ,A) =∣∣Pr
[
xx-AD-INDMIFE0 (1λ,A) = 1

]
− Pr

[
xx-AD-INDMIFE1 (1λ,A) = 1

]∣∣
Remark 1 (winning condition). The winning condition may not always efficiently checkable because
of the combinatorial explosion in the restrictions on the queries.

Definition 3 (xx-SEL-IND-secure MIFE). For every multi-input functional encryptionMIFE
for F , every stateful adversary A, every security parameter λ ∈ N, and every xx ∈ {one,many}, we
define the following experiments for β ∈ {0, 1}:

Experiment xx-SEL-INDMIFEβ (1λ,A):

{xj,bi }i∈[n],j∈[Qi],b∈{0,1} ← A(1λ,Fn)

(mpk,msk)← Setup(1λ,Fn)

ctji := Enc(msk, xj,βi )

α← AKeyGen(msk,·)
(
mpk, {ctji}i∈[n],j∈[Qi]

)
Output: α

where A is restricted to only make queries f to KeyGen(msk, ·) satisfying

f(xj1,01 , . . . , xjn,0n ) = f(xj1,11 , . . . , xjn,1n )

6



for all j1, . . . , jn ∈ [Q1]× · · · × [Qn]. When xx = one, we also require that Qi = 1, for all i ∈ [n].

A MIFE for F is xx-SEL-IND-secure if every PPT adversary A has negligible advantage in
λ, where the advantage is defined as:

Advxx-SEL-IND
MIFE,A (λ) =∣∣Pr

[
xx-SEL-INDMIFE0 (1λ,A) = 1

]
− Pr

[
xx-SEL-INDMIFE1 (1λ,A) = 1

]∣∣.
Zero vs multiple queries in the private-key setting. A nice feature enjoyed by all the schemes
in Section 3 is that the owner of a decryption key sky associated with the vector y = y1‖ · · · ‖yn
does not need to know a specific value cti of the ciphertext vector ct = (ct1, . . . , ctn) in order to
decrypt ct if yi = 0. In other words, Qi can be 0 whenever yi = 0. In this case, the adversary is
only allowed to obtain a secret key sky for a vector y satisfying the condition∑

i∈I
〈xj,0i ,yi〉 =

∑
i∈I
〈xj,1i ,yi〉,

for all queries j ∈ [Qi], where I ⊆ [n] denotes the set of slots for which the adversary made at least
one query to Enc, that is, for which Qi > 0. Though we believe this feature can be useful in practice
(for instance, if one of the encrypting parties decides to stop collaborating), certain applications
may require at least one ciphertext for each encryption slot in order for decryption to be possible.
In such cases, one can apply to our schemes the simple generic compiler given in [AGRW17, Lemma
3] to ensure that the set I = [n], thus obtaining new schemes which leak no information in the
setting where some Qi = 0. For this reason, we assume without loss of generality that Qi > 0 in all
our security definitions and proofs.

2.2 Function-Hiding Multi-Input Functional Encryption

For function-hiding, we focus on indistinguishability security notions. This is because even single-
input function-hiding inner-product encryption is known to be unrealizable in a simulation sense
under standard assumptions.

Definition 4 (xx-SEL-Function-hiding MIFE). For every multi-input functional encryption
MIFE for F , every security parameter λ, every stateful adversary A, and every xx ∈ {one,many},
we define the following experiments for β ∈ {0, 1}:

Experiment xx-SEL-FH-INDMIFEβ (1λ,A):

{xj,bi }i∈[n],j∈[Qi],b∈{0,1} ← A(1λ,Fn)

{f j,b}j∈[Qf ],b∈{0,1} ← A(1λ,Fn)

(mpk,msk)← Setup(1λ,Fn)

ctji ← Enc(msk, i, xj,βi ) ∀i ∈ [n], j ∈ [Qi]
skj ← KeyGen(msk, f j,β) ∀j ∈ [Qf ]

α← A
(
mpk, (ctji )i∈[n],j∈[Qi], (sk

j)j∈[Qf ]

)
Output: α

7



where A only makes Qi selective queries of plaintext pairs (xji,0i , xji,1i ) and Qf selective queries
of key pairs (f jf ,0, f jf ,1), that must satisfy:

f jf ,0(xj1,01 , . . . , xjn,0n ) = f jf ,1(xj1,11 , . . . , xjn,1n )

for all j1, . . . , jn ∈ [Q1]× · · · × [Qn] and for all jf ∈ [Qf ].

A MIFE is xx-SEL-FH-IND-secure if every PPT adversary A has negligible advantage in λ,
where the advantage is defined as:

Advxx-SEL-FH-IND
MIFE,A (λ) =

∣∣Pr
[
xx-SEL-FH-INDMIFE0 (1λ,A) = 1

]
− Pr

[
xx-SEL-FH-INDMIFE1 (1λ,A) = 1

]∣∣
Definition 5 (xx-AD-Function-hiding MIFE). For every multi-input functional encryption
MIFE := (Setup,Enc,KeyGen,Dec) for F , every security parameter λ, every stateful adversary A,
and every xx ∈ {one,many}, we define the following experiments for β ∈ {0, 1}:

Experiment xx-AD-FH-INDMIFEβ (1λ,A):

(mpk,msk)← Setup(1λ,Fn)
β′ ← AKeyGen(msk,·,·),Enc(msk,·,·) (mpk)
Output: α

where Enc is an oracle that on input (i, x0
i , x

1
i ) outputs Enc(msk, i, xβi ) and KeyGen is an oracle that

on input (f0, f1) outputs KeyGen(msk, fβ). Additionally, A queries must satisfy:

f jf ,0(xj1,01 , . . . , xjn,0n ) = f jf ,1(xj1,11 , . . . , xjn,1n )

for all j1, . . . , jn ∈ [Q1]× · · · × [Qn] and for all jf ∈ [Qf ].

AMIFE is xx-AD-FH-IND-secure if every PPT adversary has negligible advantage in λ, where
the advantage is defined as:

Advxx-AD-FH-IND
MIFE,A (λ) =

∣∣∣Pr
[
xx-AD-FH-INDMIFE0 (1λ,A) = 1

]
− Pr

[
xx-AD-FH-INDMIFE1 (1λ,A) = 1

]∣∣
Definition 6 (Weak function hiding MIFE). Following the approach from [LV16], we define
the notion of weak function hiding (denoted xx-yy-wFH-IND) in the multi-input case, which is
as in Definitions 4 and 5, with the exception that the previous constraints on ciphertext and key
challenges:

f jf ,0(xj1,01 , . . . , xjn,0n ) =f jf ,1(xj1,11 , . . . , xjn,1n ),

for all j1, . . . , jn ∈ [Q1]× · · · × [Qn] and for all jf ∈ [Qf ]

are extended with additional constraints to help with our hybrid proof:

f jf ,0(xj1,01 , . . . , xjn,0n ) =f jf ,0(xj1,11 , . . . , xjn,1n ) = f jf ,1(xj1,11 , . . . , xjn,1n ),

for all j1, . . . , jn ∈ [Q1]× · · · × [Qn] and for all jf ∈ [Qf ].
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2.3 Inner-product functionality

In this paper we construct multi-input functional encryption schemes that support the following
two variants of the multi-input inner product functionality:

Multi-Input Inner Product over ZL. This is a family of functions that is defined as FmL,n = {fy1,...,yn :
(ZmL )n → ZL, for yi ∈ ZmL } where

fy1,...,yn(x1, . . . ,xn) =
n∑
i=1

〈xi,yi〉 mod L.

Multi-Input Bounded-Norm Inner Product over Z. This is defined as Fm,X,Yn = {fy1,...,yn : (Zm)n →
Z} where fy1,...,yn(x1, . . . ,xn) is the same as above except that the result is not reduced mod L,
and vectors are required to satisfy the following bounds: ‖x‖∞ < X, ‖y‖∞ < Y .

2.4 Computational assumptions

Prime-order groups. Let GGen be a probabilistic polynomial time (PPT) algorithm that on input
1λ returns a description G = (G, p, g) of an cyclic group G of order p for a 2λ-bit prime p, whose
generator is g.

We use implicit representation of group elements as introduced in [EHK+13]. For a ∈ Zp, define
[a] = ga ∈ G as the implicit representation of a in G. More generally, for a matrix A = (aij) ∈ Zn×mp

we define [A] as the implicit representation of A in G:

[A] :=

ga11 ... ga1m
gan1 ... ganm

 ∈ Gn×m

We will always use this implicit notation of elements in G, i.e., we let [a] ∈ G be an element in
G. Note that from a random [a] ∈ G it is generally hard to compute the value a (discrete logarithm
problem in G). Obviously, given [a], [b] ∈ G and a scalar x ∈ Zp, one can efficiently compute
[ax] ∈ G and [a+ b] ∈ G.

Matrix Diffie-Hellman Assumption for prime-order groups. We recall the definition of the
Matrix Decision Diffie-Hellman (MDDH) Assumption [EHK+13].

Definition 7 (Matrix Distribution). Let k ∈ N. We call Dk a matrix distribution if it outputs

matrices in Z(k+1)×k
p of full rank k in polynomial time.

W.l.o.g. we assume the first k rows of A ←r Dk form an invertible matrix. The Dk-Matrix Diffie-
Hellman problem is to distinguish the two distributions ([A], [Aw]) and ([A], [u]) where A←r Dk,
w ←r Zkp and u←r Z`p.

Definition 8 (Dk-Matrix Diffie-Hellman (Dk-MDDH) assumption in prime-order groups).
Let Dk be a matrix distribution. The Dk-Matrix Diffie-Hellman (Dk-MDDH) assumption holds rel-
ative to GGen if for all PPT adversaries A,

AdvDk-mddh
GGen,A (λ) := |Pr[A(G, [A], [Aw]) = 1]− Pr[A(G, [A], [u]) = 1]| = negl(λ),

where probabilities are over G ←r GGen(1λ), A←r Dk,w ←r Zkp,u←r Zk+1
p .
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Pairing groups. Let PGGen be a probabilistic polynomial time (PPT) algorithm that on input 1λ

returns a description PG = (G1,G2, q, g1, g2) of asymmetric pairing groups where G1, G2, GT are
cyclic group of order p for a 2λ-bit prime p, g1 and g2 are generators of G1 and G2, respectively, and
e : G1×G2 → GT is an efficiently computable (non-degenerate) bilinear map. Define gT := e(g1, g2),
which is a generator of GT . We again use implicit representation of group elements. For s ∈ 1, 2, T
and a ∈ Zp, define [a]s = gas ∈ Gs as the implicit representation of a in Gs . Given [a]1, [a]2, one
can efficiently compute [ab]T using the pairing e. For two matrices A, B with matching dimensions
define e([A]1, [B]2) := [AB]T ∈ GT .

We define the Dk-MDDH assumption in pairing groups similarly than in prime-order groups
(see Definition 8).

Definition 9 (Dk-MDDH assumption in pairing groups). Let Dk be a matrix distribution.
The Dk-MDDH assumption holds relative to PGGen in Gs, for s ∈ {1, 2, T}, if for all PPT adver-
saries A, the following is negl(λ):

AdvDk-mddh
Gs,A (λ) := |Pr[A(PG, [A]s, [Aw]s) = 1]− Pr[A(PG, [A]s, [u]s) = 1]|

where probabilities are over PG ←r PGGen(1λ), A←r Dk,w ←r Zkp,u←r Zk+1
p .

Next, we recall a result on the uniform distribution over full-rank matrices:

Definition 10 (Uniform distribution). Let `, k ∈ N, with ` > k. We denote by U`,k the uniform
distribution over all full-rank `× k matrices over Zp.

Among all possible matrix distributions Dk, the uniform matrix distribution U`,k is the hardest
possible instance, so in particular k-Lin ⇒ Uk-MDDH, as stated in Lemma 1.

Lemma 1 (Dk-MDDH⇒ U`,k-MDDH, [EHK+13]). Let `, k ∈ N and Dk a matrix distribution.
For any PPT adversary A, there exists a PPT B such that

Adv
U`,k-mddh
Gs,A (λ) ≤ AdvDk-mddh

Gs,B (λ).

3 From Single to Multi-Input FE for Inner Product

In this section, we give a generic construction of MIFE for inner product from any single-input FE
(Setup,Enc,KeyGen,Dec) for the same functionality. More precisely, we show two transformations:
the first one addresses FE schemes that compute the inner product functionality over a finite ring
ZL for some integer L, while the second transformation addresses FE schemes for bounded-norm
inner product. The two transformations are almost the same, and the only difference is that in
the case of bounded-norm inner product, we require additional structural properties on the single-
input FE. Yet we stress that these properties are satisfied by all existing constructions. Both
our constructions rely on a simple MIFE scheme that is one-AD-IND secure unconditionally. In
particular, our constructions show how to use single-input FE in order to bootstrap the information-
theoretic MIFE from one-time to many-time security.

3.1 Information-Theoretic MIFE with One-Time Security

Here we present the multi-input schemeMIFEot for the class FmL,n, and we prove its one-AD-IND
security. The scheme is described in Figure 1.

Theorem 1. The MIFE described in Figure 1 is one-AD-IND secure. Namely, for any adversary
A, Advone-AD-IND

MIFE,A (λ) = 0.
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Setupot(1λ,FmL,n):

For all i ∈ [n], ui ←r ZmL
Return u = {ui}i∈[n]

Encot(u, i,xi):

Return xi + ui mod L

KeyGenot(u,y1‖ · · · ‖yn):

Return z :=
∑
i∈[n]〈ui,yi〉 mod L

Decot
(
z, ct1, . . . , ctn):

Return
∑n
i=1〈cti,yi〉 − z mod L

Fig. 1. Private-key, information theoretically secure, multi-input FE scheme MIFEot = (Setupot,Encot,KeyGenot,
Decot) for the class FmL,n.

Proof overview. The proof of Theorem 1 has two main steps. First, we use the fact that any adaptive
distinguisher against MIFEot with advantage ε can be transformed into a selective distinguisher
with advantage ε/|X|2 by randomly guessing the two challenge input vectors, where |X| is the size
of the input space (|X| = Lnm in our case). Then, in a second step, we show that any selective
distinguisher againstMIFEot has advantage 0 sinceMIFEot behaves as the FE equivalent of the
one-time pad. Hence, it follows that any adaptive distinguisher must also have advantage 0.

Proof. Let A be an adversary against the one-AD-IND security of the MIFE. First, we use a
complexity leveraging argument to build an adversary B such that:

Advone-AD-IND
MIFE,A (λ) ≤ L−2nm · Advone-SEL-IND

MIFE,B (λ).

The adversary B simply guesses the challenge {xbi}i∈[n],b∈{0,1} in advance, then simulates A’s ex-
periment using its own selective experiment. When B receives A’s challenge, it checks if the guess
was successful (call E that event): if it was, it continues simulating A’s experiment, otherwise,
it returns 0. When the guess is successful, B perfectly simulate A’s view. Since event E hap-
pens with probability exactly L−2nm, and is independent of the adversary A’s view, we obtain
Advone-AD-IND

MIFE,A (λ) ≤ L−2nm · Advone-SEL-IND
MIFE,B (λ).

It remains to prove that the MIFE presented in Figure 1 satisfies perfect one-SEL-IND security,
namely, for any adversary B, Advone-SEL-IND

MIFE,B (λ) = 0. To do so, we introduce hybrid games Hβ(1λ,B)

described in Figure 2. We prove that for all β ∈ {0, 1}, Hβ(1λ,B) is identical to the experiment

one-SEL-INDMIFEβ (1λ,B). This can be seen using the fact that for all {xβi ∈ Zm}i∈[n], the following

distributions are identical: {ui mod L}i∈[n] and {ui−xβi mod L}i∈[n], with ui ←r ZmL . Recall that

here i ∈ [n] is an index for input slots. Note that the independence of the xβi from the ui is only
true in the selective security game. Finally, we show that B’s view in Hβ(1λ,B) is independent

of β. Indeed, the only information about β that leaks in this experiment is
∑

i〈x
β
i ,yi〉, which is

independent of β by definition of the security game. ut

HYBβ(1λ,B):

{xbi}i∈[n],b∈{0,1} ← B(1λ,FmL,n)
For all i ∈ [n],

ui ←r ZmL ; cti ← ui
α← BOH (·)({cti}i∈[`])
Output α

OH(y):

For all i ∈ [n],
z :=

∑
i∈[n]〈ui,yi〉 − 〈x

β
i ,yi〉 mod L

Return z

Fig. 2. Experiments for the proof of Theorem 1.
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Remark 2 (one-SEL-SIM security). As a result of independent interest, in Appendix A we show
that the MIFE presented in Figure 1 satisfies perfect one-SEL-SIM security, which implies perfect
one-SEL-IND (which itself implies perfect one-AD-IND security via complexity leveraging, as shown
in the proof above).

Remark 3 (Linear homomorphism). We use the fact that Encot is linearly homomorphic, that is,
for all input slots i ∈ [n], xi,x

′
i ∈ Zmp , u ← Setupot(1λ,FmL,n), Encot(u, i,xi) + x′i mod L =

Encot(u, i,xi + x′i). This property will be used when using the one-time scheme MIFEot from
Figure 1 as a building block to obtain a full-fledged many-AD-IND MIFE.

3.2 Our Transformation for Inner Product over ZL
We present our multi-input scheme MIFE for the class FmL,n in Figure 3. The construction relies

on the one-time scheme MIFEot of Figure 1, and any single-input FE for the class FmL,1.

Setup′(1λ,FmL,n):

u← Setupot(1λ,FmL,n), for all i ∈ [n], (mpki,mski)← Setup(1λ,FmL,1)
(mpk,msk) :=

(
{mpki}i∈[n], ({mski, }i∈[n],u)

)
Return (mpk,msk)

Enc′(msk, i,xi):

wi := Encot(u, i,xi)
Return Enc(mski,wi)

KeyGen′(msk,y1‖ · · · ‖yn):

For all i ∈ [n], ski ← KeyGen(mski,yi), z := KeyGenot(u,y1‖ · · · ‖yn)
sky1‖···‖yn :=

(
{ski}i∈[n], z

)
Return sky1‖···‖yn

Dec′
(
({ski}i∈[n], z), ct1, . . . , ctn):

For all i ∈ [n], Di ← Dec(ski, cti)
Return

∑
i∈[n]Di − z mod L

Fig. 3. Private-key multi-input FE schemeMIFE := (Setup′,Enc′,KeyGen′,Dec′) for the class FmL,n from a public-key
single-input FE FE := (Setup,Enc,KeyGen,Dec) for the class FmL,1, and one-time multi-input FEMIFEot = (Setupot,
Encot,KeyGenot,Decot) for the class FmL,n.

The correctness of MIFE follows from the correctness properties of the single-input scheme
FE and the multi-input scheme MIFEot. Indeed, correctness of the former implies that, for all
input slots i ∈ [n], Di = 〈wi,yi〉 mod L, while correctness ofMIFEot implies that

∑
i∈[n]Di−z =

Decot(z,w1, . . . ,wn) =
∑

i∈[n]〈xi,yi〉 mod L.
For the security we state the following theorem:

Theorem 2. If the single-input FE, FE is many-AD-IND-secure, and the multi-input scheme
MIFEot is one-AD-IND-secure, then the multi-input FE, MIFE, described in Figure 3, is many-
AD-IND-secure.

Since the proof of the above theorem is almost the same as the one for the case of bounded-norm
inner product, we only provide an overview here, and defer to the proof of Theorem 3 for further
details.
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Proof overview. Here, for any intput slot i ∈ [n], we denote by (xj,0i ,xj,1i ) the j’th query to Enc(i, ·, ·),
for any j ∈ [Qi], where Qi is the total number of queries to Enc(i, ·, ·).

The proof is in two main steps. First, we switch encryptions of x1,0
1 , . . . ,x1,0

n to those of

x1,1
1 , . . . ,x1,1

n , using the one-AD-IND security ofMIFEot. For the remaining ciphertexts, we switch

from an encryption of xj,0i = (xj,0i − x
1,0
i ) + x1,0

i to that of (xj,0i − x
1,0
i ) + x1,1

i . In this step we use

the fact that one can compute an encryption of Encot(u, i, (xj,0i − x
1,0
i ) + x1,0

i ) from an encryption

Encot(u, i,x1,0
i ), because the encryption algorithm Encot of MIFEot is linearly homomorphic (see

Remark 3). Finally, we apply a hybrid argument across the slots to switch from encryptions of

(x2,0
i − x

1,0
i ) + x1,1

i , . . . , (xQi,0i − x1,0
i ) + x1,1

i

to those of
(x2,1

i − x
1,1
i ) + x1,1

i , . . . , (xQi,1i − x1,1
i ) + x1,1

i ,

using the many-AD-IND security of FE .

Instantiations. The construction in Figure 3 can be instantiated using the single-input FE schemes
of Agrawal, Libert, and Stehlé [ALS16] that are many-AD-IND-secure and allow for computing
inner products over a finite ring. Specifically, we obtain:

– A MIFE for inner product over Zp for a prime p, based on the LWE assumption. This is obtained
by using the LWE-based scheme of Agrawal et al. [ALS16, Section 4.2].

– A MIFE for inner product over ZN where N is an RSA modulus, based on the Composite
Residuosity assumption. This is obtained by using the Paillier-based scheme of Agrawal et al.
[ALS16, Section 5.2].

We note that since both these schemes in [ALS16] have a stateful key generation, our MIFE inherits
this stateful property. Stateless MIFE instantiations are obtained from the transformation in the
next section.

3.3 Our Transformation for Inner Product over Z

Here we present our transformation for the case of bounded-norm inner product. In particular, in
Figure 4 we present a multi-input scheme MIFE for the class Fm,X,Yn from the one-time scheme
MIFEot of Figure 1, and a (single-input) scheme FE for the class Fm,3X,Y1 .12 For our transforma-
tion to work, we require FE to satisfy two properties. The first one, that we call two-step decryption,
intuitively says that the FE decryption algorithm works in two steps: the first step uses the secret
key to output an encoding of the result, while the second step returns the actual result 〈x,y〉
provided that the bounds ‖x‖∞ < X, ‖y‖∞ < Y hold. The second property informally says that
the FE encryption algorithm is additively homomorphic.

We note that the two-step property also says that the encryption algorithm accepts inputs x
such that ‖x‖∞ > X, yet correctness is guaranteed as long as the encrypted inputs are within the
bound at the moment of invoking the second step of decryption.

Two-step decryption is formally defined as follows.

Property 1 (Two-step decryption). An FE scheme FE = (Setup,Enc, KeyGen,Dec) satisfies two-step
decryption if it admits PPT algorithms Setup?, Dec1,Dec2 and an encoding function E such that:

12The reason why we need 3X instead of X is due to maintain a correct distribution of the inputs in the security
proof.
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1. For all λ,m, n,X, Y ∈ N, Setup?(1λ,Fm,X,Y1 , 1n) outputs (msk,mpk) where mpk includes a
bound B ∈ N, and the description of a group G (with group law ◦) of order L > n ·m ·X · Y ,
which defines the encoding function E : ZL × Z→ G.

2. For all (msk,mpk) ← Setup?(1λ,Fm,X,Y1 , 1n), x ∈ Zm, ct ← Enc(msk,x), y ∈ Zm, and sk ←
KeyGen(msk,y), we have

Dec1(ct, sk) = E(〈x,y〉 mod L, noise),

for some noise ∈ N that depends on ct and sk. Furthermore, it holds that for all x,y ∈ Zm,
Pr[noise < B] = 1 − negl(λ), where the probability is taken over the random coins of Setup?,
Enc and KeyGen. Note that there is no restriction on the norm of 〈x,y〉 here, and that we are
assuming that Enc accepts inputs x whose norm may be larger than the bound.

3. Given any γ ∈ ZL, and mpk, one can efficiently compute E(γ, 0).
4. The encoding E is linear, that is: for all γ, γ′ ∈ ZL, , noise, noise′ ∈ Z, we have

E(γ, noise) ◦ E(γ′, noise′) = E(γ + γ′ mod L, noise + noise′).

5. For all γ < n ·m ·X · Y , and noise < n ·B, Dec2

(
E(γ, noise)

)
= γ.

The second property is as follows.

Property 2 (Linear encryption). For any FE scheme FE = (Setup,Enc,KeyGen,Dec) satisfying
the two-step property, we define the following additional property. There exists a deterministic
algorithm Add that takes as input a ciphertext and a message, such that for all x,x′ ∈ Zm, the
following are identically distributed:

Add(Enc(msk,x),x′), and Enc
(
msk, (x+ x′ mod L)

)
.

Note that the value L ∈ N is defined as part of the output of the algorithm Setup∗ (see the two-
step property above). We later use a single input FE with this property as a building block for
a multi-input FE (see Figure 4); this property however is only used in the security proof of our
transformation.

Instantiations. It is not hard to check that these two properties are satisfied by known functional
encryption schemes for (bounded-norm) inner product. In particular, in Section 4 we show that this
is satisfied by the many-AD-IND secure FE schemes of Agrawal, Libert and Stehlé [ALS16].13 This
allows us to obtain MIFE schemes for bounded-norm inner product based on a variety of assump-
tions such as plain DDH, Decisional Composite Residuosity, and LWE. In addition to obtaining the
first schemes without the need of pairing groups, we also obtain schemes where decryption works
efficiently even for large outputs. This stands in contrast to the previous result [AGRW17], where
decryption requires to extract discrete logarithms.

Correctness. The correctness of the schemeMIFE follows from (i) the correctness and Property 1
(two-step decryption) of the single-input scheme, and (ii) from the correctness ofMIFEot and the
linear property of its decryption algorithm Decot.

13While in [ALS16] the FE schemes are proven only one-AD-IND secure (i.e., for adversaries making a single
encryption query), note that these are public-key schemes and thus many-AD-IND security can be obtained via a
standard hybrid argument from one-AD-IND security.
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Setup′(1λ,Fm,X,Yn ):

u← Setupot(1λ,FmL,n), for all i ∈ [n], (mpki,mski)← Setup?(1λ,Fm,3X,Y1 , 1n)
(mpk,msk) :=

(
{mpki}i∈[n], ({mski, }i∈[n],u)

)
Return (mpk,msk)

Enc′(msk, i,xi):

wi := Encot(u, i,xi)
Return Enc(mski,wi)

KeyGen′(msk,y1‖ · · · ‖yn):

For all i ∈ [n], ski ← KeyGen(mski,yi), z ← KeyGenot(u,y1‖ · · · ‖yn)
sky1‖···‖yn :=

(
{ski}i∈[n], z

)
Return sky1‖···‖yn

Dec′
(
({ski}i∈[n], z), ct1, . . . , ctn):

For all i ∈ [n], E(〈xi + ui,yi〉 mod L, noisei)← Dec1(ski, cti)
Return Dec2

(
E(〈x1 + u1,y1〉 mod L, noise1) ◦ · · · ◦ E(〈xn + un,yn〉 mod L, noisen) ◦ E(−z, 0)

)
Fig. 4. Private-key multi-input FE scheme MIFE = (Setup′,Enc′,KeyGen′,Dec′) for the class Fm,X,Yn from public-
key single-input FE scheme FE = (Setup,Enc,KeyGen,Dec) for the class Fm,X,Y1 and one-time multi-input FE
MIFEot = (Setupot,Encot,KeyGenot,Decot).

More precisely, consider any vector x := (x1‖ · · · ‖xn) ∈ (Zm)n, y ∈ Zmn, such that ‖x‖∞ <
X, ‖y‖∞ < Y , and let (mpk,msk) ← Setup′(1λ,Fm,X,Yn ), sky ← KeyGen′(msk,y), and cti ←
Enc′(msk, i,xi) for all i ∈ [n].

By (2) of Property 1, the decryption algorithm Dec′(sky, ct1, . . . , ctn) computes
E(〈wi,yi〉 mod L, noisei) ← Dec1(ski, cti) where for all i ∈ [n], noisei < B, with probability
1− negl(λ).

By (4) of Property 1 (linearity of E), and the correctness of MIFEot we have:

E(〈w1,y1〉 mod L, noise1) ◦ · · · ◦ E(〈wn,yn〉 mod L, noisen) ◦ E(−z, 0)

= E

Decot(z,w1, . . . ,wn),
∑
i∈[n]

noisei

 = E

〈x,y〉 mod L,
∑
i∈[n]

noisei

 .

Since 〈x,y〉 < n ·m ·X · Y < L and
∑

i∈[n] noisei < n ·B, we have

Dec2

(
E(〈x,y〉 mod L,

∑
i∈[n]

noisei)
)

= 〈x,y〉,

by (5) of Property 1.

Proof of Security. In the following theorem we show that our construction is a many-AD-IND-
secure MIFE, assuming that the underlying single-input FE scheme is many-AD-IND-secure, and
the scheme MIFEot is one-AD-IND secure.

Theorem 3. Assume that the single-input FE is many-AD-IND-secure and the multi-input FE
MIFEot is one-AD-IND-secure. Then the multi-input FE MIFE in Figure 4 is many-AD-IND-
secure. Namely, for any PPT adversary A, there exist PPT adversaries B and B′ such that

Advmany-AD-IND
MIFE,A (λ) ≤ Advone-AD-IND

MIFEot,B (λ) + n · Advmany-AD-IND
FE,B′ (λ).
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Proof of Theorem 3. The proof proceeds by a sequence of games where G0 is the
many-AD-INDMIFE0 (1λ,A) experiment. A formal description of all the experiments used in this
proof is given in Figure 6, and a high-level summary is provided in Figure 5. For any game Gi,
we denote by Advi(A) the advantage of A in Gi, that is, Pr[Gi(1

λ,A) = 1], where the probability
is taken over the random coins of Gi and A. In what follows we adopt the same notation from
[AGRW17] for queried plaintexts, namely (xj,0i ,xj,1i ) denotes the j-th encryption query on the i-th
slot.

Game ctji justification/remark

G0 Enc′(msk′, i,xj,0i − x1,0
i + x1,0

i )

G1 Enc′(msk′, i,xj,0i − x1,0
i + x1,1

i ) one-AD-IND of MIFEot, Lemma 2

G1.`

Enc′(msk′, i, xj,1i − x1,1
i +x1,1

i ), for i ≤ `

Enc′(msk′, i,xj,0i − x1,0
i + x1,1

i ), for i > `
many-AD-IND of FE , Lemma 3

G2 Enc′(msk′, i, xj,1i ) G2 = G1.n

Fig. 5. An overview of the games used in the proof of Theorem 3.

Game G1: Here we change the way the challenge ciphertexts are created. In particular, for all slots
and all queries simultaneously, we switch from Enc′(msk, i,xj,0i − x

1,0
i + x1,0

i ) to Enc′(msk, i,xj,0i −
x1,0
i + x1,1

i ).
G1 can be proved indistinguishable from G0 by relying on the one-time security of the multi-input

scheme. More formally,

Lemma 2. There exists a PPT adversary B1 against the one-AD-IND security ofMIFEot scheme
such that

|Adv0(A)−Adv1(A)| ≤ Advone-AD-IND
MIFEot,B1 (λ).

Proof. Here we replace encryptions of xj,0i −x
1,0
i +x1,0

i with encryptions of xj,0i −x
1,0
i +x1,1

i in all
slots simultaneously. Recall that here, j is the index of the encryption query while i is the index
for the slot. The argument relies on the one-AD-IND security of the multi-input scheme MIFEot
and on the fact that ciphertexts produced by the latter can be used as plaintext for the underlying
single input FE scheme FE that we are using as additional basic building block.

More in details, we build the adversary B1 so that it simulates Gβ to A when interacting with
experiment one-AD-INDMIFEβ .

Initially B1 does not receive anything, since the one-AD-IND information-theoretically secure
MIFE does not have any public key. For all i ∈ [n] it runs (mpki,mski)← Setup?(1λ,Fm,3X,Y1 , 1n),
and hands the public parameters to A. Also, whenever A queries a secret key, B1 first queries
its own oracle (on the same input) to get a corresponding key z. Next, for all i ∈ [n], it sets
ski ← KeyGen(mski,yi) and gives back to A the secret key sky1‖···‖yn :=

(
{ski}i∈[n], z

)
.

When A asks encryption queries, B1 proceeds as follows. For each slot i, when receiving the first
query (i,x1,0

i ,x1,1
i ), it computes the challenge ciphertext, for slot i, by invoking its own encryption

oracle on the same input. Calling w1
i := Encot(u, i,x1,β

i ) the received ciphertext, B1 computes

ct1i = Enc(mski,w
1
i ) = Enc′(msk, i,x1,β

i ).
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Subsequent queries, on slot i, are answered as follows. B1 produces ctji (for j > 1) by encrypting

xj,0i −x
1,0
i +w1

i mod L, using mski. Note that Encot is linearly homomorphic (see Remark 3), thus,

xj,0i − x
1,0
i +w1

i mod L = Encot(u, i,x1,β
i + xj,0i − x

1,0
i ).

Finally, B1 outputs 1 iff A outputs 1. One can see that B1 provides a perfect simulation to A
and thus:

|Adv0(A)−Adv1(A)| ≤ Advone-AD-IND
MIFE,B1 (λ).

ut

G0(1λ,A), G1(1λ,A) , G2(1λ,A) :

(mpk,msk)← Setup′(1λ,Fm,X,Yn )

β′ ← AKeyGen′(msk,·),EncO′(·,·,·)(mpk)
return β′

EncO′(i,xj,0i ,xj,1i )
ctji := Enc′(msk, i,xj,0i − x1,0

i + x1,0
i )

ctji := Enc′(msk, i,xj,0i − x1,0
i + x1,1

i )

ctji := Enc′(msk, i,xj,1i − x1,1
i + x1,1

i )

return ctji

KeyGen′(msk,y)
return sky

G1.`(1
λ,A):

(mpk,msk)← Setup′(1λ,Fm,X,Yn )

β′ ← AKeyGen′(msk,·),EncO′(·,·,·)(mpk)
return β′

EncO′(i,xj,0i ,xj,1i )
If i ≤ ` return

Enc′(msk, i,xj,1i − x1,1
i + x1,1

i )
If i > ` return

Enc′(msk, i,xj,0i − x1,0
i + x1,1

i )

KeyGen′(msk,y)
return sky

Fig. 6. Experiments for the proof of Theorem 3.

Game G2: Here we change again the way the challenge ciphertexts are created. In particular, for
all slots i and all queries j, we switch ctji from Enc′(msk, i,xj,0i − x

1,0
i + x1,1

i ) to Enc′(msk, i,xj,1i −
x1,1
i + x1,1

i ).
G2 can be proved indistinguishable from G1 via an hybrid argument over the n slots, relying on

the security of the underlying single-input scheme.
By looking at the games defined in Figure 6, one can see that

|Adv1(A)−Adv2(A)| =
n∑
`=1

|Adv1,`−1(A)−Adv1,`(A)|

since G1 corresponds to game G1.0 and whereas G2 is identical to game G1.n.
Therefore, for every ` we bound the difference between each consecutive pair of games in the

following lemma:

Lemma 3. For every ` ∈ [n], there exists a PPT adversary B1.` against the many-AD-IND security
of the single-input scheme FE such that

|Adv1,`−1(A)−Adv1,`(A)| ≤ Advmany-AD-IND
FE,B1.` (λ).

Proof. Here, we replace encryptions of xj,0i − x
1,0
i + x1,1

i with encryptions of xj,1i − x
1,1
i + x1,1

i

in all slots. Let us recall that j is the index of the encryption query while i is the index for the
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slot. The argument relies on (1) the many-AD-IND security of the underlying single input scheme
FE := (Setup,KeyGen,Enc,Dec), (2) the fact that Enc satisfies Property 2 (linear encryption),
and (3) the restrictions imposed by the security game (see [AGRW17]). As for this latter point we
notice that, indeed, the security experiment restriction in the case of the inner product functionality
imposes that 〈xj,0i − x

1,0
i ,yi〉 = 〈xj,1i − x

1,1
i ,yi〉, for all slots i ∈ [n]. In our scheme this becomes

〈xj,0i − x
1,0
i ,yi〉 mod L = 〈xj,1i − x

1,1
i ,yi〉 mod L, which in turn is equivalent to

〈xj,0i − x
1,0
i + x1,1

i + ui,yi〉 mod L = 〈xj,1i − x
1,1
i + x1,1

i + ui,yi〉 mod L.

More formally, we build an adversary B1.` that simulates G1.`−1+β to A when interacting with
the experiment many-AD-INDFEβ .
B1.` starts by receiving a public key for the scheme FE , which is set to be the key mpk` for the

`-th instance of FE . Next, it runs u← Setupot, and for all i 6= `, it runs Setup? to get (mpki,mski).
It gives (mpk1, . . . ,mpkn) to A.
B1.` answers secret key queries y = y1|| . . . ||yn by first running ski ← KeyGen(mski, yi) for

i 6= `. Also it invokes its own key generation oracle on y`, to get sk`. Finally, it computes z ←
KeyGenot(u,y1|| . . . ||yn) (recall that B1.` knows u). This key material is then sent to A.
B1.` answers encryption queries (i,xj,0i ,xj,1i ) to Enc′ as follows.

If i < `, it computes Enc(mski,Enc
ot(u, i,xj,1i )).

If i > `, it computes Enc(mski,Enc
ot(u, i,xj,0i − x

1,0
i + x1,1

i )).

If i = `, at the j-th encryption query on slot `, B1.` queries its own oracle on input (xj,0` −x
1,0
` +

x1,1
` ,xj,1` − x

1,1
` + x1,1

` ) (note that these vectors have norm less than 3X, and as such, are valid

input to the encryption oracle), to get back ctj∗ := Enc
(
msk`,x

j,β
` −x

1,β
` +x1,1

`

)
from the experiment

many-AD-INDFEβ . Then, B1.` computes ctj` := Add(ctj∗,u`), and sends it to A.

Note that by Property 2 ctj` is identically distributed to Enc
(
msk`,x

j,β
` −x

1,β
` +x1,1

` +u` mod L
)
,

the latter being equal to Enc
(
msk`,Enc

ot(xj,β` − x
1,β
` + x1,1

` )
)
. Also, we remark that because B1.`

plays in the many-AD-IND security game, it can make several queries to its encryption oracle,
which means that every ctj∗ obtained from the oracle is encrypted under fresh randomness rj , i.e.,

ctj∗ := Enc
(
msk`,x

j,β
` −x

1,β
` +x1,1

` ; rj
)
. Therefore, the simulated ciphertext ctj` uses randomness rj

which is independent of the randomness rj′ used in ctj
′

` , for all j 6= j′. This means ctj` is distributed
as in game G1.`−1+β.

Finally, B1.` outputs the same bit β′ returned by A. Thus:

|Adv1.`−1(A)−Adv1.`(A)| ≤ Advmany-AD-IND
FE,B1.` (λ).

ut

The proof of Theorem 3 follows by combining the bounds obtained in the previous lemmas. ut

4 Concrete instances of FE for Inner Product

In this section we discuss three instantiations of our generic construction from Section 3.3. In
particular, we show that the existing (single-input) FE schemes proposed by Agrawal et al. [ALS16]
(that are proven many-AD-IND-secure) satisfy Property 1 (two-step decryption) and Property 2
(linear encryption). Note that all of these (single-input) FE schemes happen to be public-key,
although we stress that this property is not required by our generic construction from Section 3.3.
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4.1 Inner Product FE from MDDH

Here we show that the many-AD-IND secure Inner Product FE from [ALS16, Section 3], generalized
to the Dk-MDDH setting, as in [AGRW17, Figure 15], and recalled in Figure 7, satisfies Property 1
(two-step decryption) and Property 2 (linear encryption).

Setup(1λ,Fm,X,Y1 , `):

G := (G, p, g)← GGen(1λ), A←r Dk, W←r Zm×(k+1)
p

mpk := (G, [A], [WA]), msk := W
Return (mpk,msk)

Enc(mpk,x ∈ Zmp ):

r ←r Zkp, c :=

(
−Ar

x + WAr

)
Return ctx := [c] ∈ Gk+m+1

KeyGen(msk,y ∈ Zmp ):

Return sky :=

(
W>y
y

)
∈ Zk+m+1

p

Dec(mpk, ctx := [c], sky):

C := [c>sky]
Return log(C)

Fig. 7. Functional encryption scheme for the class Fm,X,Y1 , based the Dk-MDDH assumption.

Property 1 (two-step decryption).

1. The algorithm Setup?(1λ,Fm,X,Y1 , 1n) works the same as Setup except that it additionally uses
n to ensure that n ·m ·X · Y = poly(λ) (which implies n ·m ·X · Y < p). Also, it returns the
bound B := 0, L := p, G as the same group of order p generated by GGen(1λ), and the encoding
function E : Zp × Z→ G defined for all γ ∈ Zp, noise ∈ Z as

E(γ, noise) := [γ].

We let Dec1 and Dec2 be the first and second line of Dec in Figure 7 respectively.
2. We have for all x,y ∈ Zm,

Dec1

(
sky, ctx := [c]

)
:= [c]>sky = [〈x,y〉] = E(〈x,y〉 mod p, 0).

3. It is straightforward to see that E(γ, 0) is efficiently and publicly computable.
4. It is also easy to see that E is linear.
5. Finally, for all γ ∈ Z such that γ < n ·m ·X · Y ,

Dec2(E(γ mod p, 0)) := log([γ mod p]) = γ mod p = γ,

where the log can be computed efficiently since γ < n ·m ·X ·Y is assumed to lie in a polynomial
size range.
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Property 2 (linear encryption). For all x′ ∈ Zm and [c] ∈ Gm+k+1, let Add([c],x′) := [c] ·
[

0
x′

]
.

Then, for all x,x′ ∈ Zm, and [c] := Enc(mpk,x) =

[
−Ar

x+ WAr

]
, we have:

Add([c],x′) = [c] ·
[

0
x′

]
=

[
−Ar

x+ x′ + WAr

]
= Enc

(
mpk, (x+ x′ mod p)

)
.

4.2 Inner Product FE from LWE

Here we show that the many-AD-IND secure Inner Product FE from [ALS16, Section 4.1] and
recalled in Figure 8, satisfies Property 1 (two-step decryption) and Property 2 (linear encryption).

Setup(1λ,Fm,X,Y1 ):

Let N = N(λ), and set integers M, q ≥ 2, real α ∈ (0, 1), and distribution D over Zm×M as explained in
[ALS16]; set K := m ·X · Y , A←r ZM×Nq , Z←r D, U := ZA ∈ Zm×Nq , mpk := (K,A,U), msk := Z.
Return (mpk,msk)

Enc(mpk,x ∈ Zm):

s←r ZNq , e0 ←r D
M
Z,αq, e1 ←r D

m
Z,αq

c0 := As + e0 ∈ ZMq
c1 := Us + e1 + x ·

⌊
q
K

⌋
∈ Zmq

Return ctx := (c0, c1)

KeyGen(msk,y ∈ Zm):

Return sky :=

(
Z>y
y

)
∈ ZM+m

Dec
(
sky, ctx):

µ′ :=

(
c0
c1

)>

sky mod q.

Return µ ∈ {−K + 1, . . . ,K − 1} that minimizes
∣∣b q
K
cµ− µ′

∣∣.
Fig. 8. Functional encryption scheme for the class Fm,X,Y1 , based on the LWE assumption.

Property 1 (two-step decryption).

1. The algorithm Setup?(1λ,Fm,X,Y1 , 1n) works the same as Setup except that it uses n to set
K := n ·m ·X · Y ,14 and it also returns the bound B :=

⌊ q
K

⌋
, L := q, G := (Zq,+), and the

encoding function E : Zq × Z→ G defined for all γ ∈ Zq, noise ∈ Z as

E(γ mod q, noise) := γ ·
⌊ q
K

⌋
+ noise mod q.

We let Dec1 and Dec2 be the first and second line of Dec in Figure 8 respectively.

14Also, parameters M, q, α and distribution D are chosen as explained in [ALS16], as if working with input vectors
of dimension n ·m.
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2. We have for all x,y ∈ Zm,

Dec1

(
sky, ctx := (c0, c1)

)
=

(
c0

c1

)>
sky mod q

= 〈x,y〉 ·
⌊ q
K

⌋
+ y>e1 − e>0Z>y mod q

= E(〈x,y〉 mod q, noise),

where noise := y>e1 − e>0Z>y, and Pr[noise < B] = 1− negl(λ).
3. It is straightforward to see that E(γ, 0) is efficiently and publicly computable.
4. It is also easy to see that E is linear.
5. Finally, for all γ ∈ Z such that γ < n ·m ·X · Y , and noise < n ·B,

Dec2(E(γ mod q, noise)) = γ,

follows by the same decryption correctness argument in [ALS16], with the only difference that
here we used a larger bound K.

Property 2 (linear encryption). For all x′ ∈ Zm and (c0, c1) ∈ ZM+m
q , let Add((c0, c1),x′) :=

(c0, c1)+(0,x′ ·
⌊ q
K

⌋
) mod q. Then, for all x,x′ ∈ Zm, and (c0, c1) := (As+e0,Us+e1 +x ·

⌊ q
K

⌋
) ∈

ZM+m
q , we have:

Add((c0, c1),x′) = (As+ e0,Us+ e1 + (x+ x′) ·
⌊ q
K

⌋
) mod q = Enc

(
mpk, (x+ x′ mod q)

)
.

4.3 Inner Product FE from Paillier

Here we show that the Inner Product FE from [ALS16, Section 5.1] and recalled in Figure 9 satisfies
Property 1 (two-step decryption) and Property 2 (linear encryption).

Property 1 (two-step decryption).

1. The algorithm Setup?(1λ,Fm,X,Y1 , 1n) works the same as Setup except that it additionally uses
n to ensure n ·m ·X · Y < N . Also, it returns the bound B := 0, L := N , G as the subgroup of
Z∗N2 of order N generated by (1 + N), and the encoding function E : ZN × Z → G defined for
all γ ∈ ZN , noise ∈ Z as

E(γ, noise) := 1 + γ ·N mod N2.

We let Dec1 and Dec2 be the first and second line of Dec in Figure 9.
2. We have for all x,y ∈ Zm,

Dec1(sky := (d,y), ctx) :=

 ∏
j∈[m]

C
yj
j

 · C−d0 mod N2 = E(〈x,y〉 mod N, 0).

3. It is straightforward to see that see that E(γ, 0) can be efficiently computed from public infor-
mation.

4. It is also easy to see that E is linear.
5. Finally, for all γ ∈ Z such that γ ≤ n ·m ·X · Y < N , it holds

Dec2(E(γ, 0)) := E(γ,0)−1 mod N2

N = γ.
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Setup(1λ,Fm,X,Y1 ):

Choose primes p = 2p′ + 1, q = q′ + 1 with prime p′, q′ > 2l(λ) for an l(λ) = poly(λ) such that factoring

is λ-hard, and set N := pq ensuring that m · X · Y < N . Sample g′ ←r Z∗N2 , g := g′
2N

mod N2,

s ←r DZm,σ, for standard deviation σ >
√
λ · N5/2, and for all j ∈ [m], hj := gsj mod N2.

(mpk,msk) :=
(
(N, g, {hj}j∈[m], X, Y ), {sj}j∈[m]

)
Return (mpk,msk)

Enc(mpk,x ∈ Zm):

r ←r {0, . . . , bN/4c}, C0 := gr ∈ ZN2 , for all j ∈ [m], Cj := (1 + xjN) · hrj ∈ ZN2

Return ctx := (C0, . . . , Cm) ∈ Zm+1
N2

KeyGen(msk,y ∈ Zm):

d :=
∑
j∈[m] yjsj ∈ Z.

Return sky := (d,y)

Dec
(
sky := (d,y), ctx):

C :=
(∏

j∈[m] C
yj
j

)
· C−d0 mod N2.

Return log(1+N)(C) := C−1 mod N2

N
.

Fig. 9. Functional encryption scheme for the class Fm,X,Y1 , based on the Paillier cryptosystem.

Property 2 (linear encryption). For all x′ ∈ Zm and (C0, C
′
1, . . . , C

′
m) ∈ Zm+1

N2 , let Add((C0, C1, . . . ,
Cm),x′) computes C ′j := Cj ·(1+x′jN) mod N2 for all j ∈ [m] and outputs (C0, C

′
1, . . . , C

′
m). Then,

for all x,x′ ∈ Zm, and (C0, C1, . . . , Cm) := (gr, (1 +x1N) ·hr1, . . . , (1 +xmN) ·hrm) ∈ ZmN2 , we have:

Add((C0, C1, . . . , Cm),x′) = (gr, (1 + (x1 + x′1)N) · hr1 mod N2, . . . , (1 + (xm + x′m)N) · hrm mod N2)

= Enc
(
mpk, (x+ x′ mod N)

)
.

4.4 MIFE for Inner Product from DDH

Here we present a concrete construction of MIFE for Inner Product whose security relies on the
DDH assumption (without pairings). This concrete instantiation can be found in Figure 10.

5 Function-Hiding Multi-Input FE for Inner Product

In this section, we give a function-hiding MIFE. We transform the MIFE for inner product proposed
by Abdalla et al. in [AGRW17] into a function-hiding scheme, using a double layered encryption
approach, similar to the one of Lin [Lin17]. Namely, in Section 5.1, we give a generic construction
that use any single-input FE on top of the MIFE from [AGRW17], which can prove selectively
secure. Unlike the results in Section 3 that can be instantiated without pairings, for function-hiding
we rely on pairing groups. Finally, in Section 5.2, we prove adaptive security, considering a specific
instantiation of our construction.

Our construction. We present our function-hiding schemeMIFE in Figure 12. The construction
relies on the multi-input scheme MIFE ′ of Abdalla et al. [AGRW17] (recalled in Figure 11), used
together with any one-SEL-SIM secure, single-input FE for the functionality

F `G1,G2,GT = {f[y]1 : G`
2 → GT for [y]1 ∈ G`

1},
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Setup(1λ,Fm,X,Yn ):

G := (G, p, g)← GGen(1λ), a←r Zp, a :=
(
1
a

)
, W←r Zm×2

p , ui ←r Zmp
mpk := (G, [a], [Wa]), msk :=

(
W, (ui)i∈[n]

)
Return (mpk,msk)

Enc(msk, i,xi ∈ Zmp ):

ri ←r Zp, return cti := ([ari], [xi + ui + Wiari]) ∈ Gm+2

KeyGen
(
msk,y := (y1‖ · · · ‖yn) ∈ Zm·np

)
:

Return sky :=
(
y, (y>i Wi)i∈[n],

∑
i∈[n] y

>
i ui

)
∈ Zn(m+2)+1

p

Dec
(
mpk, cti := ([ti], [ci]), sky :=

(
y, (d>i )i∈[n], z

))
:

C :=
(∏

i∈[n]
(
[y>i ci]/[d

>
i ti]

))
/[z]

Return log(C)

Fig. 10. Multi-Input Functional encryption scheme for the class Fm,X,Yn , based on the DDH assumption.

where

f[y]1([x]2) := [〈x,y〉]T ,

PG := (G1,G2, p, g1, g2) is a pairing group, and ` is the size of the ciphertext and secret keys in
MIFE ′.

Concretely, we use the single-input FE from [ALS16], generalized to the MDDH assumption,
whose one-SEL-SIM security is proven in [AGRW17,Wee17], and whose description is recalled in
Figure 7. Note that this single-input FE happens to be public-key, but this is not a property that
we need for our overall MIFE.

Outline of the construction. Our starting point is the MIFE scheme for inner-products from
[AGRW17], denoted by MIFE ′ := (Setup′,Enc′,KeyGen′,Dec′) and recalled in Figure 11. This
scheme is clearly not function-hiding, as the vector y is given in the clear as part of functional
secret key, in order to make decryption possible. In order to avoid the leakage of y, we employ
an approach similar to the one proposed in [Lin17], which intuitively consists into adding a layer
of encryption on top of the MIFE keys and ciphertexts; this is done by using a single-input inner
product encryption scheme FE . Slightly more in detail, using the FE and MIFE ′ schemes, we
design our new function-hiding multi-input scheme MIFE as follows.

We generate master keys (mpki,mski)← FE .Setup(1λ,F `G1,G2,GT ) for computing inner products

on vectors of dimension `, where ` is the size of the ciphertexts and secret keys of MIFE ′. To
encrypt xi ∈ Zmp for each slot i ∈ [n], we first compute [ctini ]1 using MIFE ′, and then we compute

ctouti := FE .KeyGen(mski, [ct
in
i ]1). To generate a key for y := (y1‖ · · · ‖yn) ∈ Znmp , we first compute

the keys skin fromMIFE ′, and then we would like to encrypt these keys using FE in order to hide
information about y. A generic way to do it would be to set our secret key to be Enc(mski, sk

in),
for all possible i ∈ [n], so that we can compute the inner product of [ctini ]1 with skin for all i ∈ [n].
But that would yield keys of size O(n2m), since the key skin itself is of size O(nm). We can do
better, however. If we consider the specific MIFE ′ scheme from [AGRW17], a secret key skin for
y consists of the components ([skin1 ‖ . . . ‖skinn ]2, [z]T ), where each [skini ]2 only depends on yi and is
of size O(m), while [z]T ∈ GT does not depend on y at all. Hence, we encrypt each vectors [skini ]2
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to obtain skouti := FE .Enc(mpki, [sk
in
i ]2), which gives us a secret key skout :=

(
{skouti }i∈[n], [z]T

)
of

total size O(nm).

This way, decrypting the outer layer as FE .Dec(skouti , ctouti ) yields [〈skini , ctini 〉]T , which is what
needs to be computed in the MIFE ′ decryption algorithm Dec′. More precisely, correctness of
MIFE follows from the correctness of MIFE ′, and the structural requirement of FE .Dec that is
used in the MIFE ′ decryption algorithm, namely:

MIFE .Dec({skouti }i∈[n], [z]T , {ctouti }i∈[n])

=

n∏
i=1

FE .Dec(ctouti , skouti )/[z]T =

n∏
i=1

[〈skini , ctini 〉]T /[z]T

=MIFE ′.Dec({[skini ]2}i∈[n], [z]T , {[ctini ]1}i∈[n]).

Definition 11 (one-SEL-SIM-secure FE). A single-input functional encryption FE for the

functionality F `G1,G2,GT is one-SEL-SIM-secure if there exist PPT simulator algorithms (S̃etup,

Ẽnc, K̃eyGen) such that for every PPT (stateful) adversary A and every λ ∈ N, the following two
distributions are computationally indistinguishable:

Experiment REALMIFESEL (1λ,A):

x← A(1λ,F `G1,G2,GT )

(mpk,msk)← Setup(1λ,F `G1,G2,GT )
ct← Enc(msk,x)
α← AKeyGen(msk,·)(mpk, ct)
Output: α

Experiment IDEALMIFESEL (1λ,A):

x← A(1λ,F `G1,G2,GT )

(m̃pk, m̃sk)← S̃etup(1λ,F `G1,G2,GT )

ct← Ẽnc(m̃sk)

α← AO(·)(m̃pk, ct)
Output: α

The oracle O(·) in the ideal experiment above is given access to another oracle that, given [y]1 ∈
F `G1,G2,GT , returns [〈x,y〉]1, and then O(·) returns K̃eyGen

(
m̃sk, [y]1, [〈x,y〉]1

)
.

For every stateful adversary A, we define its advantage as

Advone-SEL-SIM
FE,A (λ)

=
∣∣∣Pr
[
REALFESEL(1λ,A) = 1

]
− Pr

[
IDEALFESEL(1λ,A) = 1

]∣∣∣ ,
and we require that for every PPT A, there exists a negligible function negl such that for all λ ∈ N,
Advone-SEL-SIM

FE,A (λ) = negl(λ).

5.1 Proof of Selective Security

In the following theorem we state the selective security of our schemeMIFE . Precisely, the theorem
proves that our scheme is weakly function-hiding. We stress that this does not entail any limitation
in the final result, as full-fledged function-hiding can be achieved in a generic way via a simple
transformation, proposed in [LV16] (for single-input FE). The main idea is to work with slightly
larger vectors where both input vectors x and secret-key vectors y are padded with zeros. In
Appendix B we show how to do this transformation in the multi-input setting.
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Multi-input scheme MIFE ′[AGRW17]

Setup′(1λ,Fm,X,Yn ):

∀i ∈ [n]:
(mpk′i,msk′i)← FE ′.Setup(1λ,Fm+k,X,Y

1 )
∀i ∈ [n] : zi ←r Zkq
mpk′ :=

(
{mpk′i}i∈[n]

)
msk′ :=

(
{msk′i,zi}i∈[n]

)
return (mpk′,msk′)

Dec′
((
{[skini ]2}i∈[n], [z]T

)
, {[ctini ]1}i∈[n]

)
:

∀i ∈ [n] : [ai]T ← FE ′.Dec([skini ]2, [ct
in
i ]1)

return the discrete log of
(∏n

i=1[ai]T
)
/[z]T

Enc′(msk, i,xi):

[ctini ]1 := FE ′.Enc(mpk′i,xi‖zi)
return [ctini ]1

KeyGen′(msk,y1‖ · · · ‖yn):

r ←r Zkq
∀i ∈ [n] :

skini ← FE ′.KeyGen(msk′i,yi‖r)
z := 〈z1 + · · ·+ zn, r〉
skin :=

(
{[skini ]2}i∈[n], [z]T

)
return skin

Fig. 11. Multi-input, FE for Fm,X,Yn from [AGRW17], whose many-SEL-IND relies on the Dk-MDDH assumption.
Here FE ′ := (FE ′.Setup,FE ′.Enc,FE ′.KeyGen,FE ′.Dec) is a one-SEL-SIM secure, public-key, single-input FE for
Fm+k,X,Y

1 , where k is the parameter used by the Dk-MDDH assumption (concretely, k = 1 for SXDH, k = 2 for
DLIN).

Theorem 4 (many-SEL-wFH-IND security). LetMIFE ′ be the many-SEL-IND secure multi-
input FE from Figure 11. Suppose the single-input FE := (FE .Setup,FE .Enc,FE .KeyGen,FE .Dec)
is one-SEL-SIM-secure. Then the multi-input scheme MIFE := (Setup,Enc,KeyGen,Dec) in Fig-
ure 12 is many-SEL-wFH-IND-secure.

Proof Overview. The proof is done via a hybrid argument that consists of two main phases: we
first switch the ciphertexts from encryptions of xji,0i to encryptions of xji,1i for all slots i ∈ [n], and
ciphertext queries ji ∈ [Qi], where Qi denotes the number of ciphertext query on the i’th slot. This
change is justified by the many-SEL-IND security of the underlyingMIFE ′ in a black box manner.
In addition, this change relies on the weak-function-hiding property that imposes the constraints∑n

i=1〈x
ji,0
i ,y

jf ,0
i 〉 =

∑n
i=1〈x

ji,1
i ,y

jf ,0
i 〉, for all secret key queries jf ∈ [Qf ], where Qf denotes the

number of secret key queries, which thus disallow the adversary from trivially distinguishing the
two games.

The second main change in the proof is to switch the decryption keys from keys corresponding
to yj,01 ‖ . . . ‖y

j,0
n to keys corresponding to yj,11 ‖ . . . ‖y

j,1
n for every j ∈ [Qf ]. This in turn requires a

hybrid argument over all decryption keys, changing one key at a time. To switch the ρ’th key, we
use the selective simulation security of the underlying FE to embed the value 〈xj,1i ,yρ,βi 〉+ 〈rρ, zi〉
in the ciphertexts ctji , for all slots i ∈ [n] and all j ∈ [Qi]. Next, we use the Dk-MDDH assumption
to argue that [〈rρ, zi〉]T is indistinguishable from a uniform random value and thus perfectly hides

〈x1,1
i ,yρ,βi 〉 for the first ciphertext of each slot: ct1i . For all the other remaining 〈xj,1i ,yρ,βi 〉, for

j ∈ [Qi], j > 1, we use the fact that 〈xj,1i −x
1,1
i ,yρ.0i 〉 = 〈xj,1i −x

1,1
i ,yρ.1i 〉, as implied by the game’s

restrictions.

Proof of Theorem 4. We proceed via a series of Games G0,G1,G1.ρ, for ρ ∈ [Qf + 1], described in
Figure 14. An overview is provided in Figure 13. Let A be a PPT adversary, and λ ∈ N be the
security parameter. We denote by AdvGi(A) the advantage of A in game Gi.

G0: is the experiment many-SEL-wFH-INDMIFE0 (see Definition 6).

G1: we replace the inner encryption of xj,0i by encryptions of xj,1i , for all i ∈ [n], j ∈ [Qi],
using the many-SEL-IND security of MIFE ′. This is possible due to the weak function-hiding
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New function-hiding scheme MIFE

Setup(1λ,Fm,X,Yn ):

(mpk′,msk′)← Setup′(1λ,Fm,X,Yn )
∀i ∈ [n] : (mpki,mski)← FE .Setup(1λ,F`,X,Y1 )
mpk :=

(
{mpki}i∈[n],mpk′

)
, msk :=

(
{mski}i∈[n],msk′

)
return (mpk,msk)

Enc(msk, i,xi):

[ctini ]1 := Enc′(msk′, i,xi)
ctouti := FE .KeyGen(mski, [ct

in
i ]1)

return ctouti

KeyGen(msk,y1‖ · · · ‖yn):

({[skini ]2}i∈[n], [z]T )← KeyGen′
(
msk′,y1‖ · · · ‖yn

)
∀i ∈ [n] : skouti ← FE .Enc(mski, [sk

in
i ]2)

sky1‖···‖yn :=
(
{skouti }i∈[n], [z]T

)
return sky1‖···‖yn

Dec
((
{skouti }i∈[n], [z]T

)
, {ctouti }i∈[n]

)
:

∀i ∈ [n] : [ai]T ← FE .Dec(ctouti , skouti )
return the discrete log of

(∏n
i=1[ai]T

)
/[z]T

Fig. 12. Many-SEL-wFH-IND secure, private-key, multi-input, FE for the class Fm,X,Yn . Here FE :=
(FE .Setup,FE .Enc,FE .KeyGen,FE .Dec) is a one-SEL-SIM secure, single-input FE for F`,X,Y1 , where by ` we de-
note the output size of Enc′ and KeyGen′, and MIFE ′ := (Setup′,Enc′,KeyGen′,Dec′) is the many-AD-IND secure,
multi-input FE from Figure 11.

constraint, which states in particular that
∑n

i=1〈x
ji,0
i ,y

jf ,0
i 〉 =

∑n
i=1〈x

ji,1
i ,y

jf ,0
i 〉, for all indices

ji ∈ [Qi], jf ∈ [Qf ].

G1.ρ: for the first ρ− 1 queries to KeyGen, we replace inner secret key KeyGen′
(
msk′,y0

1‖ · · · ‖y0
n

)
,

by KeyGen′
(
msk′,y1

1‖ · · · ‖y1
n

)
. Note that G1 is the same as G1.1, and G1.Qf+1 is the same as

many-SEL-wFH-INDMIFE1 .

We prove G0 ≈c G1 in Lemma 4, and G1.ρ ≈c G1.ρ+1 for all ρ ∈ [Qf ] in Lemma 5. ut

Lemma 4 (G0 to G1). There exists a PPT adversary B1 such that

AdvG0(A)− AdvG1(A) ≤ Advmany-SEL-IND
MIFE ′,B1 (λ).

Proof. In order to show that we can switch xj,0i to xj,1i , we rely on the security of the underlying
MIFE ′ scheme. Intuitively, adding an additional layer of encryption on the decryption keys skini
cannot invalidate the security of the underlying MIFE ′.

More formally, we design an adversary B1 against the many-SEL-IND security of MIFE ′.
Adversary B1 draws public and secret keys for the outer encryption layer and then uses its own
experiment to simulate either G0 or G1. We describe adversary B1 in Figure 15 and give a textual
description here.

Simulation of master public key mpk. Since the game is selective, the adversary B1 first
gets the challenges {xj,bi }i∈[n],j∈[Qi],b∈{0,1} from A, and it sends them to its experiment many-SEL-

INDMIFE
′

β . Then, B1 receives the public key mpk′ of the MIFE ′ scheme. To construct the full
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Game [ctin,ki ]1 [skin,ji ]2 justification/remark

G0 Enc′(msk′, i,xk,0i ) KeyGen′(msk′,yj,01 ‖ . . . ‖y
j,0
n )

many-SEL-wFH-IND0

security game

G1 Enc′(msk′, i, xk,1i ) KeyGen′(msk′,yj,01 ‖ . . . ‖y
j,0
n ) many-SEL-IND of MIFE ′

G1.ρ Enc′(msk′, i,xk,1i )
KeyGen′(msk′, yj,11 ‖ . . . ‖y

j,1
n ), for j < ρ

KeyGen′(msk′,yj,01 ‖ . . . ‖y
j,0
n ), for j ≥ ρ

Lemma 5

Fig. 13. An overview of the games used in the proof of Theorem 4. By [ctin,ki ]1 and [skin,ji ]2 we denote the kth

ciphertext and the jth decryption key of the inner scheme MIFE ′.

G0, G1, G1.ρ , for ρ ∈ [Qf + 1]:

{xj,βi }i∈[n],j∈[Qi],β∈{0,1}, {y
j,β
i }i∈[n],j∈[Qf ],β∈{0,1} ← A(1λ,Fm,X,Yn )

(mpk′,msk′)← Setup′(1λ,Fm,X,Yn )
∀i ∈ [n] : (mpki,mski)← FE .Setup(1λ,F`,X,Y1 )
mpk :=

(
{mpki}i∈[n],mpk′

)
, msk :=

(
{mski}i∈[n],msk′

)
∀i ∈ [n], j ∈ [Qi]:

[ctin,ji ]1 := Enc′(msk′, i,xj,0i ), [ctin,ji ]1 := Enc′(msk′, i,xj,1i )

ctout,ji := FE .KeyGen(mski, [ct
in,j
i ]1)

α← AKeyGen(msk,·) (mpk, {ctout,ji }i∈[n],j∈[Qi]

)
Output: α.

KeyGen
(
msk, (yj,β1 ‖ · · · ‖yj,βn )β∈{0,1}

)
:(

{[skini ]2}i∈[n], [z]T
)
← KeyGen′

(
msk′,y0

1‖ · · · ‖y0
n

)
If j < ρ:

(
{[skini ]2}i∈[n], [z]T

)
← KeyGen′

(
msk′,y1

1‖ · · · ‖y1
n

)
skouti ← FE .Enc(mski, [sk

in
i ]2)

sky1‖···‖yn :=
(
{skouti }i∈[n], [z]T

)
return sky1‖···‖yn

Fig. 14. Games for the proof of Theorem 4. In each procedure, the components inside a solid (dotted) frame are only
present in the games marked by a solid (dotted) frame.

public key, it draws (mpki,mski) ← FE .Setup(1κ,F `,X,Y1 ), for all slots i ∈ [n], independently. It
then sets mpk := {mpki}i∈[n] ∪ {mpk′} and returns mpk to adversary A.

Simulation of the challenge ciphertexts. The adversary B1 receives [ctin,ji ]1 from the encryption
oracle of the experiment many-SEL-INDMIFE

′

β , for all i ∈ [n]. This corresponds to encryptions of

either xj,βi , for β = 0 or 1. Since it knows mski, it computes ctout,ji := FE .KeyGen(mski, [ct
in,j
i ]1) for

all i ∈ [n] and returns {ctout,ji }i∈[n] to A.

Simulation of KeyGen(msk, ·). On every secret key query (yb1‖ . . . ‖ybn)b∈{0,1}, adversary B1

queries the KeyGen′ oracle of the experiment many-SEL-INDMIFE
′

β on y0
1‖ . . . ‖y0

n. It obtains

{[skini ]2}i∈[n], [z]T . Finally, it computes skouti := FE .Enc(mpki, [sk
in
i ]2) and returns ({skouti }i∈[n], [z]T )

to A.

ut
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B1

(
1λ, {xj,bi }i∈[n],j∈[Qi],b∈{0,1}, {y

j,b
i }i∈[n],j∈[Qf ],b∈{0,1}

)
:

-Simulation of the master public key mpk:
sends {xj,bi }i∈[n],j∈[Qi],b∈{0,1} to Exp

(mpki,mski)← FE .Setup(1λ,F`,X,Y1 )
it receives mpk′ from Exp
mpk := {mpki}i∈[n] ∪ {mpk′}
return mpk

-Simulation of ciphertexts:
receives [ctin,ji ]1 from Exp
ctout,ji := FE .KeyGen(mski, [ct

in,j
i ]1)

return ctout,ji

-Simulation of KeyGen
(
msk, (yj,b1 ‖ · · · ‖yj,bn )b∈{0,1}

)
:

receive ({[skin,ji ]2}i∈[n], [z]T ) from Exp

skout,ji := FE .Enc(mpki, [sk
in,j
i ]2)

return sky1‖···‖yn :=
(
{skout,ji }i∈[n], [z]T

)
Fig. 15. Adversary B1 distinguishes between two cases, case 1: Exp = many-SEL-INDMIFE

′

0 , [ctin,ji ]1 :=

Enc′(msk′, i,xj,0i ) and case 2: Exp = many-SEL-INDMIFE
′

1 , [ctin,ji ]1 := Enc′(msk′, i,xj,1i ). KeyGen queries are
answered identically in both cases without knowing msk′ by calling the KeyGen′ oracle of Exp and encrypting the
skin,ji responses under mpki.

Lemma 5 (G1.ρ to G1.ρ+1). For all ρ ∈ [Qf ], there exist PPT adversaries Bρ and B′ρ such that

AdvG1.ρ(A)− AdvG1.ρ+1(A) ≤ 2n · Advone-SEL-SIM
FE,Bρ (λ, ) + 2 ·AdvDk-mddh

G1,B′ρ
(λ) + 2k

p .

Proof of Lemma 5. We proceed via a series of Games Hρ,Hρ.β,H
′
ρ.β, for ρ ∈ [Qf +1], and β ∈ {0, 1},

described in Figure 17. Note that Hρ is G1.ρ. We prove that:

G1,ρ ≡ Hρ ≈c Hρ.0 ≈c H′ρ.0 ≡ H′ρ.1 ≈c Hρ.1 ≈c Hρ+1 ≡ G1,ρ+1.

Hρ to Hρ.0: we replace (FE .Setup,FE .KeyGen,FE .Enc) by the efficient simulator (FE .S̃etup,
FE .K̃eyGen,FE .Ẽnc), using the one-SEL-SIM security of the single-input FE, via a hybrid ar-
gument across all slots i ∈ [n].

Lemma 6 (Hρ ≈c Hρ.0:). There exists a PPT adversary B1.ρ such that

AdvHρ(A)− AdvHρ.0(A) ≤ n · Advone-SEL-SIM
FE,B1.ρ (λ)

Proof. We use a hybrid argument over all slots t ∈ [n]. That is, we define Hρ.1.t for t ∈ [n], where the

for the first t slots, (FE .Setup,FE .KeyGen,FE .Enc) is replaced with (FE .S̃etup,FE .K̃eyGen,FE .Ẽnc)
(the games are described in Figure 16).

Note that Hρ.0.0 is Hρ and Hρ.0.n is Hρ.0. Using the one-SEL-SIM security of FE , we have

AdvHρ.0.t(A)− AdvHρ.0.t+1(A) ≤ Advone-SEL-SIM
FE,Bρ.t (λ).

The reduction showing adversary Bρ.t is rather straightforward and is omitted. The idea is that
Bρ.t generates all the keys involved in the scheme, except for (mpkt,mskt). For the t-th one, it plugs

the one it receives from the one-SEL-SIMFE experiment, i.e., either mpkt or m̃pkt; this allows it to
perfectly simulate the view of A. ut
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Hρ.0.t for ρ ∈ [Qf + 1], t ∈ [n+ 1] :

{xj,bi }i∈[n],j∈[Qi],b∈{0,1}, {y
jf ,b

i }i∈[n],jf∈[Qf ],b∈{0,1} ← A(1λ,Fm,X,Yn )(
mpk′ :=

(
{mpk′i}i∈[n]

)
,msk′ :=

(
{msk′i,zi}i∈[n]

) )
← Setup′(1λ,Fm,X,Yn )

∀i < t :
(
m̃pki, m̃ski

)
← FE .S̃etup(1λ,F`,X,Y1 )

∀j ∈ [Qi]: ct
out,j
i := FE .K̃eyGen(m̃ski, [ct

in,j
i ]1, [〈xj,1i ,yβi 〉+ 〈zi, rρ〉]1)

∀i ≥ t : (mpki,mski)← FE .Setup(1λ,F`,X,Y1 )

∀j ∈ [Qi]: ct
out,j
i := FE .KeyGen(mski, [ct

in,j
i ]1)

mpk :=
(
{m̃pki}i≤t ∪ {mpki}i>t,mpk′

)
msk :=

(
{m̃ski}i≤t ∪ {mski}i>t,msk′

)
α← AKeyGen(msk,·) (mpk, {ctout,ji }i∈[n],j∈[Qi]

)
Output: α.

KeyGen
(
msk, (yj,b1 ‖ · · · ‖yj,bn )b∈{0,1} ∈ (Zm)n

)
:

On the j’th query, j < ρ:(
{[skini ]2 := FE .KeyGen(msk′i,y

1
i ‖rj)}i∈[n]

[z]T := [
∑
i〈zi, r

j〉]T

)
← KeyGen′

(
msk′,y1

1‖ · · · ‖y1
n

)
∀i ∈ [n] : skouti ← FE .Enc(mski, [sk

in
i ]2)

On the j’th query, j > ρ:(
{[skini ]2 := FE .KeyGen(msk′i,y

0
i ‖rj)}i∈[n]

[z]T := [
∑
i〈zi, r

j〉]T

)
← KeyGen′

(
msk′,y0

1‖ · · · ‖y0
n

)
∀i ∈ [n] : skouti ← FE .Enc(mski, [sk

in
i ]2)

On the j’th query, j = ρ:
for i < t: skouti ← FE .Ẽnc(m̃ski)
for i ≥ t: [skini ]2 ← KeyGen′

(
msk′,y0

1‖ · · · ‖y0
n

)
, skouti ← FE .Enc(mski, [sk

in
i ]2)

Return sky1‖···‖yn :=
(
{skouti }i∈[n], [z]T

)

Fig. 16. Games for the proof of Lemma 6.

Hρ.β ≈c H′
ρ.β, for all β ∈ {0, 1}: we replace {[zi]1, [〈zi, rρ〉]1}i∈[n] by {[zi]1, [z̃i]1}i∈[n], where

rρ ←r Zkp is the randomness picked by KeyGen on its ρ’th query, zi ←r Zkp, and z̃i ←r Zp. This is
justified using the Dk-MDDH assumption in G1.

Lemma 7 (From Hρ.β to H′ρ.β). For all ρ ∈ [Qf ], β ∈ {0, 1}, there exists a PPT adversary Bρ.β
such that

AdvHρ.β (A)− AdvH′ρ.β (A) ≤ AdvDk-mddh
G1,Bρ.β (λ) + k

p .

Proof. Precisely we first build an adversary B′ρ,β against Un,k-MDDH, and then the proof is ob-
tained by applying Lemma 1 (Dk-MDDH ⇒ Un,k-MDDH). Such adversary can be defined quite
straightforwardly so that it provides either {[zi]1, [〈zi, rρ〉]1}i∈[n] or {[zi]1, [z̃i]1}i∈[n] to A (thus
simulating either Hρ.β or H′ρ.β respectively) according to the distribution of its own input. The only

observation is that by the Un,k-MDDH definition,
(
z1‖ · · · ‖zn

)>
is uniformly random over full-rank

matrices in Zn×kp , whereas in the simulated experiment it is supposed to be uniformly random over

Zn×kp . However, these two distributions are k/p-close (assuming n > k). ut
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Lemma 8 (H′ρ.0 ≡ H′ρ.1).
AdvH′ρ.0(A) = AdvH′ρ.1(A)

Proof. We argue that these games are the same, using the change of variable: z̃i → z̃i−〈x1,1
i ,yρ,bi 〉,

and the fact that
∑

i〈x
1,1
i ,yρ,bi 〉 is independent of b ∈ {0, 1}. The fact that our games are selective

allows us to perform this change of variables without changing the distribution of the game, since
z̃i is independent of the x or y values. Moreover, for all i ∈ [n], j ∈ [Qi], 〈xj,1i − x

1,1
i ,yρ,bi 〉 is

independent of b ∈ {0, 1}, by the definition of the security game. ut

Lemma 9 (From Hρ.1 to Hρ+1). There exists a PPT adversary B′′ρ+1 such that

AdvHρ.1(A)− AdvHρ+1(A) ≤ n · Advone-SEL-SIM
FE,B′′ρ+1

(λ)

This transition is symmetric to the transition between Hρ and Hρ.0, upper-bounded in Lemma 6.

Namely, we replace (FE .S̃etup,FE .K̃eyGen,FE .Ẽnc) by (FE .Setup,FE .KeyGen,FE .Enc), using the
one-SEL-SIM security of the single-input FE, via a hybrid argument across all slots i ∈ [n].

Summing up, obtain |AdvG1.ρ(A)−AdvG1.ρ+1(A)| ≤ 2n·Advone-SEL-SIM
FE,B1.ρ (λ, )+2·AdvDk-mddh

G1,B′1.ρ
(λ)+

2k
p , which implies that G1.ρ ≈c G1.ρ+1. ut

5.2 Adaptively-secure Multi-input Function-Hiding FE for Inner Product

In this section, we prove that if we instantiate the construction described in Figure 12 (Section 5),
with the many-AD-IND-secure, single-input FE from [ALS16], we obtain an adaptively secure
function-hiding MIFE. Specifically, we consider the generalized version of single-input FE, as de-
scribed in [AGRW17] (recalled in Figure 7). For completeness, we present this new MIFE instantia-
tion in Figure 18. Proving adaptive security for our construction in a generic way would require the
underlying FE to achieve strong security notions, such as one-AD-SIM (which is not achieved by
any known scheme). We overcome this issue, managing to prove adaptive security of our concrete
MIFE in Figure 12, using non-generic techniques inspired by [AGRW17].

Theorem 5 (many-AD-IND-wFH security). If the Dk-MDDH assumption holds in G1 and
G2, then the multi-input FE for Fm,X,Yn described in Figure 18 is many-AD-IND-wFH-secure.

Proof overview. Similarly to the selective-security proof presented in Section 5.1, we prove weakly-
function-hiding. This is sufficient, since it can be transformed generically into a fully function-hiding
MIFE by using techniques from [LV16] (see Appendix B for more details).

To prove weak function-hiding we proceed in two stages. First, we switch from Enc(msk, i,xj,0i )

to Enc(msk, i,xj,1i ) for all slots i ∈ [n] and all queries j ∈ [Qi] simultaneously, using the many-AD-
IND security ofMIFE ′ (the underlying MIFE from [AGRW17]). For completeness, we also give a
concrete description of MIFE ′ in Figure 24, Appendix C.

Secondly, we use a hybrid argument over all Qf queried keys, switching them one by one
from KeyGen(msk,y0

1‖ · · · ‖y0
n) to KeyGen(msk,y1

1‖ · · · ‖y1
n). To switch the ρ’th key, we use the

security of FE in a non-generic way. Structurally, we do a proof similar to the selective one of the
previous section. In order to apply complexity leveraging, we first do all the computational steps.
Afterwards, only at some particular transition in the proof (transition from H′′ρ.0 to H′′ρ.1 in the proof
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Hρ , Hρ.β , H′ρ.β for ρ ∈ [Qf + 1], β ∈ {0, 1} :

{xj,bi }i∈[n],j∈[Qi],b∈{0,1}, {y
jf ,b

i }i∈[n],jf∈[Qf ],b∈{0,1} ← A(1λ,Fm,X,Yn )(
mpk′ :=

(
{mpk′i}i∈[n]

)
,msk′ :=

(
{msk′i,zi}i∈[n]

))
← Setup′(1λ,Fm,X,Yn )

∀i ∈ [n] : (mpki,mski)← FE.Setup(1λ,F`,X,Y1 )

∀i ∈ [n] :
(
m̃pki, m̃ski

)
← FE.S̃etup(1λ,F`,X,Y1 )

mpk :=
(
{mpki}i∈[n],mpk′

)
, msk :=

(
{mski}i∈[n],msk′

)
∀i ∈ [n], j ∈ [Qi]: [ctin,ji ]1 := Enc′(msk′, i,xj,1i )

ctout,ji := FE.KeyGen(mski, [ct
in,j
i ]1)

ctout,ji := FE.K̃eyGen(m̃ski, [ct
in,j
i ]1, [〈xj,1i ,yβi 〉+ 〈zi, rρ〉]1)

ctout,ji := FE.K̃eyGen(m̃ski, [ct
in,j
i ]1, [〈xj,1i ,yβi 〉+ z̃i]1)

α← AKeyGen(msk,·)
(
mpk, {ctout,ji }i∈[n],j∈[Qi]

)
Output: α.

KeyGen
(
msk, (yj,b1 ‖ · · · ‖y

j,b
n )b∈{0,1} ∈ (Zm)n

)
:

On the j’th query, j < ρ:(
{[skini ]2 := FE.KeyGen(msk′i,y

1
i ‖rj)}i∈[n]

[z]T := [
∑
i〈zi, rj〉]T

)
← KeyGen′

(
msk′,y11‖ · · · ‖y1n

)
∀i ∈ [n] : skouti ← FE.Enc(mpki, [sk

in
i ]2)

On the j’th query, j > ρ:(
{[skini ]2 := FE.KeyGen(msk′i,y

0
i ‖rj)}i∈[n]

[z]T := [
∑
i〈zi, rj〉]T

)
← KeyGen′

(
msk′,y01‖ · · · ‖y0n

)
∀i ∈ [n] : skouti ← FE.Enc(mpki, [sk

in
i ]2)

On the j’th query, j = ρ:(
{[skini ]2 := FE.KeyGen(msk′i,y

0
i ‖rρ)}i∈[n]

[z]T := [
∑
i〈zi, rρ〉]T

)
← KeyGen′

(
msk′,y01‖ · · · ‖y0n

)
∀i ∈ [n] : skouti ← FE.Enc(mpki, [sk

in
i ]2)

∀i ∈ [n] : skouti ← FE.Ẽnc(m̃ski)

Return sky1‖···‖yn
:=
(
{skouti }i∈[n], [z]T

)
Fig. 17. Games for the proof of Lemma 5. In each procedure, the components inside a solid (dotted, gray) frame are
only present in the games marked by a solid (dotted, gray) frame.

of Lemma 14), we use complexity leveraging, and we simulate the selective proof arguments. This
multiplies the security loss by an exponential factor. We can do so here because this particular
transition is perfect: the exponential term is multiplied by a zero advantage.

Although this proof strategy shares similarities with the adaptive security proof the MIFE in
[AGRW17], our proof has some crucial differences: mainly, the role of the keys and ciphertexts in
our proof is switched. Since the multi-input model is asymmetric with respect to the ciphertexts
and decryption keys (only ciphertexts can be mixed-and-matched), this results in a different proof
strategy.
Proof of Theorem 5. We proceed via a series of Games G0,G1,G1.ρ, for ρ ∈ [Qf + 1], described in
Figure 20. Let A be a PPT adversary, and λ ∈ N be the security parameter. For all games Gi, we
denote by AdvGi(A) the advantage of A in Gi.

G0: is the experiment many-AD-wFH-INDMIFE0 (see Definition 5).
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Setup(1λ,Fm,X,Yn ):

PG ←r GGen(1λ),A1,B1, . . . ,An,Bn ←r Dk, U1, . . . ,Un ←r Z(k+m)×(k+1)
p

V1, . . . ,Vn ←r Z(2k+m+1)×(k+1)
p , z1, . . . , zn ←r Zkp

mpk := PG, msk := {Ai,Bi,Ui,Vi,zi}i∈[n]
return (mpk,msk)

Enc(msk, i,xi ∈ Zmp ):

si ←r Zkp, ci := Aisi, c
′
i :=

(
xi
zi

)
+ UiAisi, c

′′
i :=

(
ci
c′i

)>
Vi

return ([ci]1, [c
′
i]1, [c

′′
i ]1)

KeyGen(msk,y1‖ · · · ‖yn ∈ (Zmp )n):

r ←r Zkp, z := 〈z1 + · · ·+ zn, r〉

∀i ∈ [n] : ti ←r Zkp, di := Biti, d′i :=

−U
>
i

(
yi
r

)
(
yi
r

)
+ ViBiti

return
(
{[di]2, [d′i]2}i∈[n], [z]T

)
Dec

((
{[di]2, [d′i]2}i∈[n], [z]T

)
, {[ci]1, [c′i]1, [c′′i ]1}i∈[n]

)
:

out←

(∏
i

(
e

([
ci
c′i

]>
1

, [d′i]2

)
/e ([c′′i]1, [di]2)

))
/[z]T

return discrete log of out

Fig. 18. Many-AD-IND-wFH secure, multi-input FE scheme for the class Fm,X,Yn (self-contained description).

G1: we replace the inner encryption of xj,0i by encryptions of xj,1i , for all i ∈ [n], j ∈ [Qi], using
the many-AD-IND security of MIFE := (Setup′,Enc′,KeyGen′,Dec′).

G1.ρ: for the first ρ − 1 queries to KeyGen, we replace the inner secret key KeyGen′
(
msk′,y0

1‖
· · · ‖y0

n

)
, by KeyGen′

(
msk′,y1

1‖ · · · ‖y1
n

)
. Note that Game1 is the same as Game1.1, and Game1.Qf+1

is the same as many-AD-wFH-INDMIFE1 .

We prove G0 ≈c G1 in Lemma 10, and G1.ρ ≈c G1.ρ+1 for all ρ ∈ [Qf ] in Lemma 11. ut

Lemma 10 (G0 to G1). There exists a PPT adversary B0 such that

|AdvG0(A)− AdvG1(A)| ≤ Advmany-AD-IND
MIFE,B0 (λ).

Proof. This proof is very similar to the proof of Lemma 4. We design an adversary B0 against
the many-AD-IND security of the scheme from Figure 24 (which is many-AD-IND-secure by The-
orem 6).

Note that the vectors [ci]1, [c
′
i]1 output by Enc (see Figure 18) exactly correspond to a ciphertext

for the MIFE scheme from [AGRW17]. Thus, using the many-AD-IND security of the latter, we
can switch encryption of xj,0i into encryption of xj,1i for all i ∈ [n], j ∈ [Qi]. We now describe how
B1 simulates A’s view.

Simulation of the public key. Given the mpk := PG, B0 draws matrices Bi ←r Dk, Vi ←r

Z(2k+m+1)×(k+1)
p , and forwards the public key PG to A.
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Simulation of the ciphertexts. Consider the case when A makes a plaintext query (xj,0i ,xj,1i )
to B1. Adversary B0 forwards the queries to the many-AD-IND challenger, which replies with

([ci]1, [c
′
i]1). B1 simply computes [c′′i ]1 :=

[
ci
c′i

]>
1

·Vi and sends ([ci]1, [c
′
i]1, [c

′′
i ]1) to A.

Simulation of the decryption keys. Upon receiving a query (yj,01 ‖ . . . ‖y
j,0
n ,yj,11 ‖ . . . ‖y

j,1
n ), B1

forwards it to the many-AD-IND challenger. It obtains back ({[skini ]2}i∈[n], [z]T ). It then draws

ti ←r Zkp and computes [di]2 = [Biti]2 and [d′i] := [skini ]2 · [ViBiti]2. It sends ([di]2, [d
′
i]2, [z]T ) back

to A.
ut

Lemma 11 (G1.ρ to G1.ρ+1). For all ρ ∈ [Qf ], there exists PPT adversary Bρ such that:

|AdvG1.ρ(A)− AdvG1.ρ+1(A)| ≤ (2n+ 2)AdvDk-mddh
G2,Bρ (λ) + 2(n+k)

p .

Proof of Lemma 11. We proceed via a series of games Hρ, Hρ.β, H′ρ.β, H′′ρ.β for ρ ∈ [Qf + 1] and
β ∈ {0, 1} described in Figure 21. Note that Hρ is G1.ρ. We summarize our sequence of hybrids
between G1,ρ and G1,ρ+1 in Figure 19.

G1,ρ ≡ Hρ ≈c Hρ,0 ≡ H′ρ,0 ≈c H′′ρ,0 ≡ H′′ρ,1 ≈c H′ρ,1 ≡ Hρ,1 ≈c Hρ+1 ≡ G1,ρ+1

Fig. 19. Summary of the sequence of hybrids in the proof of Lemma 11

Hρ ≈c Hρ.0: we change the distribution of the vectors [ci]1 computed by Enc(i, ·, ·), for all slots
i ∈ [n], using the Dk-MDDH assumption (this is similar to Lemma 7).

Lemma 12 (Hρ to Hρ.0). For all ρ ∈ [Qf ], there exists a PPT adversary Bρ such that:

AdvHρ(A)− AdvHρ.0(A) ≤ n ·AdvDk-mddh
G2,Bρ (λ) + n

p .

Proof of Lemma 10. Here, we switch ([Bi]2, [Bisi]2) computed by Enc(i, ·, ·) to ([Bi]2, [Bisi+ ui ]2),

where Bi ←r Dk, ui ←r Zk+1
p \ span(Bi), and si ←r Zkp. We do so for all input slots i ∈ [n], using

a hybrid argument. This change is justified by the facts that:

– By the Dk-MDDH assumption, we can switch ([Bi]2, [Bisi]2) to ([Bi]2, [Bisi + ui ]2), where

Bi ←r Dk, si ←r Zkp, and ui ←r Zk+1
p .

– The uniform distribution over Zk+1
p and Zk+1

p \ span(Bi) are 1
p -close, for all Bi of rank k.

Combining these facts, we obtain a PPT adversary Bρ such that

AdvHρ(A)− AdvHρ.0(A) ≤ n ·AdvDk-mddh
G2,Bρ (λ) + n

p .

ut
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Hρ.β ≡ H′
ρ.β, for all β ∈ {0, 1}: here, for all slots i ∈ [n], we replace the way the vec-

tor [d′i]1 is computed by KeyGen(msk, ·) on its ρ’th query, using an information theoretic argu-
ment. Looking ahead, we want to make it possible to simulate the adversary’s view only knowing
[rρ]1, [zi]1, [〈zi, rρ〉]T , and not [rρ]2. This is in order to apply Dk-MDDH in H′ρ.β in the next tran-
sition.

Lemma 13 (Hρ.β to H′ρ.β, for all β ∈ {0, 1}). For all β ∈ {0, 1}, ρ ∈ [Qf ],

AdvHρ.β (A) = AdvH′ρ.β (A).

Proof of Lemma 13. We argue that Hρ.β and H′ρ.β are the same, using the fact that for all i ∈ [n],

Bi ∈ Z(k+1)×k
p , b⊥i ∈ orth(Bi), Ui ∈ Z(k+m)×(k+1)

p and all rρ ∈ Zkp, the following distributions are
identical:

Vi and Vi −

−U>i

(
0
rρ

)
(

0
rρ

)
 (b⊥i )>,

where Vi ←r Z(2k+m+1)×(k+1)
p . This way, we obtain

d′i :=

−U>i

(
yρ,bi
0

)
(
yρ,bi
0

)
+ Vidi and c′′i :=

(
ci
c′i

)>
Vi + 〈zi, rρ〉 · (b⊥i )>,

as in H′ρ.β. ut

H′
ρ.β ≈c H′′

ρ.β: we replace {[zi]1, [〈zi, rρ〉]1}i∈[n] to {[zi]1, [z̃i]1}i∈[n], where z̃i ←r Zp, using the
Dk-MDDH assumption.

Lemma 14 (From H′ρ.β to H′′ρ.β). For all β ∈ {0, 1}, ρ ∈ [Qf ], there exists a PPT adversary Bρ,β
such that:

AdvH′ρ.β (A)− AdvH′′ρ.β (A) ≤ AdvDk-mddh
PGGen,Bρ.β (λ) + k

p .

Proof. This proof is very similar to the proof of Lemma 7. We design an adversary B′ρ,β against

Un,k-MDDH, such that AdvH′ρ.β (A) − AdvH′′ρ.β (A) ≤ Adv
Un,k-mddh
PGGen,G1,Bρ,β (λ). The lemma then follows

from Lemma 1 (Dk-MDDH ⇒ Un,k-MDDH).

More precisely, note that
(
z1‖ · · · ‖zn

)>
is uniformly random over Zn×kp , which is k

p -close to
uniformly random over full-rank n times k matrices over Zp (assuming n > k). Thus, using the
Un,k-MDDH assumption, we can switch {[zi]1, [〈zi, rρ〉]1}i∈[n] to {[zi]1, [z̃i]1}i∈[n], where z̃i ←r Zp.

ut
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H′′
ρ.0 ≡ H′′

ρ.1: we go the selective variant of H′′ρ.0, called H?ρ.0, via complexity leveraging (i.e. guessing
the challenge), then use the following change of variables:

Vi → Vi +

−U>i

(
yρ,1i − y

ρ,0
i

0

)
(
yρ,1i − y

ρ,0
i

0

)
 (b⊥i )>,

and
z̃i → z̃i−〈x1,1

i ,yρ,1i −y
ρ,0
i 〉 to switch to H?ρ.1. We use the fact that

∑
i〈x

1,1
i ,yρ,1i −y

ρ,0
i 〉 = 0, and

that for all i ∈ [n], j ∈ [Qi], we have: 〈xj,1i −x
1,1
i ,yρ,1i −y

ρ,0
i 〉 = 0, by definition of the security game.

We switch back to the adaptive variant, H′′ρ.1, ”unguessing”, which incurs an exponential security
loss, multiplied by zero.

Summing up, we have G1.ρ ≈c G1.ρ+1 (see Figure 19 for a summary of the hybrids).

ut

G0, G1, G1.ρ for ρ ∈ [Qf + 1]:

PG ←r GGen(1λ),A1,B1, . . . ,An,Bn ←r Dk, U1, . . . ,Un,←r Z(k+m)×(k+1)
p , V1, . . . ,Vn,←r Z(2k+m+1)×(k+1)

p

z1, . . . , zn ←r Zkp
mpk := PG
msk := {Ai,Bi,Ui,Vi,zi}i∈[n]
α← AKeyGen(msk,·),Enc(·,·,·) (mpk)
Output: α.

Enc
(
i, (xj,bi )b∈{0,1}

)
:

si ←r Zkp, ci := Aisi

c′i :=

(
xj,0i
zi

)
+ UiAisi, c′i :=

(
xj,1i
zi

)
+ UiAisi

c′′i :=

(
ci
c′i

)>
Vi

Return cti := ([ci]1, [c
′
i]1, [c

′′
i ]1)

KeyGen
(
msk, (yj,b1 ‖ · · · ‖yj,bn )b∈{0,1}

)
:

rj ←r Zkp, z := 〈z1 + · · ·+ zn, r
j〉

∀i ∈ [n] : ti ←r Zkp, di := Biti

d′i :=

−U
>
i

(
yj,0i
rj

)
(
yj,0i
rj

)
+ ViBiti, If j < ρ: d′i :=

−U
>
i

(
yj,1i
rj

)
(
yj,1i
rj

)
+ ViBiti

return
(
{[di]2, [d′i]2}i∈[n], [z]T

)
Fig. 20. G0, G1.ρ for ρ ∈ [Qf + 1], for the proof of . In each procedure, the components inside a solid (dotted) frame
are only present in the games marked by a solid (dotted) frame.
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Hρ, Hρ.β , H′ρ.β , H′′ρ.β for ρ ∈ [Qf + 1] and β ∈ {0, 1}:

PG ←r GGen(1λ),A1,B1, . . . ,An,Bn ←r Dk, U1, . . . ,Un,←r Z(k+m)×(k+1)
p , V1, . . . ,Vn,←r Z(2k+m+1)×(k+1)

p

z1, . . . , zn ←r Zkp
∀i ∈ [n] : ui ←r Zk+1

p \ span(Bi), b
⊥
i ←r orth(Bi) s.t. 〈ui, b⊥i 〉 = 1

z̃1, . . . , z̃n ←r Zp
mpk := PG
msk := {Ai,Bi,Ui,Vi,zi}i∈[n]
α← AKeyGen(msk,·),Enc(·,·,·) (mpk)
Output: α.

Enc
(
i, (xj,bi )b∈{0,1}

)
:

si ←r Zkp, ci := Aisi

c′i :=

(
xj,1i
zi

)
+ UiAisi

c′′i :=

(
ci
c′i

)>
Vi − 〈zi, rρ〉 · (b⊥i )> , c′′i :=

(
ci
c′i

)>
Vi − z̃i · (b⊥i )>

Return ctji := ([ci]1, [c
′
i]1, [c

′′
i ]1)

KeyGen
(
msk, (yj,b1 ‖ · · · ‖yj,bn )b∈{0,1}

)
:

If j < ρ:

rj ←r Zkp, z := 〈z1 + · · ·+ zn, r
j〉

∀i ∈ [n] : ti ←r Zkp, di := Biti

d′i :=

−U
>
i

(
yj,1i
rj

)
(
yj,1i
rj

)
+ Vidi

If j > ρ:

rj ←r Zkp, z := 〈z1 + · · ·+ zn, r
j〉

∀i ∈ [n] : ti ←r Zkp, di := Biti

d′i :=

−U
>
i

(
yj,0i
rj

)
(
yj,0i
rj

)
+ Vidi

If j = ρ:

rρ ←r Zkp, z := 〈z1 + · · ·+ zn, r
ρ〉 , z :=

∑
i∈[n] z̃i

∀i ∈ [n] : ti ←r Zkp, di := Biti + ui

d′i :=

−U
>
i

(
yρ,0i
rρ

)
(
yρ,0i
rρ

)
+ Vidi, d′i :=

−U
>
i

(
yρ,βi
rρ

)
(
yρ,βi
rρ

)
+ Vidi , d′i :=

−U
>
i

(
yρ,βi
0

)
(
yρ,βi
0

)
+ Vidi

Return
(
{[di]2, [d′i]2}i∈[n], [z]T

)

Fig. 21. Hρ, Hρ.β , H′ρ.β , H′′ρ.β for ρ ∈ [Qf + 1] and β ∈ {0, 1}, for the proof of Lemma 11. In each procedure, the
components inside a solid (dotted, gray) frame are only present in the games marked by a solid (dotted, gray) frame.
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A One-SEL-SIM security of the one-time MIFE

Here we give the definition of one-SEL-SIM security for a multi-input functional encryption scheme.
Then we show that the one-time MIFE schemeMIFEot described in Figure 1 satisfies this security
notion, which implies the weaker one-SEL-IND security notion presented in Definition 3.

Definition 12 (one-SEL-SIM-secure FE). A multi-input functional encryption MIFE for

function Fn is one-SEL-SIM-secure if there exist PPT simulator algorithms15 (S̃etup, Ẽnc, K̃eyGen)
such that for every PPT (stateful) adversary A and every λ ∈ N, the following two distributions
are computationally indistinguishable:

Experiment REALMIFESEL (1λ,A):

{xi}i∈[n] ← A(1λ,Fn)

(mpk,msk)← Setup(1λ,Fn)
For all i ∈ [n], cti ← Enc(msk, i, xi)
α← AKeyGen(msk,·)(mpk, {cti}i∈[n])
Output: α

Experiment IDEALMIFESEL (1λ,A):

{xi}i∈[n] ← A(1λ,Fn)

(m̃pk, m̃sk)← S̃etup(1λ,Fn)

For all i ∈ [n], cti ← Ẽnc(m̃sk, i)

α← AO(·)(m̃pk, {cti}i∈[n])
Output: α

The oracle O(·) in the ideal experiment above is given access to another oracle that, given f ∈ Fn,

returns f(x1, . . . , xn), and then O(·) returns K̃eyGen(m̃sk, f, f(x1, . . . , xn)).
For every stateful adversary A, we define its advantage as

Advone-SEL-SIM
MIFE,A (λ)

=
∣∣∣Pr
[
REALMIFESEL (1λ,A) = 1

]
− Pr

[
IDEALMIFESEL (1λ,A) = 1

]∣∣∣ ,
and we require that for every PPT A, there exists a negligible function negl such that for all

λ ∈ N, Advone-SEL-SIM
FE,A (λ) = negl(λ).

Lemma 15. The one-time MIFE described in Figure 1 is one-SEL-SIM secure. Namely, for any
adversary A, Advone-SEL-SIM

MIFEot,A (λ) = 0.

Proof. Let us define the simulator algorithms as follows: S̃etup = Setupot, Ẽnc(m̃sk, i) = ui, and

K̃eyGen(m̃sk,y, aux)→ sky := z, where z :=
∑

i∈[n]〈ui,yi〉 − aux mod L.
Next, we use the fact that for all {xi ∈ ZmL }i∈[`], the following distributions are identical:

{ui mod L}i∈[n] and {ui − xi mod L}i∈[n], with ui ←r ZmL . Note that the independence of the xi
from the ui is only true in the selective security game. Therefore, using this fact we can rewrite
the experiment REALMIFE

ot

SEL (1λ,B) as HYB(1λ,B) in Figure 22. This hybrid is also identical to

the experiment IDEALMIFE
ot

SEL (1λ,B) when executed with our simulator algorithms. In particular,

observe that the oracle OH corresponds to the oracle O(·) which returns K̃eyGen(m̃sk,y, 〈x,y〉) for
every queried y. Thus, we obtain: Advone-SEL-SIM

MIFEot,B (λ) = 0. ut

15That is, S̃etup, Ẽnc, K̃eyGen correspond respectively to the simulated Setup,Enc,KeyGen.
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HYB(1λ,B):

{xi}i∈[n] ← B(1λ,FmL,n)
For all i ∈ [n],

ui ←r ZmL
cti ← ui mod L

α← BOH (·)({cti}i∈[`])
Output α

OH(y):

z :=
∑
i∈[n]〈ui,yi〉 − 〈x,y〉 mod L

Return z

Fig. 22. Experiment for the proof of Lemma 15.

B From Weak to Full Function-Hiding

In [LV16], the authors propose a simple transformation for turning a weak function-hiding FE
scheme into a full-fledged function hiding one. In this section, we show that the same transformation
is applicable in the multi-input case. For brevity, we use xi‖0 to denote that xi ∈ Zmp is padded with
m trailing zero. The new scheme consists in using the originalMIFE scheme to encrypt x′i = xi‖0
instead of xi, for every slot i ∈ [n]. Likewise, instead of generating keys for y = y1‖ . . . ‖yn, the keys
will be generated for y′ = (y1‖0)‖ . . . ‖(yn‖0). This does not change the result of the decryption,
since: ∑

i

〈xi‖0,yi‖0〉 =
∑
i

〈xi,yi〉.

Security is justified via a hybrid argument over Games 0 to 3. For every i ∈ {0, 1, 2}, the
advantage of an adversary A distinguishing between Gamei and Gamei+1 is negligible based on the
weak function-hiding security property. The transitions are more precisely described in Figure 23.

Game x′i y′i justification/remark

0 x0
i ‖0 y0

i ‖0 many-zzz-FH0 security game, zzz ∈{SEL, AD}

1 x0
i ‖x1

i 0‖y1
i weak function-hiding of the underlying scheme

2 x1
i ‖x1

i y1
i ‖0 weak function-hiding of the underlying scheme

3 x1
i ‖0 y1

i ‖0
weak function-hiding of the underlying scheme

many-zzz-FH1 security game, zzz ∈{SEL, AD}

Fig. 23. Sequence of games for transforming a weak multi-input function-hiding inner-product encryption scheme
into a full function-hiding one.

Notice that for every i ∈ {0, 1, 2}, Gamei can be argued computationally indistinguishable from
Gamei+1 based only on the weak function-hiding property. For example, for Game0 and Game1,
〈x′0,y′0〉 = 〈x′1,y′0〉 = 〈x′1,y′1〉, which implies that Game0 and Game1 are computationally
indistinguishable only due to the weak function-hiding of the underlying scheme. Applying the
same argument for i ∈ {1, 2}, we get that the scheme using paddings is fully function-hiding.

C Appendix - Adaptive (Non-Function-Hiding) Multi-Input Scheme

In this section we recall the adaptively-secure multi-input encryption scheme from [AGRW17], where
it was proven to be many-AD-IND-secure. This ensures that encryptions of xj,0i are indistinguishable
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from encryptions of xj,1i , for all slots i ∈ [n], and queries j ∈ [Qi] (in the presence of the constraints
from Definition 2, which avoid trivial attacks). Nevertheless, the scheme is not function hiding,
since the y values are encoded directly in the exponent (in Zp). In order to prove the many-AD-FH
security of our new scheme (see Figure 18), we will need to use the following result, proven in
[AGRW17]:

Theorem 6 (many-AD-IND security). Suppose the Dk-MDDH assumption holds in G1 and
G2. Then, the multi-input FE in Figure 24 is one-AD-IND-secure.

Setup(1λ,Fm,X,Yn ):

PG ←r GGen(1λ)
A1 . . . ,An ←r Dk
U1, . . . ,Un ←r Z(k+m)×(k+1)

p

z1, . . . , zn ←r Zkp
mpk := PG
msk := {Ai,Ui,zi}i∈[n]
return (mpk,msk)

Dec
((
{[ski]2}i∈[n], [z]T

)
, {[ci]1, [c′i]1}i∈[n]

)
:

out←

(∏
i e

([
ci
c′i

]>
1

, [ski]2

))
/[z]T

return discrete log of out

KeyGen(msk,y1‖ · · · ‖yn ∈ (Zmp )n):

r ←r Zkp, z := 〈z1 + · · ·+ zn, r〉
∀i ∈ [n] :

ski :=

−U
>
i

(
yi
r

)
(
yi
r

)


return
(
{[ski]2}i∈[n], [z]T

)
Enc(msk, i,xi ∈ Zmp ):

si ←r Zkp, ci := Aisi

c′i :=

(
xi
zi

)
+ UiAisi

return ([ci]1, [c
′
i]1)

Fig. 24. Many-AD-IND secure, private-key, multi-input FE scheme for the class Fm,X,Yn (self-contained description
from [AGRW17]).
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