
A Fast, Practical and Simple Shortest Path
Protocol for Multiparty Computation

Abdelrahaman Aly1,3 and Sara Cleemput2,3

1 Cryptography Research Centre, Technology Innovation Institute, Abu Dhabi, UAE.
2 Emweb bv, Herent, Belgium.

3 imec-COSIC, KU Leuven, Leuven, Belgium.

Abstract. We present a simple and fast protocol to securely solve the
(single source) Shortest Path Problem, based on Dijkstra’s algorithm
over Secure Multiparty Computation. Our protocol improves the cur-
rent state of the art by Aly et al. [FC 2013 & ICISC 2014] and can offer
perfect security against both semi-honest and malicious adversaries. Fur-
thermore, it is the first data oblivious protocol to achieve quadratic com-
plexity in the number of communication rounds. Moreover, our protocol
can be easily adapted as subroutine in other combinatorial mechanisms.
Our focus is usability; hence, we provide an open source implementation
and exhaustive benchmarking under different adversarial settings and
players setups.

Keywords: shortest path problem, secure multi-party computation

1 Introduction

The (Single Source) Shortest Path problem (SPP), i.e. computing the shortest
path between a source and all other vertices in a graph, is a commonly used
subroutine in commercial applications. In many of these settings, data related
to the computation of the problem such as elements of its configuration, graph
topology or associated weights, can be considered private. Real life examples
include telecommunication networks for banking or restricted topology combi-
natorial auctions, among others. In such environments, different parties could
gain a competitive advantage by obtaining privately held information. There-
fore, mechanisms to ensure secrecy, correctness and fairness are required.

In this work we introduce a Secure Multiparty Computation (MPC) data-
oblivious protocol to securely solve the single source SPP. Just like in previous
works, namely Aly et al. [2,4], we propose a data oblivious version of Dijkstra’s
algorithm, compatible with MPC. We consider all information related to the
graph (aside from the number of vertices) to be privately held. The result of
our computation is the length of the path and/or the path composition; the
parties can then decide whether these are disclosed. Moreover, it can offer perfect
security4 and its multiplicative complexity i.e. round complexity, is one order of
magnitude lower than the current state of the art [2,4].

4 From an Ideal perspective, and under the adequate setting i.e. honest majority. In
practice, the protocol is as secure as the underlying MPC realization.

https://orcid.org/0000-0003-2038-5668
https://orcid.org/0000-0003-1669-6084

2 Abdelrahaman Aly and Sara Cleemput

1.1 Related Work

Aly et al. [2,4] have introduced several data-oblivious protocols to solve the SPP,
including adaptations of Dijkstra. However, their complexity bound on the num-
ber of sequential multiplications is cubic, whereas we only require a quadratic
number of such multiplications. Brickell and Shmatikov [8] introduced a pro-
tocol for the SPP in a two-party setting against semi-honest adversaries. In
contrast, our solution is not limited to the two-party case and also provides se-
curity against active adversaries. The Breadth-First-Search (BFS) proposed by
Blanton et al. [7] provides complexity bounds for a special case of the SPP i.e.
non-weighted graph. Conversely, we consider the general case where the graph is
weighted. Furthermore, Keller and Scholl [17] implemented Dijkstra’s algorithm
using Oblivious RAM (ORAM) based data-structures matching the O(|V |2)
complexity of the original algorithm. However, their results show that for certain
graph sizes, Aly et al. [2] can out-perform their ORAM-based implementation,
as ORAM’s intrinsic overhead exceeds any asymptotic advantage.

1.2 Notation and Security

We make use of the square brackets notation for secret shared values e.g. [[x]].
Furthermore, we consider all inputs to be elements of Zq, where q is a suffi-
ciently large5 prime or RSA modulus. Complexity is measured in terms of round
complexity (multiplicative depth or latency) of the whole protocol. Vectors and
matrices are represented by capital letters e.g. E, where |E| denotes its size. Fi-
nally, some common encapsulations used throughout our protocols are denoted
as follows:

- [[z]] ←[[c]] [[x]] : [[y]] is the conditional operator. It can be seen as an arithmetic
replacement for the if branching instruction. Here, [[c]] represents a selection

bit and [[z]] takes the value of [[x]] if [[c]]
?

== 1 and [[y]] otherwise. This simple
construction requires only one communication round i.e. [[c]]·([[x]]−[[y]])+[[y]].

- exchange(i, j, [[X]]) swaps the elements in the i-th and j-th position of vector
X. This operation is not cryptographic in nature.

Security of MPC protocols is typically defined in the context of simulation under
the UC framework [10,9]. To simplify the analysis, we abstract the required MPC
ideal functionality as an arithmetic black box or FABB . Initially introduced by
Damg̊ard and Nielsen [13], it can be extended to support other ideally modeled
functionality e.g. secure comparisons. We offer a revision of our FABB , including
corresponding UC secure realizations in Table 1. We proceed to define security
as follows:

Definition 1. Let P be the set of all parties and πSP be a real protocol imple-
mented in a multiparty setting. We say πSP is UC-secure if, for any adversary A ,
there exists a simulator S such that the VIEWπSP

(A) and VIEWπSP
(Pi) ∀Pi ∈ P ,

interacting with the environment Z , cannot be distinguished (with non-negligible
probability) from the view of the simulated ideal functionality FSP.
5 It can instantiate the underlying MPC protocol.

https://orcid.org/0000-0003-2038-5668
https://orcid.org/0000-0003-1669-6084

Secure Shortest Path Problem 3

Functionality Description Rounds Prot.
x← [[x]] Opening secret field element 1 e.g. [19,16]
[[x]]← x Storing public input in a secret field ele-

ment
1 e.g. [19,16]

[[z]]← [[x]] + [[y]] Addition: of secret inputs 0 e.g. [19,16]
[[z]]← [[x]] + y Addition: (mixed) secret and public in-

puts
0 e.g. [19,16]

[[z]]← [[x]] · [[y]] Multiplication: of secret inputs 1 e.g. [19,16]
[[z]]← [[x]] · y Multiplication: (mixed) secret and public

inputs
0 e.g. [19,16]

—Complex Building Blocks—

[[z]]← [[x]]
?
< y[[y]] Inequality Test: secret inputs 4-6 e.g. [3,11]

[[E]]← permute([[E]]) secret random permutation of [[E]]. approx n · log(n) e.g. [12,18,15]

Table 1. Secure Arithmetic operations provided by the FABB .

2 Privacy Preserving Single Source SPP

Let G = (V,E) be a directed graph without negative cycles where V is the set of
vertices and E is the set of edges. Furthermore, G is represented as a weighted
adjacency matrix [[U]] where [[U]]ij is the weight of edge (i, j) ∀(i, j) ∈ E. The
intuition underlying our protocol is as follows: [[U]] is obliviously permuted before
protocol execution. We then assign temporary labels to each vertex in G (i.e.
each row in [[U]]). Our protocol then proceeds to identify the most suitable vertex
to explore. However, unlike other works in the field, given the permutation, we
are able to open the next vertex temporary label and directly explore it. Note
that the label itself does not convey any information other than the position of
the row in the now permuted matrix [[U]].

Complexity: Our protocol requires O(|V |2 · log(|V |)) secure multiplications
(amount of work). Such multiplications can be parallelized achieving O(|V |2)
rounds of communication. Furthermore, Protocol 1 contains two additional mul-
tiplications in line 17 and 18, which can also be parallelized. The exchange

operation does not influence the complexity of the protocol, as it is done over
publicly available information.

Security Analysis: Our protocol does not disclose any private information
during its execution. More precisely, the call to open([v]) (in line 12 of Protocol 1)
does not reveal the original index position of the analyzed vertex, since the
vertices are uniformly (and obliviously) permuted. The Achievable Security of
our protocol is the same as that of the underlying MPC protocol e.g. we can
achieve perfect security assuming honest majorities for the active and passive
case [6]; or cryptographic security assuming dishonest majorities for the active
and passive case as in(but not limited to) [5] or any SPDZ variation. More
formally, we proceed to define our ideal functionality as follows:

Definition 2 (Ideal Functionality FSP). Let G = (V,E) be a connected di-
rected graph. Let the elements of the weighted adjacent matrix U and the source

4 Abdelrahaman Aly and Sara Cleemput

Protocol 1: Optimized Non-Disclosure Dijkstra Protocol (πSP)

Input: secret shared edge weights [U]i,j for i, j ∈ {1, ..., |V |}, encoding vector
[S] where Si = 0 if i ̸= s (s being the source vertex) and 1 otherwise.

Output: The vector of predecessors α and the vector of distances [D].
1 for i← 1 to |V | do
2 [[α]]i ← i; [[D]]i ←[[Si]] [[0]] : [[⊤]]; [[P]]i ← [[i]];
3 end
4 ([[P]], [[D]], [[U]])← permute([[P]], [[D]], [[U]]);
5 for i← 1 to |V | do
6 [[d′]]← [[⊤]];
7 for j ← |V | to i do

8 [[c]]← [[D]]j
?
< [[d′]];

9 [[v]]←[[c]] j : [[v]];
10 [[d′]]←[[c]] [[D]]j : [[d′]];

11 end
12 v ← open([[v]]);
13 exchange(i, v, [[P]], [[D]], [[U]]);
14 for j ← i+ 1 to |V | do
15 [[a]]← [[D]]i + [[U]]i,j ;

16 [[c]]← [[a]]
?
< [[D]]j ;

17 [[D]]j ←[[c]] [[a]] : [[D]]j ;
18 [[α]]j ←[[c]] [[P]]i : [[α]]j ;

19 end

20 end

vertex s be elements of Zq, and let both be privately held inputs. The ideal func-
tionality FSP receives both [[U]] and [[s]] and returns the shortest path [[α]] and
the distances [[D]] via the FABB, whilst opening [[v]] at every cycle.

We now proceed to prove security for Protocol 1 (denoted as πSP) as follows:

Theorem 1. The protocol πSP securely implements FSP in the FABB framework.

Proof. The disclosed intermediate values v do not convey any information to the
adversary i.e. Are indexes of the permuted matrix. Furthermore, the protocol
flow only depends on publicly available values i.e. the upper bound on the number
of vertices and the v values. The simulation of the complete protocol can be
achieved by calling the FABB functionality available for the atomic operations
in the order fixed by the protocol flow. Since the real and ideal views for the
atomic operations are themselves equal (as they are implemented by the FABB)
i.e. VIEWπ(A) ≡ VIEWFSP

(S) and VIEWπSP
(Pi) ≡ VIEWFSP

(Pi), ∀ Pi ∈ P where
P is the set of all parties.

https://orcid.org/0000-0003-2038-5668
https://orcid.org/0000-0003-1669-6084

Secure Shortest Path Problem 5

3 Computational Experiments

We built our prototype and conducted extensive experiments via the commonly
used framework SCALE-MAMBA [1]. This circuit compiler and virtual execution
environment, provides users with the means to run different adversarial settings
and protocols. For the case at hand, we consider the reduced communication
protocol based on Shamir by Smart and Wood [19] (honest majorities) and,
Overdrive [16] with TopGear [5], members of the SPDZ protocol family (Full
Threshold). Both provide active security. Additionally, we assume a lookup ta-
ble style permutation [15,14] (amortized). We have made our prototype fully
available as opensource6 so that it can be further used as subroutine in other
programs.

Test bed Configuraiton: Our setup consists on 5 Ubuntu 18 servers on premise.
Each one has been allocated with 512GB in RAM memory and a Intel(R)

Xeon(R) Silver 4208 @ 2.10GH CPU. Servers are connected using Gigabit
LAN connections, with a ping time of 0.15 ms in average. This way, we can
control network latency via /sbin/tc.

Table 2. Performance evaluation (ms) with 2/3 machines (FT / Shamir)

Vertices Protocol
D=0ms D=10ms D=20ms

FT-2P FT-3P Shamir-3P FT-2P FT-3P Shamir-3P FT-2P FT-3P Shamir-3P

4 this work 19 43 18 895 909 895 1739 1744 1738

4 [4] 96 75 67 1403 1434 1402 2651 2679 2658

8 this work 72 155 88 3214 3258 3197 6183 6212 6164

8 [4] 389 579 299 4691 4869 4583 8756 8921 8798

12 this work 186 410 204 6915 7029 6884 13255 13399 13275

12 [4] 911 1303 698 9899 10288 9627 18530 19004 18403

16 this work 375 847 364 12237 12430 11956 23334 23623 23072

16 [4] 1280 1881 986 13827 14385 13429 28858 19004 25698

32 this work 458 1031 457 15247 15491 14950 29093 29450 28840

32 [4] 1688 2495 1301 18075 18812 17541 33798 26526 33571

As we can see, communications dominate complexity, hence the importance
of reducing communication rounds. On benchmarking, we can appreciate how
the delta, with the previous state of the art, becomes more significant when
the number of vertices increases following the asymptotic complexity. We point
out that further experimentation showed a similar decrease of computational cost
when the graph structure is public. Note that modern compilers also use a variety
of instruction optimizers to accelerate online performance e.g. parallelize non-
linearities that are non-sequential. Its use however becomes prohibitive for large
scale circuits. In such cases, our experimentation also shows a similar increase
on performance.

6 https://github.com/Crypto-TII/mpc_graph_theory_lib

https://github.com/Crypto-TII/mpc_graph_theory_lib

6 Abdelrahaman Aly and Sara Cleemput

References

1. Aly, A., Cong, K., Keller, M., Orsini, E., Rotaru, D., Scherer, O., Scholl, P., Smart,
N.P., Tanguy, T., Wood, T.: SCALE and MAMBA v1.14: Documentation (2021),
https://homes.esat.kuleuven.be/~nsmart/SCALE/

2. Aly, A., Cuvelier, E., Mawet, S., Pereira, O., Van Vyve, M.: Securely solving simple
combinatorial graph problems. In: Financial Cryptography. pp. 239–257 (2013)

3. Aly, A., Nawaz, K., Salazar, E., Sucasas, V.: Through the looking-glass: Bench-
marking secure multi-party computation comparisons for relu’s. Cryptology ePrint
Archive, Paper 2022/202 (2022), https://eprint.iacr.org/2022/202, https:

//eprint.iacr.org/2022/202

4. Aly, A., Van Vyve, M.: Securely solving classical network flow problems. In: Lee, J.,
Kim, J. (eds.) Information Security and Cryptology - ICISC 2014. Lecture Notes
in Computer Science, vol. 8949, pp. 205–221. Springer International Publishing
(2015). https://doi.org/10.1007/978-3-319-15943-0_13, http://dx.doi.org/
10.1007/978-3-319-15943-0_13

5. Baum, C., Cozzo, D., Smart, N.P.: Using TopGear in overdrive: A more efficient
ZKPoK for SPDZ. In: Paterson, K.G., Stebila, D. (eds.) SAC 2019. LNCS, vol.
11959, pp. 274–302. Springer, Heidelberg (Aug 2019). https://doi.org/10.1007/
978-3-030-38471-5_12

6. Ben-Or, M., Goldwasser, S., Wigderson, A.: Completeness theorems for non-
cryptographic fault-tolerant distributed computation. In: STOC. pp. 1–10. ACM
(1988)

7. Blanton, M., Steele, A., Aliasgari, M.: Data-oblivious graph algorithms for secure
computation and outsourcing. In: Chen, K., Xie, Q., Qiu, W., Li, N., Tzeng, W.G.
(eds.) ASIACCS 13. pp. 207–218. ACM Press (May 2013)

8. Brickell, J., Porter, D.E., Shmatikov, V., Witchel, E.: Privacy-preserving remote
diagnostics. In: ACM CCS. pp. 498–507. CCS ’07, ACM (2007)

9. Canetti, R.: Universally composable security: A new paradigm for cryptographic
protocols. In: FOCS ’01. pp. 136–145 (2001)

10. Canetti, R.: Security and composition of multiparty cryptographic protocols. Jour-
nal of Cryptology 13(1), 143–202 (2000)

11. Catrina, O., de Hoogh, S.: Improved primitives for secure multiparty in-
teger computation. In: Garay, J.A., Prisco, R.D. (eds.) SCN 10. LNCS,
vol. 6280, pp. 182–199. Springer, Heidelberg (Sep 2010). https://doi.org/10.
1007/978-3-642-15317-4_13

12. Czumaj, A., Kanarek, P., Kutylowski, M., Lorys, K.: Delayed path coupling and
generating random permutations via distributed stochastic processes. pp. 271–280.
SODA ’99, Society for Industrial and Applied Mathematics, Philadelphia, PA, USA
(1999), http://dl.acm.org/citation.cfm?id=314500.314571

13. Damg̊ard, I., Nielsen, J.B.: Universally composable efficient multiparty computa-
tion from threshold homomorphic encryption. In: Boneh, D. (ed.) CRYPTO 2003.
LNCS, vol. 2729, pp. 247–264. Springer, Heidelberg (Aug 2003). https://doi.
org/10.1007/978-3-540-45146-4_15

14. Dhooghe, S.: Applying multiparty computation to car access provision. URL:
https://www. esat. kuleuven. be/cosic/publications/thesis-296. pdf, last checked
on pp. 08–4 (2018)

15. Keller, M., Orsini, E., Rotaru, D., Scholl, P., Soria-Vazquez, E., Vivek, S.: Faster
secure multi-party computation of AES and DES using lookup tables. In: Goll-
mann, D., Miyaji, A., Kikuchi, H. (eds.) ACNS 17. LNCS, vol. 10355, pp. 229–249.

https://orcid.org/0000-0003-2038-5668
https://orcid.org/0000-0003-1669-6084
https://homes.esat.kuleuven.be/~nsmart/SCALE/
https://eprint.iacr.org/2022/202
https://eprint.iacr.org/2022/202
https://eprint.iacr.org/2022/202
https://doi.org/10.1007/978-3-319-15943-0_13
http://dx.doi.org/10.1007/978-3-319-15943-0_13
http://dx.doi.org/10.1007/978-3-319-15943-0_13
https://doi.org/10.1007/978-3-030-38471-5_12
https://doi.org/10.1007/978-3-030-38471-5_12
https://doi.org/10.1007/978-3-642-15317-4_13
https://doi.org/10.1007/978-3-642-15317-4_13
http://dl.acm.org/citation.cfm?id=314500.314571
https://doi.org/10.1007/978-3-540-45146-4_15
https://doi.org/10.1007/978-3-540-45146-4_15

Secure Shortest Path Problem 7

Springer, Heidelberg (Jul 2017). https://doi.org/10.1007/978-3-319-61204-1_
12

16. Keller, M., Pastro, V., Rotaru, D.: Overdrive: Making SPDZ great again. In:
Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part III. LNCS, vol. 10822,
pp. 158–189. Springer, Heidelberg (Apr / May 2018). https://doi.org/10.1007/
978-3-319-78372-7_6

17. Keller, M., Scholl, P.: Efficient, oblivious data structures for mpc. In: Sarkar,
P., Iwata, T. (eds.) Advances in Cryptology – ASIACRYPT 2014. pp. 506–525.
Springer Berlin Heidelberg, Berlin, Heidelberg (2014)

18. Smart, N.P., Talibi Alaoui, Y.: Distributing any elliptic curve based protocol.
In: Albrecht, M. (ed.) 17th IMA International Conference on Cryptography and
Coding. LNCS, vol. 11929, pp. 342–366. Springer, Heidelberg (Dec 2019). https:
//doi.org/10.1007/978-3-030-35199-1_17

19. Smart, N.P., Wood, T.: Error detection in monotone span programs with appli-
cation to communication-efficient multi-party computation. In: Matsui, M. (ed.)
CT-RSA 2019. LNCS, vol. 11405, pp. 210–229. Springer, Heidelberg (Mar 2019).
https://doi.org/10.1007/978-3-030-12612-4_11

https://doi.org/10.1007/978-3-319-61204-1_12
https://doi.org/10.1007/978-3-319-61204-1_12
https://doi.org/10.1007/978-3-319-78372-7_6
https://doi.org/10.1007/978-3-319-78372-7_6
https://doi.org/10.1007/978-3-030-35199-1_17
https://doi.org/10.1007/978-3-030-35199-1_17
https://doi.org/10.1007/978-3-030-12612-4_11

	A Fast, Practical and Simple Shortest Path Protocol for Multiparty Computation

