
Fast and Adaptively Secure Signatures in the
Random Oracle Model from Indistinguishability

Obfuscation

Bei Liang1 and Aikaterini Mitrokotsa1

1 Chalmers University of Technology, Gothenburg, Sweden
{lbei,aikmitr}@chalmers.se

Abstract. Indistinguishability obfuscation (iO) is a powerful crypto-
graphic tool often employed to construct a variety of core cryptographic
primitives such as public key encryption and signatures. In this paper, we
focus on the employment of iO in order to construct short signatures with
strong security guarantees (i.e., adaptive security) that provide a very
efficient signing process for resource-constrained devices. Sahai and Wa-
ters (SW) (STOC 2014) initially explored the construction of iO-based
short signature schemes but their proposal provides selective security.
Ramchen and Waters (RW) (CCS 2014) attempted to provide stronger
security guarantees (i.e., adaptive security) but their proposal is much
more computationally expensive than the SW proposal.
In this work, we propose an iO-based short signature scheme that pro-
vides adaptive security, fast signing for resource-constrained devices and
is much more cost-efficient than the RW signature scheme. More precise-
ly, we employ a puncturable PRF with a fixed length input to get a fast
and adaptively secure signature scheme without any additional hardness
assumption as in the SW signature scheme. To achieve this goal, we
employ the technique of Hofheinz et al. called “delayed backdoor pro-
gramming” using a random oracle, which allows to embed an execution
thread that will only be invoked by special inputs generated using se-
cret key information. Furthermore, we compare the cost of our signature
scheme in terms of the cost of the underlying PRG used by the punc-
turable PRF. Our scheme has a much lower cost than the RW scheme,
while providing strong security guarantees (i.e., adaptive security).

Keywords: Signature scheme, indistinguishability obfuscation, punc-
turable pseudo-random functions.

1 Introduction

The notion of indistinguishability obfuscation (iO), initially introduced by Barak
et al. [2], requires that the obfuscation of any two distinct (equal-size) programs
that implement identical functionalities, renders them computationally indis-
tinguishable from each other. However, the problem of whether or not indis-
tinguishability obfuscation exists and how useful it is, has been unclear until

the breakthrough result of Garg et al. [8] when they proposed the first candi-
date construction of an efficient indistinguishability obfuscator for general pro-
grams [9]. This initial breakthrough by Garg et al. has motivated a new line
of research focusing on re-exploring the construction of existing cryptographic
primitives through the lens of obfuscation. For instance, Sahai and Waters [14]
performed a systematic study of employing indistinguishability obfuscation to
public-key encryption, short signatures, non-interactive zero-knowledge proof-
s, injective trapdoor functions, and oblivious transfer. This line of research is
of great importance since it may lead to unexpected results and qualitatively
different ways of settling cryptographic problems.

In this paper, we explore the employment of iO to build new signature
schemes with two main properties: (i) they are short signatures with strong
security guarantees (i.e., adaptive security), and (ii) they provide a fast signing
process suitable for resource-constrained devices (e.g., sensors). The latter ob-
jective naturally leads to an imbalanced scheme, where the signing process is fast,
while the verification process is longer; this guarantees that resource-constrained
devices can sign, while computationally powerful devices will be employed for
the verification. Such imbalanced schemes have been explored before e.g., the
research area of delegation of computation schemes focus on saving resources in
computationally weak devices.

Although current obfuscation candidates may lead to very slow verification
process, current work on obfuscation techniques (esp. on implementing specif-
ic functionalities) is under development, rendering plausible the realisation of
systems with reasonable performance in the near future.

SW short signature. We begin by reviewing the selectively-secure signature
scheme of Sahai-Waters (SW) based on iO and puncturable pseudorandom func-
tions (PRFs) as well as one-way functions [14]. In this approach, the secret sign-
ing key is simply a key k for a puncturable PRF Fk(·), and a message m is signed
by simply evaluating σ = Fk(m). The public verification key is an indistinguisha-
bility obfuscation Ĉ ← iO(Ck) of a circuit Ck that on input a message/signature
pair (m,σ), verifies that the value f(σ) is equal to the value f(Fk(m)). Verifiying
any σ for m is simply done by executing the program Ĉ on input (m,σ). One
significant limitation of this scheme is that it only satisfies unforgeability against
a selective attacker. In this notion of security, the attacker is forced to preselect
the message m∗, he will attempt to forge, before seeing the verification key and
before querying for signatures on other messages.

RW short signature. In CCS’14, Ramchen and Waters (RW) [13] explored
methods for achieving adaptively secure obfuscation-derived signatures in the
standard model. More precisely, they employed the prefix-guessing technique of
Hohenberger-Waters [12]. Their signature scheme consists of two main pieces.
The first piece is a one-time signature for a tag t, which is the value of a punc-
turable PRF on the tag t. The second signature piece is the ability to sign the
tag t according to the prefix-guessing technique [12]. A signature on the message
is the tag along with the xor of these two parts. To generate the first piece, they
choose a tag t of λ bits and compute s1 = ⊕`i=1F1(K1, t‖i‖m(i)), where F1(K1, ·)

2

is a puncturable PRF with appropriate input length and m(i) is the i-th bit of
an `-bit message m. To generate the second piece they choose λ puncturable
PRFs F2,i(K2,i, ·) for i ∈ [1, λ] which takes inputs of i bits, and they compute
s2 = ⊕λi=1F2,i(K2,i, t

(i)) where t(i) denotes the first i bits of t. A signature for
the message m is (t, s = s1 ⊕ s2).

To improve the signing process (i.e., fast sign) of their scheme, they also give
a slightly modified second construction. The primary change is that instead of
using λ different punctured PRF systems, each with a different domain size, a
punctured PRF with a variable length domain is used in the second piece of the
signature. Ramchen and Waters [13] have shown that the variable-input-length
punctured PRF can be created by a length tripling PRG. We note that in the
generation of the first piece of the signature, ` values of one fixed-input-length
punctured PRF must be evaluated, and in the generation of the second piece of
signature, either values of λ different fixed-input-length punctured PRFs or λ
values of one variable-input-length punctured PRF must be evaluated. All these
require many more computations than the SW signature scheme.

Our contribution. This state of affairs has motivated us to explore the follow-
ing ambitious question: Is it possible to construct an efficient (i.e., fast signing)
and adaptively secure short signature scheme, in which the signature for a mes-
sage m is a value of a puncturable PRF on m? More precisely, in this paper we
consider the problem of modifying the SW signature scheme [14] to accommo-
date adaptive security, where the attacker can adaptively choose which message
he will forge on, and provide a positive answer to the above question. Instead of
resorting to the tag-based technique of the RW scheme, which requires using ei-
ther λ different fixed-input-length punctured PRFs or one variable-input-length
punctured PRF, we explore to simply use one puncturable PRF with a fixed
length input to get a fast signature as the SW signature scheme does, while at
the same time providing strong security guarantees1. In particular, we present
a fast signing, short signature scheme that is adaptively secure in the random
oracle model relying on iO, puncturable pseudorandom functions (PRFs) and
one-way functions.

In the random oracle (RO) model, a trivial generic way to transform the
selective security of the SW signature scheme to adaptive security is by hashing
the message prior to signing. That is the signature for a message m is the value
σ = Fk(H(m)). Now the public verification key is an indistinguishability obfus-
cation of a new circuit C ′k that on input a hash-value/signature pair (H(m), σ),
verifies that f(σ) = f(Fk(H(m))). Let qH be the number of hash queries during
the game. Since with probability 1/qH the simulator correctly guesses the i-th
hash query i.e., the query for m∗, it can then use the punctured key k{h∗} to
answer the signing queries (let h∗ is the value of i-th hash query).

One could consider that the above hash-then-sign method is very trivial by
employing the hash function on the message to obtain a value h = H(m) with
uniform distribution, thus resulting in the pseudorandomness of PRF σ = Fk(h).

1 Contrary to our scheme the SW signature scheme provides weaker security guaran-
tees (i.e., selective security).

3

However, we are motivated to seek another non-trivial method that can lead to
the pseudorandomness of σ in the SW signature scheme in the random oracle
model. Namely, we are taking advantage of a hash function in order to produce a
new PRF key k′ and thus to obtain the signature σ = Fk′(m) on the message m.
To achieve this goal, we employ Hofheinz et al.’s technique [11], called “delayed
backdoor programming” using a programmable random oracle.

At a high level, in our construction the secret signing key is still a key K̃
for a puncturable PRF FK̃ , where K̃ is computed by a puncturable PRF FK on
input w = H(m) and the signature σ on the message m is still σ = FK̃(m). The
public verification key V K consists of an obfuscated program as well as a hash
function H modelled as a random oracle. Let us see how to create a program
Verify, that will be obfuscated to create V K. The program will actually follow
a similar structure as the program of Hofheinz et al.’s [11] universal parameters
scheme, which allows to embed an execution thread that will only be invoked by
special inputs generated by using secret key information. Informally speaking,
the program Verify takes as input a random string w and consists of two main
stages. In the first stage, it checks to see if the random string is an encoding,
which is produced by a “hidden trigger” using secret key information. This step
will either output a string α ∈ {0, 1}n or it will output ⊥ to indicate failure. For
a uniformly randomly chosen string w, this step will output ⊥ with very high
probability, since the trigger values are encoded sparsely. Moreover, without
the secret information it should be difficult to distinguish an encoding from a
uniformly sampled string. If the first step fails, it will move into its second stage.
At this point the program will compute the signing key K̃ = FK(w) from a
puncturable PRF FK . Now instead of directly comparing the value of f(σ) with
the value f(FK̃(m)), we add a level of indirection as Hofheinz et al. does. The
program Verify will output the obfuscated program of the CK̃ as in the SW
signature scheme.

Our proof of adaptive security proceeds by a sequence of hybrids. Let any
PPT adversary Amake at most a polynomial number Q = Q(λ) (unique) queries
m1, . . . ,mQ to the RO with outputs w1, . . . , wQ. We will perform a hybrid of
Q outer steps, where at outer step i, we move from using the puncturable PRF
key K to output the obfuscated program iO(CK̃i

) (which is the output of the
program Verify on input wi), to having iO(CK̃i

) being encoded in wi itself for

K̃i = FK(wi). More precisely, following the pseudorandomness of the punc-
turable PRF FK , we can let a program g to be iO(CK̃i

), where K̃i is chosen
independently and then set wi to be a “hidden trigger” encoding of g. Nex-
t, we use punctured programming techniques to replace the normal computa-
tion of the program CK̃i

with a hardwired and randomly sampled value for
p̂i = f(FK̃i

(mi)). At this point on computing iO(Verify)(wi) the output will be
the program g = iO(CK̃i,p̂i,mi

). In the final hybrid any poly-time attacker A
that succeeds in outputting a forgery (m∗, σ∗) with non-negligible probability
can be used to find a preimage of p̂i for the one-way function f–that is σ∗, which
breaks the security of one way functions.

4

Comparison of Cost. We compare the cost of the SW [14], the RW [13]
schemes and our proposed signature in terms of the cost of the underlying PRG
used by the puncturable PRF and the provided security.

Scheme Security Model Employed Primitives Cost

SW14 [14] selective standard
iO &

gD · `fixed-length input PRF

RW14 [13] adaptive standard
iO &

gD ·(λ+ 2`− 1) + gT ·λfixed-length input PRF
variable-length input PRF

Ours adaptive random oracle
iO &

less than gD · (2`)
fixed-length input PRF

Table 1: Comparison of our short signature scheme to the SW and RW schemes.

We note (as seen in Table 1) that although the RW scheme is proven to be
adaptively secure in the standard model, their proposal is quite heavy compu-
tationally. We have chosen to provide a more efficient (fast signing), adaptively
secure solution suitable for resource-constrained devices at the cost of employing
the random oracle model.

Organization. The paper is organized as follows. In Section 2, we introduce
the basic primitives employed in our construction. In Section 3, we present our
construction of a fast signing, adaptively secure, obfuscation-derived short sig-
nature scheme and give the proof of its security, while in Section 4, we compare
the cost of our construction to the SW and RW schemes. In the Appendix, we
provide some details for the proof of security of the proposed short signature
scheme.

2 Preliminaries

2.1 Signature Schemes

Definition 1. A signature scheme with message space M(λ), signature key s-
pace SK(λ) and verification key space VK(λ) consists of the PPT algorithms
SIG = (SIG.Setup,SIG.Sign,SIG.Verify):

– Key generation. SIG.Setup is a randomized algorithm that takes as input the
security parameter 1λ and outputs the signing key sk ∈ SK and the verification
key vk ∈ VK.

– Signature generation. SIG.Sign takes as input the signing key sk ∈ SK and
a message m ∈M and outputs a signature σ.

– Verification. SIG.Verify takes as input a verification key vk ∈ VK, a message
m ∈M and a signature σ and outputs either 0 or 1.

Correctness. For all λ ∈ N, (vk, sk)← SIG.Setup(1λ), messages m ∈M(λ), we
require that SIG.Verify(vk,m,SIG.Sign(sk,m)) = 1.

5

We say that a signature scheme SIG = (SIG.Setup,SIG.Sign,SIG.Verify) is exis-
tentially unforgeable under adaptively chosen message attacks if

Pr[Expuf-cma
SIG,A (λ) = 1] ≤ negl(λ)

for some negligible function negl and for all PPT attackers A, where Expuf-cma
SIG,A (λ)

is the following experiment with the scheme SIG and an attacker A:
1. (vk, sk)← SIG.Setup(1λ).

2. (m∗, σ∗)← ASign(sk,·)(1λ, vk).
If SIG.Verify(vk,m∗, σ∗) = 1 and m∗ was not queried to the Sign(sk, ·) oracle,
then return 1, else return 0.

2.2 Indistinguishability Obfuscation

Definition 2 (Indistinguishability obfuscation [8]). A probabilistic poly-
nomial time (PPT) algorithm iO is said to be an indistinguishability obfuscator
for a circuits class {Cλ}, if the following conditions are satisfied:

– For all security parameters λ ∈ N, for all C ∈ Cλ, for all inputs x, we have
that:

Pr[C ′(x) = C(x) : C ′ ← iO(λ,C)] = 1.

– For any (not necessarily uniform) PPT adversaries (Samp, D), there exists
a negligible function negl(·) such that the following holds: if Pr[∀x,C0(x) =
C1(x) : (C0, C1, σ)← Samp(1λ)] > 1− negl(λ), then we have:∣∣Pr[D(σ, iO(λ,C0)) = 1 : (C0, C1, σ)← Samp(1λ)]

− Pr[D(σ, iO(λ,C1)) = 1 : (C0, C1, σ)← Samp(1λ)]
∣∣ ≤ negl(λ).

2.3 Puncturable PRFs

Definition 3. A puncturable family of PRFs F mapping is given by a triple of
Turing Machines (KeyF , PunctureF , EvalF), and a pair of computable functions
τ1(·) and τ2(·), satisfying the following conditions:

– [Functionality preserved under puncturing] For every PPT adversary
A such that A(1λ) outputs a point x∗ ∈ {0, 1}τ1(λ), then for all x ∈ {0, 1}τ1(λ)

where x 6= x∗, we have that:

Pr[EvalF (K,x) = EvalF (Kx∗ , x) :

K ← KeyF (1λ),Kx∗ ← PunctureF (K,x∗)] = 1.

– [Pseudorandom at punctured point] For every PPT adversary (A1,A2)
such that A1(1λ) outputs a point x∗ ∈ {0, 1}τ1(λ) and a state σ, consider an
experiment where K ← KeyF (1λ) and Kx∗ ← PunctureF (K,x∗). Then, we
have:∣∣Pr[A2(σ,Kx∗ , x

∗,EvalF (K,x∗)) = 1]−
Pr[A2(σ,Kx∗ , x

∗, Uτ2(λ)) = 1]
∣∣ = negl(λ),

6

where negl(·) is a negligible function and Uτ2(λ) denotes the uniform distribution
over τ2(λ) bits.

Theorem 1. [14] If one-way functions exist, then for all efficiently computable
functions τ1(λ) and τ2(λ), there exists a puncturable family of PRFs that maps
τ1(λ) bits to τ2(λ) bits.

3 Adaptively Secure Short Signatures in the RO Model

The proposed construction is parameterized over a security parameter λ and has
message space M = M(λ) = {0, 1}`(λ) for some polynomial function `(·). We

use a random oracle H : {0, 1}` → {0, 1}n2+n, a PRG mapping n-bit inputs to

2n-bit outputs, a one way function f(·) mapping `′-bit inputs to ˆ̀-bit outputs,

and a hash function H : {0, 1}` → {0, 1}n2+n. We also make use of four different
puncturable PRFs in our construction:

– F
(n)
1 is a sequence of 2n puncturable PRFs {F 1,0

1 , F 1,1
1 , . . . , Fn,01 , Fn,11 } that

each maps n-bit inputs to n-bit outputs. The corresponding key sequence is

denoted by K
(n)
1 = {K1,0

1 ,K1,1
1 , . . . ,Kn,0

1 ,Kn,1
1 }. Then, on an n-bit input v,

the output of the function F
(n)
1 is denoted by F

(n)
1 (K

(n)
1 , v).

– F2(K2, ·) is a puncturable PRF mapping (n2+n)-bit inputs to n1-bit outputs,
where n1 is the size of K3 for the puncturable PRF F3(K3, ·).

– F ′2(K ′2, ·) is a puncturable PRF mapping (n2+n)-bit inputs to n2-bit outputs,
where n2 is the size of the randomness r used by the iO.

– F3(K3, ·) is a puncturable PRF mapping `-bit inputs to `′-bit outputs.

Setup(1λ): On input 1λ, the Setup algorithm firstly samples the PRF keys

K
(n)
1 ,K2, K

′
2. Next, it creates an obfuscation of the program Verify as de-

picted in Figure 1(a). The size of the program is padded to be the maximum
of the size of itself and the corresponding programs Verify in various hybrid-
s, as described in section 3.1. The verification key, V K, is the obfuscated

program iO([Verify]). The secret key SK is (K
(n)
1 ,K2,K

′
2).

Sign(SK,m ∈M) : To sign a message m, the Sign algorithm queries the random
oracle H to obtain H(m) = u‖v and computes K3 = F2(K2, u‖v). It outputs
σ = F3(K3,m).

Verify(V K,m, σ): To verify a signature σ on message m, the Verify algorith-
m queries the random oracle H to get H(m) = u‖v and then evaluates the
obfuscated program iO(Verify) with inputs H(m) = u‖v to obtain the obfus-
cated program iO(PK3 ; r′). Then, it runs the program iO(PK3 ; r′) on inputs
(m,σ) and returns its output.

Theorem 2. If iO is a secure indistinguishability obfuscator, F
(n)
1 , F2, F ′2, F3

are secure puncturable PRFs, f(·) is a one way function, and PRG is a secure
pseudo-random generator, then our signature scheme given above is existentially
unforgeable under chosen message attacks in the random oracle model.

7

Verify

Hardwired into the circuit: K
(n)
1 ,K2,K

′
2.

Input to the circuit: u = u[1]‖ . . . ‖u[n] ∈ {0, 1}n
2

, v ∈ {0, 1}n.

Algorithm:
1. Compute F

(n)
1 (K

(n)
1 , v) = (y1,0, y1,1), . . . , (yn,0, yn,1).

2. For i = 1, . . . , n, if u[i] = yi,0 set αi = 0 else if u[i] = yi,1 set αi = 1
else set αi = ⊥.

3. If α ∈ {0, 1}n contains no ⊥s, output α.

4. Else set K3 = F2(K2, u‖v), r′ = F ′2(K′2, u‖v). Output iO(PK3 ; r′) of the
program a PK3 of Figure 1(b).

(a) The program Verify

PK3

Hardwired into the circuit: K3.

Input to the circuit: m ∈ {0, 1}`, σ ∈ {0, 1}`
′
.

Algorithm:
1. Test if f(σ) = f(F3(K3,m)). Output accept if true, reject if false.

(b) The program PK3

Fig. 1: The description of the programs Verify and PK3

Proof. We prove this theorem by a sequence of polynomial hybrid arguments. We
begin with Hyb0 corresponding to the original signature security game. Suppose
the adversary makes qRO(λ) queries to the random oracle H, for some polyno-
mial qRO(·). The argument proceeds via the sequence of hybrids Hyb0, Hyb1,1,
Hyb1,2,. . ., Hyb1,12, Hyb2,1, Hyb2,2,. . ., Hyb2,12,. . ., HybqRO,12, each of which we
prove to be indistinguishable from the previous one. We define Hyb0,12 for con-
venience in our proof. Then, we show that any poly-time attacker in the final
hybrid HybqRO,12 that succeeds in forging with non-negligible probability can be
used to break one way functions.

We start by describing Hyb0 and then describe Hybs,1, Hybs,2,. . ., Hybs,12

for s ∈ [qRO]. We denote changes between subsequent hybrids using underlined
font with a red line. We also add an intuition behind why the hybrids should be
indistinguishable. The detailed proofs can be found in Appendix A.1.

Here we refer to all signatures generated by the Signing oracles and the Ran-
dom Oracle as intermediate steps in order to answer A’s respective queries.

3.1 Sequence of Games

Hyb0: This is the original security game instantiated by our construction.

– Setup phase The challenger samples the PRF keys K
(n)
1 ,K2,K

′
2 and creates

the obfuscated program iO([Verify]), where the program Verify is defined as in

8

Figure 1(a) and padded to be of appropriate size. The challenger sets V K =
iO([Verify]) and passes it to the attacker A.

– Query Phase

• Random Oracle Queries: For each random oracle query mj , the challenger
checks if mj has already been queried.
If yes, it lets (mj , uj‖vj) be the tuple corresponding to mj and sends uj‖vj
to A.
Else it chooses uj ← {0, 1}n

2

, vj ← {0, 1}n, sends uj‖vj to A and adds
(mj , uj‖vj) to a table.

• Signing Queries: For each signature query mk, the challenger first looks up the
table to obtain H(mk) = uk‖vk and then, computes K3 = F2(K2, uk‖vk). It
returns σ = F3(K3,mk).

– Forgery Phase A finally outputs a forgery (m∗, σ∗) and wins if it holds
Verify(V K,m∗, σ∗) = 1.

We will now describe the hybrids Hybs−1,12, Hybs,1, . . . ,Hybs,12 for s ≤ qRO.

Hybs−1,12: It is defined as following:

– Setup phase The challenger samples the PRF keys K
(n)
1 ,K2,K

′
2 and creates

the obfuscated program iO([Verify]), where the program Verify is defined as in
Figure 1(a) and padded to be of appropriate size. The challenger sets V K =
iO([Verify]) and passes it to the attacker A.

– Query Phase

• Random Oracle Queries: For each random oracle query mj , the challenger
checks if mj has already been queried.
If yes, let (mj , uj‖vj) be the tuple corresponding to mj . The challenger sends
uj‖vj to A.
Else if j < s, the challenger chooses vj ← {0, 1}n. It also chooses K3 ←
{0, 1}n1 , e′ ← {0, 1}n2 , pj ← {0, 1}`

′
and computes p̂j = f(pj). It com-

putes K3{mj} ← Puncture(K3,mj) and sets g = iO(P ′K3{mj},p̂j ,mj
; e′) as

defined in Figure 2(a). The challenger sets (y1,0, y1,1), . . . , (yn,0, yn,1) :=

F
(n)
1 (K

(n)
1 , vj), uj [i] := yi,gi for all i ∈ [1, n], where gi is the i-th bit of

g. It sends uj‖vj to A and adds (mj , uj‖vj) to a table.

If j ≥ s, the challenger chooses uj ← {0, 1}n
2

, vj ← {0, 1}n, sends uj‖vj to
A and adds (mj , uj‖vj) to the table.

• Signing Queries: For each signature query mk, the challenger first looks up
the table to obtain H(mk) = uk‖vk.
If ∃j s.t. mk = mj ∧ j < s, it returns σk = pj ;
If mk = ms, it computes K3 = F2(K2, us‖vs) and returns σk = F3(K3,mk);
Else if ∃j s.t. mk = mj ∧ j > s, it computes K3 = F2(K2, uk‖vk) and
returns σk = F3(K3,mk).

– Forgery Phase A finally outputs a forgery (m∗, σ∗) and wins if it holds
Verify(V K,m∗, σ∗) = 1.

9

P ′K3{mj},p̂j ,mj

Hardwired into the circuit: K3{mj},mj , p̂j .

Input to the circuit: m ∈ {0, 1}`, σ ∈ {0, 1}`
′
.

Algorithm:
1. If m = mj , test if f(σ) = p̂j . Output accept if true, reject if false.

2. Else test if f(σ) = f(F3(K3{mj},m)). Output accept if true, else reject.

(a) The program P ′K3{mj},p̂j ,mj

Verify 2

Hardwired into the circuit: K
(n)
1 {v∗s}, K2, K′2, v∗s , {z∗i,b}b∈{0,1},i∈[n].

Input to the circuit: u = u[1]‖ . . . ‖u[n] ∈ {0, 1}n
2

, v ∈ {0, 1}n.

Algorithm:
1. If v = v∗s then for i = 1, . . . , n do

If PRG(u[i]) = z∗i,0 let αi = 0; if PRG(u[i]) = z∗i,1 let αi = 1; else αi = ⊥.
Go to step 4.

2. Compute F
(n)
1 (K

(n)
1 , v) = (y1,0, y1,1), . . . , (yn,0, yn,1).

3. For i = 1, . . . , n, if u[i] = yi,0 set αi = 0 else if u[i] = yi,1 set αi = 1 else
set αi = ⊥.

4. If α ∈ {0, 1}n contains no ⊥s, output α.

5. Else set K3 = F2(K2, u‖v), r′ = F ′2(K′2, u‖v). Output iO(PK3 ; r′) of the
program PK3 of Figure 1(b).

(b) The program Verify 2

Fig. 2: The description of the programs P ′K3{mj},p̂j ,mj
and Verify 2

Hybs,1: This hybrid is identical to the Hybs−1,12, except that the verification
key V K is created as an obfuscation of the program Verify 2 which is defined in
Figure 2(b). That is:

– Setup phase The challenger samples the PRF keys K
(n)
1 ,K2,K

′
2. It al-

so chooses v∗s ← {0, 1}n, u∗s ← {0, 1}n
2

and sets (y∗1,0, y
∗
1,1), . . . , (y∗n,0, y

∗
n,1) =

F
(n)
1 (K

(n)
1 , v∗s). Then, for all b ∈ {0, 1} and i ∈ [1, n], the challenger sets z∗i,b =

PRG(y∗i,b). It computes K2{u∗s‖v∗s} ← Puncture(K2, u
∗
s‖v∗s). It creates the ob-

fuscated program iO([Verify 2]) where the program Verify 2 is defined as in Fig-
ure 2(b) and padded to be of appropriate size. The challenger sets V K = iO([Verify 2])
and passes it to the attacker A.

– Query Phase
• Random Oracle Queries: For each random oracle query mj , the challenger

checks if mj has already been queried.
If yes, it lets (mj , uj‖vj) to be the tuple corresponding to mj and sends
uj‖vj to A.
Else if j < s, the challenger chooses vj ← {0, 1}n. It also chooses K3 ←

10

{0, 1}n1 , e′ ← {0, 1}n2 , pj ← {0, 1}`
′

and computes p̂j = f(pj). It com-
putes K3{mj} ← Puncture(K3,mj) and sets g = iO(P ′K3{mj},p̂j ,mj

; e′) as

defined in Figure 2(a). The challenger sets (y1,0, y1,1), . . . , (yn,0, yn,1) :=

F
(n)
1 (K

(n)
1 , vj), uj [i] := yi,gi for all i ∈ [1, n], where gi is the i-th bit of

g. It sends uj‖vj to A and adds (mj , uj‖vj) to a table.
If j = s, the challenger sets uj = u∗s and vj = v∗s . It sends uj‖vj to A and
adds (mj , uj‖vj) to the table.

If j > s, the challenger chooses uj ← {0, 1}n
2

, vj ← {0, 1}n, it sends uj‖vj
to A and adds (mj , uj‖vj) to the table.

• Signing Queries: For each signature query mk, the challenger first looks up
the table to obtain H(mk) = uk‖vk.
If ∃j s.t. mk = mj ∧ j < s, it returns σk = pj ;
If mk = ms, the challenger computes K3 = F2(K2, u

∗
s‖v∗s) and returns σk =

F3(K3,mk);
Else if ∃j s.t. mk = mj ∧ j > s, it computes K3 = F2(K2{u∗s‖v∗s}, uk‖vk)
and returns σk = F3(K3,mk).

– Forgery Phase A finally outputs a forgery (m∗, σ∗) and wins if it holds
Verify(V K,m∗, σ∗) = 1.

Intuitively, it is indistinguishable from Hybs−1,12 by iO between the programs
Verify and Verify 2. The proof is given by Lemma 2 (Appendix).

Hybs,2: This hybrid is identical to Hybs,1, except that in the Setup phase the
challenger randomly chooses y∗i,b ← {0, 1}n for all b ∈ {0, 1} and i ∈ [1, n] instead

of computing by F
(n)
1 (K

(n)
1 , v∗s). Intuitively, it is indistinguishable from Hybs,1

by the security of the puncturable PRFs F
(n)
1 (K

(n)
1 , ·). The proof is given by

Lemma 3 (Appendix).

Hybs,3: This hybrid is identical to Hybs,2, except that in the Setup phase
the challenger randomly chooses z∗i,b ← {0, 1}2n for all b ∈ {0, 1} and i ∈ [1, n]
instead of computing z∗i,b = PRG(y∗i,b). Intuitively, it is indistinguishable from
Hybs,2 by the security of the PRG. The proof is given by Lemma 4 (Appendix).

Hybs,4: This hybrid is identical to Hybs,3, except that V K is created as an
obfuscation of the program Verify 3 (defined in Figure 3). That is:

– Setup phase The challenger samples the PRF keys K
(n)
1 ,K2,K

′
2. It also

chooses v∗s ← {0, 1}n, u∗s ← {0, 1}n
2

and z∗i,b ← {0, 1}2n for all b ∈ {0, 1} and
i ∈ [1, n]. It computes K2{u∗s‖v∗s} ← Puncture(K2, u

∗
s‖v∗s), e = F2(K2, u

∗
s‖v∗s),

K ′2{u∗s‖v∗s} ← Puncture(K ′2, u
∗
s‖v∗s), e′ = F ′2(K ′2, u

∗
s‖v∗s) and sets g = iO(Pe; e

′).
Then, it creates the obfuscated program iO([Verify 3]) (Verify 3 is defined in Fig-
ure 3) which is padded to be of appropriate size. The challenger sets V K = iO([Verify 3])
and passes it to A.

– Query Phase

• Random Oracle Queries: as in Hybs,3.

11

• Signing Queries: For each signature query mk, the challenger first looks up
the table to obtain H(mk) = uk‖vk.
If ∃j s.t. mk = mj ∧ j < s, it returns σk = pj ;
If mk = ms, it returns σk = F3(e,mk);
Else if ∃j s.t. mk = mj ∧ j > s, it computes K3 = F2(K2{u∗s‖v∗s}, uk‖vk)
and returns σk = F3(K3,mk).

– Forgery Phase A finally outputs a forgery (m∗, σ∗) and wins if it holds
Verify(V K,m∗, σ∗) = 1.

Intuitively, it is indistinguishable from Hybs,3 by iO between the programs
Verify 2 and Verify 3. The proof is given by Lemma 5 (Appendix).

Verify 3

Hardwired into the circuit: K(n)
1 {v∗s}, K2{u∗s‖v∗s},K′2{u∗s‖v∗s},

v∗s , u∗s , g, {z∗i,b}b∈{0,1},i∈[n].

Input to the circuit: u = u[1]‖ . . . ‖u[n] ∈ {0, 1}n
2

, v ∈ {0, 1}n.

Algorithm:
1. If u = u∗s and v = v∗s output g and stop.

2. If v = v∗s then for i = 1, . . . , n do
If PRG(u[i]) = z∗i,0 let αi = 0; if PRG(u[i]) = z∗i,1 let αi = 1; else αi = ⊥.
Go to step 5.

3. Compute F
(n)
1 (K

(n)
1 , v) = (y1,0, y1,1), . . . , (yn,0, yn,1).

4. For i = 1, . . . , n, if u[i] = yi,0 set αi = 0 else if u[i] = yi,1 set αi = 1 else
set αi = ⊥.

5. If α ∈ {0, 1}n contains no ⊥s, output α.

6. Else set K3 = F2(K2{u∗s‖v∗s}, u‖v), r′ = F ′2(K′2{u∗s‖v∗s}, u‖v). Output
iO(PK3 ; r′) of the program PK3 of Figure 1(b).

Fig. 3: Description of the program Verify 3.

Hybs,5: This hybrid is identical to Hybs,4, except that in the Setup phase the
challenger randomly chooses e← {0, 1}n1 instead of computing e = F2(K2, u

∗
s‖v∗s).

Intuitively, it is indistinguishable from Hybs,4 by the security of the puncturable
PRFs F2(K2, ·). The proof is given by Lemma 6 (Appendix).

Hybs,6: This hybrid is identical to Hybs,5, except that the challenger randomly
chooses e′ ← {0, 1}n2 instead of computing e′ = F ′2(K ′2, u

∗
s‖v∗s). Intuitively, it is

indistinguishable from Hybs,5 by the security of the puncturable PRFs F ′2(K ′2, ·).
The proof is given by Lemma 7 (Appendix).

Hybs,7: This hybrid is identical to Hybs,6, except that the challenger sets the
value of z∗i,gi = PRG(u∗s[i]) for u∗s[i]← {0, 1}n instead of randomly choosing z∗i,gi
from {0, 1}2n. More precisely, this game has the following phases:

12

– Setup phase The challenger samples the PRF keys K
(n)
1 ,K2,K

′
2. It chooses

v∗s ← {0, 1}n, e ← {0, 1}n1 and e′ ← {0, 1}n2 . It sets g = iO(Pe; e
′). For all

i ∈ [1, n], it chooses y∗i,gi ← {0, 1}
n, z∗i,ḡi ← {0, 1}

2n, and sets u∗s[i] := y∗i,gi ,
z∗i,gi := PRG(y∗i,gi), where gi is the i-th bit of g and ḡi = 1 − gi. The challenger
computes u∗s = u∗s[1]‖ · · · ‖u∗s[n] and K2{u∗s‖v∗s} ← Puncture(K2, u

∗
s‖v∗s). Then,

it creates the obfuscated program iO([Verify 2]), where the program Verify 2 is
defined as in Figure 2(b) and padded to be of appropriate size. The challenger
sets V K = iO([Verify 2]) and passes it to the attacker A.

Intuitively, it is indistinguishable from Hybs,6 by iO between the programs
Verify 3 and Verify 2. The proof is given by Lemma 8 (Appendix).

Hybs,8: This hybrid is identical to the Hybs,7, except that the challenger sets
z∗i,ḡi = PRG(y∗i,ḡi), where y∗i,ḡi ← {0, 1}

n, instead of randomly choosing z∗i,ḡi from

{0, 1}2n. That is:

– Setup phase The challenger samples the PRF keys K
(n)
1 ,K2,K

′
2. It also

chooses v∗s ← {0, 1}n, e← {0, 1}n1 and e′ ← {0, 1}n2 . It chooses g = iO(Pe; e
′).

For all i ∈ [1, n], it sets y∗i,b ← {0, 1}n, u∗s[i] = y∗i,gi , and sets z∗i,gi := PRG(y∗i,gi)
and z∗i,ḡi := PRG(y∗i,ḡi), where gi is the i-th bit of g and ḡi = 1 − gi. The chal-
lenger computes u∗s = u∗s[1]‖ · · · ‖u∗s[n] and K2{u∗s‖v∗s} ← Puncture(K2, u

∗
s‖v∗s).

Then, it creates the obfuscated program iO([Verify 2]) (Verify 2 is defined as
in Figure 2(b)) which is padded to be of appropriate size. The challenger sets
V K = iO([Verify 2]) and passes it to A.

Intuitively, it is indistinguishable from Hybs,7 by the security of the PRG.
The proof is given by Lemma 9 (Appendix).

Hybs,9: This hybrid is identical to Hybs,8, except that the challenger set-

s (y∗1,0, y
∗
1,1), . . . , (y∗n,0, y

∗
n,1) := F

(n)
1 (K

(n)
1 , v∗s) instead of randomly choosing y∗i,b

from {0, 1}n. Intuitively, it is indistinguishable from Hybs,8 by the security of the

puncturable PRFs F
(n)
1 (K

(n)
1 , ·). The proof is given by Lemma 10 (Appendix).

Hybs,10: This hybrid is identical to Hybs,9, except that the verification key V K
is created as an obfuscation of the program Verify as in Figure 1(a)). That is:

– Setup phase The challenger samples the PRF keys K
(n)
1 ,K2,K

′
2 and creates

the obfuscated program iO([Verify]), where the program Verify is defined as in
Figure 1(a). The challenger sets V K = iO([Verify]) and passes it to A.

– Query Phase

• Random Oracle Queries: For each random oracle query mj , the challenger
checks if mj has already been queried.
If yes, let (mj , uj‖vj) be the tuple corresponding to mj . It sends uj‖vj to A.
Else if j < s, the challenger chooses vj ← {0, 1}n. It also chooses K3 ←
{0, 1}n1 , e′ ← {0, 1}n2 , pj ← {0, 1}`

′
and computes p̂j = f(pj). It com-

putes K3{mj} ← Puncture(K3,mj) and sets g = iO(P ′K3{mj},p̂j ,mj
; e′) as

defined in Figure 2(a). The challenger sets (y1,0, y1,1), . . . , (yn,0, yn,1) :=

F
(n)
1 (K

(n)
1 , vj) and uj [i] := yi,gi for all i ∈ [1, n], where gi is the i-th bit

13

of g. It sends uj‖vj to A and adds (mj , uj‖vj) to a table.
If j = s, the challenger chooses v∗j ← {0, 1}n1 , e ← {0, 1}n1 and e′ ←
{0, 1}n2 . It sets g := iO(Pe; e

′), (y∗1,0, y
∗
1,1), . . . , (y∗n,0, y

∗
n,1) := F

(n)
1 (K

(n)
1 , v∗j)

and u∗j [i] = y∗i,gi for all i ∈ [1, n], where gi is the i-th bit of g. The challenger
computes u∗s = u∗s[1]‖ · · · ‖u∗s[n] and K2{u∗s‖v∗s} ← Puncture(K2, u

∗
s‖v∗s). It

sends uj‖vj to A and adds (mj , uj‖vj) to the table.

If j > s, the challenger chooses uj ← {0, 1}n
2

, vj ← {0, 1}n, sends uj‖vj to
A and adds (mj , uj‖vj) to the table.

• Signing Queries: For each signature query mk, the challenger first looks up
the table to obtain H(mk) = uk‖vk.
If ∃j s.t. mk = mj ∧ j < s, it returns σk = pj ;
If mk = ms, it returns σk = F3(e,mk);
Else if ∃j s.t. mk = mj ∧ j > s, it computes K3 = F2(K2{u∗s‖v∗s}, uk‖vk)
and returns σk = F3(K3,mk).

– Forgery Phase A finally outputs a forgery (m∗, σ∗) and wins if it holds
Verify(V K,m∗, σ∗) = 1.

Intuitively, Hybs,10 is indistinguishable from Hybs,9 by iO between the pro-
grams Verify 2 and Verify. The proof is given by Lemma 11 (Appendix).

Hybs,11: This hybrid is identical to Hybs,10, except that for the Random Oracle
Query mj s.t. j = s, the challenger chooses v∗j ← {0, 1}n1 , e← {0, 1}n1 and e′ ←
{0, 1}n2 . It computes e{mj} ← Puncture(e,mj) and sets g = iO(P ′e{mj},mj ,p̂j

; e′)

as described in Figure 2(a) where p̂j = f(F3(e,mj)) instead of setting g =

iO(Pe; e
′). It also sets (y∗1,0, y

∗
1,1), . . . , (y∗n,0, y

∗
n,1) := F

(n)
1 (K

(n)
1 , v∗j) and u∗j [i] =

y∗i,gi for all i ∈ [1, n], where gi is the i-th bit of g. The challenger computes
u∗j = u∗j [1]‖ · · · ‖u∗j [n] where j = s and K2{u∗s‖v∗s} ← Puncture(K2, u

∗
s‖v∗s).

It sends uj‖vj to A and adds (mj , uj‖vj) to the table. Intuitively, Hybs,11 is
indistinguishable from Hybs,10 by iO between the programs P ′e{mj},mj ,p̂j

and

Pe. The proof is given Lemma 12 (Appendix).

Hybs,12: This hybrid is identical to Hybs,11, except that for the random or-
acle query mj s.t. j = s, the challenger sets g = iO(P ′e{mj},mj ,p̂j

; e′) as de-

scribed in Figure 2(a), where p̂j = f(pj) for pj ← {0, 1}`
′

instead of setting
p̂j = f(F3(e,mj)) and for the Signing Query mk s.t. mk = ms, the challenger
returns σk = pj . Intuitively, Hybs,12 is indistinguishable from Hybs,11 by the
security of the puncturable PRFs F3(e, ·). The proof is given by Lemma 13
(Appendix).

Lemma 1. If f is a one-way function, then for all PPT A we have that

AdvqRO,12
A = negl(λ)

for some negligible function negl(λ).

Proof. Suppose there exists a PPT adversary A such that AdvqRO,12
A = ε. We will

construct a PPT algorithm B that, using A, inverts the one-way function f with
probability ε.

14

B receives p̂∗ from the one-way function challenger. It samples the PRF

keys K
(n)
1 ,K2,K

′
2 and creates the obfuscated program iO([Verify]) as in Fig-

ure 1(a) and padded to be of appropriate size. B sets V K = iO([Verify]) and
passes it to the attacker A. For a Random Oracle query mj , where j ∈ [qRO],

B chooses vj ← {0, 1}n, K3 ← {0, 1}n1 , e′ ← {0, 1}n2 , pj ← {0, 1}`
′

and com-
putes p̂j = f(pj). B sets g = iO(P ′K3{mj},mj ,p̂j

; e′) as defined in Figure 2(a).

B also sets (y1,0, y1,1), . . . , (yn,0, yn,1) := F
(n)
1 (K

(n)
1 , vj) and uj [i] = yi,gi for

all i ∈ [1, n], where gi is the i-th bit of g. B returns uj‖vj to A and adds
(mj , pj , uj‖vj) to a table. For a Signing query mk, B first looks up the table
to obtain (mk, pk, uk‖vk). We refer to all signatures generated by the Signing
oracles, Random Oracle as intermediate steps in order to answer A’s respective
queries. Since ∃j s.t. mk = mj , B returns σk = pj . Finally, A outputs a forgery
(m∗, σ∗). If Verify(V K,m∗, σ∗) = 1, which means that, for m = m∗ it holds that
f(σ∗) = p̂∗, then B can successfully find an inverse σ∗ for p̂∗. Clearly, if A wins
in HybqRO,12, then B inverts the one-way function.

To conclude, Theorem 2 follows from the Lemmas 1- 13 (Appendix).

4 Analysis of Costs

In this section, we evaluate the cost of the Sahai-Waters signature [14] (selectively
secure), Ramchen and Waters signature [13] (adaptively secure in the standard
model) and our proposed signature (adaptively secure in the random oracle
model) in terms of the computation of the puncturable PRFs involved in the
signing algorithm, which can be constructed by a pseudorandom generator based
on GGM [10] trees. We express the cost of the computation of puncturable PRFs
involved in the signing algorithm of each scheme in terms of the underlying
length-doubling and length-tripling PRGs.

Let gD be the cost of the length-doubling PRG and gT be the cost of the
length-tripling PRG. We assume that the messages to be signed are `-bits and
the size of the image range of the hash function is |H(·)|.

Sahai-Waters signature [14] This scheme makes a single call to the fixed-
input-length puncturable PRF on an `-bit message. This call traverses the GGM
tree according to the message bits, requiring ` invocations of the length-doubling
PRG. The cost is therefore gD · `.

Ramchen and Waters signature [13] This scheme calls the fixed-length
puncturable PRF once on each of λ + lg ` + 1 inputs. Since each input has the
same λ-bit suffix, the GGM tree can be first traversed to a depth of λ, and
then a depth-first search is performed to an additional lg ` + 1 depth. Thus,
λ + 2(2lg ` − 1) + 1 = λ + 2` − 1 calls are made to the length-doubling PRG.
In addition the scheme evaluates the variable-length puncturable PRF once on
a λ-bit input, which requires λ calls to the length-tripling PRG. Therefore the
total cost is gD · (λ+ 2`− 1) + gT · λ.

15

Our signature scheme Our adaptively secure scheme makes a call to the
puncturable PRF on an |H(·)|-bits input and a call to the puncturable PRF on
an `-bit message. This call traverses the GGM tree according to the message bits,
requiring |H(·)| invocations of the length-doubling PRG. The cost is therefore
gD · (|H(·)|+ `). Since the hash function is a one-way compression function, then
it holds that |H(·)| < `. Therefore, the total cost of our scheme is less than
gD · (2`), which is slightly more than the cost of the SW scheme and a lot less
than the cost of RW scheme.

Table 1 (Section 1) summarises the comparison between our proposed scheme
and the SW and RW schemes. We note that although the RW scheme is proven to
be adaptively secure in the standard model, their proposal is quite heavy compu-
tationally. We have chosen to provide a more efficient (fast signing), adaptively
secure solution suitable for resource-constrained devices at the cost of employing
the random oracle model.

We note that, regarding the fact that RW scheme is proven to be adaptively
secure in the standard model while our scheme is secure in the random oracle,
the efficiency gain made by our scheme is outweighed by the loss in security.

5 Conclusion

In this paper, We explore the methods for achieving adaptively secure obfuscation-
derived signatures. In particular, relying on iO and puncturable pseudorandom
functions (PRFs) as well as one-way functions we present a signature scheme
that is adaptively secure in the random oracle model.

References

1. Michel Abdalla, Dario Catalano, and Dario Fiore. Verifiable random functions from
identity-based key encapsulation. In Advances in Cryptology-EUROCRYPT’09,
volume 5479, pages 554-571, 2009.

2. B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sahai, S. Vadhan, and K.
Yang. On the (im)possibility of obfuscating programs. Proceedings of CRYPTO
2001, Springer LNCS 2139:1-18, 2001.

3. Florian Böhl, Dennis Hofheinz, Tibor Jager, Jessica Koch, and Christoph Striecks.
Confined guessing: New signatures from standard assumptions. Journal of Cryp-
tology, pages 1-33, 2014.

4. Elette Boyle, Gil Segev, and Daniel Wichs. Fully leakage-resilient signatures. In
Kenneth G. Paterson, editor, Advances in Cryptology EUROCRYPT 2011, vol-
ume 6632 of Lecture Notes in Computer Science, pages 89-108. Springer Berlin
Heidelberg, 2011.

5. Dan Boneh and Brent Waters. Constrained pseudorandom functions and their
applications. In Kazue Sako and Palash Sarkar, editors, ASIACRYPT 2013, Part
II, volume 8270 of LNCS, pages 280-300. Springer, December 2013.

6. Melissa Chase and Markulf Kohlweiss. A new hash-and-sign approach and
structure-preserving signatures from DLIN. In Proceedings of the 8th International
Conference on Security and Cryptography for Networks, SCN’12, pages 131-148,
Berlin, Heidelberg, 2012. Springer-Verlag.

16

7. Dario Fiore and Dominique Schröder. Uniqueness is a different story: Impossibility
of verifiable random functions from trapdoor permutations. In Ronald Cramer,
editor, TCC 2012, volume 7194 of LNCS, pages 636-653, Taormina, Sicily, Italy,
March 19-21, 2012. Springer, Berlin, Germany.

8. Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent
Waters. Candidate indistinguishability obfuscation and functional encryption for
all circuits. In FOCS, 2013.

9. Sanjam Garg, Craig Gentry, and Shai Halevi. Candidate multilinear maps from
ideal lattices. In Thomas Johansson and Phong Q. Nguyen, editors, EUROCRYPT
2013, volume 7881 of LNCS, pages 1-17. Springer, May 2013.

10. Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random
functions. Journal of the ACM, 33(4):792-807, October 1986.

11. Dennis Hofheinz, Tibor Jager, Dakshita Khurana, Amit Sahai, BrentWaters, and
Mark Zhandry. How to generate and use universal parameters. Cryptology ePrint
Archive, Report 2014/507, 2014. http://eprint.iacr.org/.

12. Susan Hohenberger and Brent Waters. Short and stateless signatures from the
RSA assumption. In Shai Halevi, editor, Advances in Cryptology-CRYPTO 2009,
volume 5677 of Lecture Notes in Computer Science, pages 654-670. Springer Berlin
Heidelberg, 2009.

13. Ramchen, K., and Waters, B.. Fully secure and fast signing from obfuscation. In
Proceedings of the 2014 ACM SIGSAC Conference on Computer and Communi-
cations Security. ACM, 2014: pages 659-673.

14. Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deni-
able encryption, and more. In STOC, pages 475-484, 2014.

A Appendix

A.1 Indistinguishability Proofs between Hybrids

Let AdviA denote the advantage of an adversary A in Hybi. We now establish via
a sequence of Lemmas that the difference of the attacker A’s advantage between
each adjacent hybrid is negligible.

Observation 1 For any PPT adversary A,

Adv0
A = Adv0,12

A .

Proof. Hyb0 and Hyb0,12 are identical by inspection.

Lemma 2. If iO is a secure indistinguishability obfuscator, then for s ∈ [qRO],
all PPT A we have that

Advs−1,12
A − Advs,1A = negl(λ)

for some negligible function negl(λ).

Proof. We prove this lemma by giving a reduction to the indistinguishability
security of the obfuscation. Suppose there exists a PPT adversary A such that

17

Advs−1,12
A − Advs,1A = ε. We will construct a PPT algorithm B that breaks the

security of iO using A.
We describe and analyze a PPT reduction algorithm B that plays the indis-

tinguishability obfuscation security game with A. First, B samples the PRF keys

K
(n)
1 ,K2,K

′
2. It also chooses v∗s ← {0, 1}n, u∗s ← {0, 1}n

2

and sets (y∗1,0, y
∗
1,1), . . . ,

(y∗n,0, y
∗
n,1) = F

(n)
1 (K

(n)
1 , v∗s). for all b ∈ {0, 1} and i ∈ [1, n], B sets z∗i,b =

PRG(y∗i,b). Next, B creates the program C0 = Verify as described in Figure 1(a)
and the program C1 = Verify 2 as described in Figure 2(b). It submits both of
these programs to the iO challenger and receives back a program C which is
passed to the attacker A as the verification key V K. For the Random Oracle and
the Signing queries, B can simulate perfectly as in Hybs−1,12 (which is the same
in Hybs−1,12 and Hybs,1). Finally, A outputs a forgery (m∗, σ∗).

It is easy to observe that the programs C0 = Verify and C1 = Verify 2 are
functionally equivalent for inputs v 6= v∗s . Moreover, even on input v = v∗s such

that (z∗1,0, z
∗
1,1), . . . , (z∗n,0, z

∗
n,1) = PRG(F

(n)
1 (K

(n)
1 , v∗s)), the functionality of both

programs is identical if the PRG is injective.
We observe that when C is generated as an obfuscation of C0, then B gives

exactly the view of Hybs−1,12 to A. Otherwise if C is generated as an obfuscation

of C1 the view is of Hybs,1. Therefore, if Advs−1,12
A − Advs,1A is non-negligible, B

must also have non-negligible advantage against the indistinguishability obfus-
cation game.

Lemma 3. If F
(n)
1 (K

(n)
1 , ·) is a secure puncturable PRF, then for s ∈ [qRO] and

all PPT A, we have that:

Advs,1A − Advs,2A = negl(λ)

for some negligible function negl(λ).

Proof. Suppose there exists a PPT adversary A such that Advs,1A − Advs,2A =
ε. We will construct a PPT algorithm B that breaks the selective security of

the punctured PRFs F
(n)
1 (K

(n)
1 , ·) (at least one of the punctured PRFs in the

sequence F
(n)
1 (K

(n)
1 , ·)) using A.

Consider a sequence of 2n+1 sub-hybrids, where the i-th sub-hybrid Hybs,1,i,
is the same as Hybs,1 except that:

– For i ≤ n, ∀j ≤ i, y∗j,0 ← {0, 1}n. Also ∀n ≥ j > i, y∗j,0 = F1(Kj,0
1 , v∗s) and

∀j ≤ n, y∗j,1 = F1(Kj,1
1 , v∗s).

– For i > n, ∀j ≤ n, y∗j,0 ← {0, 1}n. Also ∀n < j ≤ i, y∗j−n,1 ← {0, 1}n and

∀j > i, y∗j−n,1 = F1(K
(j−n),1
1 , v∗s).

Note that Hybs,1,0 ≡ Hybs,1 and Hybs,1,2n ≡ Hybs,2.

Then, there exists some i ∈ [0, 2n−1] such that Advs,1,iA −Advs,1,i+1
A = 1

2n · ε.
Assume without loss of generality that i ≤ n (arguments for i > n will follow

similarly), then we can construct a PPT algorithm B that breaks the selective
security of the punctured F1(Ki+1,0

1 , ·) by using A. B chooses v∗s ← {0, 1}n,

18

submits it to the PRF challenger and receives the punctured PRF keyKi+1,0
1 {v∗s}

and the challenge y, which is either chosen uniformly at random or is the output
of the F1(Ki+1,0

1 , ·) at v∗s . B samples the PRF keys {(K1,0
1 ,K1,1

1), . . . , (Ki,0
1 ,Ki,1

1),

(Ki+2,0
1 ,Ki+2,1

1), . . . , (Kn,0
1 ,Kn,1

1)},K2,K
′
2. B also chooses u∗s ← {0, 1}n

2

. For
j ∈ [1, i], B chooses y∗j,0 ← {0, 1}n and sets y∗i+1,0 := y; for j ∈ [i + 2, n], it

sets y∗j,0 := F1(Kj,0
1 , v∗s); and for j ∈ [1, n], it sets y∗j,1 := F1(Kj,1

1 , v∗s). For all
b ∈ {0, 1}, B sets z∗j,b = PRG(y∗j,b) for j ∈ [1, n]. Next, B creates the obfuscated
program iO(Verify 2) as described in Figure 2(b) and passes it to the attacker
A as verification key V K. For the Random Oracle and Signing queries, B can
simulate perfectly as in Hybs,1,i (which is the same in Hybs,1,i and Hybs,1,i+1).
Finally, A outputs a forgery (m∗, σ∗).

We observe that when y is generated as F1(Ki+1,0
1 , v∗s), then B gives exactly

the view of Hybs,1,i to A. Otherwise if y is chosen randomly, then B gives the

view of Hybs,1,i+1. Therefore, if Advs,1A − Advs,2A is non-negligible, B must also
have non-negligible advantage against the security of the punctured PRF in the

sequence F
(n)
1 (K

(n)
1 , ·).

Lemma 4. If PRG is a secure PRG, then for s ∈ [qRO] and all PPT A we have
that:

Advs,2A − Advs,3A = negl(λ)

for some negligible function negl(λ).

Proof. Suppose there exists a PPT adversary A such that Advs,2A − Advs,3A = ε.
We will construct a PPT algorithm B that breaks the security of the PRG by
using A.

Consider a sequence of 2n+1 sub-hybrids, where the i-th sub-hybrid Hybs,2,i,
is the same as Hybs,2 except that:

– For i ≤ n, ∀j ≤ i, z∗j,0 ← {0, 1}2n. Also ∀n ≥ j > i, z∗j,0 = PRG(y∗j,0) for
y∗j,0 ← {0, 1}n and ∀j ≤ n, z∗j,1 = PRG(y∗j,1) for y∗j,1 ← {0, 1}n.

– For i > n, ∀j ≤ n, z∗j,0 ← {0, 1}2n. Also ∀n < j ≤ i, z∗j−n,1 ← {0, 1}2n and
∀j > i, z∗j−n,1 = PRG(y∗j−n,1) for y∗j−n,1 ← {0, 1}n.

Note that Hybs,2,0 ≡ Hybs,2 and Hybs,2,2n ≡ Hybs,3.

Then, there exists some i ∈ [0, 2n−1] such that Advs,2,iA −Advs,2,i+1
A = 1

2n · ε.
Assume without loss of generality that i ≤ n (arguments for i > n will follow

similarly), then we can construct a PPT algorithm B that breaks the security
of the PRG by using A. On receiving a PRG challenge z which is either chosen
uniformly at random from {0, 1}2n or is the output of PRG(y∗i+1,0) for y∗i+1,0 ←
{0, 1}n, B samples the PRF keys K

(n)
1 ,K2,K

′
2. It also chooses v∗s ← {0, 1}n,

u∗s ← {0, 1}n
2

. For ∀j ∈ [1, i], set z∗j,0 ← {0, 1}2n, z∗i+1,0 = z and ∀j ∈ [i+ 2, n],
set z∗j,0 = PRG(y∗j,0) for y∗j,0 ← {0, 1}n. For ∀j ∈ [1, n], set z∗j,1 = PRG(y∗j,1)
where y∗j,1 ← {0, 1}n. Next, B creates the obfuscated program iO(Verify 2) as
described in Figure 2(b) and passes it to the attacker A as verification key
V K. For the Random Oracle and Signing queries, B can simulate perfectly as

19

in Hybs,2,i (which is the same in Hybs,2,i and Hybs,2,i+1). Finally, A outputs a
forgery (m∗, σ∗).

We observe that when z is generated as PRG(y∗i+1,0) for y∗i+1,0 ← {0, 1}n, then
B gives exactly the view of Hybs,2,i to A. Otherwise if z is chosen randomly from

{0, 1}2n, then B gives gives the view of Hybs,2,i+1. Therefore, if Advs,2A − Advs,3A
is non-negligible, B must also have non-negligible advantage against the security
of PRG.

Lemma 5. If iO is a secure indistinguishability obfuscator, then for s ∈ [qRO]
and all PPT A we have that:

Advs,3A − Advs,4A = negl(λ)

for some negligible function negl(λ).

Proof. We prove this lemma by giving a reduction to the indistinguishability
security of the obfuscation. Suppose there exists a PPT adversary A such that
Advs,3A − Advs,4A = ε. We will construct a PPT algorithm B that breaks the
security of iO using A.

We describe and analyze a PPT reduction algorithm B that plays the indis-
tinguishability obfuscation security game with A. First, B samples the PRF keys

K
(n)
1 ,K2,K

′
2. It also chooses v∗s ← {0, 1}n, u∗s ← {0, 1}n

2

and z∗i,b ← {0, 1}2n for
all b ∈ {0, 1}, i ∈ [1, n]. It computes e = F2(K2, u

∗
s‖v∗s) and e′ = F ′2(K ′2, u

∗
s‖v∗s)

and sets g = iO(Pe; e
′). Next, B creates a program C0 = Verify 2 as described

in Figure 2(b) and a program C1 = Verify 3 as described in Figure 3. It sub-
mits both of these programs to the iO challenger and receives back a program
C which is passed to the attacker A as verification key V K. For the Random
Oracle and Signing queries, B can simulate perfectly as in Hybs,3 (which is the
same in Hybs,3 and Hybs,4). Finally, A outputs a forgery (m∗, σ∗).

It is easy to observe that the programs C0 = Verify 2 and C1 = Verify 3
are functionally equivalent on all inputs other than u∗s‖v∗s . Moreover, on input
v∗s , note that the condition in Step 1 is never satisfied in Verify 2 except with
probability 2−n, since z∗i,b is chosen at random. Therefore, the output of Verify 2
on input u∗s‖v∗s is P = iO(PK3

; r′) of the program PK3
(described in Figure 1(b))

using randomness r′, where K3 = F2(K2, u
∗
s‖v∗s), r′ = F ′2(K ′2, u

∗
s‖v∗s). On input

u∗s‖v∗s , the output of Verify 3 (which is g) is the same as that of Verify 2.
We observe that when C is generated as an obfuscation of C0, then B gives

exactly the view of Hybs,3 to A. Otherwise if C is chosen as an obfuscation of C1,

then B gives the view of Hybs,4. Therefore if Advs,3A −Advs,4A is non-negligible, B
must also have non-negligible advantage against the indistinguishability obfus-
cation game.

Lemma 6. If F2(K2, ·) is a secure puncturable PRF, then for s ∈ [qRO] and all
PPT A, we have that:

Advs,4A − Advs,5A = negl(λ)

for some negligible function negl(λ).

20

Proof. Suppose there exists a PPT adversary A such that Advs,4A − Advs,5A = ε.
We will construct a PPT algorithm B that breaks the selective security of the
punctured PRFs F2(K2, ·) using A.

First, B chooses v∗s ← {0, 1}n, u∗s ← {0, 1}n
2

and z∗i,b ← {0, 1}2n for all
b ∈ {0, 1}, i ∈ [1, n]. B submits u∗s‖v∗s to the PRF challenger and receives the
punctured PRF key K2{u∗s‖v∗s} and the challenge K, which is either chosen
uniformly at random or is the output of the F2(K2, ·) at u∗s‖v∗s . B samples the

PRF keys K
(n)
1 ,K ′2. It sets e = K, e′ = F ′2(K ′2, u

∗
s‖v∗s) and g = iO(Pe; e

′).
Next, B creates the obfuscated program iO(Verify 3) as described in Figure 3
and passes it to the attacker A as verification key V K. For the Random Oracle
and Signing queries, B can simulate perfectly as in Hybs,4 (which is the same in
Hybs,4 and Hybs,5). Finally, A outputs a forgery (m∗, σ∗).

We observe that when K is generated as F2(K2, u
∗
s‖v∗s), then B gives exactly

the view of Hybs,4 to A. Otherwise if K is chosen randomly, the view is of Hybs,5.

Therefore, if Advs,4A − Advs,5A is non-negligible, B must also have non-negligible
advantage against the security of the punctured PRF F2.

Lemma 7. If F ′2(K ′2, ·) is a secure puncturable PRF, then for s ∈ [qRO] and all
PPT A, we have that:

Advs,5A − Advs,6A = negl(λ)

for some negligible function negl(λ).

The proof of this lemma is analogous to that of Lemma 5.

Lemma 8. If iO is a secure indistinguishability obfuscator, then for s ∈ [qRO]
and all PPT A, we have that:

Advs,6A − Advs,7A = negl(λ)

for some negligible function negl(λ).

Proof. We prove this lemma by giving a reduction to the indistinguishability
security of the obfuscation. Suppose there exists a PPT adversary A such that
Advs,6A − Advs,7A = ε. We will construct a PPT algorithm B that breaks the
security of iO using A.

We describe and analyze a PPT reduction algorithm B that plays the in-
distinguishability obfuscation security game with A. First, B samples the PRF

keys K
(n)
1 ,K2,K

′
2. It also chooses v∗s ← {0, 1}n, e← {0, 1}n1 and e′ ← {0, 1}n2

and sets g = iO(Pe; e
′). For all i ∈ [1, n], it sets y∗i,gi ← {0, 1}

n, u∗s[i] = y∗i,gi ,

z∗i,gi = PRG(y∗i,gi) and z∗i,ḡi ← {0, 1}
2n, where gi is the i-th bit of g and ḡi = 1−gi.

Next, B creates a program C0 = Verify 3 as described in Figure 3 and program
C1 = Verify 2 as described in Figure 2(b). It submits both of these to the iO
challenger and receives back a program C, which is passed to the attacker A as
verification key V K. For the Random Oracle and Signing queries, B can simu-
late perfectly as in Hybs,6 (which is the same in Hybs,6 and Hybs,7). Finally, A
outputs a forgery (m∗, σ∗).

21

It is easy to observe that the programs C0 = Verify 3 and C1 = Verify 2 are
functionally equivalent for v 6= v∗s and for (u = u∗s, v = v∗s). Moreover, we note
that, for input (u 6= u∗s, v = v∗s), since z∗i,b are chosen uniformly at random,
the condition in step 2 is possibly satisfied in the program Verify 3 (that is C0)
with probability only 2−n by security of the length-doubling PRG. Therefore,
the output of Verify 3 on input (u 6= u∗s, v = v∗s) is P = iO(PK3 ; r′) of the
program PK3

of Figure 2 using randomness r′, whereK3 = F2(K2{u∗s‖v∗s}, u‖v∗s),
r′ = F ′2(K ′2{u∗s‖v∗s}, u‖v∗s). And in program Verify 2 (that is C1), for input
(u 6= u∗s, v = v∗s), the condition in step 1 will only be satisfied with probability
2−n by the security of the length-doubling PRG and by injectivity of the PRG.
The output of Verify 2 on input (u 6= u∗s, v = v∗s) is therefore the same as that
of Verify 3.

We observe that when C is generated as an obfuscation of C0, then B gives
exactly the view of Hybs,6 to A. Otherwise if C is chosen as an obfuscation of

C1 the view is of Hybs,7. Therefore if Advs,6A − Advs,7A is non-negligible, B must
also have non-negligible advantage against the indistinguishability obfuscation
game.

Lemma 9. If PRG is a secure PRG, then for s ∈ [qRO] and all PPT A, we have
that:

Advs,7A − Advs,8A = negl(λ)

for some negligible function negl(λ).

Proof. Suppose there exists a PPT adversary A such that Advs,7A − Advs,8A = ε.
We will construct a PPT algorithm B that breaks the security of the PRG by
using A.

Consider a sequence of n + 1 sub-hybrids, such that for i ∈ [0, n] the i-th
sub-hybrid Hybs,7,i, is the same as Hybs,7 except that:

– For ∀j ≤ i, z∗j,ḡj = PRG(y∗j,ḡj), where y∗j,ḡj ← {0, 1}
n.

– For ∀j > i, z∗j,ḡj ← {0, 1}
2n.

Note that Hybs,7,0 ≡ Hybs,7 and Hybs,7,n ≡ Hybs,8.

Then, there exists some i ∈ [0, n− 1] such that Advs,7,iA − Advs,7,i+1
A = 1

n · ε.
We can construct a PPT algorithm B that breaks the security of the PRG

by using A. On receiving a PRG challenge z which is either chosen uniformly at
random from {0, 1}2n or is the output of PRG(y∗i+1,ḡi+1

) for y∗i+1,ḡi+1
← {0, 1}n,

B samples the PRF keys K
(n)
1 ,K2,K

′
2. It also chooses v∗s ← {0, 1}n, e← {0, 1}n1

and e′ ← {0, 1}n2 . It sets g = iO(Pe; e
′). Let gj is the j-th bit of g and ḡj = 1−gj .

For all j ∈ [1, n], it sets y∗j,gj ← {0, 1}
n, u∗s[j] = y∗j,gj , z∗j,gj = PRG(y∗j,gj). For

all j 6= i + 1, it sets z∗j,ḡj = PRG(y∗j,ḡj) where y∗j,ḡj ← {0, 1}
n and z∗i+1,ḡi+1

= z.

Next, B creates the obfuscated program iO(Verify 2) as described in Figure 2(b)
and passes it to the attacker A as verification key V K. For the Random Oracle
and Signing queries, B can simulate perfectly as in Hybs,7,i (which is the same
in Hybs,7,i and Hybs,7,i+1). Finally, A outputs a forgery (m∗, σ∗).

22

We observe that when z is generated as PRG(y∗i+1,ḡi+1
) for y∗i+1,ḡi+1

←
{0, 1}n, then B gives exactly the view of Hybs,7,i+1 to A. Otherwise if z is chosen

randomly from {0, 1}2n, the view is of Hybs,7,i. Therefore, if Advs,7A − Advs,8A is
non-negligible, B must also have non-negligible advantage against the security
of the PRG.

Lemma 10. If F
(n)
1 (K

(n)
1 , ·) is a secure puncturable PRF, then for s ∈ [qRO]

and all PPT A, we have that:

Advs,8A − Advs,9A = negl(λ)

for some negligible function negl(λ).

The proof of this lemma is analogous to that of Lemma 2.

Lemma 11. If iO is a secure indistinguishability obfuscator, then for s ∈ [qRO]
and all PPT A, we have that:

Advs,9A − Advs,10
A = negl(λ)

for some negligible function negl(λ).

The proof of this lemma is analogous to that of Lemma 1.

Lemma 12. If iO is a secure indistinguishability obfuscator, then for s ∈ [qRO]
and all PPT A, we have that:

Advs,10
A − Advs,11

A = negl(λ)

for some negligible function negl(λ).

Proof. We prove this lemma by giving a reduction to the indistinguishability
security of the obfuscation. Suppose there exists a PPT adversary A such that
Advs,10

A − Advs,11
A = ε. We will construct a PPT algorithm B that breaks the

security of iO using A.
We describe and analyze a PPT reduction algorithm B that plays the in-

distinguishability obfuscation security game with A. First, B samples the PRF

keys K
(n)
1 ,K2,K

′
2 and creates the obfuscated program iO([Verify]), where the

program Verify is described in Figure 1(a) and padded to be of appropriate size.
The challenger sets V K = iO([Verify]) and passes it to the attacker A. For the
Random Oracle Query mj , if j = s, B chooses v∗j ← {0, 1}n, e ← {0, 1}n1 and
e′ ← {0, 1}n2 and computes p̂j = f(F3(e,mj)). B creates a program C0 = Pe
as described in Figure 1(b) and a program C1 = P ′e{mj},mj ,p̂j

as described in

Figure 2(a). It submits both of these to the iO challenger and receives back a
program C. B sets g = C. For all i ∈ [1, n], it sets (y∗1,0, y

∗
1,1), . . . , (y∗n,0, y

∗
n,1) =

F
(n)
1 (K

(n)
1 , v∗j), u∗j [i] = y∗i,gi , where gi is the i-th bit of g. For the Random Or-

acle Query mj , s.t. j 6= s, B can simulate perfectly as in Hybs,10 (which is the
same in Hybs,10 and Hybs,11). For Signing queries, B can simulate perfectly as in

23

Hybs,10 (which is the same in Hybs,10 and Hybs,11). Finally, A outputs a forgery
(m∗, σ∗).

It is easy to observe that the programs C0 = Pe (as described in Figure 1(b))
and program C1 = P ′e{mj},mj ,p̂j

(as described in Figure 2(a)) are functionally

equivalent. We note that when C is generated as an obfuscation of C0, then B
gives exactly the view of Hybs,10 to A. Otherwise, if C is chosen as an obfusca-

tion of C1 the view is of Hybs,11. Therefore, if Advs,10
A −Advs,11

A is non-negligible,
B must also have non-negligible advantage against the indistinguishability ob-
fuscation game.

Lemma 13. If F3(e, ·) is a secure puncturable PRF, then for s ∈ [qRO] and all
PPT A, we have that:

Advs,11
A − Advs,12

A = negl(λ)

for some negligible function negl(λ).

Proof. Suppose there exists a PPT adversary A such that Advs,11
A −Advs,12

A = ε.
We will construct a PPT algorithm B that breaks the selective security of the
punctured PRFs F3(e, ·) using A.

First, B samples the PRF keys K
(n)
1 ,K2,K

′
2 and creates the obfuscated pro-

gram iO([Verify]) as described in Figure 1(a) and padded to be of appropriate
size. B sets V K = iO([Verify]) and passes it to the attacker A. For the Random
Oracle query mj , if j = s, B submits mj to the PRF challenger and receives the
punctured PRF key e{mj} and the challenge pj , which is either chosen uniform-
ly at random or is the output of the F3(e, ·) at mj . B chooses v∗j ← {0, 1}n and
e′ ← {0, 1}n2 and sets p̂j = f(pj). B sets g = iO(P ′e{mj},mj ,p̂j

). For all i ∈ [1, n],

it sets (y∗1,0, y
∗
1,1), . . . , (y∗n,0, y

∗
n,1) = F

(n)
1 (K

(n)
1 , v∗j), u∗j [i] = y∗i,gi , where gi is the

i-th bit of g. For the Random Oracle query mj , s.t. j 6= s, B can simulate per-
fectly as in Hybs,11 (which is the same in Hybs,11 and Hybs,12). For the signing
queries, B can simulate perfectly. Finally, A outputs a forgery (m∗, σ∗).

We observe that when pj is generated as F3(e,mj), then B gives exactly the
view of Hybs,11 to A. Otherwise if pj is chosen randomly, the view is of Hybs,12.

Therefore, if Advs,11
A −Advs,12

A is non-negligible, B must also have non-negligible
advantage against the security of the punctured PRF F3(e, ·).

24

