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Abstract. In recent years, performance counters have been used as a
side channel source for the branch mispredictions which has been used to
attack ciphers with user privileges. However, existing research considers
blinding techniques, like scalar blinding, scalar splitting as a mechanism
of thwarting such attacks. In this endeavour, we reverse engineer the
undisclosed model of Intel’s Broadwell and Sandybridge branch predic-
tor and further utilize the largely unexplored perf ioctl calls in sampling
mode to granularly monitor the branch prediction events asynchronously
when a victim cipher is executing. With these artifacts in place, we target
scalar blinding and splitting countermeasures to develop a key retrieval
process using what is called as Deduce & Remove. The Deduce step uses
template based on the number of branch misses as expected from the
3-bit model of the BPU to infer the matched candidate values. In the
Remove step, we correct any erroneous conclusions that are made, by
using the properties of the blinding technique under attack. It may be
emphasized that as in iterated attacks the cost of a mistaken deduction
could be significant, the blinding techniques actually aids in removing
wrong guesses and in a way auto-corrects the key retrieval process. Fi-
nally, detailed experimental results have been provided to illustrate all
the above steps for point blinding, scalar blinding, and scalar splitting
to show that the secret scalar can be correctly recovered with high con-
fidence. The paper concludes with recommendation on some suitable
countermeasure at the algorithm level to thwart such attacks.

Keywords: Scalar Multiplication, Scalar Splitting, Scalar Blinding, 3-bit pre-
dictor

1 Introduction

Micro-architectural side-channel threats have gained importance manifold in
the last decade since the cloud service providers allow several users to share
the same hardware. These attacks target information leakages with respect to
micro-architectural events of the system such as cache misses and branch misses.
These leakages are considered to be benign for the normal applications, but, if
monitored precisely, they result in revealing sensitive information of the crypto-
graphic algorithm. Cryptographic algorithms, in spite of being mathematically



strong, can leak secret keys through such micro-architectural events since the im-
plementations of such cryptographic algorithms leave their execution footprints
on the shared system resources.

Public-key cryptographic algorithms are indispensable in our modern day
life because of critical applications like: authentication, key exchange, digital
signatures etc, which are required in almost every applications we use while we
connect to the Internet. In the pioneering work in [1] it was first shown that the
time to process different inputs can be used as a side-channel information to find
the exponent bits of the secret keys for RSA, Diffie-Hellman, Digital Signature
Standard (DSS) etc. While there have been several proposed countermeasures to
prevent Simple Power Analysis (SPA), there exists more powerful attacks such
as the differential attacks which proves the simple side-channel countermeasures
to be ineffective. The most popular countermeasures against Differential Power
attacks (DPA) in ECC have been proposed in [2,3], namely scalar blinding, scalar
splitting and point blinding. All of these countermeasures either randomize the
secret scalar or the base point of the curve. In this paper, we target all three
of these countermeasures with an asynchronous granular sampling of branch
misprediction event using the Hardware Performance counters (HPCs) and show
to the best of our knowledge, for the first time that all three of these popular
countermeasures are ineffective to thwart such attacks.

HPCs are a set of special-purpose registers storing the counts of hardware-
related activities within the microprocessor. These counters contain information
on the internal activities of the processor and hence can be utilized for both at-
tacks and their countermeasures. In [4], these HPCs are exploited as side channels
for time-based cache attacks. HPC L1 and L2 D-cache miss counters have been
exploited as side-channels in [4] for performing cache attacks on symmetric-key
algorithms, like AES as in [5]. While the paper shows that the HPCs can be
used as potential source of leakage, the attacks were sensitive to noise intro-
duced through loops, branches and also compiler optimizations to retain the
tables. In [6], it was first established that branch misses from HPCs can reveal
the secret key in RSA. The paper targets SPA countermeasures to justify the
information leakage through the branch predictors. But the attack as in its true
form is ineffective on countermeasures that blind the secret. In the paper, ex-
ponent and message blinding were referred to be an effective countermeasure of
the attack.

Motivation This paper extends the scope of HPC based micro-architectural
attack to DPA protected public key algorithms. The proposed work exploits
the granular sampling of branch mispredictions using perf ioctl system calls.
The granular sampling allows capturing of detailed traces, which in turn makes
attack on blinded scalar multiplication practical. In the remainder, we explain
and solve the various challenges raised by this work.

Contributions In our paper, we target the harder problem of attacking the
DPA secure implementations such as scalar splitting and scalar blinding using
the asynchronous branch misprediction samples. We use the perf ioctl sys-
tem calls in sampling mode to monitor the executable under attack. ioctl (or



input/output control) is a system call for device-specific input/output opera-
tions and other operations which cannot be expressed by regular system calls.
It takes a parameter specifying a request code and result in a device-specific re-
sponse. When used with perf event open, it allows functionality like enabling,
disabling, resetting, refreshing etc. of the counter. The sampling software samples
number of branch misses suffered at a defined sampling period of some other sam-
pler event (instruction count is used as the sampler event in our measurements).
The granular samples obtained are noisy, mostly because the measurements are
asynchronous in nature and thus noise is not uniform. This problem is difficult
because of the absence of proper synchronous and granular measurements of
mispredictions at every regular time-step. The algorithm being randomized in
nature adds to the difficulty of attacking with such coarse measurements. We
follow by a principle of Deduce & Remove in order to cope up with such lim-
itations. We list the criteria of our attack on blinded Scalar multiplication as
follows:

– Acquire: obtain branch misprediction traces over the scalar multiplication.
– Deduce: every randomized trace should reveal partial key bits.
– Remove: if a randomized trace does not leak any information regarding the

trace, then the attacker should be able to isolate and remove the trace.

The objective of the Deduce step is to derive the values of an unknown set of keys
based on the observed performance events. However, an important drawback for
the success of iterative attack algorithm is that an erroneous deduction will affect
subsequent key recoveries. Hence, the Remove step eliminates observations that
have a low confidence or are erroneous by introducing extra checks.

The key contributions of this work are:

1. We perform a reverse engineering of the branch predictor hardware and found
that the behavior has a significantly high correlation to the deterministic 3-
bit predictor characteristics.

2. We propose a new method to perform side-channel attacks on the branch pre-
diction unit, by building traces of branch mispredictions of any executable.
We use hardware performance counters in sampling mode to build such
traces, with user privileges.

3. We use these branch misprediction traces to construct templates, and later
apply adaptive template matching to retrieve the secret scalar, including in
presence of differential attack countermeasures.

2 Background

2.1 Understanding Branch Mispredictions

Commonly, the implementations of public-key exponentiation algorithms and
the scalar multiplications algorithms in ECC are such that the sequence of op-
erations executed in every run of the algorithm is dependent on the secret bits.
Both the exponentiation and scalar multiplication algorithms are commonly im-
plemented with a set of statements in if-else block and the execution of the



if-else statements are conditionally dependent on the secret key bits. The re-
lation between these conditional sequences and branch misses is the following.
Let the n-bit secret scalar in ECC be denoted as (k0, k1, · · · , ki, · · · , kn−1). The
double and add operations of the double-and-add algorithm or the SPA resistant
Montgomery Ladder algorithm being conditioned on the secret scalar bits, the
trace of taken or not-taken branches as conditioned on scalar bits and expressed
as (b0, b1, · · · , bn−1).

– If a particular key bit kj is 1 then the conditional addition statement in the dou-
ble and add algorithm gets executed. Thus, the condition is checked first, and if
the particular key bit is set then its immediate next statement ie, addition gets
performed. Since this is a normal flow of execution the branch is considered as
not-taken ie, bj = 0 in this case.

– While when kj = 0, the addition operation is skipped and the execution continues

with the next squaring statement. Thus, in this case branch is taken ie, bj = 1.

Thus for any if-else block, we consider the respective branch statement to be
not-taken if the if conditional satisfies. On the other hand, if the else block
is executed then we consider the respective branch to be taken.

The history of taken and not-taken branches are available to the branch pre-
dictor and the predictor predicts next branches based on the history of branches
that have already been encountered. Whenever, the predictor encounters a con-
ditional statement, it predicts based on the history and predicted instructions
gets fetched in the instruction pipeline. It is only during the execute stage that
the condition gets evaluated and if there is a mismatch in the predicted and the
evaluated branch then the corresponding instruction is flushed from the instruc-
tion pipeline resulting in pipeline stall, which is commonly referred to as branch
misses.

Effect of Compiler Optimization Options In order to validate our under-
standing for conditional branching we performed some experiments to observe
the effect of optimization options in gcc on the conditional if-else structure of
code. Similar to the balanced structure as in Montgomery ladder we show an
example of assembly generation for a simple conditional if-else code. The code
prints “hello” if the if clause is true otherwise it prints “hi”.

.LC3:

.string "hello"

.LC4:

.string "hi"

So intuitively, if the “if” statement is true then the immediate next statement
gets into the instruction pipeline and thus the branch is not taken. On the
contrary if the “else” part is getting executed then then the branching is true
and the branch statement is taken in such case. Table 1 shows the assembly
translation of the code under various levels of optimizations. It is evident from all
of these cases, that in spite of varying the optimization options, the conditional
statement assembly remains the same.

2.2 Existing DPA Countermeasures on ECC

Elliptic curve scalar multiplication or point multiplication is an operation which
computes Q = K.P , where K is n bit scalar and P is a point on the elliptic



Table 1. Assembly generated using various optimization options in gcc

without Optimization O1 O2 O3

. L5 :
movl −36(%rbp ) , %eax
c l t q
movzbl −32(%rbp ,%rax ) , %eax
cmpb $49 , %a l
jne . L3
movl $ . LC3 , %ed i
c a l l puts
jmp . L4

. L3 :
movl $ . LC4 , %ed i
c a l l puts

. L5 :
cmpb $49 , (%rsp ,%rbx )
jne . L3
movl $ . LC3 , %ed i
c a l l puts
jmp . L4

. L3 :
movl $ . LC4 , %ed i
c a l l puts

. L3 :
movl $ . LC4 , %ed i
c a l l puts

. L5 :
. . . . .
jne . L3
movl $ . LC3 , %ed i
. . . .

. L3 :
movl $ . LC4 , %ed i
c a l l puts

. L5 :
. . .
jne . L3
movl $ . LC3 , %ed i
c a l l puts
. . .

curve. The ECC scalar multiplication algorithms operate for each bit of the
scalar and branching decision depends on the bit value of the scalar. Although
scalar multiplications can be written without if-else blocks however many legacy
codes still use them and it is also a belief that such if-else based codes with DPA
protections can thwart these BPU based attacks.

Scalar Randomization In the paper [2], scalar randomization has been pro-
posed as a countermeasure against Differential Power Attacks (DPA) for ECC.
If K is the secret scalar and P ∈ E the base point, instead of computing K
times P , the paper suggests to randomize the scalar K as K ′ = K + r ∗ #E
where r is a random integer and #E is the number of points in the curve.
The countermeasure computes K ′P which returns the same value as KP since
#E.P = O.

Scalar Splitting This countermeasure was proposed in [3] to randomize the
scalar such that instead of computing KP , the scalar is split in two parts K =
(K − r) + r with a random r, and multiplication is computed such on the split
components separately, KP = (K − r)P + rP .

Point Binding This countermeasure was also proposed in [2], and computes
K(P +R) instead of KP , where R a secret-random point and KR can be stored
in the system beforehand, which when subtracted K(P + R) −KR gives back
KP .

2.3 Related Work on Branch Prediction Attacks

Asymmetric-key cipher implementations typically have key-dependent condi-
tional branching statements which when implemented on systems with branch
predictors, are subjected to side-channel attacks exploiting the deterministic
branch predictor behavior due to their key-dependent input sequences. In [7]
the penalty for mispredicted branches in number of clock cycles is observed as
a side channel to identify the data-dependent operations of the public-key cryp-
tographic system. On a standard RSA implementation, four different types of
attacks were performed exploiting the Branch Prediction Unit (BPU) by using
both synchronous and asynchronous techniques. Using timing as the side-channel
in [7], the misprediction information is modeled to identify the secret key. In ad-
dition, the synchronous and asynchronous attacks involve the Branch Target



Buffer (BTB) to be modified by the attacker to surface the attack. A further
improved version of this attack [8], [9] has also been carried out with proper
knowledge of underlying hierarchical Branch Target Buffer (BTB) architecture
of the target system.

The work in [7] has been extended by the authors in [6] using the Hardware
Performance counters (HPCs) present in recent processors. The paper showed
that the behavior of the hardware predictor bears a similarity to the deterministic
2-bit predictor state machine. Using this behavior, the authors targeted the
unprotected or SPA resistant implementations of RSA and revealed the secret
using branch misses from HPCs.

In [10], the authors introduced a new covert channel to perform secret com-
munication between the sender and the receiver processes, by exploiting the
residual state of dynamic branch predictor behavior of the system. While in [11],
the authors described an implementation of Contention-based Covert channel.
The authors also provided a comparison of both types of covert channel commu-
nication in both the single-threaded and Simultaneously Multi Threading (SMT)
environment. An attack has been developed in [12] to derive kernel and user-level
ASLR (Address Space Layout Randomization) offset which exploits the BTB
collisions between the branch instructions. In [13], techniques for implementing
binary exponentiation algorithms without requiring branch instructions have
been proposed. However, the study of using HPCs to exploit the cipher codes
implemented with branch statements is vital because there still exist several
standard implementations using branches (as in OpenSSL [14], [15]). Though
other implementations have been proposed without conditional branches, they
have been subjected to side-channel attacks other than timing [16, 17]. HPCs,
in particular, provide side-channel information to an adversary, which may be
more powerful than timing information, and hence may be utilized to break
implementations that prevent timing analysis.

2.4 Related Work on Micro-architectural Reverse-Engineering

There exists few papers have tackled the task of reverse engineering the branch
predictor. In particular, [18] determined the size and organization of the BTB
as well as the length of local and global branch history components, on Intel P6
and NetBurst architectures. Authors in [19], reverse-engineered more details of
these structures, including interactions between different structures, focusing on
the Pentium M architecture. The reverse engineering of branch predictors have
been mostly considered from a compiler optimization perspective. They thus
mostly focus on the structures of the branch predictor rather on the predictor
itself, using microbenchmarks. Indeed, knowledge of the structures of the branch
predictor is useful to optimize compilers and avoid destructive interference in
tables [20]. As these works were published respectively on 2004 and 2009, they
also target older processors. In the recent years there has been some attempts
to reverse engineer the complex Last Level Cache (LLC) addressing scheme
in [21] using the information from the HPCs. The DRAM addressing has been
successfully reverse engineered in [22] using the timing channels.



3 Profiling the Branch Prediction Unit Using
Asynchronous Measurements

In this paper, we change the perspective on the reverse engineering of branch
predictors, having side channels in mind. Instead of relying on microbenchmarks,
we use performance counters to create a trace of monitored mispredictions, and
reverse the predictor according to the known branch traces fed as inputs. Com-
pared to event-based sampling, we obtain fine-grained traces, allowing us to infer
more information than with previous methods. We reverse engineer the dynamic
branch predictor on the most recent Intel micro-architectures, namely Sandy
Bridge and Broadwell.

3.1 Reverse Engineering of Branch Predictors in Modern Intel
Processors

In this paper, we make an initial attempt to understand the nature of the un-
derlying branch prediction unit. The branch prediction hardware design is pro-
prietary of the processor manufacturer and the precise details are not available.
Thus, to properly exploit it for our attack, some reverse engineering of the hard-
ware is required. In our experiments we use perf event open syscall across
simple conditional statement execution to monitor branch misses from such set
of instructions. We provide the code snippet of the perf class, which when in-
stantiated with the required hardware event, returns the event count for the
execution under consideration. So in order to understand the nature of the un-
derlying branch prediction hardware we observe branch misses across a set of
if-else statement block where the condition of execution of the if or an else

statement depends on the input sequence.

static long
perf_event_open(struct perf_event_attr *hw_event, pid_t pid,

int cpu, int group_fd, unsigned long flags)
{

int ret;

ret = syscall(__NR_perf_event_open, hw_event, pid, cpu,
group_fd, flags);

return ret;
}
void start()

{
int rc = ioctl(fd_, PERF_EVENT_IOC_RESET, 0);
assert(rc == 0);
rc = ioctl(fd_, PERF_EVENT_IOC_ENABLE, 0);
assert(rc == 0);

}
size_t stop()
{

int rc = ioctl(fd_, PERF_EVENT_IOC_DISABLE, 0);
assert(rc == 0);
size_t count;
int got = read(fd_, &count, sizeof(count));
assert(got == sizeof(count));
return count;

}

Using this perf event open system call, we can monitor the required hard-
ware event across a code snippet from the user privilege. In our experiments,
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Fig. 1. Branch misses from Intel i5-5200U with Broadwell Architecture

our code snippet has a conditional if statement conditioned on an input binary
sequence. The if statement is triggered only when there is ’1’ in the sequence
otherwise the else statement is executed. In order to understand how the hard-
ware predictor works in our target system, we devised a simple experiment. We
explain the experiments using the following steps.

– We have chosen binary sequences as input to the if-else conditional block of an
arbitrary length 10 (wlog.). The experiments can be repeated for any sequence
length. For our observation, we have all possible 210 = 1024 binary combinations
of the input sequence as respective inputs to the code snippet.

– Branch mispredictions are observed as the performance monitoring event across
each iteration of the if-else block on the input sequences.

– In the next phase, we simulated mispredictions over 2-bit predictor with the same
set of input sequences and observed that there is a 65% match of individual mis-
predictions. In Figure 1(a), we plot aggregate mispredictions over each sequence
for better illustration.

– Though in [6], the authors show that there is direct correlation of the overall branch
misses reported for the 2-bit predictor to the perf-stat output, but in our exper-
iments we observe nearly 65% accuracy for the granular observations of branch
misses from 2-bit predictor and the actual hardware predictor.

– Further, we replaced the 2-bit predictor granular mispredictions with the 3-bit
predictor simulated outputs. Figure 1 (b) shows the aggregate values of the mis-
predictions encountered for each sequence, while the individual accuracy of match
is observed as 96%. Excluding some particular input sequences, the granular obser-
vation of branch misses from the hardware predictor using perf event open system
matches exactly to the branch mispredictions simulated over 3-bit predictor.

Figure 2(a), 2(b) refer to the granular branch misprediction observations vs
the behavior of simulated mispredictions from 2-bit and 3-bit predictor on Intel
Sandybridge architecture. For all of the 4 figures, the x-axis shows the decimal
equivalent of binary sequences and the y-axis shows the branch mispredictions
for each such sequence. The red curve indicates the branch misses from the
unknown hardware predictor for each binary sequence, while the blue curve
indicates those observed over the deterministic 2-bit or 3-bit predictor. Clearly
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Fig. 2. Branch misses from Intel i3-M350 with Sandybridge Architecture

from the figures it can be observed that there is a huge similarity in behavior of
the underlying hardware predictor to the 3-bit predictor.

In the next section, we demonstrate that we do not require an elaborate
reverse engineering of the branch prediction hardware in the system to reveal
the secret scalar from the elliptic curve multiplication. We will follow by our
observations of similarity of the behavior of the 3-bit predictor to the hardware
predictor to retrieve secret even in presence of scalar blinding.

3.2 Sampling Granularly Using perf ioctl Calls

In the previous section, we discussed the granularly observing the branch misses
over each iteration of the if-else block. Such measurements are not practical
for an attacker, as the attacker cannot modify the executable run by the victim.
Instead, the attacker can sample perf event counter values. The sampling mode
of perf ioctl calls works in the following manner [23]:

– The following code snippet defines a signal handler, which defines the function to
execute when there is an interrupt raised by the interrupt handler on overflow of
the event.

– The idea is such that the perf object is instantiated with an event that is used
as a sampler. For example, if instruction count event is used as the sampling
event, there is a parameter sample period which when set to a desired value, an
interrupt is issued when the counter exceeds the sample period.

– The interrupt handler is called at regular intervals of the sample period. In our ex-
periments, we measured the branch miss event counter on each such interrupt. This
provides any user-level process a handle to granularly monitor any cryptographic
module running in the system sampled at particular frequency of execution.

//Function to handle overflow interrupts
static void perf_event_handler(int signum, siginfo_t* info, void* ucontext) {

if(info->si_code != POLL_HUP) { //Only POLL_HUP should happen
exit(EXIT_FAILURE);

}
count++;
read(fm, &sample_counter, sizeof(long long)); //Read branch_misses value
ioctl(fm, PERF_EVENT_IOC_RESET, 0); //Reset the branch_misses counter to zero
fprintf(fp, "%lld ", sample_counter);
ioctl(info->si_fd, PERF_EVENT_IOC_REFRESH, 1); //Refresh the instruction count buffer



}

//Configure the signal handler
struct sigaction sa;

memset(&sa, 0, sizeof(struct sigaction));
sa.sa_sigaction = perf_event_handler; //Specify what function to execute on interrupt
sa.sa_flags = SA_SIGINFO;

Though the counter values read by the interrupt handler for a very small
sample period is observed to be more noisy, due to the overhead of the interrupt
getting generated very frequently. The optimal sample period can be decided
on the target machine testing with some dummy process. In our experiment
platform, we found that the sampling becomes more noisy if we sample with
sampling period less than 50 instructions.

3.3 Threat Model

In the previous section, we show perf ioctl call can be used from the user space
to monitor hardware events associated with some executable. The measurements
made in our setup are such that there is an event (branch misses) that is getting
monitored on specific sample period of the instruction count. This measurement
is purely handled by the ioctl interface and is observed to be asynchronous in
nature. In the following section, we develop an attack algorithm which moni-
tors the branch misprediction traces using this asynchronous perf output and
retrieves the secret.

The attack model is both practical and realistic in virtualized shared environ-
ment where the hardware is typically shared between multiple users processes.
In such setting, the branch misprediction event counts can thus be observed over
a target execution by the attacker from another concurrently running process.
The hardware being shared, the mispredictions from one execution has an effect
on the concurrent running process as well, making our attack model realistic.

4 Attack Overview

In this section, we develop a general attack methodology which can take perf
event samples over the period of execution and can reveal the secret using sim-
ple statistical techniques such as template building and template matching. In
this paper, we follow by a strategy of Deduce & Remove to target the scalar
splitting and scalar blinding countermeasures which randomizes the scalar mul-
tiplications. In most recent cryptographic libraries, the underlying scalar multi-
plication algorithm is balanced and the scalar is blinded using a newly generated
random value every time.

Before going into the actual description of the attack strategy, let us define the
parameters. Initially we assume that there is an unprotected algorithm of ECC
where the conditional execution is dependent on the scalar K. The considered
parameters are:

– n-bit scalar K.
– m branch miss samples from the execution over K.
– Each branch miss sample is reported after sample period of I instructions.



Algorithm 1: Template Building

Input: n: number of bits of scalar K, m: number of branch miss samples for n bits scalar.
Acquired samples of 2t sequences iterated over i times for each of the 2b predictor
states

Output: Templates corresponding to 2t sequences of t ∗m/n sample points for each 2b state
begin

for 2b states of the b-bit predictor do
for each of the 2t sequences do

Construct separate distributions of i values for each t ∗m/n sample points.
Compute separately, the mode of each distribution to be the elected template
for that sample point.

end

end

end

– Thus effectively, each sample of reported branch misses is affected by n/m bits of
the scalar K.

– In our experiments, we have chosen I such that n/m = 2. Moreover, considering a
b-bit predictor, I should be such that n/m ≤ b (b = 3 for our case).

4.1 Offline Template Building for Each State of b-bit Predictor

We propose the template building phase with the context of states of a generic
b bit predictor. There are 2b states of the b-bit predictor and each of them refer
to a particular sequence of the last taken and not-taken branches. If we encode
taken branches as 1 and not-taken branches as 0, then each state represents the
history of the last consecutive branches, and the future branches will lead to
mispredictions following the behavior of the current state. In simple words, a
given sequence of taken and not-taken branches may exhibit different number
of mispredictions depending on the state of the predictor at the start of the
sequence. Since the nature of branch misprediction for the same sequence is
different for different start states, this motivates us to build templates for the
same set of input sequences for each of 2b states of the b-bit predictor.

– Branch miss templates from scalar multiplication over t bits (t << n) are con-
structed in sampling mode.

– Each of 2t template contains t ∗m/n sample points.

At the end of the template building stage as in Algorithm 1, we obtain 2b

set of templates, each having 2t templates of t ∗m/n sample points.

4.2 Offline Template Matching for an Unknown Trace

Template building phase is followed by a matching phase, where sample trace
collected for an unknown secret scalar is matched iteratively to the previously
constructed templates. The matching phase is composed of: Deduce and Remove
steps. In Deduce phase, we start matching from the Least Significant Bit (LSB) of
the scalar multiplication. We assume here that the adversary has the knowledge
of the start state of the execution. This assumption is indeed practical since the
adversary can flush the branch predictor hardware configuration by execution
a long trail of all taken or all not-taken to put the predictor hardware in one



of the extreme states and allow the victim process to follow his own execution.
Since the hardware predictor is shared by all the processors in the system, this
makes the template matching easier in the next step.

The matching can be done iteratively taking on a trace with s sample points
(s = t ∗ m/n). These s samples are point-wise matched with all the template
points for each particular template and the distances for each of the traces are
measured using the Least Square Method (LSM). A set of templates having the
least squared distance to the unknown template is considered as the retrieved
t bits of the unknown scalar. In a noise-free setting, a single trace matching
should be sufficient to determine t-bit scalar. However, in a real setting where
noise is predominant, several templates might return same least square distance.
The noise filtering is done in Remove step. However, we noticed that Remove is
device-specific and can also change with algorithm. Thus is discussed later for
our implementation.

At the end of the Deduce and Remove steps, the retrieved t bits decides the
intermediate state of the branch predictor hardware. With the current t bits, the
rest of the scalar is determined with the same procedure iteratively, extracting
t bits at a time.

5 Attacking Exponent Splitting

The idea of exponent splitting as a DPA countermeasure for scalar multipli-
cation appears in [3, 24]. Authors in [3] proposed a method to randomize the
scalar K such that instead of computing KP , we can compute (K − r)P + rP
where random r changes on every run. In this paper, we are going to show that,
such secure implementation is still vulnerable to branch misprediction analysis
attacks. We assume that SPA resistant scalar multiplication are computed on
each of the splits separately, over a balanced scalar multiplication algorithm.
The SPA resistant scalar multiplication on split shares together result in DPA
resistant algorithm.

5.1 Adapting the Generic Template Matching to Scalar Splitting

The attack progresses from LSB to MSB. In the following discussion, we explain
the iterative attack algorithm to recover the bits in the secret scalar K, starting
from LSB. Templates composed of trace pair corresponding to all possible values
of (K− r)P and rP are constructed. The attack algorithm works in three major
steps:

1. Acquire: N pairs of split scalar multiplications over K−r and r are acquired
over t bits, each pair for unknown and random values of r.

2. Deduce: For each of the N pairs, corresponding pairwise template matching
is performed, on each sample. It results in N values each for K − r and r.
Pairwise adding up of each pair (K − r + r) results in t-bits of K.

3. Remove: Ideally, all N values of K obtained previously must be identical.
The non-matching values can be removed by majority voting.

The algorithm is thus repeated iteratively, revealing t bits at a time.



6 Attacking Scalar Blinding

In this section, the attack is extended to scalar blinding countermeasure. Al-
though the generic attack principle stays the same, minor tweaks are needed
when applied to blinding. In scalar blinding, the algorithm computes K ′ =
K + r#E, where the secret scalar K is not operated upon by the scalar mul-
tiplication algorithm, instead the scalar is randomized every time with a new
random number r and is multiplied with the order of the curve #E. There are
no further adjustments that needs to be done after scalar multiplication of K ′P
since the algorithm results in the exact same value as KP in spite of varying r
for every run.

6.1 Adapting Generic Template Matching for Scalar Blinding
The attack algorithm has been modified to tackle the traces from scalar blinding.
Unlike scalar splitting, the scalar cannot be retrieved iteratively, as the modulus
operation on each of the blinded scalars can be applied only on full scalar. The
final value retrieved after modulus can be checked for each of the N samples to
remove the incorrectly retrieved candidates.

The offline template building phase is same as the previous attack.

1. Acquire: N blinded scalar multiplication over (K + r#E)P , for random, unknown
values of r.

2. Deduce: For each of the N trace, pointwise matching over s branch misprediction
samples of t bits is performed. It results N candidates for t bits for of K + r#E.

3. Remove: Choose any 3 branch misprediction traces out of N traces, for random
r1, r2, r3. Step 2 reveals t bits of K+r1#E, K+r2#E and K+r3#E respectively.
Take pair wise difference of the candidate values example (K+r1#E)−(K+r2#E).
Compute r1#E−r2#E, r2#E−r3#E and r1#E−r3#E. Now for correct t bits of
the blinded scalar, adding up of candidate value of r1#E−r2#E and r2#E−r3#E
would result in non-empty set on intersection with candidate of r1#E − r3#E.
Combination for empty set for intersection can be discarded, leading to t bits of
blinded scalar.

This algorithm is thus extended for the next s samples with adaptively per-
forming template matching and analysis based on the knowledge of the retrieved
t bits. One final check after retrieving the entire length of the blinded scalar is
to perform a modulus operation on the retrieved blinded components with the
order of the curve. All the independent retrieval of the n bits should produce
same secret scalar K on taking the modulus.

7 Experimental Results

In this section we will illustrate each steps explained in the prior sections with
results from performance counters. We will start with the acquisition of traces.
The sample points of the trace of branch misses obtained from sampling ioctl calls
are noisy and are highly sensitive to the sample period of the sampling event. The
sampling being asynchronous to the underlying execution, we acquired several
traces of same input sequence in order to construct the template. The parameters
that we chose for template building and matching is tabulated in Table 2. Having
set the sampling period as 80, results in having one sample point affected by
two bits of the input scalar.



Table 2. Tabular Representation of Symbols
Symbols Values

Number of sample points for template matching (s) 5

Number of bits considered for template matching (t) 10

Sampling period (instructions) 80

Number of independent traces collected (N) 10000
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Fig. 3. Variation of sample points of branch miss templates

7.1 Building Branch Misprediction Templates Using perf ioctl
Sampling

The success of our attack is highly dependent on how accurate the template
has been built. Choosing these 5 sample points corresponding to a particular
predictor state, is the most difficult task. The sample of branch misses obtained
over the input sequences being noisy, we repeat the execution over the same
sequence multiple times to remove the effect of the noise while building the
template.

Initially, we constructed the templates considering the mean of the obtained
samples. The templates as constructed using the mean value loose the correlation
to the behavior of the 3-bit predictor since the sample means get affected by
the sampling noise. Taking the sample mean is the most preferred technique for
Correlation Power Attacks (CPA), but the nature of the sample noise is irregular
or uneven in this case, for this reason mode of the distribution outperforms mean.
We separately construct frequency distributions for each of these sample points
and select the modal value (the sample value which has occurred the most) as
the candidate template point.

As in the Figure 3, we show the variation of the respectively selected modal
values for all possible of 10 bit sequences. The graph is plotted with the decimal
equivalent of the binary number in the x-axis and the behavior of the modal
sample value with the input binary sequences in the y-axis. Each colored line
in the figure represents a sample point (affected by two bits), and if they are
studied keenly represents a high similarity to the behavior of the 3-bit predictor.
Thus we claim we that the templates constructed taking the highest frequency
points capture the essence of the distribution accurately.

7.2 Retrieving the Least Significant Bit for Scalar Splitting
Among the observed sample points, the most noisy sample point is the first one,
which is supposed to be affected only by the Least Significant bit, and the bit
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Fig. 4. Confusion in determining the LSB for scalar splitting

following the LSB and but often also gets affected by the branch misses from
instruction before the scalar multiplication starts to execute. The sampling being
asynchronous to the underlying execution, this sampling noise has to be handled
intelligently in order to diminish the chances of error.

In Figure 4, we have performed a frequency analysis on the first branch miss
samples observed over a set of random binary sequences of input. Depending on
the actual values of the LSB and the bit following LSB we separately constructed
the frequency distribution of the observed samples. At the start of this execution,
the hardware branch predictor state can be assumed to be in strong not-taken

state, since we execute a long trail of not-taken branches before the start of
execution. The 3 bit predictor being a 3 bit saturating counter, a long trail of
not-taken branches puts the predictor state to one of the two extreme states of
the saturation counter.

As appears in Figure 4, when the last two bits of the sequence is having
both not-taken branches then the distribution is shifted towards the left (in
black line) and exhibits overall lesser branch misses from the rest of the three
cases. While on the other hand if the sequence is having both taken branches
(in red line) is suffering from the most branch misses and the distribution is
shifted towards the right. While the other two cases (in green and blue line)
of combination of one taken and not-taken cannot be distinguished from each
other by simple template matching.

Thus to retrieve the LSB separately, we take the N pair of samples for each of
the split scalar and the random component such that if they are having sample
values in range (3, 4) we are not going to classify them. This is because for each
of the four distributions there is a large frequency of values in this range, thus
encountering a sample as 3 or 4 will add up to the confusion. In the following
steps we explain the working procedure to retrieve the LSB

– For each of the N sample pairs, we select the pairs where neither of the sample
points exhibits a value 3 or 4.

– If a sample point exhibits value < 2, we classify both the branches as not-taken

ie, the bits to be 11.

– If a sample point exhibits value 2, we conclude that the branches are either both
not-taken or not-taken followed by a taken branch. Thus the bit values are 11
or 01.

– If a sample point exhibits value 5, we conclude that the branches are either both
taken or taken followed by a not-taken branch. Thus the bit values are 00 or 10.
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Fig. 5. Determining 3 bits at a time for scalar splitting

– If a sample point exhibits value > 5, we classify both the branches as taken ie, the
bits to be 00.

After we conclude the last two bits from M pairs out of the N , we take
their pair wise sum to conclude the LSB of the secret scalar K. One additional
checkpoint we have with this approach is that we can check that whether each
M pairs leads to the same LSB of the secret scalar K.

7.3 Iterative Template matching for scalar splitting

In this section we will put how to iteratively retrieve the further scalar bits ap-
plying the Deduce and Remove strategy once the LSB is known. The first step is
that we perform template matching on first t = 10 bits and deduce the candidate
values which match respectively to each of the N pair of samples. Next we take
pair wise summation of such values, and that gives us the candidate values of
the first t bits of the secret K. At this point, we remove the candidates which
wrongly infer the LSB. Figure 5(a) show the majority voting of the next three bit
positions from the LSB for the candidate values, where clearly the correct bits
(three consecutive one’s) wins with a significantly high majority. One striking
observation is that, this winning percentage gradually reduces for the further
bits. Behavior of the branch misses having huge similarity to 3 bit predictor
characteristics, thus we decide only on the next 3 bits. Once we identify three
bits, we retrace the split scalar values individually and remove the candidate
values for both K −R and R which do not add up to retrieved bits.

Thus, with the knowledge of the LSB we perform windowed template match-
ing on the t next bits by sliding the window every time with the knowledge of 3
bits. Figure 5(b) reveals the next 3 bits as in (0, 1, 1) based on adaptive template
matching (ie, matching the templates after knowing the intermediate state of the
predictor for the retrieved bits). For the further bits, we iteratively apply the
same adaptive template matching to reveal the bits without an error.

7.4 Efficiency of Deduce and Remove strategy on Scalar Blinding

As discussed in the section 6, an attacker uses Deduce and Remove strategy on
all of the acquired N branch misprediction traces. Performing the easy check
as appears in section 6 can significantly remove the traces that are too noisy
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Fig. 6. Efficiency of Deduce and Remove step on scalar blinding

to leak any useful information. This brings us to analyze the effectiveness of
the two strategies. The online trace acquisition and template building phase
works exactly same as has been explained for the scalar splitting algorithm. In
the following discussion, we will explain the analysis of the template matching
phase and pruning out the wrong predictions.

The attack algorithm in section 6 is such that the secret scalar can be re-
trieved only when the full length of the blinded scalar has been retrieved entirely.
There is no iterative check so as to detect if there is error. In order to detect
we discussed a check mechanism in the attack section which helps to correctly
retrieve first 3 bits of each random scalar and this time we update the predic-
tor states after each 3 bits and proceed for retrieving the subsequent bits. The
template matching phase in scalar blinding works on N misprediction traces, in
our case we choose N = 10000. For each of these blinded scalars after perform-
ing template matching by the Least Squared method, they may have multiple
candidate values to match the traces. The reason is simply because the trace
acquired is noisy. Each blinded trace being random in nature, we denote the
matched candidates for each trace as N sets: R1, R2, · · · , RN , where each set is
represented as Ri = {cj : j ≥ 1, cj ’s are candidate matched templates of t bits}

– We consecutively take three sets from the entire range. It is not possible to exhaust
all

(
N
3

)
combinations, so we choose in such a fashion.

– Thus we choose sets like Ri, Ri+1, Ri+2 and performed subtractions on all pairs of
the candidate values as explained in section 6.

The efficiency of this Deduce and Remove strategy is illustrated in Figure 6,
where the bars with red represent the total number of candidates which were
matched after template matching. The bar with blue indicates the total num-
ber of candidate values that were pruned. The last bar in black represents the
number of correctly retrieved candidates after taking intersection. The number
of correctly retrieved ones are higher than 93%. That is out of 10000 separate
random traces, more than 93% of the traces could identify the last 3 bits cor-
rectly among the various candidate values. Knowing 3 bits we update the state
of the predictor and perform template matching on the next t bits to retrieve
the following 3 bits.

7.5 Adapting Generic Template Matching for Point Blinding

The attack algorithm as explained for scalar splitting and scalar blinding can be
easily adapted for point blinding countermeasure. The countermeasure performs



K(P + R) instead of KP . Since the number of branch mispredictions are not
directly dependent on the point with which multiplication is getting done, so
the conditional branching will be affected only because of the secret scalar K.
Attacking the previous approaches make this attack a trivial one. The branch
misprediction traces over the scalar multiplication K(P + R) will always report
branch misses for the scalar K. Thus the template matching phase will return
candidate values for t bits of the scalar K every time. Considering that the traces
obtained are noisy, we suggest to perform this on multiple traces and take an
intersection between the candidate samples to eradicate the effect of noise.

Similarly, revealing t bits of the scalar leads the branch predictor to update
the intermediate state after t bits, such that precise template matching can be
applied on the subsequent t bits. This iterative algorithm is anticipated to require
much less number of traces than the previous attacks.

8 Possible Countermeasures

Blinding countermeasures are shown to be vulnerable to branch misprediction
attack in the previous sections. To counteract it, one can adopt several strate-
gies. The first and the most obvious countermeasure is to implement the scalar
multiplications such that the control flow of the execution is independent of the
secret scalar K, thus avoiding the if-else structure of the implementation. But
still there exists legacy codes which believe that the DPA countermeasures are
sufficient to thwart branch misprediction attacks.

Another countermeasure which can thwart such attacks is to randomize the
state of the predictor intermediate to the execution. This can be achieved by
introducing random branching executions parallel to the execution of the cryp-
tographic library. The objective is to randomize effectively the state of the pre-
dictor to inhibit the Deduce step of the attack.

Randomization in several layers of algorithm and measurement can only make
the attack difficult in its original form. The adversary in some way can be more
powerful having more granular traces and even then these countermeasures will
pose themselves ineffective. This brings us again to the open challenge of rethink-
ing the structure of the branch predictor in such a way that they are inherently
secure against this form of attacks.

9 Conclusion

Information leakages from branch predictor pose a serious threat to the asymmet-
ric key cryptographic algorithm because of their conditional statement execution
depending on the secret. In the paper, we initially perform reverse engineering
on the branch predictor hardware of Intel’s Broadwell and Sandybridge systems
and show that the hardware has a significant similarity in behavior to the 3-bit
predictor algorithm. Subsequently, we use this granular observation of branch
misprediction to attack the DPA secure implementations of ECC. The experi-
mental results illustrate the effectiveness and efficiency of our proposed attack
for both scalar splitting and scalar blinding countermeasures. Finally, we propose
to execute random branches concurrently to randomize the hardware predictor
state as a countermeasure against this attack.
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