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Abstract. Starting with any selectively secure identity-based encryp-
tion (IBE) scheme, we give generic constructions of fully secure IBE and
selectively secure hierarchical IBE (HIBE) schemes. Our HIBE scheme
allows for delegation arbitrarily many times.

1 Introduction

Identity-based encryption schemes [Sha84, Coc01, BF01] (IBE) are public key
encryption schemes [DH76,RSA78] for which arbitrary strings can serve as valid
public keys, given short public parameters. Additionally, in such a system, given
the master secret key corresponding to the public parameters, one can efficiently
compute secret keys corresponding to any string id. A popular use case for this
type of encryption is certificate management for encrypted email: A sender Alice
can send an encrypted email to Bob at bob@iacr.org by just using the string
“bob@iacr.org” and the public parameters to encrypt the message. Bob can
decrypt the email using a secret-key corresponding to “bob@iacr.org” which
he can obtain from the setup authority that holds the master secret key corre-
sponding to the public parameters.

Two main security notions for IBE have been considered in the literature
— selective security and full security. In the selective security experiment of
identity-based encryption [CHK04], the adversary is allowed to first choose a
challenge identity and may then obtain the public parameters and the identity
secret keys for identities different from the challenge identity. The adversary’s
goal is to distinguish messages encrypted under the challenge identity, for which
he is not allowed to obtain a secret key. On the other hand, in the fully secure
notion [BF01], the (adversarial) choice of the challenge identity may depend
arbitrarily on the public parameters. That is, the adversary may choose the
challenge identity after seeing the public parameters and any number of identity
secret keys of its choice. It is straightforward to see that any scheme that features
full security is also selectively secure. On the other hand, example IBE schemes
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that are selectively secure but trivially insecure in the full security sense can be
constructed without significant effort.

The first IBE scheme was realized by Boneh and Franklin [BF01] based on
bilinear maps. Soon after, Cocks [Coc01] provided the first IBE scheme based
on quadratic residuocity assumption. However, the security of these construc-
tions was argued in the random oracle model [BR93]. Subsequently, substantial
effort was devoted to realizing IBE schemes without random oracles. The first
constructions of IBE without random oracles were only proved to be selectively
secure [CHK04,BB04a] and achieving full security for IBE without the random
oracle heuristic required significant research effort. In particular, the first IBE
scheme meeting the full security definition in the standard model were con-
structed by Boneh and Boyen [BB04b] and Waters [Wat05] using bilinear maps.
Later, several other IBE schemes based on the learning with errors assump-
tion [Reg05] were proposed [GPV08, AB09, CHKP10, ABB10a]. Very recently,
constructions based on the security of the Diffie-Hellman Assumption and Fac-
toring have also be obtained [DG17].

Basic IBE does not support the capability of delegating the power to is-
sue identity secret keys. This property is captured by the notion of hierarchical
identity-based encryption (HIBE) [HL02, GS02]. In a HIBE scheme, the owner
of a master secret key can issue delegated master secret keys that enable gen-
erating identity secret keys for identities that start with a certain prefix. For
instance, Alice may use a delegated master secret key to issue an identity se-
cret key to her secretary for the identity ”alice@iacr.org ‖ 05-24-2017”,
allowing the secretary to decrypt all her emails received on this day. While
HIBE trivially implies IBE, the converse question has not been resolved yet.
Abdalla, Fiore and Lyubashevsky [AFL12] provided constructions of fully se-
cure HIBE from selective-pattern-secure wildcarded identity-based encryption
(WIBE) schemes [ACD+06] and a construction of WIBE from HIBE schemes ful-
filling the stronger notion of security under correlated randomness. Substantial
effort has been devoted to realizing HIBE schemes based on specific assump-
tions [GS02,BB04b,BBG05,GH09,LW10,CHKP10,ABB10b,DG17].

The question whether selectively secure IBE generically implies fully secure
IBE or HIBE remains open hitherto.

1.1 Our Results

In this work, we provide a generalization of the framework developed in [DG17].
Specifically, we replace the primitive chameleon encryption (or, chameleon hash
function with encryption) from [DG17] with a weaker primitive which we call
one-time signatures with encryption (OTSE). We show that this weaker prim-
itive3 also suffices for realizing fully secure IBE and selectively secure HIBE
building on the techniques of [DG17]. We show that OTSE can be realized from

3 Note that chameleon hash functions imply collision resistant hash functions which
one-time signatures with encryption are not known to imply [AS15,MM16].
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chameleon encryption, which, as shown in [DG17], can be based on the Compu-
tational Diffie-Hellman Assumption.

In the context of [DG17], OTSE can be seen as an additional layer of abstrac-
tion that further modularizes the IBE construction of [DG17]. More concretely,
when plugging the construction of OTSE from chameleon encryption (Section
4) into the construction of HIBE from OTSE (Section 7), one obtains precisely
the HIBE construction of [DG17]4.

The new insight in this work is that OTSE, unlike chameleon encryption,
can be realized generically from any selectively secure IBE scheme. As a conse-
quence, it follows that both fully secure IBE and selectively secure HIBE can
also be constructed generically from any selectively secure IBE scheme. Prior
works on broadening the assumptions sufficient for IBE and HIBE have focused
on first realizing selectively secure IBE. Significant subsequent research has typ-
ically been needed for realizing fully secure IBE and HIBE. Having a generic
construction immediately gives improvements over previously known results and
makes it easier to achieve improvements in the future. For example, using the
new IBE construction of Gaborit et al. [GHPT17] we obtain a new construction
of HIBE from the rank-metric problem. As another example, we obtain a con-
struction of selectively secure HIBE from LWE with compact public parameters,
i.e. a HIBE scheme where the size of the public parameters does not depend on
a maximum hierarchy depth [CHKP10,ABB10b].

1.2 Technical Outline

The results in this work build on a recent work of the authors [DG17], which
provides an IBE scheme in groups without pairings. In particular, we will employ
the tree-based bootstrapping technique of [DG17], which itself was inspired by
the tree-based construction of Laconic Oblivious Transfer, a primitive recently
introduced by Cho et al. [CDG+17]. Below, we start by recalling [DG17] and
expand on how we generalize that technique to obtain our results.

Challenge in realizing the IBE schemes. The key challenge in realizing IBE
schemes is the need to “somehow compress” public keys corresponding to all
possible identities (which could be exponentially many) into small public param-
eters. Typically, IBE schemes resolve this challenge by generating the “identity
specific” public keys in a correlated manner. Since these public keys are corre-
lated they can all be described with succinct public parameters. However, this
seems hard to do when relying on an assumption such as the Diffie-Hellman As-
sumption. Recently, [DG17] introduced new techniques for compressing multiple
uncorrelated public keys into small public parameters allowing for a construc-
tion based on the Diffie-Hellman Assumption. Below we start by describing the
notion of chameleon encryption and how the IBE scheme of [DG17] uses it.

4 The IBE construction of [DG17] is optimized and does not fit nicely into the OTSE
framework.
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Chameleon Encryption at a high level. At the heart of the [DG17] construc-
tion is a new chameleon hash function [KR98] with some additional encryption
and decryption functionality. A (keyed) chameleon hash function Hk : {0, 1}n ×
{0, 1}λ → {0, 1}λ on input an n-bit string x (for n > λ) and random coins
r ∈ {0, 1}λ outputs a λ-bit string. The keyed hash function is such that a
trapdoor t associated to k can be used to find collisions. In particular, given
a trapdoor t for k, a pair of input and random coins (x, r) and an alternative
preimage x′ it is easy to compute coins r′ such that Hk(x; r) = Hk(x

′, r′). Ad-
ditionally, we require the following encryption and decryption procedures. The
encryption function Enc(k, (h, i, b),m) outputs a ciphertext c such that decryp-
tion Dec(k, c, (x, r)) yields the original message m back as long as

h = Hk(x; r) and xi = b,

where (h, i, b) are the values used in the generation of the ciphertext ct. In other
words, the decryptor can use the knowledge of the preimage of h as the secret
key to decrypt m as long as the ith bit of the preimage it can supply is equal to
the value b chosen at the time of encryption. Roughly, the security requirement
of chameleon encryption is that

{k, x, r,Enc(k, (h, i, 1− xi), 0)}
c
≈ {k, x, r,Enc(k, (h, i, 1− xi), 1)},

where
c
≈ denotes computational indistinguishability. In other words, if an adver-

sary is given a preimage x of the hash value h, but the ith bit of h is different from
the value b used during encryption, then ciphertext indistinguishability holds.

Realization of Chameleon Encryption. [DG17] provide the following very natural
realization of the Chameleon Encryption under the DDH assumption. Given a
group G of prime order p with a generator g, the hash function H is computed
as follows:

Hk(x; r) = gr
∏
j∈[n]

gj,xj ,

where the key k = (g, {gj,0, gj,1}j∈[n]), r ∈ Zp and xj is the jth bit of x ∈ {0, 1}n.
Corresponding to this chameleon hash function the encryption procedure

Enc(k, (h, i, b),m) proceeds as follows. Sample a random value ρ
$←− Zp and output

the ciphertext ct = (e, c, c′, {cj,0, cj,1}j∈[n]\{i}), where c := gρ, c′ := hρ, ∀j ∈
[n]\{i}, cj,0 := gρj,0, cj,1 := gρj,1, and e := m⊕gρi,b. It is easy to see that if xi = b,
then decryption Dec(ct, (x, r)) can be performed by computing

e⊕ c′

cr
∏
j∈[n]\{i} cj,xj

.

However, if xi 6= b then the decryptor has access to the value gρi,xi but not gρi,b,
and this prevents him from learning the message m. This observation can be
formalized as a security proof based on the DDH assumption5 and we refer the
reader to [DG17] for the details.

5 In fact, [DG17] show that a variant of this scheme can be proven secure under the
computational Diffie-Hellman assumption.
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From Chameleon Encryption to Identity-Based Encryption [DG17]. As men-
tioned earlier, [DG17] provide a technique for compressing uncorrelated public
keys. [DG17] achieve this compression using the above-mentioned hash function
in a Merkle-hash-tree fashion. In particular, the public parameters of the [DG17]
IBE scheme consist of the key of the hash function and the root of the Merkle-
hash-tree hashing the public keys of all the parties. Note that the number of
identities is too large (specifically it is exponential) to efficiently hash all the
identity-specific public keys into short public parameters. Instead [DG17] use the
chameleon property of the hash function to generate the tree top-down rather
than bottom-up (as is typically done in a Merkle-tree hashing). We skip the
details of this top-down Merkle tree generation and refer to [DG17].

A secret key for an identity id in the [DG17] scheme consists of the hash-values
along the root-to-leaf path corresponding to the leaf node id in the Merkle-hash-
tree. We also include the siblings of the hash-values provided and the random
coins used. Moreover, it includes the secret key corresponding to the public key
at the leaf-node id.

Encryption and decryption are based on the following idea. Let {Yj,0, Yj,1}j∈[n]
be 2n labels. Given a hash-value h, an encryptor can compute the ciphertexts
cj,b := Enc(k, (h, j, b), Yj,b) for j = 1, . . . , n and b ∈ {0, 1}. Given the cipher-
texts {cj,0, cj,1}j∈[n], a decryptor in possession of a message x and coins r with
Hk(x; r) = h can now decrypt the ciphertexts {cj,xj}j∈[n] and obtain the la-
bels Yj,xj := Dec(k, (x, r), cj,xj ) for j = 1, . . . , n. Due to the security of the
chameleon encryption scheme, the decryptor will learn nothing about the labels
{Yj,1−xj}j∈[n].

This technique can be combined with a projective garbling scheme to help an
encryptor provide a value C(x) to the decryptor, where C is an arbitrary circuit
that knows some additional secrets chosen by the encryptor. The key point here
being that the encryptor does not need to know the value x, but only a hash-
value h = Hk(x; r). The encyptor garbles the circuit C and obtains a garbled
circuit C̃ and labels {Yj,0, Yj,1} for the input-wires of C. Encrypting the labels
in the above fashion, (i.e. computing cj,b := Enc(k, (h, j + idi · λ, b), Yj,b) ), we

obtain a ciphertext ct := (C̃, {cj,0, cj,1}j∈[n]).
Given such a ciphertext, by the above a decryptor can obtain the labels

{Yj,xj}j∈[n] corresponding to the input x and evaluate the garbled circuit C̃ to
obtain C(x). By the security property of the garbling scheme and the discussion
above the decryptor will learn nothing about the circuit C but the output-value
C(x).

The encryption procedure of the IBE scheme provided in [DG17] uses this
technique as follows. It computes a sequence of garbled circuits Q̃(1), . . . , Q̃(n),
where the circuit Q(i) takes as input a hash-value h, and returns chameleon

encryptions {cj,0, cj,1}j∈[n] of the input-labels {Y (i+1)
j,0 , Y

(i+1)
j,1 }j∈[n] of Q(i+1),

where cj,b := Enc(k, (h, j + idi · λ, b), Y (i+1)
j,b ). The last garbled circuit Q(n) in

this sequence outputs chameleon encryptions of the labels {Tj,0, Tj,1}j∈[n] of a
garbled circuit T, where the circuit T takes as input a public key pk of a standard
public key encryption scheme (KG,E,D) and outputs and encryption E(pk,m)
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of the message m. The IBE ciphertext consists of the chameleon encryptions

{c(1)j,0 , c
(1)
j,1}j∈[n] of the input labels of the first garbled circuit Q̃(1), the garbled

circuits Q̃(1), . . . , Q̃(n) and the garbled circuit T̃.
The decryptor, who is in possession of the siblings along the root-to-leaf

path for identity id, can now traverse the tree as follows. He starts by decrypting

{c(1)j,0 , c
(1)
j,1}j∈[n] to the labels corresponding the first pair of siblings, evaluating

the garbled circuit Q̃(1) on this input and thus obtain chameleon encryptions

{c(2)j,0 , c
(2)
j,1}j∈[n] of the labels of the next garbled circuit Q̃(2). Repeating this

process, the decryptor will eventually be able to evaluate the last garbled circuit
T̃ and obtain E(pkid,m), an encryption of the message m under the leaf-public-key
pkid. Now this ciphertext can be decrypted using the corresponding leaf-secret-
key skid.

Stated differently, the encryptor uses the garbled circuits Q̃(1), . . . , Q̃(n) to
help the decryptor traverse the tree to the leaf corresponding to the identity id
and obtain an encryption of m under the leaf-public key pkid (which is not know
to the encryptor).

Security of this scheme follows, as sketched above, from the security of the
chameleon encryption scheme, the garbling scheme and the security of the public
key encryption scheme (KG,E,D).

Connection to a special signature scheme. It is well-known that IBE implies a
signature scheme — specifically, by interpreting the secret key for an identity id
as the signature on the message id. The starting point of our work is the obser-
vation that the [DG17] IBE scheme has similarities with the construction of a
signature scheme from a one-time signature scheme [Lam79, NY89]. In particu-
lar, the chameleon hash function mimics the role of a one-time signature scheme
which can then be used to obtain a signature scheme similar to the IBE scheme
of [DG17]. Based on this intuition we next define a new primitive which we call
one-time signature with encryption which is very similar to (though weaker than)
chameleon encryption. Construction of one-time signature with encryption from
chameleon encryption is provided in Section 4.

One-Time Signatures with Encryption. A one-time signature scheme [Lam79,
NY89] is a signature scheme for which security only holds if a signing key is
used at most once. In more detail, a one-time signature scheme consists of three
algorithms (SGen,SSign,Verify), where SGen produces a pair (vk, sk) of verifica-
tion and signing keys, SSign takes a signing key sk and a message x and produces
a signature σ, and Verify takes a message-signature pair (x, σ) and checks if σ is
a valid signature for x. One-time security means that given a verification key vk
and a signature σ on a message of its own choice, an efficient adversary will not
be able to concoct a valid signature σ′ on a different message x′.

As with chameleon encryption, we will supplement the notion of one-time
signature schemes with an additional encryption functionality. More specifically,
we require additional encryption and decryption algorithms SEnc and SDec with
the following properties. SEnc encrypts a message m using parameters (vk, i, b),
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i.e. a verification key vk, an index i and a bit b, and any message signature
pair (x, σ) satisfying “Verify(vk, x, σ) = 1 and xi = b” can be used with SDec to
decrypt the plaintext m. In terms of security, we require that given a signature
σ on a selectively chosen message x, it is infeasible to distinguish encryptions for
which the bit b is set to 1 − xi, i.e. SEnc((vk, i, 1 − xi),m0) and SEnc((vk, i, 1 −
xi),m1) are indistinguishable for any pair of messages m0,m1.

Finally, we will have the additional requirement that the verification keys are
succinct, i.e. the size of the verification keys does not depend on the length of
the messages that can be signed.

In the following, we will omit the requirement of a verification algorithm
Verify, as such an algorithm is implied by the SEnc and SDec algorithms6.

Moreover, we remark that in the actual definition of OTSE in Section 3, we
introduce additional public parameters pp that will be used to sample verification
and signing keys.

In Section 4, we will provide a direct construction of an OTSE scheme
from chameleon encryption [DG17]. We remark that the techniques used in
this construction appear in the HIBE-from-chameleon-encryption construction
of [DG17].

We will now sketch a construction of an OTSE scheme from any selectively
secure IBE scheme. Assume henceforth that (Setup,KeyGen,Encrypt,Decrypt) is
a selectively secure IBE scheme. We will construct an OTSE scheme (SGen,SSign,
SDec) as follows. SGen runs the Setup algorithm and sets vk := mpk and sk :=
msk, i.e. the master public key mpk will serve as verification key vk and the
master secret key msk will serve as signing key sk. To sign a message x ∈ {0, 1}n,
compute identity secret keys for the identities xj‖bin(j) for j ∈ [n]. Here, xj is
the j-th bit of x, ‖ is the string concatenation operator and bin(j) is a dlog2(n)e
bits representation of the index j ∈ [n]. Thus, a signature σ of x is computed by

σ = SSign(sk, x) := {KeyGen(msk, xj‖bin(j))}j∈[n].

It can be checked that this is a correct and secure one-time signature scheme.
The encryption and decryption algorithms SEnc and SDec are obtained from
the Encrypt and Decrypt algorithms of the IBE scheme. Namely, to encrypt a
plaintext m using vk = mpk, i, b, compute the ciphertext

c = SEnc((vk, i, b),m) := Encrypt(mpk, b‖bin(i),m),

i.e. we encrypt m to the identity b‖bin(i). Decryption using a signature σ on a
message x is performed by computing

m = SDec((σ, x), c) := Decrypt(skxi‖bin(i), c),

which succeeds if xi = b. The succinctness requirement is fulfilled, as the size of
the verification keys (which are master public keys) depends only (polynomially)
on the security parameter, but not on the actual number of identities.

6 To verify a signature σ for a message x using SEnc and SDec, encrypt a random
plaintext m using (vk, i, xi) for all indices i and test whether decryption using (x, σ)
yields m
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Security can be based on the selective security of the IBE scheme by noting
that if the i-th bit of the message x for which a signature has been issued is dif-
ferent from b, then the identity secret key corresponding to the identity b‖bin(i)
is not contained in σ and we can use the selective security of the IBE scheme.

Realizing fully secure IBE. We will now show how an OTSE scheme can be
bootstrapped into a fully secure IBE scheme. As mentioned before, we will use
the tree based approach of the authors [DG17]. For the sake of simplicity, we
will describe a stateful scheme, i.e. the key-generation algorithm keeps a state
listing the identity secret keys that have been issued so far. The actual scheme,
described in Section 6, will be a stateless version of this scheme, which can be
obtained via pseudorandom functions.

We will now describe how identity secret keys are generated. The key gener-
ation algorithm of our scheme can be seen as an instance of the tree-based con-
struction of a signature scheme from one-time signatures and universal one-way
hash functions [NY89]. In fact, our OTSE scheme serves as one-time signature
scheme with short verification keys in the construction of [NY89]. In [NY89],
one-time signature scheme with short verification keys are used implicitly via a
combination of one-time signatures and universal one-way hash functions.

Assume that identities are of length n and that we have a binary tree of
depth n. Nodes in this tree are labelled by binary strings v that correspond to
the path to this node from the root, and the root itself is labelled by the empty
string v0 = {}.

We will place public keys lpkv of a standard INDCPA-secure encryption scheme
(KG,E,D) into the leaf-nodes v of the tree and a verification key vkv of the OTSE
scheme into every node v. The nodes are connected in the following manner. If v
is a node with two children v‖0 and v‖1, we will concatenate the keys vkv‖0 and
vkv‖1 and sign them with the signing key skv (corresponding to the verification
key vkv), i.e. define xv := vkv‖0‖vkv‖1 and compute

σv := SSign(skv, x).

If v is a leaf-node, compute

σv := SSign(skv, lpkv),

after padding lpkv to the appropriate length.
The master public key mpk of our scheme consist of the verification key vkv0

at the root node v0. The identity secret key for a root-to-leaf path v0, . . . , vn
consists of the root verification key vkv0 , the xv0 , . . . , xvn (i.e. the verification
keys for the siblings along the path), the signatures σv0 , . . . , σvn , and the leaf
public and secrets keys lpkvn and lskvn .

We can think of the entire information in the identity secret key as public
information, except the leaf secret key lskvn . That is, from a security perspec-
tive they could as well be made publicly accessible (they are not, due to the
succinctness constraint of the master public key).
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Encryption and Decryption. We will now describe how a plaintext is encrypted
to an identity id and how it is decrypted using the corresponding identity secret
key skid. The basic idea is, as in [DG17], that the encryptor delegates encryption
of the plaintext m to the decryptor. More specifically, while the encryptor only
knows the root verification key, the decryptor is in possession of all verification
keys and signatures along the root-to-leaf path for the identity.

This delegation task will be achieved using garbled circuits along with the
OTSE scheme. The goal of this delegation task is to provide a garbled circuit T̃
with the leaf public key lpkid for the identity id. To ensure that the proper leaf
public key is provided to T̃, a sequence of garbled circuits Q̃(0), . . . , Q̃(n) is used
to traverse the tree from the root to the leaf id.

First consider a tree that consists of one single leaf-node v, i.e. in this case
there is just one leaf public key lpkv and one verification key vkv. The signature
σ is given by

σ := SSign(skv, lpkv)

The encryptor wants to compute an encryption of a plaintext m under lpkv,
while only in possession of the verification key vkv. It will do so using a garbled
cricuit T̃. The garbled circuit T̃ has the plaintext m hardwired, takes as input a
local public key lpk and outputs an encryption of the plaintext m under lpk, i.e.
E(lpk,m). Let {Tj,0, Tj,1}j∈[`] be the set of input labels for the garbled circuit T̃.

In this basic case, the ciphertext consists of the garbled circuit T̃ and encryptions
of the labels {Tj,0, Tj,1}j∈[`] under the OTSE scheme. More specifically, for all
j ∈ [`] and b ∈ {0, 1} the encryptor computes cj,b := SEnc((vkv, j, b), Tj,b) and

sets the ciphertext to ct := (T̃, {cj,b}j,b).
To decrypt such a ciphertext ct given lskv, lpkv and a signature σv of lpkv we

proceed as follows. First, the decryptor recovers the labels {Tj,(lpkv)j}j (where
(lpkv)j is the j-th bit of lpkv) by computing

Tj,(lpkv)j := SDec((σ, lpkv), cj,(lpkv)j ).

By the correctness of the OTSE scheme it follows that these are indeed the
correct labels corresponding to lpkv. Evaluating the garbled circuit T̃ on these
labels yields an encryption f = E(lpkv,m) of the plaintext m. Now the secret key
lskv can be used to decrypt f to the plaintext m.

For larger trees, the encryptor is not in possession of the verification key
vkv of the leaf-node v, and can therefore not compute the encryptions cj,b :=
SEnc((vkv, j, b), Tj,b) by herself. This task will therefore be delegated to a se-

quence of garbled circuits Q̃(0), . . . , Q̃(n). For i = 0, . . . , n−1, the garbled circuit
Q̃(i) has the bit idi+1 and the labels {Xj,b}j,b of the next garbled circuit Q̃(i+1)

hardwired, takes as input a verification key vkv and outputs {cj,b}j,b, where

cj,b := SEnc((vkv, idi+1 · ` + j, b), Xj,b). The garbled circuit Q̃(n) has the labels

{Tj,b}j,b of the garbled circuit T̃ hardwired, takes as input a verification key vkv
and outputs {cj,b}j,b, where cj,b := SEnc((vkv, j, b), Tj,b).

Thus, a decryptor who knows input labels for Q̃(i) corresponding to vkv will
be able to evaluate Q̃(i) and obtain the encrypted labels {cj,b}j,b, where cj,b =
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SEnc((vkv, idi+1 · ` + j, b), Xj,b). If the decryptor is in possession of the values
xv = vkvi‖0‖vkvi‖1 and a valid signature σv of xv that verifies with respect to vkv,
he will be able to compute

Xj,(vkv‖idi )j
:= SDec((σv, xv), cj,(vkv‖idi )j ).

These are the input labels of Q̃(i+1) corresponding to the input vkv‖idi+1
. Conse-

quently, the decryptor will be able to evaluate Q̃(i+1) on input vkv‖idi+1
and so

forth.
Thus, in the full scheme a ciphertext ct consists of the input-labels of the

garbled circuit Q̃(0), the sequence of garbled circuits Q̃(0), . . . , Q̃(n) and a garbed
circuit T̃. To decrypt this ciphertext, proceed as above starting with the garbled
circuit Q̃(0) and traversing the tree to the leaf-node id, where T̃ can be evaluated
and the plaintext m be recovered as above.

In the security proof, we will replace the garbled circuits with simulated
garbled circuits and change the encryptions to only encrypt labels for the next
verification key in the sequence of nodes. One key idea here is that the security
reduction knows all the verification keys and signatures in the tree, which as
mentioned above is not private but not accessible to the real encryptor due to
succinctness requirements of the public parameters. See Section 6 for details.

Hierarchical IBE. To upgrade the above scheme into a HIBE scheme, we will
associate a local public key lpkv with each node v of the tree, i.e. each node of
the tree may serve as a leaf in the above scheme if needed. This means each
node will contain a signature of the verification keys of the two child nodes and
the local public key, i.e. we set x := vkv‖0‖vkv‖1‖lpkv and compute

σv := SSign(skv, x)

Moreover, we can make this scheme stateless using a pseudorandom function
that supports the delegation of keys. In particular, the classic GGM construc-
tion [GGM86] supports delegation of PRF keys for subtrees when instantiated
appropriately. We are only able to prove selective security of the obtained HIBE
scheme, as in the HIBE experiment the delegation keys include PRF keys, some-
thing that was not needed to be done for the case of IBE.

2 Preliminaries

Let λ denote the security parameter. We use the notation [n] to denote the set
{1, . . . , n}. By PPT we mean a probabilistic polynomial time algorithm. For

any set S, we use x
$←− S to denote that x is sampled uniformly at random

from the set S.7 Alternatively, for any distribution D we use x
$←− D to denote

7 We use this notion only when the sampling can be done by a PPT algorithm and
the sampling algorithm is implicit.



11

that x is sampled from the distribution D. We use the operator := to represent
assignment and = to denote an equality check. For two strings x and x′, we
denote the concatenation of x and x′ by x‖x′. For an integer j ∈ [n], let bin(j)
be the dlog2(n)e bits representation of j.

2.1 Public Key Encryption

Definition 1 (Public Key Encryption). A public key encryption scheme
consists of three PPT algorithms (KG,E,D) with the following syntax.

– KG(1λ) takes as input a security parameter 1λ and outputs a pair of public
and secret keys (pk, sk).

– E(pk,m) takes as input a public key pk and a plaintext m and outputs a
ciphertext c.

– D(sk, c) takes as input a secret key sk and a ciphertext c and outputs a
plaintext m.

We require the following properties to hold.

– Completeness: For every security parameter λ and for all messages m, it
holds that

D(sk,E(pk,m)) = m,

where (pk, sk) := KG(1λ).
– INDCPA Security: For any PPT adversary A = (A1,A2), there exists a

negligible function negl(·) such that the following holds:

Pr[INDCPA(A) = 1] ≤ 1

2
+ negl(λ)

where INDCPA(A) is shown in Figure 1.

Experiment INDCPA(A):

1. (pk, sk)
$←− KG(1λ)

2. (m0,m1)
$←− A1(pk).

3. b∗
$←− {0, 1}.

4. m∗ := mb

5. c∗
$←− E(pk,m∗)

6. b′
$←− A2(pk, c∗)

7. Output 1 if b∗ = b′ and 0 otherwise.

Fig. 1: The INDCPA(A) Experiment

This notion easily extends to multiple challenge-ciphertexts. A simple hybrid
argument shows that if a PPT-adversary A breaks the INDCPA-security in the k
ciphertext setting with advantage ε, then there exists a PPT adversary A′ that
breaks single challenge-ciphertext INDCPA-security with advantage ε/k.
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2.2 Identity-Based Encryption

Below we provide the definition of identity-based encryption (IBE).

Definition 2 (Identity-Based Encryption (IBE) [Sha84,BF01]).
An identity-based encryption scheme consists of four PPT algorithms (Setup,
KeyGen,Encrypt,Decrypt) defined as follows:

– Setup(1λ): given the security parameter, it outputs a master public key mpk
and a master secret key msk.

– KeyGen(msk, id): given the master secret key msk and an identity id ∈ {0, 1}n,
it outputs the identity secret key skid.

– Encrypt(mpk, id,m): given the master public key mpk, an identity id ∈ {0, 1}n,
and a message m, it outputs a ciphertext c.

– Decrypt(skid, c): given a secret key skid for identity id and a ciphertext c, it
outputs a plaintext m.

The following completeness and security properties must be satisfied:

– Completeness: For all security parameters λ, identities id ∈ {0, 1}n and
messages m, the following holds:

Decrypt(skid,Encrypt(mpk, id,m)) = m

where skid ← KeyGen(msk, id) and (mpk,msk)← Setup(1λ).
– Selective Security [CHK04]: For any PPT adversary A = (A1,A2,A3),

there exists a negligible function negl(·) such that the following holds:

Pr[sel-INDIBE(A) = 1] ≤ 1

2
+ negl(λ)

where sel-INDIBE(A) is shown in Figure 2, and for each key query id that A
sends to the KeyGen oracle, it must hold that id 6= id∗.

– Full Security: For any PPT adversary A = (A1,A2), there exists a negli-
gible function negl(·) such that the following holds:

Pr[INDIBE(A) = 1] ≤ 1

2
+ negl(λ)

where INDIBE(A) is shown in Figure 3, and for each key query id that A
sends to the KeyGen oracle, it must hold that id 6= id∗.

Experiment sel-INDIBE(A):

1. id∗ := A1(1λ)

2. (mpk,msk)
$←− Setup(1λ)

3. (m0,m1)
$←− AKeyGen(msk,.)

1 (mpk) where |m0| = |m1| and for each query id
by A1 to KeyGen(msk, .) we have that id 6= id∗.
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4. b∗
$←− {0, 1}.

5. m∗ := mb

6. c∗
$←− Encrypt(mpk, id∗,m∗)

7. b′
$←− AKeyGen(msk,.)

2 (mpk, c∗) where for each query id by A2 to
KeyGen(msk, .) we have that id 6= id∗.

8. Output 1 if b∗ = b′ and 0 otherwise.

Fig. 2: The sel-INDIBE(A) Experiment

The selective security notion easily extends to multiple challenge ciphertexts
with multiple challenge identities. A simple hybrid argument shows that if an
PPT adversary A break sel-INDIBE security in the k ciphertext setting with ad-
vantage ε, there there exists a PPT adversary A′ that breaks single challenge
ciphertext sel-INDIBE with advantage ε/k.

Experiment INDIBE(A):

1. (mpk,msk)
$←− Setup(1λ).

2. (id∗,m0,m1)
$←− AKeyGen(msk,.)

1 (mpk) where |m0| = |m1| and for each
query id by A1 to KeyGen(msk, .) we have that id 6= id∗.

3. b∗
$←− {0, 1}.

4. m∗ := mb

5. c∗
$←− Encrypt(mpk, id∗,m∗)

6. b′
$←− AKeyGen(msk,.)

2 (mpk, c∗) where for each query id by A2 to
KeyGen(msk, .) we have that id 6= id∗.

7. Output 1 if b∗ = b′ and 0 otherwise.

Fig. 3: The INDIBE(A) Experiment

2.3 Hierarchical Identity-Based Encryption (HIBE)

In a HIBE scheme, there exists an additional algorithm Delegate which allows
to generate hierarchical secret-keys mskHIBEid for any input identity id. The hier-
archical key for an identity id allows a user holding it to generate regular (or
hierarchical keys) for any identity with prefix id. The syntax of Delegate is as
follows.

– Delegate(msk, id) takes as input a master secret key (or a delegated key) msk
and an identity id and outputs a HIBE key mskHIBEid .
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In terms of correctness, we require that our HIBE additionally has the prop-
erty that identity secret keys computed from delegated master secret keys are
identical to identity secret keys computed by the original master secret key, i.e.
for all identities id and id′ it holds that

KeyGen(msk, id‖id′) = KeyGen(mskHIBEid , id′),

Delegate(msk, id‖id′) = Delegate(mskHIBEid , id′),

where mskHIBEid := Delegate(msk, id). This correctness condition is stronger than
what is typically defined for HIBE and we use this definition as it simplifies our
correctness analysis and the security definition. We note that if the distribution
of the secret-key queries obtained via first computing delegation keys is different
from the distribution of the secret-keys obtained directly, then a “complete”
model of HIBE security is needed. This was introduced by [SW08].

The security property is analogous to the sel-INDIBE except that now A is
also allowed to ask for any hierarchical secret-key queries as long as they are not
sufficient for decrypting the challenge ciphertext. We only consider the notion of
selective security for HIBE; namely, the adversary A is required to announce the
challenge identity id∗ before it can make any secret-key or hierarchical secret-key
queries.

Selective Security: For any PPT adversary A = (A1,A2,A3), there exists a
negligible function negl(·) such that the following holds:

Pr[sel-INDHIBE(A) = 1] ≤ 1

2
+ negl(λ)

where sel-INDHIBE(A) is shown in Figure 4. For each identity key query id that
A sends to the KeyGen oracle, it must hold that id 6= id∗. Moreover, for each
HIBE key query id that A sends to the Delegate oracle, it must hold that id is
not a prefix of id∗.

Experiment sel-INDHIBE(A):

1. id∗ := A1(1λ)

2. (mpk,msk)
$←− Setup(1λ)

3. (m0,m1)
$←− AKeyGen(msk,.),Delegate(msk,·)

1 (mpk) where |m0| = |m1| and for
each query id by A1 to KeyGen(msk, .) we have that id 6= id∗ and for
each Delegate(msk, .) query we have that id is not a prefix of id∗.

4. b∗
$←− {0, 1}.

5. m∗ := mb

6. c∗
$←− Encrypt(mpk, id∗,m∗)

7. b′
$←− AKeyGen(msk,.),Delegate(msk,·)

2 (mpk, c∗) where for each query id by A2

to KeyGen(msk, .) we have that id 6= id∗ and for each Delegate(msk, .)
query we have that id is not a prefix of id∗.

8. Output 1 if b∗ = b′ and 0 otherwise.
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Fig. 4: The sel-INDHIBE(A) Experiment

2.4 Chameleon Encryption

Definition 3 (Chameleon Encryption [DG17]). A chameleon encryption
scheme consists of five PPT algorithms CGen, CHash, CHash−1, CEnc, and CDec
with the following syntax.

– CGen(1λ, n): Takes the security parameter λ and a message-length n (with
n = poly(λ)) as input and outputs a key k and a trapdoor t.

– CHash(k, x; r): Takes a key k, a message x ∈ {0, 1}n, and coins r and outputs
a hash value h, where the size of h is λ bits.

– CHash−1(t, (x, r), x′): Takes a trapdoor t, previously used message x ∈ {0, 1}n
and coins r, and a message x′ ∈ {0, 1}n as input and returns r′.

– CEnc(k, (h, i, b),m): Takes a key k, a hash value h, an index i ∈ [n], b ∈ {0, 1},
and a message m ∈ {0, 1}∗ as input and outputs a ciphertext ct.8

– CDec(k, (x, r), ct): Takes a key k, a message x, coins r and a ciphertext ct,
as input and outputs a value m (or ⊥).

We require the following properties

– Uniformity: For x, x′ ∈ {0, 1}n the two distributions CHash(k, x; r) and
CHash(k, x′; r′) are statistically close (when r, r′ are chosen uniformly at ran-
dom).

– Trapdoor Collisions: For every choice of x, x′ ∈ {0, 1}n and r it holds that

if (k, t)
$←− CGen(1λ, n) and r′ := CHash−1(t, (x, r), x′), then it holds that

CHash(k, x; r) = CHash(k, x′; r′),

i.e. CHash(k, x; r) and CHash(k, x′; r′) generate the same hash h. Moreover, if
r is chosen uniformly at random, then r′ is also statistically close to uniform.

– Correctness: For any choice of x ∈ {0, 1}n, coins r, index i ∈ [n] and

message m it holds that if (k, t)
$←− CGen(1λ, n), h := CHash(k, x; r), and

ct
$←− CEnc(k, (h, i, xi),m) then CDec(k, (x, r), ct) = m.

– Security: For any PPT adversary A = (A1,A2) there exists a negligible
function negl(·) such that the following holds:

Pr[INDCE
A (1λ) = 1] ≤ 1

2
+ negl(λ)

where INDCE
A is shown in Figure 5.

8 ct is assumed to contain (h, i, b).
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Experiment INDCE
A=(A1,A2)(1

λ):

1. (k, t)
$←− CGen(1λ, n).

2. (x, r, i ∈ [n])
$←− A1(k).

3. b∗
$←− {0, 1}.

4. ct
$←− CEnc(k, (CHash(k, x; r), i, 1− xi), b).

5. b′
$←− A2(k, ct, (x, r)).

6. Output 1 if b∗ = b′ and 0 otherwise.

Fig. 5: The INDCE
A Experiment

2.5 Garbled Circuits

Garbled circuits were first introduced by Yao [Yao82] (see Lindell and Pinkas [LP09]
and Bellare et al. [BHR12] for a detailed proof and further discussion). A pro-
jective circuit garbling scheme is a tuple of PPT algorithms (Garble,Eval) with
the following syntax.

– Garble(1λ,C) takes as input a security parameter λ and a circuit C and
outputs a garbled circuit C̃ and labels eC = {Xι,0, Xι,1}ι∈[n], where n is the
number of input wires of C.

– Projective Encoding: To encode an x ∈ {0, 1}n with the input labels eC =
{Xι,0, Xι,1}ι∈[n], we compute x̃ := {Xι,xι}ι∈[n].

– Eval(C̃, x̃): takes as input a garbled circuit C̃ and a garbled input x̃, rep-
resented as a sequence of input labels {Xι,xι}ι∈[n], and outputs an output
y.

We will denote hardwiring of an input s into a circuit C by C[s]. The garbling
algorithm Garble treats the hardwired input as a regular input and additionally
outputs the garbled input corresponding to s (instead of all the labels of the
input wires corresponding to s). If a circuit C uses additional randomness, we
will implicitly assume that appropriate random coins are hardwired in this circuit
during garbling.

Correctness. For correctness, we require that for any circuit C and input x ∈
{0, 1}n we have that

Pr
[
C(x) = Eval(C̃, x̃)

]
= 1

where (C̃, eC = {Xι,0, Xι,1}ι∈[n])
$←− Garble(1λ,C) and x̃ := {Xι,xι}.

Security. For security, we require that there is a PPT simulator GCSim such that
for any circuit C and any input x, we have that

(C̃, x̃)
comp
≈ GCSim(C,C(x))

where (C̃, eC = {Xι,0, Xι,1}ι∈[n]) := Garble(1λ,C) and x̃ := {Xι,xι}.
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2.6 Delegatable Pseudorandom Functions

In our HIBE construction we will need a PRF for which the inputs can be
binary strings of unrestricted length and which supports the delegation of seeds
for inputs that start with certain prefixes.

Definition 4. A delegatable pseudorandom function consists of two algorithms
F and F.Delegate with the following syntax.

– F (s, x) takes as input a seed s ∈ {0, 1}λ and a string x ∈ {0, 1}∗ and outputs
a value u ∈ {0, 1}λ.

– F.Delegate(s, x) takes as input a seed s and an input x and outputs a seed
sx.

We require the following properties of a delegatable pseudorandom function.

– Delegatability: It holds for all inputs x, x′ ∈ {0, 1}∗ that

F (s, x‖x′) = F (sx, x
′),

where sx := F.Delegate(s, x).
– Pseudorandomness: It holds for all PPT distinguishers D and every x ∈
{0, 1}∗ of size at most polynomial in λ that

|Pr[DF (s,·),Delegate(s,·)(1λ) = 1]− Pr[DH(·),Delegate(s,·)(1λ) = 1]| ≤ negl(λ)

where s
$←− {0, 1}λ is chosen uniformly at random, H is a function which is

uniformly random on all prefixes of x (including x) and identical to F (s, ·) on
all other inputs, and Delegate(s, ·) delegates seeds for all inputs x′ ∈ {0, 1}∗
that are not a prefix of x.

We will briefly sketch a simple variant of the GGM construction [GGM84]
which satisfies the above definition. Let G : {0, 1}λ → {0, 1}3λ be a length-
tripling pseudorandom generator and G0,G1 and G2 be the 1 . . . λ, λ + 1 . . . 2λ
and 2λ+ 1 . . . 3λ bits of the output of G, respectively. Now define a GGM-type
pseudo-random function F : {0, 1}λ × {0, 1}∗ → {0, 1}λ such that F (s, x) :=
G2(Gxn(Gxn−1(. . . (Gx1(s)) . . . ))), where for each i ∈ [n] xi is the ith bit of x ∈
{0, 1}n. F.Delegate(s, x) computes and outputs Gxn(Gxn−1(. . . (Gx1(s)) . . . )).

3 One-Time Signatures with Encryption

In this Section, we will introduce a primitive we call One-Time Signatures with
Encryption (OTSE). Syntactically, we will not require the existence of a verifi-
cation algorithm for such signature schemes, but instead require the existence
of accompanying encryption and decryption algorithms. Details follow.

Definition 5. A One-Time Signature with Encryption (OTSE) scheme consists
of five algorithms (SSetup,SGen,SSign,SEnc,SDec) with the following syntax.
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– SSetup(1λ, `): Takes as input an unary encoding of the security parameter
1λ and a message length parameter ` and outputs public parameters pp.

– SGen(pp): Takes as input public parameters pp and outputs a pair (vk, sk) of
verification and signing keys.

– SSign(pp, sk, x): Takes as input public parameters pp, a signing key sk and a
message x and outputs a signature σ.

– SEnc(pp, (vk, i, b),m): Takes as input public parameters pp, a verification key
vk, an index i, a bit b and a plaintext m and outputs a ciphertext c. We will
generally assume that the index i and the bit b are included in c.

– SDec(pp, (vk, σ, x), c): Takes as input public parameters pp, a verification key
vk, a signature σ, a message x and a ciphertext c and returns a plaintext m.

We require the following properties.

– Succinctness: For pp := SSetup(1λ, `) and (vk, sk) := SGen(pp, `) it holds
that the size of vk is independent of `, only depending on λ.

– Correctness: It holds for all security parameters λ, every message x and
every plaintext m that if pp := Setup(1λ, `), (vk, sk) := SGen(pp) and σ :=
SSign(sk, x) then

SDec(pp, (vk, σ, x),SEnc(pp, (vk, i.b),m)) = m.

– Selective Security: For any PPT adversary A = (A1,A2,A3), there exists
a negligible function negl(·) such that the following holds:

Pr[INDOTSE(A) = 1] ≤ 1

2
+ negl(λ)

where INDOTSE(A) is shown in Figure 6.

Experiment INDOTSE(A):
1. pp := SSetup(1λ, `)
2. x := A1(pp)
3. (vk, sk) := SGen(pp)
4. σ := SSign(pp, sk, x)
5. (i,m0,m1) := A2(pp, vk, σ)

6. b∗
$←− {0, 1}

7. m∗ := mb∗

8. c∗ := SEnc(pp, (vk, i, 1− xi),m
∗)

9. b′ := A3(pp, vk, σ, c∗)
10. Output 1 if b′ = b∗ and 0 otherwise.

Fig. 6: The INDOTSE(A) Experiment

Again, we remark that multi-challenge security follows via a hybrid argument.
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4 One-Time Signatures with Encryption from Chameleon
Encryption

In this Section we provide a construction of an OTSE scheme from chameleon
encryption.

SSetup(1λ, `) : Compute (K, ·) := CGen(1λ, `) and output pp := K.

SGen(pp) : Compute (k, t) := CGen(1λ, λ), sample r′
$←− {0, 1}λ, compute h :=

CHash(k, 0λ; r′). Set vk := (k, h), sk := (t, r′) and output (vk, sk).

SSign(pp, sk = (t, r′), x) : Compute y := CHash(K, x) and r:=CHash−1(t,(0λ,r′),y),
output σ := r.

SEnc(pp = K, (vk = (k, h), i, b),m) : Let C be the following circuit.
– C[K, i, b,m](y) : Compute and output CEnc(K, (y, i, b),m).

(C̃, eC) := Garble(1λ,C[K, i, b,m])
Parse eC = {Yι,0, Yι,1}ι∈[λ]
fC := {CEnc(k, (h, ι, b′), Yι,b′)}ι∈[λ],b′∈{0,1}
Output ct := (C̃, fC).

SDec(pp = K, (vk = (k, h), σ = r, x), ct = (C̃, fC)) :

Parse fC = {cι,b′}ι∈[λ],b′∈{0,1}
y := CHash(K, x)
ỹ := {CDec(k, (y, r), cι,yι)}ι∈[λ]
c′ := Eval(C̃, ỹ)
m := CDec(K, x, c′)
Output m

Succinctness and Correctness By construction the size of vk = (k, h) depends
only on λ, so we have established the succinctness property. To see that the con-
struction is correct, note that since the hash value h = CHash(k, y; r) and cι,b′ =
CEnc(k, (h, ι, b′), Yι,b′), it holds by the correctness property of the chameleon en-
cryption scheme (CGen,CHash,CHash−1,CEnc,CDec) that

ỹ = {CDec(k, (y, r), cι,yι)}ι∈[λ] = {Yι,yι}.

Therefore, as (C̃, eC) = Garble(1λ,C[K, i, b,m]), it holds by the correctness of the
garbling scheme (Garble,Eval) that

c′ = Eval(C̃, ỹ) = C[K, i, b,m](y) = CEnc(K, (y, i, b),m).

Finally, as y = CHash(K, x), it holds by the correctness of the of the chameleon
encryption scheme (CGen,CHash,CHash−1,CEnc,CDec) that

CDec(K, x, c′) = m.
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Security We will now establish the INDOTSE security of (SSetup,SGen,SSign,
SEnc,SDec) from the INDCE-security of (CGen,CHash,CHash−1,CEnc,CDec) and
the security of the garbling scheme (Garble,Eval).

Theorem 1. Assume that (CGen,CHash,CHash−1,CEnc,CDec) is INDCE-secure
and (Garble,Eval) is a secure garbling scheme. Then (SSetup,SGen,SSign,SEnc,
SDec) is INDOTSE-secure.

Proof. Let A be a PPT-adversary against INDOTSE. Consider the following hy-
brid experiments.

Hybrid H0 This experiment is identical to INDOTSE(A).

Hybrid H1 This experiment is identical to H0, except that fC is computed by
fC := {CEnc(k, (h, ι, b′), Yι,yι)}ι∈[λ],b′∈{0,1} instead of by the expression fC :=
{CEnc(k, (h, ι, b′), Yι,b′)}ι∈[λ],b′∈{0,1}. Computational indistinguishability between

hybrids H0 and H1 follows by the INDCE-security of (CGen,CHash,CHash−1,
CEnc,CDec). Note that the security reduction has no access to the collision-
trapdoor t. However, as the INDOTSE-experiment is defined selectively, the re-
duction gets to see x before it has to provide vk. Consequently, it can set
h := CHash(k,CHash(K, x); r), vk := (k, h) and present σ := r as a valid sig-
nature to the adversary without the need of a collision trapdoor.

Hybrid H2 This experiment is identical to H1, except that we compute C̃ and
ỹ by (C̃, ỹ) := GCSim(C, c), where c := CEnc(K, (y, i, b),m) instead of (C̃, eC) :=
Garble(1λ,C[K, i, b,m]), where eC = {Yι,b′}ι∈[λ],b′∈{0,1} and ỹ = {Yι,yι}. Compu-
tational indistinguishability between hybrids H1 and H2 follows by the security
of the garbling scheme (Garble,Eval). By the INDCE-security of (CGen,CHash,
CHash−1,CEnc,CDec) it follows that the advantage of A in H2 is negligible.

5 One-Time Signatures with Encryption from Selectively
Secure IBE

We will now provide a construction of an OTSE scheme from selectively secure
IBE. Let therefore (Setup,KeyGen,Encrypt,Decrypt) be an IBE scheme.

SSetup(1λ, `) : Output pp := `.

SGen(pp) : Compute (mpk,msk) := Setup(1λ), set vk := mpk and sk := msk and
output (vk, sk).

SSign(pp, sk = msk, x) : Compute and output σ := {KeyGen(msk, xι‖bin(ι))}ι∈[`].

SEnc(pp, (vk = mpk, i, b),m) : Compute and output c := Encrypt(mpk, b‖bin(i),m).

SDec(pp, (vk, σ, x), c) : Parse σ = {skxι‖bin(ι)}ι∈[`]. Compute and output m :=
Decrypt(skxi‖bin(i), c).
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Succinctness and Correctness The succinctness property follows directly form
the fact the size of the master public key mpk does not depend on this length of
the identities, but is a fixed polynomial in the security parameter λ.

On the other hand, correctness follows from the correctness of the IBE scheme
(Setup,KeyGen,Encrypt,Decrypt).

Security We will now show that the INDOTSE-security of (SSetup,SGen,SSign,
SEnc,SDec) follows from the sel-INDIBE-security of the IBE scheme (Setup,KeyGen,
Encrypt,Decrypt).

Theorem 2. Assume that (Setup,KeyGen,Encrypt,Decrypt) is sel-INDIBE secure.
Then (·,SGen,SSign,SEnc,SDec) is INDOTSE-secure.

Proof. Let A be a PPT adversary that breaks the INDOTSE-security of (SSetup,
SGen,SSign,SEnc,SDec) with advantage ε. We will provide a reduction R such
that RA breaks the sel-INDIBE-security of (Setup,KeyGen,Encrypt,Decrypt) with

advantage ε. R proceeds as follows. R first guesses a random index i∗
$←− [`].

It then simulates the INDOTSE-experiment with A until A outputs a message
x (that is, R runs A1(1λ)). R now declares its challenge identity id∗ := (1 −
xi∗)‖bin(i∗) to the sel-INDIBE experiment and also asks for identity secret keys
corresponding to the identities {xι‖bin(ι)}ι∈[`]. R now receives the master public
key mpk and the identity secret keys {skxι‖bin(ι)}ι∈[`]. Next, R sets vk := mpk and
σ := {skxι‖bin(ι)}ι∈[`] and provides vk and σ to A.R now continues the simulation
untilA outputs a triple (i,m0,m1). If i 6= i∗,R aborts the simulation and outputs
a random bit. Otherwise, R sends (m0,m1) to the sel-INDIBE-experiment, obtains
a challenge ciphertext c∗ and forwards c∗ to A. R now continues the simulation
and outputs whatever A outputs.

We will now analyze the advantage of RA. Clearly, if i∗ 6= i, then the ad-
vantage of RA is 0. On the other hand, if i∗ = i, then from the view of A the
INDOTSE-experiment is simulated perfectly, where the challenge bit of the simu-
lated INDOTSE-experiment is identical to the challenge bit b∗ of the sel-INDIBE-
experiment. Consequently, in this case the advantage of RA is identical to the
advantage of A. Since i∗ is chosen uniformly at random, it holds i∗ = i with
probability 1/`. We can conclude that the advantage of RA is

Advsel-INDIBE(RA) =
1

`
· AdvINDOTSE(A) =

ε

`
,

which concludes the proof.

6 Achieving Fully Secure IBE

Let in the following (SSetup,SGen,SSign,SEnc,SDec) be an OTSE scheme. With-
out loss of generality, we will assume that the signing algorithm SSign is de-
terministic. This can always be achieved by making an additional pseudoran-
dom function seed part of the signing key and generating random coins for
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the signing algorithm as needed. Let F be a pseudorandom function. We as-
sume for convenience that the pseudorandom function F has two output reg-
isters, F1 and F2. Moreover, let (KG,E,D) be a standard public key encryp-
tion scheme. Without loss of generality we assume that the verification keys of
(SSetup,SGen,SSign,SEnc,SDec) and the public keys of the public-key encryp-
tion scheme (KG,E,D) have the same length `. This can always be achieved by
an appropriate padding.

As we are working with an exponentially sized tree, we will define two func-
tions NodeGen and LeafGen that provide access to the keys and thus implicitly
define the tree. The NodeGen function generates keys for the root node and all
internal nodes, whereas the LeafGen function generates public and private keys
for the leaf nodes. More specifically, the NodeGen function takes as input a node
identifier v and a pseudorandom function seed s and outputs a verification key
vkv for this node, a signature σv authenticating the verification keys of its chil-
dren and an auxiliary value xv which is the concatenation of the verification keys
of the children of v.

Recall that ‖ is the concatenation operator. In the rest of this Section and
the next Section we will use the following convention. The variable ι will always
run over the range [`] and b will always run over {0, 1}.

NodeGen(pp, v, s):
(vkv, skv) := SGen(pp;F1(s, v))
Compute vkv‖0 and vkv‖1 in the same way.
xv := vkv‖0‖vkv‖1
σv := SSign(pp, skv, x)
Output (vkv, σv, xv)

The function LeafGen takes as input public parameters pp, a node-identifier v
of a leaf-node and a pseudorandom function seed s and outputs the verification
key vkv of the leaf, a signature σv authenticating the leaf public key, a leaf public
key lpkv and a leaf secret key lskv.

LeafGen(pp, v, s)
(vkv, skv) := SGen(pp;F1(s, v))
(lpkv, lskv) := KG(1λ;F2(s, v))
xv := lpkv
σv := SSign(pp, skv, xv)
Output (vkv, σv, lpkv, lskv)

We will now provide the construction of our IBE scheme (Setup,KeyGen,
Encrypt,Decrypt).

Setup(1λ, n) : Choose a random seed s for the PRF F . Compute the public pa-
rameters pp := SSetup(1λ, 2`) and (vkv0 , ·, ·) := NodeGen(pp, v0, s). Output
mpk := (pp, vkv0) and msk := s.
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KeyGen(msk = s, id ∈ {0, 1}n) : Let v0, v1, . . . , vn be the root-to-leaf path for the
identity id, i.e. all the prefixes of id. For j = 0, . . . , n−1 compute (·, σvj , xvj ) :=
NodeGen(pp, vj , s). Further compute (·, σid, lpkid, lskid) := LeafGen(pp, vn, s).
Output skid := ((σv0 , xv0), . . . , (σvn , xvn), σid, lpkid, lskid).

Encrypt(mpk = (pp, vkv0), id ∈ {0, 1}n,m) : We will first describe two circuits that
will be used by the encryption algorithm.
– Q[pp, β ∈ {0, 1}, eQ = {(Yι,0, Yι,1)}ι](vk) :

Compute and output {SEnc(pp, (vk, β · `+ ι, b), Yι,b)}ι,b
– T[m](lpk): Compute and output E(lpk,m).

(T̃, eT ) := Garble(1λ,T[m])

(Q̃(n), e
(n)
Q ) := Garble(1λ,Q[pp, 0, eT ])

For j = n− 1, . . . , 0

(Q̃(j), e
(j)
Q ) := Garble(1λ,Q[pp, idj+1, e

(j+1)
Q ])

Parse e
(0)
Q = {Yι,0, Yι,1}ι

y := vkv0
ỹ(0) := {Yι,yι}ι
Output c := (ỹ(0), Q̃(0), . . . , Q̃(n), T̃)

Decrypt(skid=((σv0 ,xv0),...,(σvn ,xvn),σid,lpkid,lskid),c=(ỹ(0),Q̃(0),...,Q̃(n),T̃))
For j = 0, . . . , n− 1:

{c(j)ι,b }ι,b := Eval(Q̃(j), ỹ(j))

ỹ(j+1) := {SDec(pp, (vkvj , σvj , xvj ), c
(j)
ι,(xvj )ι

)}ι
{c(n)ι,b }ι,b := Eval(Q̃(n), ỹ(n))

z := lpkid
z̃ := {SDec(pp, (vkvn , σid, z), c

(n)
ι,zι)}ι

f := Eval(T̃, z̃)
Output m := D(lskid, f)

6.1 Correctness

We will first show that our scheme is correct. Note that by correctness of the gar-
bling scheme (Garble,Eval), we have that the evaluation of Q̃(0) on the labels ỹ(0)

yields correctly formed ciphertexts of the OTSE scheme (SSetup,SGen,SSign,
SEnc,SDec). Next, by the correctness of (SSetup,SGen,SSign,SEnc,SDec), we
get that the decrypted values ỹ(1) are correct labels for the next garbled circuit
Q̃(1). Repeating this argument, we can argue that all Q̃(j) output correct encryp-
tions that are subsequently decrypted to correct input labels of the next garbled
circuit in the sequence. Finally, the circuit Q̃(n) outputs correct encryptions of
the input labels of T̃, which are again correctly decrypted to input labels for T̃.
Finally, the correctness of the garbling scheme (Garble,Eval) guarantees that T̃
outputs a correct encryption of the plaintext m under the leaf public key lpkid,
and the correctness of the public-key-encryption scheme (KG,E,D) ensures that
the decryption function D outputs the correct plaintext m.
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6.2 Proof of Security

We will now show that our scheme is fully secure.

Theorem 3. Assume that (KG,E,D) is an INDCPA-secure public key encryption
scheme, (SSetup,SGen,SSign,SEnc,SDec) is a INDOTSE-secure OTSE scheme
and that (Garble,Eval) is a garbling scheme. Then the scheme (Setup,KeyGen,
Encrypt,Decrypt) is a fully secure IBE scheme.

We will split the proof of Theorem 3 into several lemmas. Let A be a PPT
adversary with advantage ε against the fully secure INDIBE-experiment and let
in the following v0, . . . , vn always denote the root-to-leaf path for the challenge
identity id∗. Consider the following hybrids.

Hybrid H0 is identical to the real experiment INDIBE(A), except that we
replace the pseudorandom function F used for the generation of the identity
keys by a lazily evaluated truly random function. In particular, each time we
visit a new node during key generation we generate fresh keys for this node and
store them. If these keys are needed later on, we retrieve them from a table of
stored keys instead of generating new ones. By a standard argument it follows
that the INDIBE(A)-experiment and H0 are computationally indistinguishable,
given that F is a pseudorandom function.

In the remaining hybrids we will only change the way the challenge ciphertext
c∗ is computed. First consider the computation of the challenge ciphertext c∗ in
the extremal hybrids H0 and H2n+3 (Figure 7). While in H0 all garbled circuits
are computed by the garbling algorithm Garble, in H2n+3 all garbled circuits
are simulated. Moreover, in H2n+3 the messages encrypted in the ciphertexts
computed by the garbled circuits do not depend on the bit b, i.e. decryption
of these ciphertexts always yields the same labels, regardless of which message-
signature pair has been used to decrypt the encrypted labels. Notice that in
H2n+3 the garbled circuit T̃ is simulated using f := E(lpkid∗ ,m

∗), the encryption
of the challenge message m∗ under the leaf public key lpkid∗ .

H0:

(T̃, eT ) := Garble(1λ,T[m∗])

(Q̃(n), e
(n)
Q ) := Garble(1λ,Q[pp, 0, eT ])

For j = n− 1, . . . , 0

(Q̃(j),e
(j)
Q ):=Garble(1λ,Q[pp,idj+1,e

(j+1)
Q ])

y := vkv0
ỹ(0) := {Yι,yι}ι
c := (ỹ(0), Q̃(0), . . . , Q̃(n), T̃)

H2n+3:
f := E(lpkid∗ ,m

∗)

(T̃, z̃) := GCSim(T, f)
fT := {(SEnc(pp, (vkid∗ , ι, b), z̃ι)}ι,b
(Q̃(n), ỹ(n)) := GCSim(Q, fT )
For j = n− 1, . . . , 0

f
(j)
Q :={SEnc(pp,(vkvj ,id

∗
j+1·`+ι,b),ỹ

(j+1)
ι )}ι,b

(Q̃(j), ỹ(j)) := GCSim(Q, f
(j)
Q )

Output c := (ỹ(0), Q̃(0), . . . , Q̃(n), T̃)

Fig. 7: The extremal hybrids H0 and H2n+3

We will show indistinguishability of H0 and H2n+3 via the following hybrids.
For i = 0, . . . , n− 1 define:
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Hybrid H2i+1 This hybrid is the same asH2i, except that we change the way Q̃(i)

and ỹ(i) are computed. Compute Q̃(i) and ỹ(i) by (Q̃(i), ỹ(i)) := GCSim(Q, f
(i)
Q ).

Hybrid H2(i+1) This hybrid is identical toH2i+1, except for the following change.

Instead of computing f
(i+1)
Q := {SEnc(pp, (vkvi , id

∗
i+1 ·`+ι, b), Yι,b)}ι,b we compute

f
(i+1)
Q := {SEnc(pp, (vkvi , id

∗
i+1 · `+ ι, b), ỹ

(i+1)
ι )}ι,b

The final 3 hybrids are given as follows.

Hybrid H2n+1 This hybrid is the same as H2n, except that we change the
way Q̃(n) and ỹ(n) are computed. Compute Q̃(n) and ỹ(n) by (Q̃(n), ỹ(n)) :=
GCSim(Q, fT ), where fT = {(SEnc(pp, (vkid∗ , ι, b), Zι,b)}ι,b.

Hybrid H2n+2 This hybrid is the same as H2n+1, except that we change how
fT is computed. Let eT = {Zι,0, Zι,1}ι. Instead of computing fT by fT :=

{(SEnc(pp, (vkid∗ , ι, b), Zι,b)}ι,b we compute fT := {(SEnc(pp, (vkid∗ , ι, b), z̃(n)ι )}ι,b.

Hybrid H2n+3 This hybrid is the same as H2n+2, except that we change the
way T̃ and z̃ are computed. Compute T̃ and z̃ by (T̃, z̃) := GCSim(Q, f), where
f := E(lpkid,m).

Lemma 1. We claim that for i = 0, . . . , n − 1 the hybrids H2i and H2i+1 are
computationally indistinguishable, given that (Garble,Eval) is a secure garbling
scheme.

Proof. Assume towards contradiction that A distinguishes between H2i and
H2i+1 with non-negligible advantage ε. We will construct a distinguisher RA
that breaks the security of the garbling scheme with advantage ε. R simulates
the H2i experiment faithfully with the adversary A until A requests a challenge
ciphertext. Once A does request the challenge ciphertext, R computes

(T̃, eT ) := Garble(1λ,T[m∗])

(Q̃(n), e
(n)
Q ) := Garble(1λ,Q[pp, 0, eT ])

For j = n− 1, . . . , i+ 1

(Q̃(j), e
(j)
Q ) := Garble(1λ,Q[pp, id∗j+1, e

(j+1)
Q ]).

(Q̃(i), e
(i)
Q ) := Garble(1λ,Q[pp, id∗i+1, e

(i+1)
Q ])

and sends the circuit Q[e
(i)
Q ] and the input y(i) to the experiment. Once the

experiment returns Q̃(i), ỹ(i), R computes

For j = i− 1, . . . , 0

f
(j)
Q := {SEnc(pp, (vkvj , id

∗
j+1 · `+ ι, b), ỹ

(j+1)
ι )}ι,b

(Q̃(j), ỹ(j)) := GCSim(Q, f
(j)
Q )

c∗ := (ỹ(0), Q̃(0), . . . , Q̃(n), T̃)
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and returns c∗ to A. R now continues the simulation of the H2i experiment and
outputs whatever the simulated H2i experiment outputs.

Clearly, if R’s challenge Q̃(i), ỹ(i) is distributed according to the real distri-
bution, then the view of A in R’s simulation is identical to the view of A in H2i.
On the other hand, if R’s challenge is distributed according to the simulated
distribution, then the view of A in R’s simulation is identical to the view of A
in H2i+1. We conclude that

Adv(RA) = |Pr[H2i(A) = 1]− Pr[H2i+1(A) = 1]| ≤ ε,

which contradicts the security of the garbling scheme (Garble,Eval).

Lemma 2. We claim that for i = 0, . . . , n−1 the hybrids H2i+1 and H2(i+1) are
computationally indistinguishable, given that (SSetup,SGen,SSign,SEnc,SDec) is
a selectively INDOTSE-secure OTSE scheme.

Proof. Let q be the number of queries by A (including the challenge query),
which gives us an upper bound for the number of distinct nodes visited at
level i. We will construct an adversary RA that breaks the INDOTSE-security
of (SSetup,SGen,SSign,SEnc,SDec) in the multi-challenge setting with advan-
tage ε/q. R first guesses an index k∗ ∈ [q]. R then generates keys

(vk∗0, sk
∗
0) := SGen(pp)

(vk∗1, sk
∗
1) := SGen(pp)

and sets x∗ := vkvi‖0‖vkvi‖1 and sends the challenge message x∗ to the INDOTSE-

experiment and receives a verification key vk and a signature σ from the INDOTSE-
experiment.
R continues simulating the H2i+1 experiment. Once the k∗-th distinct node

v∗ on level i is visited, R modifies the NodeGen function for this node as follows.

vkv∗ := vk
vkv∗‖0 := vk∗0
skv∗‖0 := sk∗0
vkv∗‖1 := vk∗1
skv∗‖1 := sk∗1
xv∗ := vkv∗‖0‖vkv∗‖1
σv∗ := σ
Output (vkv∗ , σv∗ , xv∗)

When the corresponding signing keys are required for the NodeGen procedure
on v∗‖0 and v∗‖1, use the corresponding signing keys skv∗‖0 and skv∗‖1 computed
in the modified procedure above.
R now continues the simulation. Once A requests a challenge-ciphertext for

an identity id∗, R checks if v∗ is on the root-to-leaf path for id∗ (i.e. if v∗ is a
prefix of id∗), and if not aborts and outputs a random bit. Otherwise,R generates
the challenge ciphertext c∗ for A in the following way.
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(T̃, eT ) := Garble(1λ,T[m∗])

(Q̃(n), e
(n)
Q ) := Garble(1λ,Q[pp, 0, eT ])

For j = n− 1, . . . , i+ 1

(Q̃(j), e
(j)
Q ) := Garble(1λ,Q[pp, id∗j+1, e

(j+1)
Q ])

Parse e
(i+1)
Q = {(Yι,0, Yι,1)}ι

R now computes the messages M∗0 := {Y
ι,1−x(i+1)

ι
}ι and M∗1 := {Y

ι,x
(i+1)
ι
}ι,

sends the challenge messages (M∗0 ,M
∗
1 ) to the INDOTSE experiment and receives

a challenge ciphertext C∗ = (C∗1 , . . . , C
∗
` ). Now R computes f

(i+1)
Q by f

(i+1)
Q :=

{Cι,b}ι, where Cι,xι := SEnc(pp, (vkvi , id
∗
i+1 · `+ ι, x

(i+1)
ι ), Y

ι,x
(i+1)
ι

) and Cι,1−xι :=

C∗ι . R continues the computation of the challenge ciphertext as follows.

(Q̃(i), ỹ(i)) := GCSim(Q, f
(i)
Q )

For j = i− 1, . . . , 0

f
(j)
Q := {SEnc(pp, (vkvj , id

∗
j+1 · `+ ι, b), ỹ

(j+1)
ι )}ι,b

(Q̃(j), ỹ(j)) := GCSim(Q, f
(j)
Q )

c∗ := (ỹ(0), Q̃(0), . . . , Q̃(n), T̃)

and returns c∗ to A. R now continues the simulation of the H2i+1 experiment
and outputs whatever the simulated H2i+1 experiment outputs.

We will now compute the advantage of RA. First notice that the keys pro-
vided byR to A are distributed exactly as inH2i+1 (and therefore do not depend
on k∗). If R guesses k∗ wrongly its advantage is 0. Let E be the event that k∗

has been guessed correctly. It clearly holds that Pr[E] ≥ 1/q. Assume now that
the event E holds. If the challenge bit b∗ of the INDOTSE experiment is 0, then
the view of A in R’s simulation is distributed exactly as in experiment H2i+1.
On the other hand, if b∗ = 1 then the view of A is distributed exactly as in
experiment H2(i+1). Thus we can conclude

Adv(RA) = Pr[E] · |Pr[H2i+1(A) = 1]− Pr[H2(i+1)(A) = 1]|
≥ Pr[E] · ε
≥ ε/q.

Lemma 3. We claim that the hybrids H2n and H2n+1 are computationally in-
distinguishable, given that (Garble,Eval) is a secure garbling scheme.

The proof proceeds analogous to the proof of Lemma 1.

Lemma 4. We claim that the hybrids H2n+1 and H2n+2 are computationally
indistinguishable, given that the OTSE-scheme (SSetup,SGen,SSign,SEnc,SDec)
is INDOTSE-secure.

The proof follows analogous to the proof of Lemma 2.

Lemma 5. We claim that the hybrids H2n+2 and H2n+3 are computationally
indistinguishable, given that (Garble,Eval,GCSim) is a secure garbling scheme.
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Again, the proof follows analogous to the proof of Lemma 1.

Lemma 6. The advantage of A in H2n+3 is negligible, given that (KG,E,D) is
INDCPA-secure.

Proof. We will construct an adversary RA that breaks the INDCPA security of
(KG,E,D) with advantage ε. R simulates H2n+3 faithfully, with the exception
that it uses its own challenge public key pk∗ as public key for the leaf id∗, i.e. it
sets lpkid∗ := pk∗. It forwards A’s challenge messages m0 and m1 to the INDCPA

experiment and uses its own challenge ciphertext c∗ as the ciphertext f in the
computation of the challenge ciphertext c∗. It follows that R simulates H4n+3

perfectly and therefore AdvINDCPA(RA) = AdvH4n+3(A).

This concludes the proof of Theorem 3.

7 Achieving Selectively Secure HIBE

We will now add a delegation mechanism to the IBE scheme constructed in the
last Section, yielding the construction of a hierarchical IBE scheme. The basic
idea is as follows. Instead of putting the public keys of the INDCPA-secure scheme
only into the leaf nodes of the tree, we will put such public keys into every node of
the tree. This means that every node of the (unbounded size) tree can effectively
be used in the same way we used the leaf nodes in the scheme of the last Section.

Since we want to be able to delegate the ability to delegate HIBE keys for
entire sub-trees, we need to work with a pseudorandom function supporting this
kind of delegation. We therefore use the delegatable pseudorandom functions
defined in Section 2.6 for this task.

In our scheme, the delegated master secret key for an identity id consist of
the identity secret key for id and a delegated PRF seed sid. This enables the
delegator to compute identity secret keys for all the nodes in the sub-tree of id.

Let (SSetup,SGen,SSign,SEnc,SDec) be an INDOTSE-secure OTSE scheme,
(F, F.Delegate) be a delegatable pseudorandom function and (KG,E,D) be a
standard public key encryption scheme. We assume for convenience that the
pseudorandom function F has two output registers, F1 and F2. Assume that
both the verification keys of (SSetup,SGen,SSign,SEnc,SDec) and the public
keys of (KG,E,D) have length ` and let d = 3`.

Again, we will first define a function NodeGen that provides access to the keys
stored in the tree. As mentioned above, we do not make distinctions between
leaf nodes and non-leaf nodes anymore but store a local public key lpkv at every
node v. NodeGen takes as input a node identifier v and a pseudorandom function
seed s and outputs a verification key vkv, signatures σv, auxiliary information xv
and a secret key lskv. Again, we use the convention that the variable ι runs over
[`] and b over {0, 1}.

NodeGen(pp, v, s):
(vkv, skv) := SGen(pp;F1(s, v))
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Compute vkv‖0 and vkv‖1 in the same way.
(lpkv, lskv) := KG(1λ;F2(s, v))
xv := vkv‖0‖vkv‖1‖lpkv
σv := SSign(pp, skv, xv)
Output (vkv, σv, xv, lskv)

The HIBE scheme (Setup,Delegate,KeyGen,Encrypt,Decrypt) is given by the
following algorithms.

Setup(1λ) : Let v0 be the root-node. Choose a random seed s for the pseudo-
random function F . Compute pp := SSetup(1λ, 3 · `) and (vkv0 , ·, ·, ·) :=
NodeGen(pp, v0, s). Output mpk := vkv0 and msk := s.

Delegate(msk = s, id ∈ {0, 1}∗) : Set n := |id|. Let v0, v1, . . . , vn be the root-to-
leaf path for the identity id, i.e. all the prefixes of id. For j = 0, . . . , n−1 com-
pute (·, σvj , xv, ·) := NodeGen(pp, vj , s). Compute sid := F.Delegate(s, id).
Output ((σv0 , xv0), . . . , (σvn , xvn), sid)

9

KeyGen(mskHIBEid′ = ((σv0 , xv0), . . . , (σv|id′| , xv|id′|), sid′), id ∈ {0, 1}
∗) : Set n := |id|.

Let v|id′|, . . . , v|id′|+|id| be the path from id′ to id′‖id, i.e. id′ concatenated with
all the prefixes of id. For j = |id′|, . . . , |id′|+|id|−1 compute (·, σvj , xv, lskv) :=
NodeGen(pp, vj , sid′). Output skid:=((σv0 ,xv0),...,(σv|id′|+|id| ,xv|id′|+|id|),σid,lskid)

Encrypt(mpk = vkv0 , id ∈ {0, 1}∗,m) : We will first describe two circuits that will
be used by the encryption algorithm. The mode β = 2 of the circuit Q targets
a local public key.
– Q[pp, β ∈ {0, 1, 2}, eQ = {(Yι,0, Yι,1)}ι](vk) : Compute and then output
{SEnc(pp, (vk, β · `+ ι, b), Yι,b)}ι,b

– T[m](lpk): Compute and output E(lpk,m).

n := |id|
(T̃, eT ) := Garble(1λ,T[m])

(Q̃(n), e
(n)
Q ) := Garble(1λ,Q[pp, 2, eT ])

For j = n− 1, . . . , 0

(Q̃(j), e
(j)
Q ) := Garble(1λ,Q[pp, idj+1, e

(j+1)
Q ])

Parse e
(0)
Q = {Yι,0, Yι,1}ι

y := mpkv0
ỹ(0) := {Yι,yι}ι
Output c := (ỹ(0), Q̃(0), . . . , Q̃(n), T̃)

Decrypt(skid=((σv0 ,xv0),...,(σvn ,xvn),σid,lpkid,lskid),c=(ỹ(0),Q̃(0),...,Q̃(n),T̃))
For i = 0, . . . , n− 1:

{c(i)ι,b}ι,b := Eval(Q̃(i), ỹ(i))

9 To delegate keys from delegated keys at an identity id, treat id as a root node,
compute the delegated keys, and the concatenate the root-to-node paths.
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ỹ(i+1) := {SDec(pp, (vkvi , σvi , xvi), c
(i)
ι,(xvi )ι

)}ι
{c(n)ι,b }ι,b := Eval(Q̃(n), ỹ(n))

z := lpkid
z̃ := {SDec(pp, (vkvn , σid, z), c

(n)
ι,zι)}ι

c† := Eval(T̃, z̃)
Output m := D(lskid, c

†)

7.1 Correctness

Correctness of the scheme follows by the same argument as for the scheme in
Section 6. Moreover, correctness of the delegation mechanism follows directly
from the the correctness of the delegation mechanism F.Delegate.

7.2 Proof of Security

We will now show that our scheme is sel-INDHIBE-secure.

Theorem 4. Assume that (KG,E,D) is an INDCPA-secure public-key-encryption
scheme, (SSetup,SGen,SSign,SEnc,SDec) is an INDOTSE-secure one-time signa-
ture with encryption scheme and that (Garble,Eval) is a garbling scheme. Then
(Setup,Delegate,KeyGen,Encrypt,Decrypt) is a sel-INDHIBE-secure HIBE scheme.

We will split the proof of Theorem 4 into several lemmas. Let A be a PPT
adversary with advantage ε against the sel-INDHIBE-experiment, let id∗ be the
challenge identity, which is selectively chosen by A at the beginning of the ex-
periment and let n∗ := |id∗| be the length of the challenge identity. Let in the
following v0, . . . , vn∗ always denote the root-to-leaf path for the challenge identity
id∗.

We will start by providing an overview of the hybrids.

Hybrid H0 This hybrid is identical to the real experiment sel-INDHIBE
A , except

that on the challenge-path v0, . . . , vn we replace the pseudorandom function F
used for the generation of the identity keys by a function H, which is truly
random on the path from the root to the challenge identity and identical to
F (s, ·) everywhere else. This means, in particular, that we can choose the all the
keys on the path from the root to the challenge identity in advance and with
truly random coins. It follows directly from the pseudorandomness property
of the delegatable pseudorandom function (F, F.Delegate) that the experiments
INDIBE(A) and H0 are computationally indistinguishable.

In the remaining hybrids, we will only change the way the challenge ciphertext
c∗ is computed. For i = 0, . . . , n∗ − 1 we define the hybrids H0, . . . ,H2n∗+3. As
in the last Section, we will first provide an overview of the extremal hybrids H0

and H2n∗+3 in Figure 8.
For i = 0, . . . , n∗ − 1 define the following hybrids.
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H0:

(T̃, eT ) := Garble(1λ,T[m∗])

(Q̃(n∗), e
(n∗)
Q ) := Garble(1λ,Q[pp, 2, eT ])

For j = n∗ − 1, . . . , 0

(Q̃(j),e
(j)
Q ):=Garble(1λ,Q[pp,id∗j+1,e

(j+1)
Q ])

y := pkv0
ỹ(0) := {Yι,yι}ι
c := (ỹ(0), Q̃(0), . . . , Q̃(n∗), T̃)

H2n∗+3:
f := E(lpkid∗ ,m

∗)

(T̃, z̃) := GCSim(T, f)
fT := {(SEnc(pp, (vkid∗ , ι, b), z̃ι)}ι,b
(Q̃(n∗), ỹ(n

∗)) := GCSim(Q, fT )
For j = n∗ − 1, . . . , 0

f
(j)
Q :={SEnc(pp,(vkvj ,id

∗
j+1·`+ι,b),ỹ

(j+1)
ι )}ι,b

(Q̃(j), ỹ(j)) := GCSim(Q, f
(j)
Q )

Output c := (ỹ(0), Q̃(0), . . . , Q̃(n∗), T̃)

Fig. 8: The extremal hybrids H0 and H2n∗+3

Hybrid H2i+1 This hybrid is the same asH2i, except that we change the way Q̃(i)

and ỹ(i) are computed. Compute Q̃(i) and ỹ(i) by (Q̃(i), ỹ(i)) := GCSim(Q, f
(i)
Q ).

Hybrid H2(i+1) This hybrid is identical toH2i+1, except for the following change.

Instead of computing f
(i+1)
Q := {SEnc(pp, (vkvi , id

∗
i+1 ·`+ι, b), Yι,b)}ι,b we compute

f
(i+1)
Q := {SEnc(pp, (vkvi , id

∗
i+1 · `+ ι, b), ỹ

(i+1)
ι )}ι,b

The final 3 hybrids are given as follows.

Hybrid H2n∗+1 This hybrid is the same as H2n∗ , except that we change the
way Q̃(n∗) and ỹ(n

∗) are computed. Compute Q̃(n∗) and ỹ(n
∗) by (Q̃(n∗), ỹ(n

∗)) :=
GCSim(Q, fT ).

Hybrid H2n∗+2 This hybrid is the same as H2n∗+1, except that we change
how fT is computed. Let eT = {Zι,0, Zι,1}ι. Instead of computing fT by fT :=

{(SEnc(pp, (vkvn∗ , ι, b), Zι,b)}ι,b we compute fT := {(SEnc(pp, (vkn∗ , ι, b), z̃(n
∗)

ι )}ι,b.

Hybrid H2n∗+3 This hybrid is the same as H2n∗+2, except that we change the
way T̃ and z̃ are computed. Compute T̃ and z̃ by (T̃, z̃) := GCSim(Q, f), where
f := E(lpkid∗ ,m

∗).

Lemma 7. We claim that for i = 0, . . . , n∗ − 1 the hybrids H2i and H2i+1 are
computationally indistinguishable, given that (Garble,Eval) is a secure garbling
scheme.

Proof. Assume towards contradiction that A distinguishes between H2i and
H2i+1 with non-negligible advantage ε. We will construct a distinguisher RA
that breaks the security of the garbling scheme with advantage ε. R simulates
the H2i experiment faithfully with the adversary A until A requests a challenge
ciphertext. Once A does request the challenge ciphertext, R computes
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(T̃, eT ) := Garble(1λ,T[m∗])

(Q̃(n∗), e
(n∗)
Q ) := Garble(1λ,Q[pp, 2, eT ])

For j = n∗ − 1, . . . , i+ 1

(Q̃(j), e
(j)
Q ) := Garble(1λ,Q[pp, id∗j+1, e

(j+1)
Q ]).

(Q̃(i), e
(i)
Q ) := Garble(1λ,Q[pp, id∗i+1, e

(i+1)
Q ])

and sends the circuit Q[e
(i)
Q ] and the input y(i) to the experiment. Once the

experiment returns Q̃(i), ỹ(i), R computes

For j = i− 1, . . . , 0

f
(j)
Q := {SEnc(pp, (vkvi , id

∗
j+1 · `+ ι, b), ỹ

(j+1)
ι )}ι,b

(Q̃(j), ỹ(j)) := GCSim(Q, f
(j)
Q )

c∗ := (ỹ(0), Q̃(0), . . . , Q̃(n∗), T̃)

and returns c∗ to A. R now continues the simulation of the H2i experiment and
outputs whatever the simulated H2i experiment outputs.

Clearly, if R’s challenge Q̃(i), ỹ(i) is distributed according to the real distri-
bution, then the view of A in R’s simulation is identical to the view of A in H2i.
On the other hand, if R’s challenge is distributed according to the simulated
distribution, then the view of A in R’s simulation is identical to the view of A
in H2i+1. We conclude that

Adv(RA) = |Pr[H2i(A) = 1]− Pr[H2i+1(A) = 1]| ≤ ε,

which contradicts the security of the garbling scheme (Garble,Eval).

Lemma 8. We claim that for i = 0, . . . , n∗−1 the hybrids H2i+1 and H2(i+1) are
computationally indistinguishable, given that (SSetup,SGen,SSign,SEnc,SDec) is
an INDOTSE-secure IBE scheme.

Proof. We will construct an adversaryRA that breaks the multi-challenge INDOTSE-
security of (SSetup,SGen,SSign,SEnc,SDec) with advantage ε. Let v∗ = vi be
the i-th node on the challenge-path. Let pp be the public parameters passed to
R. R first generates keys for the children v∗‖0 and v∗‖1 of v∗ by

(vk∗b , sk
∗
b) := SGen(pp)

if v∗‖b is on the challenge path and

(vk∗b , sk
∗
b) := SGen(pp;F (s, v∗‖b))

otherwise. Next, R generates the local key lpkv∗ by (lpk∗, lsk∗) := KeyGen(1λ).
Now R sets x∗ := vkv∗‖0‖vkv∗‖1‖lpkv∗ , sends the challenge message x∗ to the

INDOTSE-experiment and receives a verification key vk and a signature σ.
R now chooses the keys for all nodes on the root-to-leaf path as in H2i+1,

except for the keys of v∗, which are chosen as follows.
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vkv∗ := vk
vkv∗‖0 := vk∗0
skv∗‖0 := sk∗0
vkv∗‖1 := vk∗1
skv∗‖1 := sk∗1
xv∗ := vkv∗‖0‖vkv∗‖1‖lpkv∗
σv∗ := σ
Output (vkv∗ , σv∗ , xv∗ , lskv∗)

When the corresponding secret keys are required for the NodeGen procedure
on v∗‖0 and v∗‖1, use the corresponding secret keys skv∗‖0 and skv∗‖1 set above
in the modified procedure above.

R now continues the simulation. Once A requests a challenge-ciphertext for
the identity id∗, R generates the challenge ciphertext c∗ for A in the following
way.

(T̃, eT ) := Garble(1λ,T[m∗])

(Q̃(n∗), e
(n∗)
Q ) := Garble(1λ,Q[pp, 2, eT ])

For j = n∗ − 1, . . . , i+ 1

(Q̃(j), e
(j)
Q ) := Garble(1λ,Q[pp, id∗j+1, e

(j+1)
Q ])

Parse e
(i+1)
Q = {(Yι,0, Yι,1)}ι

R now computes the messages M∗0 := {Y
ι,1−x(i+1)

ι
}ι and M∗1 := {Y

ι,x
(i+1)
ι
}ι,

sends the challenge messages (M∗0 ,M
∗
1 ) to the INDOTSE-experiment and receives

a challenge ciphertext C∗ = (C∗1 , . . . , C
∗
` ). Now R computes f

(i+1)
Q by f

(i+1)
Q :=

{Cι,b}ι∈[`], where Cι,xι := SEnc(pp, (vkv∗ , β · `+ ι, x
(i+1)
ι ), Y

ι,x
(i+1)
ι

) and Cι,1−xι :=

C∗ι .

(Q̃(i), ỹ(i)) := GCSim(Q, f
(i)
Q )

For j = i− 1, . . . , 0

f
(j)
Q := {SEnc(pp, (vkvj , id

∗
j+1 · `+ ι, b), ỹ

(j+1)
ι )}ι,b

(Q̃(j), ỹ(j)) := GCSim(Q, f
(j)
Q )

c∗ := (ỹ(0), Q̃(0), . . . , Q̃(n∗), T̃)

and returns c∗ to A. R now continues the simulation of the H2i+1 experiment
and outputs whatever the simulated H2i+1 experiment outputs.

We will now compute the advantage of RA. First notice that the keys pro-
vided byR to A are distributed exactly as inH2i+1 (and therefore do not depend
on i∗). If the challenge bit b∗ of the INDOTSE-experiment is 0, then the view of
A in R’s simulation is distributed exactly as in experiment H2i+1. On the other
hand, if b∗ = 1 then the view of A is distributed exactly as in experimentH2(i+1).
Thus we can conclude

Adv(RA) = |Pr[H2i+1(A) = 1]− Pr[H2(i+1)(A) = 1]| ≥ ε
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Lemma 9. We claim that the hybrids H2n and H2n+1 are computationally in-
distinguishable, given that (Garble,Eval) is a secure garbling scheme.

The proof proceeds analogous to the proof of Lemma 7.

Lemma 10. We claim that the hybrids H2n+1 and H2n+2 are computationally
indistinguishable, given that the OTSE scheme (SSetup,SGen,SSign,SEnc,SDec)
is INDOTSE-secure.

The proof follows analogous to the proof of Lemma 8.

Lemma 11. We claim that the hybrids H2n+2 and H2n+3 are computationally
indistinguishable, given that (Garble,Eval) is a secure garbling scheme.

Again, the proof follows analogous to the proof of Lemma 7.

Lemma 12. The advantage of A in H2n+3 is negligible, given that (KG,E,D)
is INDCPA-secure.

Proof. We will construct an adversary RA that breaks the INDCPA-security of
(KG,E,D) with advantage ε. R simulates H2n∗+3 faithfully, with the exception
that it uses its own challenge public key pk∗ as public key lpkid∗ for the identity
id∗, i.e. it sets lpkid∗ := pk∗. It forwards A’s challenge messages m0 and m1 to the
INDCPA-experiment and uses its own challenge ciphertext c∗ as the ciphertext f
in the computation of the challenge ciphertext c∗. It follow directly that R
simulates H4n∗+3 perfectly and therefore AdvINDCPA(RA) = AdvH4n∗+3

(A).

This concludes the proof of Theorem 4.
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