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Abstract

We develop a general approach to adding a threshold functionality to a large class of (non-
threshold) cryptographic schemes. A threshold functionality enables a secret key to be split into
a number of shares, so that only a threshold of parties can use the key, without reconstructing
the key. We begin by constructing a threshold fully-homomorphic encryption scheme (TFHE)
from the learning with errors (LWE) problem. We next introduce a new concept, called a
universal thresholdizer, from which many threshold systems are possible. We show how to
construct a universal thresholdizer from our TFHE. A universal thresholdizer can be used to
add threshold functionality to many systems, such as CCA-secure public-key encryption (PKE),
signature schemes, pseudorandom functions, and others primitives. In particular, by applying
this paradigm to a (non-threshold) lattice signature system, we obtain the first single-round
threshold signature scheme from LWE.

1 Introduction

Threshold cryptography [DF89, Fra89, DDFY94] is a general technique used to protect a crypto-
graphic secret by splitting it into N shares and storing each share on a different server. Any subset
of t servers can use the secret without re-constructing it. However, an adversary that compromises
t− 1 servers should not be able to recover or use the secret. Two examples of threshold tasks are:

• Threshold signatures: distribute the signing key of a signature system among N servers,
so that any t servers can generate a signature. The scheme must provide anonymity and
succinctness. Anonymity means that the same signature is produced, no matter which subset
of t servers is used. Succinctness means that the signature size can depend on the security
parameter, but must be independent of N and t.

• Threshold decryption: distribute the decryption key of a CCA-secure public-key encryption
scheme among N servers, so that any t servers can decrypt. The scheme must be succinct,
meaning that ciphertext size must be independent of N and t.
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Moreover, the time to verify signatures or encrypt messages should be independent of N and t.
Other threshold tasks include threshold (H)IBE key generation, threshold ABE key generation,
threshold pseudorandom functions, and many others (see Section 1.2). All have similar anonymity,
succinctness, and efficiency requirements.

A common goal for threshold systems is to minimize the amount of interaction in the system,
and in particular, construct one-round schemes. For example, in the case of signatures, an entity
called a combiner wishes to sign a message m. The combiner sends m to all N servers, and some t
of them reply. The combiner combines the t replies, and obtains the signature. No other interaction
is allowed. In particular, the servers may not communicate with one another, or interact further
with the combiner. Similarly, for threshold decryption, the combiner sends the ciphertext to all N
servers, some t servers reply, and the combiner combines the replies to obtain the plaintext. No
other interaction is allowed. We will often refer to the servers as partial signers or partial decryptors.

Many signature and encryption schemes have been thresholdized. For example, RSA signa-
tures and encryption [Fra89, DDFY94, GRJK07, Sho00], Schnorr signatures [SS01], (EC)DSA
signatures [GJKR01, GGN16], BLS signatures [BLS04, Bol03], Cramer-Shoup encryption [CG99],
Regev encryption [BD10], and many more [SG02, DK05, BBH06]. Despite this great success,
thresholdizing many basic lattice-based cryptographic primitives has been challenging. For example,
it is still an open problem to construct lattice-based one-round threshold signatures or CCA-secure
threshold PKE satisfying strong succinctness properties, as discussed in related work (Section 1.2).
Thresholdizing more advanced lattice-based primitives, such as fully homomorphic encryption or
functional encryption, has been largely unexplored.

1.1 Our Contributions

Our main contributions are twofold. First, we define the notion of threshold fully homomorphic
encryption (TFHE) and construct it from the learning with errors assumption (LWE). As in a
threshold PKE, a threshold FHE scheme allows the decryption key to be split into shares such that
any t-out-of-N partial decryptions can be combined into a complete decryption of a given ciphertext
in a single round. Furthermore, an evaluated ciphertext should be compact meaning that its size
is independent of the original message and the number of decryptors N (Section 5.1). Second,
we present general framework for universally thresholdizing many (non-threshold) cryptographic
schemes using threshold-FHE. This framework lets us resolve the long-standing problem of one-round
threshold signatures from lattices.

Threshold FHE. A general obstacle to constructing succinct threshold cryptosystems from lattice
assumptions is the noise blow up that results from a multiplication by a large Lagrange coefficient.
We handle this difficulty in two different ways. Our first method relies on linear secret sharing
schemes where the reconstruction coefficients are always binary. We show that this class of secret
sharing schemes is compatible with the decryption operation of a fully homomorphic encryption
scheme and is also expressive enough to contain threshold access structures, along with other more
general structures. In our second method, we focus on using the standard t-out-of-N Shamir secret
sharing scheme, but we modify the noise distribution such that a multiplication by a Lagrange
coefficient does not blow up the noise too much. By combining our methods with a suitable FHE
scheme, we obtain a secure TFHE (Section 5.2 and 5.3) with strong compactness properties.

A universal thresholdizer. Our second contribution is a general framework for universally
thresholdizing many (non-threshold) cryptographic schemes using a TFHE. For this, we define a
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new primitive called a universal thresholdizer. We show how to construct a universal thresholdizer
with strong compactness properties from our TFHE scheme (Section 7). A universal thresholdizer
takes in a cryptographic key and produces a number of key shares that can be used to individually
evaluate a cryptographic function. Each of these individual evaluation shares can then be combined
to result in the final evaluation of the function. We require that the scheme guarantees privacy
meaning that no t− 1 key shares or their evaluation shares reveal any information about the original
key. Furthermore, we require that the scheme satisfies robustness, meaning that a maliciously
generated evaluation share can always be detected.

With these guarantees, a universal thresholdizer scheme can be used to thresholdize many
different types of systems. For example, we can take any (non-threshold) signature scheme as a black
box and construct from it a one-round threshold signature scheme (Section 8.2). Since a universal
thresholdizer can be proven secure based on LWE, and because there are known (non-threshold)
signature schemes based on LWE [GPV08, Boy10, Lyu12], we obtain the first one-round threshold
signature scheme based on LWE that is both succinct and anonymous. This resolves a long-standing
open problem in lattice-based cryptography.

Beyond signatures, a universal thresholdizer can be composed with an existing CCA-secure PKE
scheme [PW11, GPV08, Pei09, ABB10, MP12] to obtain the first lattice-based (one-round) threshold
CCA-secure PKE where the public key size and encryption time are independent of the number
of servers (Section 8.3). Similarly, composing universal thresholdizer with a functional encryption
scheme gives functional encryption with threshold key generation. A universal thresholdizer, on
its own, gives a function secret sharing scheme [BGI15, BGI16] that can support threshold access
structures (Section 8.1).

Decentralized threshold FHE. Our basic TFHE scheme requires a trusted setup procedure
to split the secret FHE key into shares. In Section 6, we define a decentralized threshold fully
homomorphic encryption (dTFHE). In a dTFHE scheme, each decryption server generates its own
public/secret key pair. At encryption time, the encryptor specifies a set of public keys and a
threshold t to produce a ciphertext that can only be decrypted by combining t partial decryptions
corresponding to the specific public keys. We construct a dTFHE in Section 6.2. However, while it
achieves the added flexibility of decentralized key generation, our dTFHE scheme does not satisfy
as strong compactness properties as our TFHE and universal thresholdizer. We leave improving the
compactness of our dTFHE as an important open problem.

1.2 Related Work on Threshold Lattice Systems

Before describing our results, we first survey the existing work on threshold lattice cryptosystems.

Non-compact systems. We begin with threshold systems that have public key and cipher-
text/signature sizes that are linear in N . Bendlin and Damg̊ard [BD10] gave a threshold version of
Regev’s CPA-secure encryption scheme [Reg09], and Myers et al. [MSS11] applied the technique to
fully homomorphic encryption. Xie et al. [XXZ11] gave a threshold CCA secure PKE scheme from
lossy trapdoor functions, which can be instantiated from LWE [PW11]. In all these schemes, both
the size of the public key and the ciphertext scales at least linearly in the number of decryptors.
For signatures, Cayrel et al. [CLRS10] gave a lattice-based threshold ring signature scheme in which
at least t signers are needed to create an anonymous signature. In this system, each signer has its
own public key, and the verification time of a signature grows linearly with the number of signers.
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Online/offline systems. The threshold Gaussian sampling protocol of Bendlin et al. [BKP13] as
well as the commitment and zero-knowledge protocols of Baum et al. [BDOP16] provide compact
threshold cryptosystems. However, the limitation of these systems is that the servers can only
perform an a priori bounded number of online non-interactive decryption/signing operations before
they must perform an offline interactive step.

N-out-of-N systems. Recent advances in low-round MPC from LWE [AJLA+12, GLS15, MW16,
BP16, PS16] give threshold cryptosystems for N -out-of-N thresholds. In these constructions, each
party that is involved in the protocol encrypts an input to a joint function using an FHE scheme
and broadcasts the ciphertexts to other parties. Then, each party homomorphically evaluates on
the ciphertexts that it receives and participates in a single round distributed decryption protocol. If
a trusted authority thresholdize an FHE key at setup and distribute the keys to each servers, then
the single round distributed decryption protocol gives a N -out-of-N threshold FHE with trusted
setup. The goal of this work is to construct cryptosystems that support arbitrary thresholds.

Fully-thresholdized systems. Very few existing lattice cryptosystems overcome all the lim-
itations described above. One exception is threshold distributed PRFs [BLMR13] built from
key-homomorphic PRFs [BLMR13, BP14, BV15].

2 Overview of the Main Construction

In this section, we provide an overview of the main threshold fully homomorphic encryption (TFHE)
construction and its applications to thresholdizing cryptographic systems through a universal
thresholdizer. We provide the full TFHE construction in Section 5.2 and 5.3. We define and
construct a universal thresholdizer scheme in Section 7 and discuss its applications in greater depth
in Section 8.

2.1 Distributing FHE Decryption

Our starting point is a standard LWE based fully homomorphic encryption schemes such as
GSW [GSW13]. Recall that a ciphertext ct is a matrix in Zn×mq and a secret key sk is a vector in Znq
for appropriately chosen LWE parameters n,m, q. To decrypt a ciphertext ct, the decryptor takes a
specific column ctm of the ciphertext matrix and computes its inner product with the secret key
sk. That is, the decryptor computes 〈ctm, sk〉 ∈ Zq. If the resulting value is small, the underlying
plaintext is interpreted as 0; otherwise, it is interpreted as 1 (Definition 3.9).

Since inner product is linear, one might try to thresholdize FHE decryption by applying Shamir
t-out-of-N secret sharing to sk. This will produce N keys sk1, . . . , skN , one for each user. Then to
decrypt a ciphertext ct, each user can compute the inner product 〈ctm, ski〉 as its partial decryption.

The combiner can then compute the Lagrange coefficients λ
(S)
i for some subset S ⊆ {1, . . . , N} of

size t and recombine the shares as∑
i∈S

λ
(S)
i ·

〈
ctm, ski

〉
=
〈
ctm,

∑
i∈S

λ
(S)
i · ski

〉
=
〈
ctm, sk

〉
.

Unfortunately, this construction is insecure. For i ∈ {1, . . . , N}, every time decryptor i computes a
partial decryption, it leaks information about its secret share ski by publishing the inner product of
ski with a public vector ctm.
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One way to resolve this issue is for decryptor i to add small additive noise to the inner product

pi = 〈ctm, ski〉+ noise.

However, for a t-out-of-N threshold scheme, this additive error prevents correct reconstruction of
the key. The Lagrange coefficients, when interpreted as elements in Zq, are large and therefore,
blow up the noise when multiplied to the partial decryptions.

A standard solution to this problem is called bit decomposition. For example, every decryptor
can compute the inner product and scale it by powers of two as:

p
(j)
i = 2j · 〈ctm, ski〉+ noise(j), for j = 1, . . . , log2 q.

It sends {p(j)
i }j to the combiner. However, such bit decomposition not only makes simulation

of partial decryptions difficult in the security proof, but also leads to direct attacks due to the
malleability of the partial decryptions.

In this work, we show how to handle the noise blow up in two different ways. We provide the
high level overview of the two techniques below.

Using {0, 1}-LSSS. In our first method, instead of coping with the Lagrange coefficients directly in
the construction, we abstract it out by using a different secret sharing scheme. In particular, we first
define a class of access structures, denoted {0, 1}-LSSS, that consists of the set of access structures
that can be supported by a linear secret sharing scheme where the reconstruction coefficients are
always binary (Definition 4.13). More precisely, such secret sharing scheme divides a secret sk into
a set of shares sk1, . . . , skN according to an access structure such that each share consists of a set
of field elements in Zq, ski = {si,j}j∈[`] for a fixed bound `. For any set S ⊆ [N ] that satisfies the
access structure, there exists a subset S′ ⊆

⋃
i∈S′ ski such that

∑
S′ si,j = sk. It is not difficult to

see that with this property, we can construct a correct TFHE scheme for any access structures in
{0, 1}-LSSS. With careful analysis (Section 5.2), we can also show that using such special linear
secret sharing scheme, all the partial decryptions are simulatable.

The remaining question is how expressive is the class {0, 1}-LSSS? Two obvious access structures
which are contained in {0, 1}-LSSS are undirected s-t-connectivity and N -out-of-N , but other than
these, it is not clear what other useful access structures are contained in {0, 1}-LSSS. However,
we show that, in fact, the class is fairly large and contains the set of access structures defined by
monotone Boolean formulas [LW11]. A classic result of Valiant [Val84, Gol14] shows that every
threshold function can be expressed as a polynomial size monotone formula. Therefore, a {0, 1}-LSSS
contains the set of threshold access structures that we need.

We start with the observation that the set of access structures defined by monotone Boolean
formulas with input fan-out 1 (special monotone Boolean formula) belongs to {0, 1}-LSSS through
a folklore algorithm [Bei96, GPSW06] Let C : {0, 1}N → {0, 1} be a special monotone Boolean
formula with an associated tree T whose internal nodes are assigned either AND or OR, and the
N leaf nodes are INPUT gates that are assigned xi. Then, we can define a linear secret sharing
scheme for s ∈ Zq described as follows.

1. Assign the root r of T with the secret to be shared s.

2. If r is an INPUT gate, then simply return. Otherwise:

• If r is an AND gate, then additively secret share k by sampling α
r← Zq and define two

shares s` = α and sr = k− α.
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• If r is an OR gate, then duplicate k into shares by setting s` = k and sr = k.

3. For each child node v` and vr, let T` and Tr be the sub-trees having v` and vr as roots
respectively. Then, recurse on the sub-trees T` and Tr with secrets s` and sr respectively.

At the end of the recursive process, each leaf node that is assigned xi is assigned with a secret share
si. It is not difficult to see that for x ∈ {0, 1}N , the secret s can be reconstructed from the set of
shares {si}xi=1 if and only if C(x) = 1. Furthermore, given {si}xi=1 for C(x) = 1, the reconstruction
procedure consists of simply identifying a subset of the shares S ⊆ {si}xi=1 (for the OR gates),
and summing up the shares s =

∑
i∈S si (for the AND gates). In Section 4.2, we prove that this

construction indeed yields a correct and secure secret sharing scheme for special monotone Boolean
formulas.

Our next observation is that the secret sharing mechanism above can also be used for regular
monotone Boolean formulas, which have multiple input fan-out. Consider a monotone Boolean
formula C : {0, 1}N → {0, 1} with multiple input fan-out that is bounded by `. Then, we can derive
a new special monotone Boolean formula C̃ : {0, 1}`N → {0, 1} by letting every fan-out of an input
gate of C to be a separate input. Now, applying the secret sharing mechanism above to C̃ yields a
set of shares {si}i∈[`N ] shares. Partitioning this set into the corresponding input xi in C, we get
a set of N shares {si,j} that still abides to the syntax of a linear secret sharing scheme required
for {0, 1}-LSSS. Furthermore, since the circuit C can still be evaluated from C̃, the secret s can be
reconstructed from the union of the set of shares

⋃
i∈S{si,j} for any satisfying set S.

It remains to prove that this secret sharing scheme is secure under collusion. If so, then we
obtain a secure TFHE scheme. We indeed show that this is the case.

Clearing out denominators. Although the use of {0, 1}-LSSS to achieve threshold decryption
results in a clean construction that does not require any significant modification to the existing
fully homomorphic construction, the use of monotone Boolean formulas to express threshold access
structure introduces significant overhead to the resulting TFHE construction. In particular, the size
of the key shares ski for i = 1, . . . , N is at least Ω(N4), introducing significant space overhead. In
Section 5.3, we introduce another approach where the share sizes are quasilinear Õ(N). We describe
the precise trade-offs between the two methods in Section 5.4.

The high level idea of our second method is to use the technique of “clearing out the denom-
inators” [Sho00, ABV+12]. The observation is that since the Lagrange coefficients are rational
numbers, we can scale them to be integers. In particular, for a t-out-of-N secret sharing, for any set

S of size t and i ∈ S, the term (N !)2 · λ(S)
i is an integer. By modifying the construction so that

every signer first scales the noise that it adds by (N !)2, and sufficiently increasing the modulus of
the scheme to support its additional noise growth, we can preserve correct reconstruction. In fact,
with careful analysis (Section 5.3), such a TFHE construction can be made secure.

An evident limitation of the method above is the increase in the modulus and hence, an increase
in the size of the ciphertext. Since the size of elements in Zq increases by logN ! = O(N logN) bits,
the size of the ciphertext depends linearly on the number of servers N , violating our compactness
requirement (Definition 5.2). However, we show that any non-compact TFHE can be boosted to a
compact one by combining it with any compact (non-threshold) FHE. The idea is to first construct
the notion of universal thresholdizer (Definition 7.1) via a (non-compact) TFHE scheme and then use
the thresholdizer to thresholdize a compact FHE. We provide a high level description of the universal
thresholdizer in Section 2.2 and provide the formal details of this boosting step in Section 8.4.
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2.2 Universal Thresholdizer: A General Tool

We next put our new TFHE to use. We define a new primitive called a universal thresholdizer (UT)
that can be used to thresholdize many existing systems including signatures (Section 8.2). The
resulting systems are secure one-round threshold systems that also provide robustness guarantees
against malicious key share holders. Our universal thresholdizer abstraction provides a modular
design for threshold systems and also simplifies the proof of security.

A UT scheme consists of a setup algorithm, an evaluation algorithm, and a combining algorithm.
The setup of a UT scheme takes in a secret message x and divides it into a set of shares s1, . . . , sN ,
which are distributed to N users. On input a circuit C, each user can independently compute an
evaluation share yi of C(x) using their shares si. For a set S = {yi} for which |S| ≥ t, the evaluation
shares can be combined to produce y = C(x). For robustness, we define an extra verification
algorithm that given C and yi, checks whether yi was computed correctly.

The privacy guarantee of a UT scheme states that the shares s1, . . . , sN as well as the evaluation
shares yi can be simulated only given access to the circuit C and C(x). The robustness guarantee
of a UT scheme simply states that it is hard for an adversary to produce an improperly computed
evaluation share yi for a circuit C such that the verification algorithm accepts.

With these security guarantees, it is easy thresholdize existing cryptographic functions. To
demonstrate the idea, consider the case of distributed PRF where a key k can be divided into
a number of key shares such that independent PRF evaluations using these key shares can be
combined into a final PRF evaluation. To construct a distributed PRF F̃ from a regular PRF
F : K × X → Y, we sample a key k

r← K and invoke UT setup with k to generate the key shares
s1, . . . , sN . Then, to evaluate F̃ on an input x ∈ X , each party generates the evaluation share yi for
the circuit Cx(k) = F (k, x). The evaluation share can then be combined in a threshold manner to
produce the final PRF evaluation y = F (k, x).

The robustness of F̃ follows from the robustness condition of UT straightforwardly. To prove
pseudorandomness of F̃ , we simply erase the original PRF key k from the security experiment by
invoking the privacy simulator of UT. This allows us to reduce pseudorandomness directly to the
underlying PRF security game of F .

In Section 7.1, we construct a robust universal thresholdizer using non-interactive zero knowledge
proofs (NIZK). We note that constructing NIZK from lattices is still an open problem. However, our
setting allows the use of NIZK with preprocessing [DMP88, LS90], which can be constructed from
one-way functions and therefore, can be instantiated from lattices. A better way to ensure robustness
is using homomorphic signatures (Section 7.2). Because homomorphic signatures [BF11, GVW15]
give more compact proofs than NIZKs, we can get partial evaluations yi whose size is independent
of the original secret message x and the size of circuit C that is used for the evaluation. Unlike
NIZK, homomorphic signatures can be constructed from the SIS problem [GVW15].

3 Preliminaries

Basic Notations. For an integer n, we write [n] to denote the set {1, . . . , n}. We use bold
lowercase letters (e.g.v,w) to denote vectors and bold uppercase letters (e.g.A,B) to denote
matrices. Throughout this work, we will always use infinity norm for vectors. This means that for a
vector x, the norm ‖x‖ is the maximal absolute value of an element in x. For any set X, we denote
by P(X) as the power set of X. For any Y,Z ∈ {0, 1}n, we say that Y ⊆ Z if for each index i ∈ [n]
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such that Yi = 1, we have Zi = 1.
We write λ for the security parameter. We say that a function ε(λ) is negligible in λ if

ε(λ) = o(1/λc) for every c ∈ N, and we write negl(λ) to denote a negligible function in λ. We say
that an event occurs with negligible probability if the probability of the event is negl(λ), and an
event occurs with overwhelming probability if its complement occurs with negligible probability. For
a distribution X over a finite domain Ω, we write ω ← X to denote that ω is sampled at random
according to distribution X. For a uniform distribution, we simply write ω

r← Ω. For a distribution
ensemble χ = χ(λ) over the integers, and an integer bound B = B(λ), we say that χ is B-bounded
if Prx←χ(λ)[|x| ≤ B(λ)] = 1.

3.1 Statistical Distance

Definition 3.1 (Statistical Distance). Let E be a finite set, Ω a probability space, and X,Y : Ω→ E
random variables. We define the statistical distance between X and Y to be the function ∆ defined
by

∆(X,Y ) =
1

2

∑
e∈E

∣∣∣∣Pr
X

(X = e)− Pr
Y

(Y = e)

∣∣∣∣ .
We next recall a technique of “smuding out” or hiding the presense of noise by overwhelming it
with a much larger noise.

Lemma 3.2 (Smudging Lemma [AJLA+12, MW16]). Let B1, B2 ∈ N. For any e1 ∈ [−B1, B1], let
E1 and E2 be independent random variables uniformly distributed on [−B2, B2] and define the two
stochastic variables X1 = E1 + e1 and X2 = E2. Then ∆(E1, E2) < B1/B2.

3.2 Learning with Errors

Definition 3.3 (LWE). Let n,m, q be positive integers and χ be some noise distribution over Zq.
In the LWE(n,m, q, χ) problem, the adversary’s goal is to distinguish between the two distributions

(A,AT s + e) and (A,u)

where A
r← Zn×mq , s

r← Znq , e← χm, and u
r← Zmq .

For certain Blwe-bounded error distributions χ, the LWE(n,m, q, χ) problem is as hard as approxi-
mating certain worst-case lattice problems such as GapSVP and SIVP on n-dimensional lattices to
within Õ(n · q/Blwe) factor [Reg09, Pei09, ACPS09, MM11, MP12, BLP+13].

3.3 Cryptographic Primitives

In this section, we review non-interactive zero knowledge proofs and fully homomorphic encryption.
Additional definitions of basic cryptographic primitives are provided in Appendix A.

3.3.1 Zero Knowledge with Pre-Processing

In this work, we consider a specific type of zero knowledge proof system where all but the last
communication round between a prover and a verifier can be pre-processed offline. This is captured
by a pre-processing step that generates a common reference string for the verifier σV and a separate
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common reference string for the prover σP . Since only the last step of the communication is required
for the online phase, the proof system can be viewed as a weaker variant of a non-interactive zero
knowledge (NIZK) proof system. Such proof system, which we call zero knowledge proof system
with pre-processing (PZK), can be constructed from a much weaker assumption than a standard
NIZK proof system and is sufficient for this work. In particular, [DMP88, LS90] construct PZK
from one-way functions.

Definition 3.4. Let L be a language with relation R. A tuple of PPT algorithms PZK =
(PZK.Pre,PZK.Prove,PZK.Verify) is a zero knowledge proof system with pre-processing if the fol-
lowing conditions are true. For (σV , σP )← PZK.Pre(1λ):

1. Completeness: For every (x,w) ∈ R, we have that:

Pr[PZK.Verify(σV , x, π) = 1 : π ← PZK.Prove(σP , x, w)] = 1

where the probability is over the internal randomness of all the PZK algorithms.

2. Soundness: For every x /∈ L, we have that:

Pr[∃π : PZK.Verify(σV , x, π) = 1] = negl(λ)

where the probability is over PZK.Pre.

3. Zero-Knowledge: There exists a PPT algorithm S such that for any x,w where V (x,w) = 1,
the following two distributions are computationally indistinguishable:

{σV ,PZK.Prove(σP , x, w)} ≈c {S(x)}

3.3.2 Homomorphic Encryption

In this section, we review the notion of fully homomorphic encryption.

Definition 3.5 (FHE). A fully homomorphic encryption FHE scheme is a tuple of PPT algorithms
FHE = (FHE.Setup,FHE.Encrypt,FHE.Eval,FHE.Decrypt) with the following properties:

• FHE.Setup(1λ, 1d)→ (pk, sk): On input the security parameter λ, and a depth bound d, the
setup algorithm outputs a key pair (pk, sk).

• FHE.Encrypt(pk, µ)→ ct: On input a public key pk, and a message µ ∈ {0, 1}, the encryption
algorithm outputs a ciphertext ct.

• FHE.Eval(pk, C, ct1, . . . , ctk)→ ĉt: On input a public key pk, a circuit C : {0, 1}k → {0, 1} of
depth at most d, and a tuple of ciphertexts ct1, . . . , ctk, the evaluation algorithm outputs an
evaluated ciphertext ĉt.

• FHE.Decrypt(pk, sk, ĉt)→ µ̂: On input a public key pk, secret key sk, and a ciphertext ĉt, the
decryption algorithm outputs a message µ̂ ∈ {0, 1,⊥}.

We require an FHE scheme to satisfy compactness, correctness, and security as follows.
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Definition 3.6 (Compactness). We say that a FHE scheme is compact if there exists a polynomial
poly(·) such that for all λ, depth bound d, circuit C : {0, 1}k → {0, 1} of depth at most d, and µi ∈
{0, 1} for i ∈ [k], the following holds. For (pk, sk)← FHE.Setup(1λ, 1d), cti ← FHE.Encrypt(pk, µi)
for i ∈ [k], ĉt← FHE.Eval(pk, C, ct1, . . . , ctk), we have that |ĉt| ≤ poly(λ, d).

Definition 3.7 (Correctness). We say that a FHE scheme is correct if for all λ, depth bound d, circuit
C : {0, 1}k → {0, 1} of depth at most d, and µi ∈ {0, 1} for i ∈ [k], the following holds. For (pk, sk)←
FHE.Setup(1λ, 1d), cti ← FHE.Encrypt(pk, µi) for i ∈ [k], and ĉt← FHE.Eval(pk, C, ct1, . . . , ctk),

Pr[FHE.Decrypt(pk, sk, ĉt) = C(µ1, . . . , µk)] = 1− negl(λ).

Definition 3.8 (Security). We say that a FHE scheme satisfies security if for all λ, and depth
bound d, the following holds. For any PPT adversary A, the following experiment ExptA,FHE(1λ, 1d)
outputs 1 with negligible probability:

ExptA,FHE(1λ, 1d):

1. On input the security parameter 1λ, and a depth bound 1d, the challenger runs (pk, sk)←
Setup(1λ, 1d), and ct← FHE.Encrypt(pk, b) for b

r← {0, 1}. It provides (pk, ct) to A.

2. A outputs a guess b′. The experiment outputs 1 if b = b′.

Additional properties. In this work, we base our constructions on an FHE scheme satisfying a
few additional properties. We refer to this type of FHE scheme as a special FHE scheme.

Definition 3.9 (Special FHE). Let FHE be a fully homomorphic encryption scheme (Definition 3.5).
We call FHE a special FHE scheme if it satisfies the following properties:

1. On input 1λ and 1d, the setup algorithm FHE.Setup outputs (pk, sk) where the public key
contains a prime q, and the secret key sk is a vector sk ∈ Zmq for some m = poly(λ, d).

2. The decryption algorithm FHE.Decrypt consists of two functions (FHE.Decode0,FHE.Decode1)
defined as follows:

• FHE.Decode0(sk, ct)→ p: On input an encryption of a message µ ∈ {0, 1}, and a secret
key vector sk, outputs p ∈ Zq where p = µ

⌊ q
2

⌉
+ e for e ∈ [−cB, cB], B = B(λ, d, q), and

e is an integer multiple of c.

• FHE.Decode1(p)→ µ: On input p ∈ Zq, it outputs µ = 1 if p ∈ [−
⌊ q

4

⌉
,
⌊ q

4

⌉
], and µ = 1

otherwise.

3. Decode0 is a linear operation over Zq in the secret key sk.

We refer to the bound B = B(λ, d, q) as the associated noise bound parameter of the construction
and c the associated multiplicative constant.

When context is clear, we will often drop the rounding notation b·e and implicitly assume it for
simplicity.

As observed in [MW16], these properties are satisfied by simple modification on the constructions
that are based on [GSW13]. We provide a high level description of the modification in Appendix B
for reference. Constructions that are based on [BV14, BGV12] can also be adapted to satisfy these
properties.
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Theorem 3.10. Fix the security parameter λ and depth bound d. Then, there exists a special FHE
scheme satisfying Definition 3.9 with an associated noise bound B = 2Õ(d) assuming the hardness
of LWE(n,m, q, χ) where n(λ),m(λ) = poly(λ), χ is a Blwe-bounded distribution for Blwe = poly(λ)

and q = 2Õ(d).

In particular, the FHE scheme can be based on approximating worst-case lattice problems on
n-dimensional lattices to within 2Õ(d) factor.

4 Secret Sharing for Threshold Access Structures

In this section, we provide general results on secret sharing that we use throughout this work. We
start by establishing basic notations and terms in secret sharing in Section 4.1 and define threshold
access structures in Section 4.2. Then, we define a special class of access structures that we call
{0, 1}-LSSS and show that it contains the class of threshold access structures in Section 4.3.

4.1 Secret Sharing Preliminaries

In this section, we provide an introduction to the basic notations and terms in secret sharing. Some
of our definitions are adapted from [LW11].

4.1.1 Access Structures

Definition 4.1 (Monotone Access Structure). Let P = {P1, . . . , PN} be a set of parties. A collection
A ⊆ P(P ) is monotone if for any sets B,C satisfying B ∈ A and B ⊆ C ⊆ P , we have C ∈ A. A
monotone access structure on P is a monotone collection A ⊆ P(P )\∅. The sets in A are called the
valid sets and the sets in P(P )\A are called the invalid sets.

Since we only consider monotone access structures in this work, we use the terms monotone access
structure and just access structure interchangeably.

For simplicity of notation, we generally identify a party with its index. Additionally, for a set of
parties P = {P1, . . . , PN}, and S ⊆ P , we denote by xS the vector xS = (x1, . . . , xN ) where xi = 1
if Pi ∈ S and xi = 0 if Pi /∈ S.

Definition 4.2 (Efficient Access Structure). Let P = {P1, . . . , PN} be a set of parties and A ⊆ P(P )
a monotone access structure on P . We say that A is efficient if there exists a polynomial size circuit
fA : {0, 1}N → {0, 1} such that for all S ⊆ P , fA(xS) = 1 if and only if S ∈ A.

In this work, we will only consider efficient access structures.

Definition 4.3 (Class of Monotone Access Structures). Let P = {P1, . . . , PN} be a set of parties.
A class of monotone access structures is a collection S = {A1, . . . ,At} ⊆ P(P(P )) of monotone
access structures on P .

4.1.2 Secret Sharing

We now define secret sharing for a class of access structures [CK93, BC94, BR07].
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Definition 4.4. Let P = {P1, . . . , PN} be a set of parties and S be a class of efficient access
structures. A secret sharing scheme SS for a secret space K is a tuple of PPT algorithms SS =
(SS.Share,SS.Combine) defined as follows:

• SS.Share(k,A)→ (s1, . . . , sN ): On input a secret k ∈ K and an access structure A, the sharing
algorithm returns a set of shares s1, . . . , sN for each parties.

• SS.Combine(B)→ k: On input a set of shares B = {si}i∈S , the combining algorithm outputs
a secret k ∈ K.

A secret sharing scheme must satisfy the following correctness and privacy properties.

Definition 4.5 (Correctness). For all S ∈ A, and k ∈ K, (s1, . . . , sN )← SS.Share(k,A), we have

SS.Combine({si}i∈S) = k.

Definition 4.6 (Privacy). For all S /∈ A, and k0, k1 ∈ K, (sb,1, . . . , sb,N ) ← SS.Share(kb,A) for
b ∈ {0, 1}, the following distributions are identical

{s0,i}i∈S ≈ {s1,i}i∈S .

A useful definition for secret sharing schemes is the notion of maximal invalid party set and minimal
valid party set.

Definition 4.7. Let P = {P1, . . . , PN} be a set of parties and A be a monotone access structure
on P . Then, we define the following:

• A set of parties S ⊆ P is a maximal invalid party set if S /∈ A but for every Pi ∈ P\S, we
have S ∪ {Pi} ∈ A.

• A set of parties S ⊆ P is a minimal valid party set if S ∈ A and for every S′ ( S, we have
S′ /∈ A.

Linear Secret Sharing. In this work, we base our constructions on a special class of secret sharing
scheme called linear secret sharing scheme where the combining algorithm SS.Combine consists of
linear operations.

Definition 4.8 (Linear Secret Sharing Scheme). Let P = {P1, . . . , PN} be a set of parties and S a
class of efficient access structures on P . A secret sharing scheme SS with secret space K = Zp for
some prime p is called a linear secret sharing scheme if the following properties are satisfied:

• SS.Share(k,A): There exists a matrix M ∈ Z`×Np called the share matrix, and each party Pi is
associated with a partition Ti ⊆ [`]. To create the shares on a secret k, the sharing algorithm

first samples random values r2, . . . , rn
r← Zp, and define a vector w = M · (k, r2, . . . , rn)T . The

share for Pi consists of the entries {wj}j∈Ti .

• SS.Combine(B): For any valid set S ∈ A, we have

(1, 0, . . . , 0) ∈ span({M[j]}j∈⋃i∈S Ti)
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over Zp where M[j] denotes the jth row of M. Note that any valid set of parties S ∈ A can
efficiently find the coefficients {cj}j∈⋃i∈S Ti satisfying∑

j∈
⋃
i∈S Ti

cj ·M[j] = (1, 0, . . . , 0)

and recover the secret by computing k =
∑

j∈
⋃
i∈S Ti

cj · wj . We call the coefficients {cj} the

recovery coefficients.

In a linear secret sharing scheme, each party Pi holds a set of scalars in Zp as shares. For our
definitions and proofs, it is convenient to define an analogous definition to Definition 4.7 for these
set of scalar elements.

Definition 4.9. Let P = {P1, . . . , PN} be a set of parties, S a class of efficient access structures on
P , and SS a linear secret sharing scheme for S with share matrix M ∈ Z`×Nq . For a set of indices
T ⊆ [`], we say that T is a valid share set if (1, 0, . . . , 0) ∈ span({M[j]}j∈T ), and an invalid share
set otherwise. We also define the following:

• A set of indices T ⊆ [`] is a maximal invalid share set if T is an invalid share set, but for any
i ∈ [`]\T , the set T ∪ {i} is a valid share set.

• A set of indices T ⊆ [`] is a minimal valid share set if T is a valid share set, but for any
T ′ ( T , T ′ is an invalid share set.

For simplicity, we slightly abuse notation and refer to LSSSN as the class of access structure that
can be supported by a linear secret sharing scheme on N parties. When the context is clear, we
simply refer to LSSSN as just LSSS.

Secret Sharing Vectors. In our application of linear secret sharing, we will always be sharing a
vector s ∈ Znq instead of a single scalar in Zp. Simply sharing each entry of the vector s using fresh
randomness for each entry yields shares s1, . . . , s` ∈ Znp . It is easy to see that the secret s ∈ Znq can
be reconstructed as a linear combination of the shares si using the same coefficients as for a single
field element. It is also easy to see that the privacy property of the scheme is also maintained.

4.2 Threshold Access Structures

In this section, we define the class of threshold access structures TAS and describe Shamir secret
sharing [Sha79].

Definition 4.10 (TAS). Let P = {P1, . . . , PN} be a set of parties. An access structure At is called
a threshold access structure if for every set of parties S ⊆ P , we have S ∈ At if and only if |S| ≥ t.
We define TAS to be the class of all access structures At for all t ∈ N.

Instead of defining the algorithms of Shamir secret sharing formally, we just describe the properties
of the scheme that we need.

Theorem 4.11 (Shamir Secret Sharing). Let P = {P1, . . . , PN} be a set of parties and let TAS
be the class of threshold access structures on P . Then, there exists a linear secret sharing scheme
(Definition 4.8) SS with secret space K = Zp for some prime p satisfying the following properties:
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• For any secret k ∈ Zp and At ∈ TAS, each share for party Pi consists of a single element
wi ∈ Zp. For convenience of notation, we denote w0 = k.

• For every i, j ∈ [N ]∪{0} and set S ⊂ [N ]∪{0} of size t, there exists an efficiently computable
Lagrange coefficients λSi,j ∈ Zq such that

wj =
∑
i∈S

λSi,j · wi.

For our purposes, we want the Lagrange coefficients to be “low-norm” values. However, a regular
Lagrange coefficient have no bound on its norm. Therefore, for our construction, we take advantage
of the fact that the Lagrange coefficients can be defined to be rational numbers and therefore, we
can “clear out their denominators” [Sho00, ABV+12].

Lemma 4.12 ([ABV+12]). Let P = {P1, . . . , PN} be a set of parties, TAS the class of threshold
access structures on P , and SS a Shamir secret sharing scheme with secret space Zp for some prime
p with (N !)3 ≤ p. Then, for any set S ⊂ [N ] ∪ {0} of size t, and for any i, j ∈ [N ], the product
(N !)2 · λSi,j is bound ∣∣(N !)2 · λSi,j

∣∣ ≤ (N !)3

interpretted as an integer.

4.3 Access Structures {0, 1}-LSSS

In this section, we define a special class of access structures that we denote by {0, 1}-LSSS that is
contained in LSSS. This is the class of access structures that can be supported by a linear secret
sharing scheme where the recovery coefficients are always binary. In Section 5.2, we construct a
threshold fully homomorphic encryption scheme for these classes of access structures. We show in
Section 4.2 that the class {0, 1}-LSSS contains the class of threshold access structures.

Definition 4.13 ({0, 1}-LSSS). Let P = {P1, . . . , PN} be a set of parties. The class of access
structure {0, 1}-LSSSN is the collection of access structures A ∈ LSSSN (Definition 4.8) for which
there exists an efficient linear secret sharing scheme SS = (SS.Share, SS.Combine) over the secret
space K = Zp satsifying the following property:

• Let k be a shared secret and {wj}j∈Ti be the share of party Pi for i ∈ [N ]. Then, for every set
S ∈ A, there exists a subset T ⊆

⋃
i∈S Ti such that k =

∑
j∈T wj .

We call a linear secret sharing scheme that satisfy the properties above as a special linear secret
sharing scheme.

We note that for any special linear secret sharing scheme SS, and for any minimal valid share set
T ⊆ [`], we have that

∑
j∈T wj = k.

Now, the fact that every access structure A ∈ {0, 1}-LSSS is efficient follows directly from the
efficiency of the LSSS class. However, it is less clear that the set T of the definition above can be
computed efficiently given any S ⊆ A. We show that this is indeed the case in the following lemma.
We provide the proof in Appendix C.1
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Lemma 4.14. Let P = {P1, . . . , PN} be a set of parties, and SS a special linear secret sharing
scheme for {0, 1}-LSSS. Then, for any access structure A ∈ {0, 1}-LSSS, and S ∈ A, the set T ⊆ S
as specified in Definition 4.13 can be computed efficiently.

We now state the main theorem of this section.

Theorem 4.15. TAS ⊆ {0, 1}-LSSS.

To prove the lemma, we first define the class of access structures induced by monotone Boolean
formulas.

Definition 4.16 (Monotone Boolean Formula). A monotone Boolean formula C : {0, 1}N → {0, 1}
is a Boolean circuit with the following properties:

• There is a single output gate.
• Every gates is one of AND or OR gate with fan-in 2 and fan-out 1.
• The input wires can have multiple fan-out.

Definition 4.17 (MBF). Let P = {P1, . . . , PN} be a set of parties and C : {0, 1}N → {0, 1} a
monotone Boolean formula. An access structure AC is called a monotone boolean formula access
structure if for every set of parties S ⊆ P , we have S ∈ A if and only if C(x) = 1. We define MBF
to be the class of all access structures AC for all monotone Boolean formula C.

Now, Theorem 4.15 is implied by the following.

Theorem 4.18 ([Val84, Gol14]). TAS ⊆ MBF.

Theorem 4.19 ([LW11]). MBF ⊆ {0, 1}-LSSS.

Although Theorem 4.19 is folklore, we provide the formal proof in Appendix C.2 for completeness.

5 Threshold Fully Homomorphic Encryption

In this section, we present the definition of threshold fully homomorphic encryption (TFHE) for
any class of access structures. Then, in Sections 5.2 and 5.3, we construct TFHE for the class of
threshold access structure TAS.

5.1 Definitions

Definition 5.1 (Threshold Fully Homomorphic Encryption (TFHE)). Let P = {P1, . . . , PN} be a set
of parties and let S be a class of efficient access structures on P . A threshold fully homomorphic en-
cryption scheme for S is a tuple of PPT algorithms TFHE = (TFHE.Setup,TFHE.Encrypt,TFHE.Eval,
TFHE.PartDec,TFHE.FinDec) with the following properties:

• TFHE.Setup(1λ, 1d,A)→ (pk, sk1, . . . , skN ): On input the security parameter λ, a depth bound
d, and an access structure A, the setup algorithm outputs a public key pk, and a set of secret
key shares sk1, . . . , skN .

• TFHE.Encrypt(pk, µ) → ct: On input a public key pk, and a single bit plaintext µ ∈ {0, 1},
the encryption algorithm outputs a ciphertext ct.
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• TFHE.Eval(pk, C, ct1, . . . ctk) → ĉt: On input a public key pk, circuit C : {0, 1}k → {0, 1} of
depth at most d, and a set of ciphertexts ct1, . . . , ctk, the evaluation algorithm outputs a
cipehrtext ĉt.

• TFHE.PartDec(pk, ct, ski) → pi: On input a public key pk, a ciphertext ct, and a secret key
share ski, the partial decryption algorithm outputs a partial decryption pi related to the party
Pi.

• TFHE.FinDec(pk, B)→ µ̂: On input a public key pk, and a set B = {pi}i∈S for some S ⊆ {P1,
. . . , PN}, the final decryption algorithm outputs a plaintext µ̂ ∈ {0, 1,⊥}.

As in a standard FHE scheme, we require that a TFHE scheme satisfies compactness, correctness,
and security.

Definition 5.2 (Compactness). We say that a TFHE scheme is compact if there exists polynomials
poly1(·) and poly2(·) such that for all λ, depth bound d, circuit C : {0, 1}k → {0, 1} of depth at
most d, and µ ∈ {0, 1}, the following holds. For (pk, sk1, . . . , skN )← TFHE.Setup(1λ, 1d,A), cti ←
TFHE.Encrypt(pk, µi) for i ∈ [k], ĉt← TFHE.Eval(pk, C, ct1, . . . , ctk), pj ← TFHE.PartDec(pk, ct, skj)
for any j ∈ [N ], |ĉt| ≤ poly(λ, d) and |pj | ≤ poly(λ, d,N).

Definition 5.3 (Evaluation Correctness). We say that a TFHE scheme satisfies evaluation cor-
rectness if for all λ, depth bound d, access structure A, circuit C : {0, 1}k → {0, 1} of depth at
most d, S ∈ A, and µi ∈ {0, 1} for i ∈ [k], the following condition holds. For (pk, sk1, . . . , skN )←
TFHE.Setup(1λ, 1d,A), cti ← TFHE.Encrypt(pk, µi) for i ∈ [k], ĉt← TFHE.Eval(pk, C, ct1, . . . , ctk),

Pr[TFHE.FinDec(pk, {TFHE.PartDec(pk, ct, ski)}i∈S) = C(µ1, . . . , µk)] = 1− negl(λ).

Definition 5.4 (Semantic Security). We say that a TFHE scheme satisfies semantic security if for
all λ, and depth bound d, the following holds. For any PPT adversary A, the following experiment
ExptA,TFHE,sem(1λ, 1d) outputs 1 with negligible probability:

ExptA,TFHE,sem(1λ, 1d):

1. On input the security parameter 1λ and a circuit depth 1d, the adversary A outputs
A ∈ S.

2. The challenger runs (pk, sk1, . . . , skN )← TFHE.Setup(1λ, 1d,A) and provides pk to A.
3. A outputs a set S ⊆ {P1, . . . , PN} such that S /∈ A.

4. The challenger provides {ski}i∈S along with TFHE.Encrypt(pk, b) for b
r← {0, 1} to A.

5. A outputs a guess b′. The experiment outputs 1 if b = b′.

We now describe the notion of simulation security for TFHE. Intuitively, simulation security definition
says that no information about the key shares or the messages µ1, . . . , µk should be leaked by the
partial or final decryption other than what is already implied by the result of the homomorphic
operation C(µ1, . . . , µk).

Definition 5.5 (Simulation Security). We say that a TFHE scheme satisfies simulation security
if for all λ, depth bound d, and access structure A, the following holds. There exists a stateful
PPT algorithm S = (S1,S2) such that for any PPT adversary A, the following experiments
ExptA,Real(1

λ, 1d) and ExptA,Ideal(1
λ, 1d) are indistinguishable:
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ExptA,Real(1
λ, 1d):

1. On input the security parameter 1λ and a circuit depth 1d, the adversary A outputs
A ∈ S.

2. The challenger runs (pk, sk1, . . . , skN )← TFHE.Setup(1λ, 1d,A) and provides pk to A.
3. A outputs a maximal invalid party set S∗ ⊆ {P1, . . . , PN} and messages µ1, . . . , µk ∈
{0, 1}.

4. The challenger provides the keys {ski}i∈S∗ and {TFHE.Encrypt(pk, µi)}i∈[k] to A.
5. A issues a polynomial number of adaptive queries of the form (S ⊆ {P1, . . . , PN}, C) for

circuits C : {0, 1}k → {0, 1} of depth at most d. For each query, the challenger computes
ĉt← TFHE.Eval(pk, C, ct1, . . . , ctk) and provides {TFHE.PartDec(pk, ĉt, ski)}i∈S to A.

6. At the end of the experiment, A outputs a distinguishing bit b.

ExptA,Ideal(1
λ, 1d):

1. On input the security parameter 1λ and a circuit depth 1d, the adversary A outputs
A ∈ S.

2. The challenger runs (pk, sk1, . . . skN , st)← S1(1λ, 1d,A) and provides pk to A.
3. A outputs a maximal invalid party set S∗ ⊆ {P1, . . . , PN} and messages µ1, . . . , µk ∈
{0, 1}.

4. The challenger provides the keys {ski}i∈S∗ and {TFHE.Encrypt(pk, µi)}i∈[k] to A.
5. A issues a polynomial number of adaptive queries of the form (S ⊆ {P1, . . . , PN}, C) for

circuits C : {0, 1}k → {0, 1} of depth at most d. For each query, the challenger runs the
simulator {pi}i∈S ← S2(C, {ct1, . . . , ctk}, C(µ1, . . . , µk), S, st) and sends {pi}i∈S to A.

6. At the end of the experiment, A outputs a distinguishing bit b.

5.2 TFHE using {0, 1}-LSSS

In this section, we present our construction of TFHE for the class of access structures {0, 1}-LSSS.
We note that by Theorem 4.15, this gives a TFHE scheme for the class of threshold access structures
TAS.

Construction 5.6. Let P = {P1, . . . , PN} be a set of parties. Our TFHE construction relies on
the following primitives:

• Let FHE = (FHE.Setup,FHE.Encrypt,FHE.Eval,FHE.Decrypt) be a special fully homomorphic
encryption scheme with noise bound B = B(λ, d, q) and multiplicative constant 1 (Defini-
tion 3.9).

• Let SS = (SS.Share,SS.Combine) be a special linear secret sharing scheme (Definition 4.13).
We use Ti to denote a partition of the share matrix and use {sj}j∈Ti to denote a share
associated with Pi consisting of elements in Zq. We also use ` = `(λ,N) to denote a fixed
polynomial bound on the size of the share: |Ti| ≤ ` for all i ∈ [N ].

We also fix a parameter Bsm that specifies the bound on the smuding noise (see Section 5.2.1).
We construct TFHE = (TFHE.Setup,TFHE.Encrypt,TFHE.Eval,TFHE.PartDec,TFHE.FinDec) as fol-
lows:

• TFHE.Setup(1λ, 1d,A): On input the security parameter λ, depth bound d, and an access
structure A, the setup algorithm generates the FHE keys (fhepk, fhesk)← FHE.Setup(1λ, 1d).
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Then, it divides the key fhesk into shares (fhesk1, . . . , fheskN ) ← SS.Share(fhesk,A). It sets
pk = fhepk and ski = fheski for i = 1, . . . , N .

• TFHE.Encrypt(pk, µ): On input the public key pk, and a message µ ∈ {0, 1}, the encryption
algorithm computes ct← FHE.Encrypt(pk, µ) and outputs ct.

• TFHE.Eval(pk, C, ct1, . . . , ctk): On input a public key pk, a circuit C, and a set of ciphertexts
ct1, . . . , ctk the evaluation algorithm computes ĉt← FHE.Eval(C, ct1, . . . , ctk) and outputs ĉt.

• TFHE.PartDec(pk, ct, ski): On input a public key pk, a ciphertext ct, and a decryption key
share ski = {sj}j∈Ti for each sj ∈ Znq , the partial decryption algorithm samples a smudging

error ej
r← [−Bsm, Bsm] and computes p̃j = FHE.Decode0(sj , ct) + ej ∈ Zq for j ∈ Ti. It

outputs the set pi = {p̃j}j∈Ti as its partial decryption.

• TFHE.FinDec(pk, B): On input a public key pk and a set of partial decryption shares {pi}i∈S , it
first checks if S ∈ A. If this is not the case, then it outputs ⊥. Otherwise, it computes a minimal
valid share set (Definition 4.9) T ⊆

⋃
i∈S Ti and computes µ ← FHE.Decode1

(∑
j∈T p̃j

)
. It

outputs µ.

We now state the compactness, correctness, and security theorems for Construction 5.6.

Theorem 5.7. Suppose FHE is a compact fully homomorphic encryption scheme (Definition 3.6).
Then, the TFHE scheme from Construction 5.6 satisfies compactness (Definition 5.2).

Theorem 5.8. Suppose FHE is a special fully homomorphic encryption scheme that satisfies
correctness (Definition 3.7) with noise bound B and SS is a secret sharing scheme that satisfies
correctness (Definition 4.5). Then, the TFHE scheme from Construction 5.6 with parameter Bsm

such that B + ` ·Bsm ≤
⌊ q

4

⌉
satisfies evaluation correctness (Definition 5.3).

Theorem 5.9. Suppose FHE is a fully homomorphic encryption scheme that satisfies security
(Definition 3.8). Then, the TFHE scheme from Construction 5.6 satisfies semantic security (Defini-
tion 5.4).

Theorem 5.10. Suppose FHE is a fully homomorphic encryption scheme that satisfies security
(Definition 3.8) and SS is a secret sharing scheme that satisfies security (Definition 4.6). Then,
the TFHE scheme from Construction 5.6 with parameter Bsm such that B/Bsm = negl(λ) satisfies
simulation security (Definition 5.5).

The compactness and semantic security of Construction 5.6 (Theorems 5.7 and 5.9) follow from
the compactness and security of the underlying FHE and SS schemes in a straightforward way. We
provide the formal proofs of evaluation correctness and simulation security (Theorems 5.8 and 5.10)
in Section D.

5.2.1 Parameter Instantiation

For correctness and security, we require the parameters to satisfy:

• B + ` ·Bsm ≤ q
4 (Theorem 5.8).

• B/Bsm = negl(λ) (Theorem 5.10).
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By Theorem 3.10, for a depth bound d, there exists a special FHE scheme with an associated noise
bound B = 2Õ(d) assuming the hardness of LWE(n,m, q, χ) for Blwe = poly(λ) and q = 2Õ(d). Then,

if we set Bsm = 2Õ(d)−ω(1), the two conditions above are satisfied. In particular, this translates to
approximating worst-case lattice problems with sub-exponential approximation factors.

5.3 TFHE from Shamir secret sharing

In this section, we present our construction of TFHE using a standard Shamir secret sharing scheme.
This construction does not satisfy our notion of compactness 5.2. However, in Section 8.4, we show
how to transform a non-compact TFHE scheme to a compact one generically using UT.

Construction 5.11. Let P = {P1, . . . , PN} be a set of parties. Our TFHE construction relies on
the following primitives:

• Let FHE = (FHE.Setup,FHE.Encrypt,FHE.Eval,FHE.Decrypt) be a special fully homomorphic
encryption scheme with noise bound B = B(λ, d, q) and multiplicative constant (N !)2 (Defini-
tion 3.9).

• Let SS = (SS.Share,SS.Combine) be a Shamir secret sharing scheme (Theorem 4.11).

We also fix a parameter Bsm that specifies the bound on the smudging noise (see Section 5.3.1).
We construct TFHE = (TFHE.Setup,TFHE.Encrypt,TFHE.Eval,TFHE.PartDec,TFHE.FinDec) as fol-
lows:

• TFHE.Setup(1λ, 1d,At): On input the security parameter λ, depth bound d, and an access struc-
ture At ∈ TAS, the setup algorithm generates the FHE keys (fhepk, fhesk)← FHE.Setup(1λ, 1d).
Then, it divides the key fhesk into shares using Shamir secret sharing (fhesk1, . . . , fheskN )←
SS.Share(fhesk,At). It sets pk = fhepk and ski = fheski ∈ Znq for i = 1, . . . , N .

• TFHE.Encrypt(pk, µ): On input the public key pk, and a message µ ∈ {0, 1}, the encryption
algorithm computes ct← FHE.Encrypt(pk, µ) and outputs ct.

• TFHE.Eval(pk, C, ct1, . . . , ctk): On input a public key pk, a circuit C, and a set of ciphertexts
ct1, . . . , ctk the evaluation algorithm computes ĉt← FHE.Eval(C, ct1, . . . , ctk) and outputs ĉt.

• TFHE.PartDec(pk, ct, ski): On input a public key pk, a ciphertext ct, and a decryption key

share ski ∈ Znq , the partial decryption algorithm samples a smudging error e
r← [−Bsm, Bsm]

and computes pi = FHE.Decode0(ski, ct) + (N !)2 · e ∈ Zq. It outputs pi.

• TFHE.FinDec(pk, B): On input a public key pk and a set of partial decryption shares {pi}i∈S ,
it first checks if S ∈ A. If this is not the case, then it output ⊥. Otherwise, it arbitrary
chooses a satisfying set S′ ⊆ S of size t and computes the Lagrange coefficients λS

′
i,0 for all

i ∈ S′. Then, it computes µ← FHE.Decode1

(∑
i∈S′ λ

S′
i,0 · pi

)
, and outputs µ.

We now state the correctness and security theorems for Construction 5.11.

Theorem 5.12. Suppose FHE is a compact fully homomorphic encryption scheme (Definition 3.7)
with noise bound B and SS is a Shamir secret sharing scheme that satisfies correctness (Theo-
rem 4.11). Then, the TFHE scheme from Construction 5.11 with parameter B + (N !)3 ·N ·Bsm ≤ q

4
satisfies evaluation correctness (Definition 5.3).
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Theorem 5.13. Suppose FHE is a fully homomorphic encryption scheme that satisfies security
(Definition 3.8). Then, the TFHE scheme from Construction 5.6 satisfies semantic security (Defini-
tion 5.4).

Theorem 5.14. Suppose FHE is a fully homomorphic encryption scheme that satisfies security
(Definition 3.8) and SS is a secret sharing scheme that satisfies security (Definition 4.6). Then,
the TFHE scheme from Construction 5.11 with parameter Bsm such that B/Bsm = negl(λ) satisfies
simulation security (Definition 5.5).

The semantic security of Construction 5.11 (Theorem 5.13) follows from the semantic security of the
underlying FHE in a straightforward way. We provide the formal proofs of evaluation correctness
and simulation security (Theorems 5.8 and 5.10) in Section D.

5.3.1 Parameter Instantiation

For correctness and security, we require the parameters to satisfy:

• B + (N !)3 ·N ·Bsm ≤ q
4 (Theorem 5.12).

• B/Bsm = negl(λ) (Theorem 5.14).

By Theorem 3.10, for a depth bound d, there exists a special FHE scheme with an associated noise
bound B = 2Õ(d) assuming the hardness of LWE(n,m, q, χ) for Blwe = poly(λ) and q = 2Õ(d). Then,

if we set Bsm = 2Õ(d)−ω(1)/(N !)3, the two conditions above are satisfied. In particular, this translates
to approximating worst-case lattice problems with sub-exponential approximation factors.

5.4 Performance Comparisons

We briefly describe the performance tradeoffs between our two constructions. The main advantage of
Construction 5.6 is the compact size of the ciphertext, which has no additional overhead compared to
any (non-threshold) FHE ciphertext. The main drawback of using {0, 1}-LSSS, however, is the blow
up of the key share sizes. To represent a threshold access structure in terms of monotone Boolean
formula, we require a formula of size O(N5.2) [Val84, Gol14]. This means that when translated
to {0, 1}-LSSS, each decryption key share consists of O(N4.2) equivalent of a regular FHE keys on
average, which is a significant space overhead.

Construction 5.11, compared to a regular (non-threshold) FHE scheme, does not introduce any
additional overhead to the size of the ciphertext and the decryption key shares with respect to
the number of components. However, the main overhead is in the increase of the modulus, which
increases by O(N !3) multiplicative factor. This means that the representation of the ciphertext
and the key shares increase additively by O(N logN). In terms of the size of the key shares, this
is a significantly more compact than the share sizes in Construction 5.6. However, the size of the
ciphertext now depends on N , thereby violating our compactness requirement (Definition 5.2).

In Section 8.4, we show how to convert a non-compact TFHE scheme to a compact TFHE scheme.
The idea is to construct a non-compact universal thresholdizer (Definition 7.1) from a non-compact
TFHE, and then use the universal thresholdizer to thresholdize a compact (non-threshold) FHE
scheme. Applying this transformation to Construction 5.11 gives a construction where there is no
additional overhead in the ciphertext size and only O(N logN) overhead to the key share sizes.
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6 Decentralized TFHE

In Section 5, we defined the notion of a threshold fully homomorphic encryption scheme to have a
central setup. Namely, the setup algorithm takes in an access structure A for a fixed set of parties
as input and produces a set of decryption key shares sk1, . . . , skN for the servers. In practice, the
set of parties that participate in the decryption protocol can always change and the access structure
updated. When using a standard TFHE scheme in this dynamic setting, a trusted setup algorithm
must be run each time a new decryption server enters or leaves a protocol.

In this section, we define and construct an extension to the notion of TFHE that we name
decentralized threshold fully homomorphic encryption (dTFHE). In a dTFHE scheme, there is no
setup algorithm. Rather, each party can generate its own (pki, ski) key pair from a public key
encryption scheme of its choice. The encryption algorithm then takes in a set of public keys
{pki}i∈[N ] and an access structure A to encrypt to a message x. A ciphertext that is generated in
this way can only be decrypted with a set of keys {ski}i∈S for a satisfying set S ∈ A.

6.1 Definition

In this subsection, we define our notion of decentralized fully homomorphic encryption. To capture
the fact that a party can use any general public key encryption scheme, we allow the dTFHE
encryption algorithm to take in the actual PKE encryption algorithms of party Pi denoted Enci. We
assume that Enci consists of the description of the PKE encryption algorithm as well as a hardcoded
public key pki. We denote a decryption algorithm by Deci similarly.

Definition 6.1. A decentralized threshold fully homomorphic encryption scheme for S is a tuple of
PPT algorithms dTFHE = (dTFHE.Encrypt, dTFHE.Eval, dTFHE.PartDec, dTFHE.FinDec) with the
following properties:

• dTFHE.Encrypt(1λ, 1d,Enc1, . . . ,EncN ,A, x)→ ct: On input the security parameter λ, a depth
bound d, a set of encryption algorithms Enc1, . . . ,EncN , an access structure A on {P1, . . . ,
PN}, and a message x ∈ {0, 1}k, the encryption algorithm outputs a ciphertext ct.

• dTFHE.Eval(C, ct) → ĉt: On input a circuit C : {0, 1}k → {0, 1}, and a ciphertext ct, the
evaluation algorithm outputs an evaluated ciphertext ĉt.

• dTFHE.PartDec(ĉt,Deci): On input a ciphertext ĉt, and a secret key ski, the partial decryption
algorithm outputs a partial decryption pi associated with party Pi.

• dTFHE.FinDec(B): On input a set of partial decryptions {pi}i∈S , the final decryption algorithm
outputs a message x′.

We require a dTFHE scheme to satisfy the following compactness, correctness, and security properties.
We note that our compactness notion for dTFHE is weaker than Definition 5.2 as we allow the size
of an evaluated ciphertext to depend on N .

Definition 6.2 (Weak Compactness). We say that a dTFHE scheme for S is compact if there
exists a polynomial poly(·) such that for all λ, depth bound d, circuit C : {0, 1}k → {0, 1} of depth
at most d, encryption algorithms Enci for i ∈ [N ], access structure A ∈ S, and x ∈ {0, 1}k, the
following holds. For ct← dTFHE.Encrypt(1λ, 1d,Enc1, . . . ,EncN ,A, x), ĉt← dTFHE.Eval(C, ct), and
pi ← dTFHE.PartDec(ĉt,Deci) for i ∈ [N ], we have |ĉt|, |pi| ≤ poly(λ, d,N).
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Definition 6.3 (Evaluation Correctness). We say that a dTFHE scheme for S satisfies evaluation
correctness if for all λ, depth bound d, circuit C : {0, 1}k → {0, 1} of depth at most d, correct encryp-
tion and decryption algorithms (Enci,Deci) for i ∈ [N ], access structure A ∈ S, and x ∈ {0, 1}k, the
following holds. For ct← dTFHE.Encrypt(1λ, 1d,Enc1, . . . ,EncN ,A, x), and ĉt,← dTFHE.Eval(C, ct),
we have

Pr[dTFHE.FinDec({dTFHE.PartDec(ĉt,Deci)}i∈S) = C(x)] = 1− negl(λ).

Definition 6.4 (Semantic Security). We say that a dTFHE scheme for S satisfies semantic security
if for all λ, depth bound d, and secure encryption algorithms Enci for i ∈ [N ], the following holds.
For any PPT adversary A, the following experiment ExptA,dTFHE,sem(1λ, 1d, {Enci}i∈[N ]) outputs 1
with negligible probability:

ExptA,dTFHE,sem(1λ, 1d, {Enci}i∈[N ]):

1. On input the security parameter 1λ, depth bound 1d, and encryption algorithms
{Enci}i∈[N ], the challenger provides Enc1, . . . ,EncN to A.

2. A outputs an access structure A ∈ S, a pair of messages x0, x1 ∈ {0, 1}k, and an
unsatisfying set S ⊆ {P1, . . . , PN}.

3. The challenger encrypts ctb ← dTFHE.Encrypt(1λ, 1d,Enc1, . . . ,EncN ,A, xb) for b
r←

{0, 1} and sends it to A along with {Deci}i∈S .
4. A outputs its guess b′. The experiment outputs 1 if b′ = b.

Definition 6.5 (Simulation Security). We say that a dTFHE scheme for S satisfies simulation
security if for all λ, depth bound d, and secure encryption and decryption algorithms (Enci,Deci)
for i ∈ [N ], the following holds. There exists a stateful simulator S = (S1,S2) such that for any
PPT adversary A, the following two experiments ExptA,dTFHE,Real(1

λ, 1d, {(Enci,Deci)}i∈[N ]) and

ExptA,dTFHE,Ideal(1
λ, 1d, {(Enci,Deci)}i∈[N ]) are computationally indistinguishable:

ExptA,dTFHE,Real(1
λ, 1d, {(Enci,Deci)}i∈[N ]):

1. On input the security parameter 1λ, depth bound 1d, and a set of algorithms {(Enci,Deci)}i∈[N ],
the challenger provides Enc1, . . . ,EncN to A.

2. A outputs an access structure A, a message x ∈ {0, 1}k, and a maximal invalid party set
S∗ ⊆ {P1, . . . , PN}.

3. The challenger encrypts ct← dTFHE.Encrypt(1λ, 1d,Enc1, . . . ,EncN ,A, x) and provides
(ct, {Deci}i∈S∗) to A.

4. A issues a polynomial number of adaptive queries of the form (S ⊆ {P1, . . . , PN}, C) for
circuits C : {0, 1}k → {0, 1} of depth at most d. For each query, the challenger computes
ĉt← dTFHE.Eval(C, ct) and provides {dTFHE.PartDec(ĉt,Deci)}i∈S to A.

5. At the end of the experiment, A outputs a distinguishing bit b.

ExptA,dTFHE,Ideal(1
λ, 1d, {(Enci,Deci)}i∈[N ]):

1. On input the security parameter 1λ, depth bound 1d, and a set of algorithms {(Enci,Deci)}i∈[N ],
the challenger provides Enc1, . . . ,EncN to A.

2. A outputs an access structure A, a message X ∈ {0, 1}k, and a maximal invalid party
set S∗ ⊆ {P1, . . . , PN}.

3. The challenger computes (ct, st) ← S1(1λ, 1d, {Enci}i∈[N ], {Deci}i∈S∗ ,A) and provides
(ct, {Deci}i∈S∗) to A.
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4. A issues a polynomial number of adaptive queries of the form (S ⊆ {P1, . . . , PN}, C) for
circuits C : {0, 1}k → {0, 1} of depth at most d. For each query, the challenger runs the
simulator {pi}i∈S ← S2(C,C(x), st) and sends {pi}i∈S to A.

5. At the end of the experiment, A outputs a distinguishing bit b.

6.2 Construction

We construct a decentralized threshold fully homomorphic encryption scheme from a standard TFHE
(Section 5.1).

Construction 6.6. Our decentralized fully homomorphic encryption scheme relies on the following
primitives:

• Let TFHE = (TFHE.Setup,TFHE.Encrypt,TFHE.Eval,TFHE.PartDec,TFHE.FinDec) be a thresh-
old fully homomorphic encryption scheme for the class of access structures S.

We construct a dynamic threshold fully homomorphic encryption scheme dTFHE = (dTFHE.Encrypt,
dTFHE.Eval, dTFHE.PartDec, dTFHE.FinDec) for S as follows:

• dTFHE.Encrypt(1λ, 1d,Enc1, . . . ,EncN ,A, x): On input the security parameter λ, depth bound
d, a set of encryption algorithms Enc1, . . . ,EncN , an access structure A and a message
x ∈ {0, 1}k, the encryption algorithm first generates the keys (tfhepk, tfhesk1, . . . , tfheskN )←
TFHE.Setup(1λ, 1d,A). Then, it encrypts the message using TFHE as c̃ti ← TFHE.Encrypt(pk, xi)
and encrypts each key share cti ← Enci(tfheski). It sets

ct = (tfhepk, {ct′i}i∈[k], {cti}i∈[N ]).

• dTFHE.Eval(C, ct): On input a circuit C : {0, 1}k → {0, 1}, and a ciphertext ct = (tfhepk,
{ct′i}i∈[k], {cti}i∈[N ]), the evaluation algorithm computes ĉt

′ ← TFHE.Eval(pk, C, ct1, . . . , ctk),

and sets ĉt = (tfhepk, ĉt
′
, {cti}i∈[N ]).

• dTFHE.PartDec(ĉt,Deci): On input a ciphertext ĉt = (pk, ĉt
′
, {cti}i∈[N ]), and a secret key ski,

the partial decryption algorithm decrypts tfheski ← Deci(cti), computes pi ← TFHE.PartDec(
tfhepk, tfheski, ĉt), and returns pi.

• dTFHE.FinDec(B): On input a set of partial decryptions {pi}i∈S , the final decryption algorithm
computes m← TFHE.FinDec(tfhepk, {pi}i∈S).

We now state the compactness, correctness, and security theorems for Construction 6.6.

Theorem 6.7. Suppose TFHE is a compact threshold fully homomorphic encryption scheme (Defi-
nition 5.2). Then, the dTFHE scheme from Construction 6.6 satisfies weak compactness (Defini-
tion 6.2).

Theorem 6.8. Suppose TFHE is a threshold fully homomorphic encryption scheme that satisfies
evaluation correctness (Definition 5.3). Then, the dTFHE scheme from Construction 6.6 satisfies
evaluation correctness (Definition 6.3).

Theorem 6.9. Suppose TFHE is a threshold fully homomorphic encryption scheme that satisfies
semantic security (Definition 5.4). Then, the dTFHE scheme from Construction 6.6 satisfies
semantic security (Definition 6.4).
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Theorem 6.10. Suppose TFHE is a threshold fully homomorphic encryption scheme that satisfies
simulation security (Definition 5.4). Then, the dTFHE scheme from Construction 6.6 satisfies
simulation security (Definition 6.5).

The proofs of the theorems above follow immediately from the properties of the underlying TFHE
scheme.

6.3 Multi-Key TFHE

We note that a threshold variant of a multi-key fully homomorphic encryption can be defined as
a natural extension of a regular TFHE (Definition 5.1). In fact, our decentralized threshold fully
homomorphic encryption scheme can be seen as a special case of a multi-key TFHE. In a multi-key
TFHE, one can homomorphically evaluate on ciphertexts that are encrypted under the same access
pattern A, but with different keys. Combining the existing multi-key fully homomorphic encryption
schemes [CM15, MW16] with the dTFHE scheme above, a multi-key TFHE can be constructed in a
straightforward way.

7 Universal Thresholdizer

The notion of TFHE is a natural generalization of a standard fully homomorphic encryption scheme
that has numerous applications in threshold cryptography. Specifically, it can be used to generically
construct a thresholdized variant of any basic cryptographic function. For these type of applications,
it is natural to view the notion of TFHE as a thresholdizer mechanism. In these settings, we do not
require the full generality of the TFHE syntax. Furthermore, for TFHE to be useful as a thresholdizer
tool, we require it to be robust, meaning that there exists an efficient public mechanism to verify
whether a partial decryption was done correctly. Therefore, we define a natural notion of universal
thresholdizer (UT) that captures these properties. We use universal thresholdizer for our applications
in Section 8.

7.0.1 Definition

Informally, the setup and the encryption algorithms for TFHE is merged into a single UT setup
algorithm, and the evaluation and partial decryption algorithms for TFHE is merged into a single
UT evaluation algorithm. Furthermore, semantic security (Definition 5.4) and simulation security
(Definition 5.5) is merged into a single definition for simplicity. Finally, there is an additional
verification algorithm that checks whether an evaluation was done correctly.

Definition 7.1 (Universal Thresholdizer). Let P = {P1, . . . , PN} be a set of parties and let S be a
class of efficient access structures on P . A universal thresholdizer scheme for S and M is a tuple of
PPT algorithms UT = (UT.Setup,UT.Eval,UT.Verify,UT.Combine) with the following properties:

• UT.Setup(1λ, 1d,A, x)→ (pp, s1, . . . , sN ): On input the security parameter λ, a depth bound
d, an access structure A, and a message x ∈ {0, 1}k, the setup algorithm outputs the public
parameters pp, and a set of shares s1, . . . , sN .

• UT.Eval(pp, si, C) → yi: On input the public parameters pp, a share si, and a circuit C :
{0, 1}k → {0, 1} of depth at most d, the evaluation algorithm outputs a partial evaluation yi.
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• UT.Verify(pp, yi, C)→ {0, 1}: On input the public parameters pp, a partial evaluation yi, and
a circuit C : {0, 1}k → {0, 1}, the verification algorithm accepts or rejects.

• UT.Combine(pp, B) → y: On input the public parameters pp, a set of partial evaluations
B = {yi}i∈S , the combining algorithm outputs the final evaluation y.

We require a UT scheme satisfy the following compactness, correctness, and security properties. The
compactness and evaluation correctness definitions are natural analogues of the TFHE definitions.
The security requirement of a TFHE scheme combines the semantic and simulation security definitions
of TFHE. Verification correctness and robustness are additions to the definition to capture verifiable
evalaution.

Definition 7.2 (Compactness). We say that a UT scheme is compact if there exists a polynomial
poly(·) such that for all λ, depth bound d, circuit C : {0, 1}k → {0, 1} of depth at most d, and µ ∈
{0, 1}, the following holds. For (pk, sk1, . . . , skN )← UT.Setup(1λ, 1d,A, x), yi ← UT.Eval(pp, si, C)
for any i ∈ [N ], we have |yi| ≤ poly(λ, d,N).

Definition 7.3 (Evaluation Correctness). We say that a UT scheme satisfies evaluation correctness if
for all λ, depth bound d, access structure A, message x ∈ {0, 1}k, circuit C : {0, 1}k → {0, 1} of depth
at most d, and S ∈ A, the following condition holds. For (pp, s1, . . . , sN )← UT.Setup(1λ, 1d,A, x),

Pr[UT.Combine(pp, {UT.Eval(pp, si, C)}i∈S) = C(x)] = 1− negl(λ).

Definition 7.4 (Verification Correctness). We say that a UT scheme satisfies verification correctness
if for all λ, depth bound d, access structure A, message x ∈ {0, 1}k, and circuit C : {0, 1}k →
{0, 1} of depth at most d, the following holds. For (pp, s1, . . . , sN )← UT.Setup(1λ, 1d,A, x), yi ←
UT.Eval(pp, si, C) for any i ∈ [N ], we have that

Pr[UT.Verify(pp, yi, C) = 1] = 1.

Definition 7.5 (Security). We say that a UT scheme satisfies security if for all λ, and depth bound
d, the following holds. There exists a stateful PPT algorithm S = (S1,S2) such that for any PPT
adversary A, we have that the following experiments ExptA,UT,Real(1

λ, 1d) and ExptA,UT,Ideal(1
λ, 1d)

are computationally indistinguishable:

ExptA,UT,Real(1
λ, 1d):

1. On input the security parameter 1λ, and circuit depth 1d, the adversary A outputs an
access structure A ∈ S, and a message x ∈ {0, 1}k.

2. The challenger runs (pp, s1, . . . , sN )← UT.Setup(1λ, 1d,A, x) and provides pp to A.
3. A outputs a maximal invalid party set S∗ ⊆ {P1, . . . , PN} for A.
4. The challenger provides the shares {si}i∈S∗ to A.
5. A issues a polynomial number of adaptive queries of the form (S ⊆ {P1, . . . , PN}, C) for

circuits C : {0, 1}k → {0, 1} of depth at most d. For each query, the challenger provides
{yi ← UT.Eval(pp, si, C)}i∈S to A.

6. At the end of the experiment, A outputs a distinguishing bit b.

ExptA,UT,Ideal(1
λ, 1d):

1. On input the security parameter 1λ and a circuit depth 1d, the adversary A outputs an
access structure A ∈ S, and a message x ∈ {0, 1}k.
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2. The challenger runs (pp, s1, . . . , sN , st)← S1(1λ, 1d,A) and provides pp to A.
3. A outputs a maximal invalid party set S∗ ⊆ {P1, . . . , PN} for A.
4. The challenger provides the shares {si}i∈S∗ to A.
5. A issues a polynomial number of adaptive queries of the form (S ⊆ {P1, . . . , PN}, C) for

circuits C : {0, 1}k → {0, 1} of depth at most d. For each query, the challenger runs the
simulator {yi}i∈S ← S2(pp, C, C(x), S, st) and sends {yi}i∈S to A.

6. At the end of the experiment, A outputs a distinguishing bit b.

Definition 7.6 (Robustness). We say that a UT scheme satisfies robustness if for all λ, and depth
bound d, the following holds. For any PPT adversary A, the following experiment ExptA,Robust(1

λ, 1d)
outputs 1 with negligible probability:

ExptA,UT,rb(1λ, 1d):

1. On input the security parameter 1λ and circuit depth 1d, the adversary A outputs a
message x ∈ {0, 1}k and A ∈ S.

2. The challenger runs (pp, s1, . . . , sN )← UT.Setup(1λ, 1d,A, x) and provides (pp, s1, . . . , sN )
to A.

3. A outputs a fake partial evaluation y∗i .
4. The challenger returns 1 if y∗i 6= UT.Eval(pp, si, C) and UT.Verify(pp, y∗i , C) = 1.

7.1 Universal Thresholdizer from TFHE and PZK

In this section, we construct universal thresholdizer generically from threshold fully homomorphic
encryption (Section 5) and NIZK with pre-processing (Section 3.3.1).

Construction 7.7. Our universal thresholdizer construction relies on the following primitives:

• Let TFHE = (TFHE.Setup,TFHE.Encrypt,TFHE.Eval,TFHE.PartDec,TFHE.FinDec) be a thresh-
old fully homomorphic encryption scheme.

• Let PZK = (PZK.Pre,PZK.Prove,PZK.Verify) be a NIZK with pre-processing scheme.

• Let C = (C.Com) be a non-interactive commitment scheme.

We construct a universal thresholdizer scheme UT = (UT.Setup,UT.Eval,UT.Verify,UT.Combine) as
follows:

• UT.Setup(1λ, 1d,A, x): On input the security parameter λ, depth bound d, access structure A,
and message x ∈ {0, 1}k, the setup algorithm first generates the TFHE keys (tfhepk, tfhesk1, . . . ,
tfheskN ) ← TFHE.Setup(1λ, 1d,A) and ciphertexts cti ← TFHE.Encrypt(tfhepk, xi) for i =
1, . . . k. Then, it generates reference strings (σV,i, σP,i) ← PZK.Pre(1λ), commitment ran-

domness ri
r← {0, 1}λ, and commitments comi ← C.Com(tfheski; ri) for i = 1, . . . N . It

sets
pp =

(
tfhepk, {cti}i∈[k], {σV,i}i∈[N ], {comi}i∈[N ]

)
si =

(
tfheski, σP,i, ri

)
.

• UT.Eval(pp, si, C): On input the public parameters pp, a share si, and a circuit C, the evaluation
algorithm first computes the evaluated ciphertext ĉt← TFHE.Eval(tfhepk, C, ct1, . . . , ctk) and
partial decryption pi ← TFHE.PartDec(tfhepk, ĉt, tfheski). Then, it constructs the statement
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Ψi = Ψi(comi, ĉt, pi) asserting that the value pi is consistent with the committed secret key
tfheski:

∃ (tfheski, ri) : comi = C.Com(tfheski; ri) ∧ pi = TFHE.PartDec(pp, ĉt, tfheski).

It generates a NIZK proof πi ← PZK.Prove(σP,i,Ψi, (tfheski, ri)) and returns yi = (pi, πi).

• UT.Verify(pp, yi, C): On input the public parameters pp, a partial evalaution yi, and a circuit C,
the verification algorithm first computes the evaluated ciphertext ĉt← TFHE.Eval(pp, C, ct1,
. . . , ctk) and constructs the statement Ψi = Ψi(comi, ĉt, pi). It then parses yi = (pi, πi) and
returns the result of PZK.Verify(σV,i,Ψi, πi).

• UT.Combine(pp, B): On input the public parameters pp, and a set of partial evaluations
B = {yi}i∈S for some S ⊆ {P1, . . . , PN}, the combining algorithm first parses yi = (pi, πi) for
i ∈ S and outputs TFHE.FinDec(tfhepk, {pi}i∈S).

We now state the compactness, correctness, and security theorems for Construction 7.7.

Theorem 7.8. Suppose TFHE is a compact threshold fully homomorphic encryption scheme (Defi-
nition 5.2). Then, the universal thresholdizer scheme from Construction 7.7 satisfies compactness
(Definition 7.2).

Theorem 7.9. Suppose TFHE is a threshold fully homomorphic encryption scheme that satisfies eval-
uation correctness (Definition 5.3). Then, the universal thresholdizer scheme from Construction 7.7
satisfies evaluation correctness (Definition 5.3).

Theorem 7.10. Suppose PZK is a complete zero knowledge proof system with pre-processing
(Definition 3.4). Then, the universal thresholdizer scheme from Construction 7.7 satisfies verification
correctness (Definition 7.4).

Theorem 7.11. Suppose TFHE satisfies semantic security (Definition 5.4) and simulation se-
curity (Definition 5.5), PZK is a zero knowledge proof system with pre-processing that satisfies
zero-knwoeldge (Definition 3.4), and C is a non-interactive commitment scheme that satisfies com-
putational hiding (Definition A.1). Then, the universal thresholdizer scheme from Construction 7.7
satisfies security (Definition 7.5).

Theorem 7.12. Suppose PZK is a zero knowledge proof system with pre-processing that satisfies
soundness (Definition 3.4) and C is a non-interactive commitment scheme that satisfies perfect
binding (Definition A.1). Then, the universal thresholdizer scheme from Construction 7.7 satisfies
robustness 7.6.

We provide the formal proofs of the theorems above in Appendix E.

7.2 Robustness from Homomorphic Signatures

In Section 7.1, we used NIZK with pre-processing (Section 3.3.1) to enforce robustness. Another
way to enforce robustness is to use homomorphic signatures [BF11, GVW15]. A homomorphic
signature is like a regular signature scheme, but it additionally allows a signature σx of a message x
to be homomorphically evaluated with a circuit C. The resulting signature σC(x) is compact in that
its size depends only on the depth of C and |C(x)|; and it certifies that a value y = C(x) is indeed
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the output of C evaluated on the original message x. Furthermore, the signature σC(x) itself does
not leak any information about the original message x other than what can be inferred from C and
C(x).

To enforce robustness for the construction in Section 7.1, the setup algorithm can simply use a
homomorphic signature to sign each decryption key share of a TFHE scheme and include it as part
of each party’s share. Then, to evaluate on the shares, each user can homomorhpically compute
on the TFHE ciphertexts and compute the partial decryption as before, but at the same time
homomorphically evaluate on the signatures to derive a new signature that certifies correct partial
decryption. The unforgeability property of the homomorphic signature scheme guarantees that no
cheating adversary can generate a false signature on a value y 6= C(x).

The benefit of using a homomorphic signature is that the proof size depends only on the depth
of the circuit C to be computed and the evaluation share y. Using NIZK’s, on the other hand, the
proof size grows in the secret size |x| and size of the circuit |C|. For applications that require long
secret x, homomorphic signatures can give significant savings in the size of the evaluation shares.
Since homomorphic signatures for circuits can be constructed from LWE [GVW15], its use does not
introduce any new assumption to our construction.

8 Applications

In this section, we describe our applications of a universal thresholdizer scheme. We start by
showing that a universal thresholdizer scheme for a class of access structures immediately gives rise
to a function secret sharing scheme for the same class of access structure (Section 8.1). Next, we show
that a universal thresholdizer scheme for the class of threshold access structures can be combined
with existing cryptographic primitives to produce their thresholdized variants. As discussed in
Section 1.1, these give rise to threshold signatures, CCA threshold PKE, distributed PRFs, and even
functional encryption with thresholdized key generation. In this work, we provide just two of these
applications: threshold signatures (Section 8.2) and CCA threshold PKE (Section 8.3). These two
notions demonstrate how to use a universal thresholdizer as a general tool. The method that we
develop in this section can be applied to a wide range of other applications in a straightforward way.
Finally, in Section 8.4, we show that a non-compact universal thresholdizer scheme can be used to
thresholdize a compact fully homomorphic encryption scheme to construct a compact TFHE scheme.
This can be viewed as a way to boost a non-compact TFHE scheme to a compact one.

For full generality, we define the notions of functional secret sharing, threshold signatures, and
CCA threshold PKE with respect to general access structures. By Theorem 4.15, all applications in
this section can be instantiated for the class of threshold access structure TAS (Definition 4.10).

8.1 Function Secret Sharing

In this section, we construct a function secret sharing scheme from universal thresholdizers. The study
of functional secret sharing was first initiated in [BGI15, BGI16]. In their definition, reconstruction
is simply an addition of partial evaluations in a fixed group. We study a relaxed variant where the
complexity of the reconstruction function is allowed to depend on the depth of the function (but is
independent of the size of the circuit).
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8.1.1 Definitions

The following definition is a natural generalization of the definition in [BGI15] to arbitrary access
structures.

Definition 8.1. Let P = {P1, . . . , PN} be a set of parties, let S be a class of efficient access structure
on P , and let C = {Cλ}λ∈N be a family of circuit classes. A function secret sharing scheme for S
and C is a tuple of PPT algorithms FSS = (FSS.Gen,FSS.Eval,FSS.Decode) defined as follows:

• FSS.Gen(1λ, f,A)→ (s1, . . . , sN ): On input the security parameter λ, a circuit f : {0, 1}n →
{0, 1} ∈ Cλ, and an access structure A ∈ S, the share generation algorithm outputs function
shares s1, . . . , sN .

• FSS.Eval(si, x)→ yi: On input a function share si, and an input x ∈ {0, 1}n, the evaluation
algorithm (deterministically) outputs a partial evaluation yi.

• FSS.Decode(B) → y: On input a set B = {yi}i∈S for some S ⊆ {P1, . . . , PN}, the decoding
algorithm outputs an evaluation y ∈ {0, 1,⊥}.

We require an FSS scheme to satisfy correctness, compactness, and security properties defined as
follows.

Definition 8.2 (Compactness). We say that a FSS scheme satisfies compactness if for all λ, circuit
f : {0, 1}n → {0, 1} ∈ Cλ, S ⊆ {P1, . . . , PN}, and x ∈ {0, 1}n, the following condition holds. There
exists a polynomial poly such that for (s1, . . . , sN ) ← FSS.Gen(1λ, f,A), yi ← FSS.Eval(si, x) for
i ∈ [N ], we have |yi| ≤ poly(λ, d).1

Definition 8.3 (Evaluation Correctness). We say that a FSS scheme satisfies evaluation correctness
if for all λ, circuit f : {0, 1}n → {0, 1} ∈ Cλ, S ⊆ {P1, . . . , PN}, and x ∈ {0, 1}n, the following
condition holds. For (s1, . . . , sN )← FSS.Gen(1λ, f,A), if S ∈ A,

Pr[FSS.Decode({FSS.Eval(si, x)}i∈S) = f(x)] = 1− negl(λ)

and if S /∈ A,
Pr[FSS.Decode({FSS.Eval(si, x)}i∈S) = ⊥] = 1− negl(λ).

Definition 8.4 (Security). We say that a FSS scheme is secure if for all λ, the following holds. For
any PPT adversary A, the following experiment ExptA,FSS(1λ) outputs 1 with negligible probability:

ExptA,FSS(1λ):

1. On input the security parameter 1λ, the adversary A outputs an access structure A ∈ S,
a pair of functions (f0, f1) of same depth d and size s, and a set S ⊆ P such that S /∈ A
and S is a maximal invalid party set.

2. The challenger samples a random bit b ∈ {0, 1}, computes (s1, . . . , sN )← FSS.Gen(1λ, fb,A),
and provides {si}i∈S to A.

3. A issues a polynomial number of adaptive evaluation queries xj satisfying f0(xj) = f1(xj).
For each query, the challenger computes yi ← FSS.Eval(si, x) for i ∈ [N ] and provides
{yi}i∈[N ] to A.

4. At the end of the experiment, A outputs a guess b′. The experiment outputs 1 if b = b′.
1Note that in function secret sharing proposed in [BGI15], the reconstruction function computes an addition of the
partial evaluations, which are of a fixed size. Here we allow the size of the shares and the running time of the
reconstruction to grow with the depth, but not the size, of the evaluated circuit.
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8.1.2 Construction

We construct function secret sharing scheme for any access structures S from a universal thresholdizer
(Section 7) and a pseudorandom function (Section A.2).

Construction 8.5. Our function secret sharing construction relies on the following primitives:

• Let UT = (UT.Setup,UT.Eval,UT.Verify,UT.Combine) be a universal thresholdizer scheme
where len(λ) is the bit-length of the randomness used by the UT.Eval algorithm.

• Let F : K × {0, 1}∗ → {0, 1}len(λ) be a PRF.

Additionally, in our construction description, we use U to denote the universal circuit that takes in
a function description f and an input x, and outputs f(x). We denote Ux to denote the universal
circuit with a hardcoded input x that takes in a function f and outputs f(x). We construct a
function secret sharing scheme FSS = (FSS.Gen,FSS.Eval,FSS.Decode) as follows:

• FSS.Gen(1λ, f,A): On input the security parameter λ, a circuit f : {0, 1}n → {0, 1}, and an
access structure A ∈ S, the share generation algorithm computes (utpp, uts1, . . . , utsN ) ←
UT.Setup(1λ, 1d,A, f) where d is the depth of the universal circuit U accepting a circuit of

size |f | and input of size n. Then, for each i ∈ [N ], it samples a PRF key ki
r← K and sets

si = (utpp, utsi, ki).

• FSS.Eval(si, x): On input a function share si, and input x ∈ {0, 1}n, the evaluation algorithm
parses si = (utpp, utsi, ki), generates evaluation randomness ri ← F (ki, x), and outputs
yi ← UT.Eval(utpp, utsi,Ux;F (ki, x)).

• FSS.Decode(B): On input a set of partial evaluations B = {si}i∈S , the decoding algorithm
outputs y← UT.Combine(utpp, B).

We now state the correctness and security theorems for Construction 8.5.

Theorem 8.6. Suppose UT is a universal thresholdizer scheme that satisfies compactness (Defini-
tion 7.2). Then, the function secret sharing scheme from Construction 8.5 satisfies compactness
(Definition 8.2).

Theorem 8.7. Suppose UT is a universal thresholdizer scheme that satisfies evaluation correctness
(Definition) 7.3). Then, the function secret sharing scheme from Construction 8.5 satisfies evaluation
correctness (Definition 8.3).

Theorem 8.8. Suppose UT is a universal thresholdizer scheme that satisfies security (Definition 7.5),
and F is a PRF (Definition A.2). Thenn, the function secret sharing scheme from Construction 8.5
satisfies security (Definition 8.4).

The proofs of the theorems above follow immediately from the properties of the underlying UT
scheme.
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8.2 Threshold Signatures

In this section, we construct a threshold signatures scheme from universal thresholdizers. In a
threshold signature scheme, the signing key of a signer is divided into a number of key shares and
are distributed to multiple signers. When sigining a message, each of the signers creates a partial
signature with its own share of the signing key. Then, a combining algorithm combines the partial
signatures into a full signature. For generality, we present the definition of threshold signatures
with respect to a general class of access structures.

8.2.1 Definitions

Definition 8.9 (Threshold Signatures). Let P = {P1, . . . , PN} be a set of parties and let S be a class
of efficient access structure on P . A threshold signature scheme for S is a tuple of PPT algorithms
TS = (TS.Setup,TS.PartSign,TS.PartSignVerify,TS.Combine,TS.Verify) defined as follows:

• TS.Setup(1λ,A) → (pp, vk, sk1, . . . , skN ): On input the security parameter λ, and an access
structure A, the setup algorithm outputs the public parameters pp, a signature verification
key vk, and a set of key shares sk1, . . . , skN .

• TS.PartSign(pp, ski,m) → σi: On input the public parameters pp, a partial signing key ski,
and a message m ∈ {0, 1}∗, the partial signing algorithm outputs a partial signature σi.

• TS.PartSignVerify(pp,m, σi) → {0, 1}: On input the public parameters pp, a message m ∈
{0, 1}∗, and a partial signature σi, the partial signature verification algorithm accepts or
rejects.

• TS.Combine(pp, B)→ σ: On input the public parameters pp, and a set of partial signatures
B = {σi}i∈S , the signature combining algorithm outputs a full signature σ.

• TS.Verify(vk,m, σ): On input a signature verification key vk, a message m ∈ {0, 1}∗, and a
signature σ, the verification algorithm accepts or rejects.

We require a TS scheme to satisfy the following compactness, correctness, and security requirements.

Definition 8.10 (Compactness). We say that a TS scheme for S satisfies compactness if there
exist polynomials poly1(·), poly2(·) such that for all λ and A ∈ S, the following holds. For
(pp, vk, sk1, . . . , skN )← TS.Setup(1λ,A), σi ← TS.PartSign(pp, ski,m) for i ∈ S, σ ← TS.Combine(pp,
{σi}i∈S), we have that |σ| ≤ poly1(λ) and |vk| ≤ poly2(λ).

Definition 8.11 (Evaluation Correctness). We say that a TS scheme for S satisfies evaluation
correctness if for all λ, A ∈ S, and S ∈ A, the following holds. For (pp, vk, sk1, . . . , skN ) ←
TS.Setup(1λ,A), σi ← TS.PartSign(pp, ski,m) for i ∈ S,

Pr[TS.Verify(vk,m,TS.Combine(pp, {σi}i∈S)) = 1] = 1− negl(λ).

Definition 8.12 (Partial Verification Correctness). We say that a TS scheme for S satisfies partial
verification correctness if for all λ and A ∈ S, the following holds. For (pp, vk, sk1, . . . , skN ) ←
TS.Setup(1λ,A),

Pr[TS.PartSignVerify(pp,m,TS.PartSign(pp, ski,m)) = 1] = 1− negl(λ).
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Definition 8.13 (Unforgeability). We say that a TS scheme for S satisfies unforgeability if for all
λ, the following holds. For any PPT adversary A, the following experiment ExptA,TS,uf(1

λ) outputs
1 with negligible probability:

ExptA,TS,uf(1
λ):

1. On input the security parameter 1λ, the adversary A outputs an access structure A ∈ S.
2. The challenger samples (pp, vk, sk1, . . . , skN )← TS.Setup(1λ,A) and provides pp and vk

to A.
3. A outputs a set S ⊆ P such that S /∈ A and S is a maximal invalid party set.
4. The challenger provides the set of keys {ski}i∈S to A.
5. A issues a polynomial number of adaptive signing queries of the form (m, i) where
i ∈ [N ]\S. For each query, the challenger computes σi ← TS.PartSign(pp, ski,m) and
provides σi to A.

6. At the end of the experiment, A outputs a forgery (m∗, σ∗). The experiment outputs 1 if
TS.Verify(vk,m∗, σ∗) = 1 and m was not previously queried as a signing query.

Definition 8.14 (Robustness). We say that a TS scheme for S satisfies robustness if for all λ, the
following holds. For any PPT adversary A, the following experiment ExptA,TS,rb(1λ) outputs 1 with
negligible probability:

ExptA,TS,rb(1λ):

1. On input the security parameter 1λ, the adversary A outputs an access structure A ∈ S.
2. The challenger samples (pp, vk, sk1, . . . , skN )← TS.Setup(1λ,A) and provides (pp, vk, sk1,
. . . , skN ) to A.

3. A outputs a partial signature forgery (m∗, σ∗i , i).
4. The experiment outputs 1 if TS.PartSignVerify(pp,m∗, σ∗i ) = 1 and σi 6= TS.PartSign(pp,

ski,m
∗).

Definition 8.15 (Anonymity). We say that a TS scheme for S satisfies anonymity if for λ,
A ∈ S, and S ∈ A, the following holds. For (pp, vk, sk1, . . . , skN ) ← TS.Setup(1λ,A), Bb =
{TS.PartSign(pp, ski,m)}i∈Sb for b ∈ {0, 1}, we have

Pr [TS.Combine(pp, B0) 6= TS.Combine(pp, B1)] ≤ negl(λ).

8.2.2 Construction

We construct threshold signature scheme from a universal thresholdizer (Section 7) and a signature
scheme (Section A.3).

Construction 8.16. Our threshold signature construction relies on the following primitives:

• Let UT = (UT.Setup,UT.Eval,UT.Verify,UT.Combine) be a universal thresholdizer scheme for
the class of access structures S.

• Let S = (S.KeyGen,S.Sign,S.Verify) be a signature scheme. For our construction, we assume
that the signing algorithm S.Sign is a deterministic algorithm. This is without loss of generality
since any randomized signature scheme can be derandomized (i.e. using PRFs).
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Now, we construct a threshold signature scheme TS = (TS.Setup,TS.PartSign,TS.PartSignVerify,
TS.Combine,TS.Verify) for S as follows:

• TS.Setup(1λ,A): On input the security parameter λ, and an access structure A, the setup
algorithm first generates the keys for the signature scheme (ssk, svk)← S.KeyGen(1λ). Then it
instantiates the universal thresholdizer scheme (utpp, uts1, . . . , utsN )← UT.Setup(1λ, 1d,A, ssk)
where d is the depth of the signing algorithm S.Sign. Then, it sets

pp = utpp, vk = svk, ski = utsi ∀i ∈ [N ].

• TS.PartSign(pp, ski,m): On input the public parameters pp = utpp, a partial signing key ski =
utsi, and a message m ∈ {0, 1}∗, the partial signing algorithm outputs σi ← UT.Eval(utpp, utsi,
Cm) where the circuit Cm is defined as

Cm(ssk) = S.Sign(ssk,m).

• TS.PartSignVerify(pp,m, σi): On input the public parameters pp, message m ∈ {0, 1}∗, and a
partial signature σi, the partial signature verification algorithm outputs UT.Verify(utpp, σi, Cm).

• TS.Combine(pp, B): On input the public parameters pp, and a set of partial signatures
B = {σi}i∈S , the signature combining algorithm outputs UT.Combine(utpp, B).

• TS.Verify(vk,m, σ): On input the signature verification key vk = svk, a message m ∈ {0, 1}∗,
and a signature σ, the verification algorithm outputs S.Verify(vk,m, σ).

We now state the compactness, correctness, and security theorems for Construction 8.16.

Theorem 8.17. Suppose UT is a universal thresholdizer scheme that satisfies evaluation correctness
(Definition 7.3). Then, the threshold signature scheme from Construction 8.16 satisfies compactness
(Definition 8.10).

Theorem 8.18. Suppose UT is a universal thresholdizer scheme that satisfies evaluation correctness
(Definition 7.3) and S is a signature scheme that satisfies correctness (Definition A.4). Then, the
threshold signature scheme from Construction 8.16 satisfies evaluation correctness (Definition 8.11).

Theorem 8.19. Suppose UT is a universal thresholdizer scheme that satisfies evaluation verification
correctness (Definition 7.4). Then, the threshold signature scheme from Construction 8.16 satisfies
partial verification correctness (Definition 8.12).

Theorem 8.20. Suppose UT is a universal thresholdizer scheme that satisfies security (Defini-
tion 7.5) and S is a signature scheme that satisfies unforgeability (Definition A.5). Then, the
threshold signature scheme from Construction 8.16 satisfies unforgeability (Definition 8.13).

Theorem 8.21. Suppose UT is a universal thresholdizer scheme that satisfiesd robustness (Def-
inition 7.6). Then, the threshold signature scheme from Construction 8.16 satisfies robustness
(Definition 8.14).

Theorem 8.22. Suppose UT is a universal thresholdizer scheme that satisfies evaluation correctness
(Definition 7.3). Then, the threshold signature scheme from Construction 8.16 satisfies anonymity
(Definition 8.15).

We provide formal proofs of the theorems above in Appendix F.
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8.3 CCA Threshold PKE

In this section, we construct a CCA secure threshold PKE scheme from universal thresholdizers. In a
threshold PKE scheme, the decryption key is divided into a number of key shares and are distributed
to multiple decryption servers. When decrypting a message, each of the decryption servers creates
its own decryption share, and the decryption shares can be publicly combined to result in a full
decryption. As was done for threshold signatures, we present the definition of thresholdPKE with
respect to a general class of access structures.

8.3.1 Definitions

Definition 8.23 (Threshold PKE). Let P = {P1, . . . , PN} be a set of parties and let S be a class of
efficient access structures on P . A threshold PKE scheme for a message space M is a tuple of PPT
algorithms TPKE = (TPKE.Setup,TPKE.Enc,TPKE.PartDec,TPKE.PartVerify,TPKE.Combine) de-
fined as follows:

• TPKE.Setup(1λ,A)→ (pp, ek, sk1, . . . , skN ): On input the security parameter λ, and an access
structure A, the setup algorithm outputs the public parameters pp, an encryption key ek, and
a set of key shares sk1, . . . , skN .

• TPKE.Enc(ek,m)→ ct: On input the encryption key ek, and a message m ∈M, the encryption
algorithm outputs a ciphertext ct.

• TPKE.PartDec(pp, ski, ct) → si: On input the public parameters pp, a key share ski, and a
ciphertext ct, the partial decryption algorithm outputs a partial decryption share mi.

• TPKE.PartVerify(pp, ct,mi)→ {0, 1}: On input the public parameters pp, a ciphertext ct, and
a partial decryption share mi, the part verification algorithm accepts or rejects.

• TPKE.Combine(pp, B) → m′: On input the public parameters pp, and a set of decryption
shares B = {mi}i∈S , the combining algorithm outputs a message m′.

We require a TPKE scheme to satisfy the following compactness, correctness, and security require-
ments.

Definition 8.24 (Compactness). We say that a TPKE scheme for S satisfies compactness if
there exist polynomials poly1(·), poly2(·) such that for all λ and A ∈ S, the following holds. For
(pp, ek, sk1, . . . , skN ) ← TPKE.Setup(1λ,A), ct ← TPKE.Enc(ek,m), we have that |ct| ≤ poly1(λ)
and |ek| ≤ poly2(λ).

Definition 8.25 (Decryption Correctness). We say that a TPKE scheme for S satisfies decryption
correctness if for all λ, A ∈ S, and S ∈ A, the following holds. For (pp, ek, sk1, . . . , skN ) ←
TPKE.Setup(1λ,A), ct← TPKE.Enc(ek,m), mi ← TPKE.PartDec(pp, ski, ct) for i ∈ S,

Pr[TPKE.Combine(pp, {mi}i∈S) = m] = 1− negl(λ).

Definition 8.26 (Partial Verification Correctness). We say that a TPKE scheme for S satisfies partial
verification correctness if for all λ, A ∈ S, and S ∈ A, the following holds. For (pp, ek, sk1, . . . , skN )←
TPKE.Setup(1λ,A), ct← TPKE.Enc(ek,m),

Pr[TPKE.PartVerify(pp,TPKE.PartDec(pp, ski, ct)) = 1] = 1− negl(λ).
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Definition 8.27 (Security). We say that a TPKE scheme for S satisfies security if for all λ,
the following holds. For any PPT adversary A the following experiments ExptA,TPKE,0(1λ) and

ExptA,TPKE,1(1λ) are computationally indistinguishable:

ExptA,TPKE,b(1
λ):

1. On input the security parameter 1λ, the adversary A outputs an access structure A ∈ S.
2. The challenger samples (pp, ek, sk1, . . . , skN )← TS.Setup(1λ,A) and provides pp and ek

to A.
3. A outputs a set S ⊆ P such that S /∈ A and S is a maximal invalid set.
4. The challenger provides the set of keys {ski}i∈S to A.
5. A issues a polynomial number of adaptive decryption queries of the form (ct, i) where
i ∈ [N ]\S. For each query, the challenger computes si ← TPKE.PartDec(pp, ski, ct) and
provides si to A.

6. A outputs a pair of challenge messages (m∗0,m
∗
1).

7. The challenger computes ct∗b ← TPKE.Enc(ek,m) and provides ct∗b to A.
8. A continues issuing a polynomial number of adaptive decryption queries.
9. At the end of the experiment, A outputs a guess b′, which is the output of the experiment.

Definition 8.28 (Robustness). We say that a TPKE scheme for S satisfies robustness if for all λ,
the following holds. For any PPT adversary A, the following experiment ExptA,TPKE,rb(1λ) outputs
1 with negligible probability:

ExptA,TPKE,rb(1λ):

1. On input the security parameter 1λ, the adversary A outputs an access structure A ∈ S.
2. The challenger samples (pp, ek, sk1, . . . , skN )← TPKE.Setup(1λ,A) and provides (pp, ek,

sk1, . . . , skN ) to A.
3. A outputs a partial decryption forgery (ct∗,m∗i , i).
4. The experiment outputs 1 if TPKE.PartVerify(pp, ct∗,m∗i ) = 1 and m∗i 6= TPKE.PartDec(pp,

ski, ct
∗).

8.3.2 Construction

We construct a threshold PKE from a universal thresholdizer (Section 7) and a CCA secure PKE
scheme (Section A.4).

Construction 8.29. Our threshold PKE construction relies on the following primitives:

• Let UT = (UT.Setup,UT.Eval,UT.Verify,UT.Combine) be a universal thresholdizer scheme for
the class of access structures S.

• Let PKE = (PKE.KeyGen,PKE.Encrypt,PKE.Decrypt) be a public key encryption scheme.

Now, we construct a threshold PKE scheme TPKE = (TPKE.Setup,TPKE.Enc,TPKE.PartDec,
TPKE.PartVerify,TPKE.Combine) for S as follows:

• TPKE.Setup(1λ,A): On input the security parameter λ, and an access structure A, the setup al-
gorithm first generates the keys for the PKE scheme (pkesk, pkepk)← PKE.KeyGen(1λ). Then it

35



instantiates the universal thresholdizer scheme (utpp, uts1, . . . , utsN )← UT.Setup(1λ, 1d,A, pkesk)
where d is the depth of the decryption algorithm PKE.Decrypt. Then, it sets

pp = utpp, ek = pkepk, ski = utsi ∀i ∈ [N ].

• TPKE.Enc(ek,m): On input the encryption key ek, and a message m ∈ M, the encryption
algorithm computes ct← PKE.Encrypt(pk,m) and outputs ct.

• TPKE.PartDec(pp, ski, ct): On input the public parameters pp, key share ski = utsi, and a
ciphertext ct, the partial decryption algorithm computes mi ← UT.Eval(utpp, utsi, Cct) where
the circuit Cm is defined as

Cct(pkesk) = PKE.Decrypt(pkesk, ct).

It then outputs mi.

• TPKE.PartVerify(pp, ct,mi): On input the public parameters pp, a ciphertext ct, and a decryp-
tion share mi, the part verification algorithm outputs UT.Verify(utpp,mi, Cct).

• TPKE.Combine(pp, B): On input the public parameters pp, and a set of partial decryption
shares B = {mi}i∈S , the combining algorithm computes m′ ← UT.Combine(utpp, B) and
outputs a message m′.

We now state the compactness, correctness, and security theorems for Construction 8.29.

Theorem 8.30. Suppose UT is a universal thresholdizer scheme that satisfies evaluation cor-
rectness (Definition 7.3). Then, the TPKE scheme from Construction 8.29 satisfies compactness
(Definition 8.24).

Theorem 8.31. Suppose UT is a universal thresholdizer scheme that satisfies evaluation correctness
(Definition 7.3) and PKE is a public key encryption scheme that satisfies correctness (Definition A.7).
Then, the TPKE scheme from Construction 8.29 satisfies decryption correctness (Definition 8.25).

Theorem 8.32. Suppose UT is a universal thresholdizer scheme that satisfies verification correctness
(Definition 7.4). Then, the TPKE scheme from Construction 8.29 satisfies decryption correctness
(Definition 8.26).

Theorem 8.33. Suppose UT is a universal thresholdizer scheme that satisfies security (Defini-
tion 7.5) and PKE is a public key encryption scheme that satisfies security (Definition A.8). Then,
the TPKE scheme from Construction 8.29 satisfies security (Definition 8.26).

Theorem 8.34. Suppose UT is a universal thresholdizer scheme that satisfies robustness (Defini-
tion 7.6). Then, the TPKE scheme from Construction 8.29 satisfies robustness (Definition 8.28).

We provide formal proofs of the theorems above in Appendix G.
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8.4 TFHE from UT

In this section, we show how to use a non-compact universal thresholdizer to construct a compact
TFHE scheme by thresholdizing a compact (non-threshold) FHE scheme. Since we can construct a
non-compact universal thresholdizer from a non-compact TFHE scheme, the construction can be
viewed as a boosting step that takes a non-compact TFHE scheme and converting it into a compact
one.

Construction 8.35. Our TFHE construction relies on the following primitives:

• Let UT = (UT.Setup,UT.Eval,UT.Verify,UT.Combine) be a universal thresholdizer scheme for
the class of access structure S (Definition 7.1)

• Let FHE = (FHE.Setup,FHE.Encrypt,FHE.Eval,FHE.Decrypt) be a fully homomorphic encryp-
tion scheme (Definition 3.5).

We construct TFHE = (TFHE.Setup,TFHE.Encrypt,TFHE.Eval,TFHE.PartDec,TFHE.FinDec) as fol-
lows:

• TFHE.Setup(1λ, 1d,A): On input the security parameter λ, depth bound d, and an access
structure A, the setup algorithm first generates the keys for the FHE scheme (fhepk, fhesk)←
FHE.Setup(1λ, 1d). Then, it instantiates the universal thresholdizer scheme (utpp, uts1, . . . , utsN )←
UT.Setup(1λ, 1d

′
,A, fhesk) where d′ is the depth of the decryption algorithm FHE.Decrypt.

Then, it sets
pk = (utpp, fhepk), ski = utsi ∀i ∈ [N ].

• TFHE.Encrypt(pk, µ): On input a public key pk, and a single bit plaintext µ ∈ {0, 1}, the
encryption algorithm computes ct← FHE.Encrypt(fhepk,m) and outputs ct.

• TFHE.Eval(pk, C, ct1, . . . , ctk): On input a public key pk = (utpp, fhepk), circuit C, and a set of
ciphertexts ct1, . . . , ctk, the evaluation algorithm computes ĉt← FHE.Eval(fhepk, ct1, . . . , ctk)
and outputs ĉt.

• TFHE.PartDec(pk, ct, ski): On input a public key pk = (utpp, fhepk), a ciphertext ct, and a se-
cret key share ski = utsi, the partial decryption algorithm computes pi ← UT.Eval(utpp, utsi, Cct)
where the circuit Cct is defined as

Cct(fhesk) = FHE.Decrypt(fhesk, ct).

It then outputs pi.

• TFHE.FinDec(pk, B): On input a public key pk, and a set B = {pi}i∈S , the final decryption
algorithm computes µ̂← UT.Combine(utpp, B) and outputs µ̂.

We now state the compactness, correctness, and security theorems for Construction 8.35.

Theorem 8.36. Suppose UT is a universal thresholdizer scheme that satisfies evaluation cor-
rectness (Definition 7.3). Then, the TFHE scheme from Construction 8.35 satisfies compactness
(Definition 5.2).
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Theorem 8.37. Suppose UT is a universal thresholdizer scheme that satisfies evaluation correctness
(Definition 7.3) and FHE is a fully homomorphic encryption scheme that satisfies correctness
(Definition 3.7). Then, the TFHE scheme from Construction 8.35 satisfies evaluation correctness
(Definition 5.3).

Theorem 8.38. Suppose UT is a universal thresholdizer scheme that satisfies security (Defini-
tion 7.5) and FHE is a fully homomorphic encryption scheme that satisfies semantic security
(Definition 3.8). Then, the TFHE scheme from Construction 8.35 satisfies semantic security
(Definition 5.4).

Theorem 8.39. Suppose UT is a universal thresholdizer scheme that satisfies security (Defini-
tion 7.5). Then, the TFHE scheme from Construction 8.35 satisfies simulation security (Defini-
tion 5.5).

The proofs of the theorems above follow immediately from the properties of the underlying UT and
FHE schemes.
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A Other Basic Cryptographic Primitives

In this section, we recall the definitions of additional cryptographic primitives.

A.1 Non-Interactive Commitments

We recall the definition of (perfectly binding) non-interactive commitment schemes. The presentation
is based on [Bit17].

Definition A.1 (Non-Interactive Commitments [Blu83]). An algorithm C = (C.Com) is a non-
interactive commitment scheme if the following conditions are true. For a message x ∈ {0, 1}∗ and
randomness r ∈ {0, 1}λ, let com← C.Com(x; r). Then:

1. Perfect Binding: For every security parameter λ ∈ N, and string com ∈ {0, 1}∗, there exists
at most a single x ∈ {0, 1}∗ such that com is a commitment to x:

∀r0, r1 ∈ {0, 1}λ if C.Com(x0; r0) = C.Com(x1; r1) then x0 = x1.

2. Computational Hiding: For every λ ∈ N, x0, x1 ∈ {0, 1}poly(λ), the following distributions
are computationally indistinguishable:{

com0 :
r

r← {0, 1}λ
com0 ← C.Com(x0; r)

}
≈c
{
com1 :

r
r← {0, 1}λ

com1 ← C.Com(x0; r)

}
.

The work of [Blu83] constructs such non-interactive commitments from injective one-way functions
and [BOV03] constructs them from regular one-way functions and the worst-case assumption that
there exists a problem solvable in deterministic time 2O(n) with non-deterministic circuit complexity
2Ω(n). Recently, [GHKW17] constructed such non-interactive commitment schemes from the LWE.

A.2 Pseudorandom Functions

Definition A.2 (PRF [GGM86]). Fix the security parameter λ. A PRF F : K×{0, 1}n → {0, 1}m
with key space K, domain X , and range Y is secure if for all efficient algorithms A,∣∣∣Pr

[
k ← K : AF (k,·)(1λ) = 1

]
− Pr

[
f

$← Funcs(X ,Y) : Af(·)(1λ) = 1
]∣∣∣ = negl(λ)

where Funcs(X ,Y) denotes the set of all functions with domain X and range Y.

A.3 Signature Scheme

Definition A.3 (Signature Scheme). A signature scheme S is a tuple of algorithms S = (S.KeyGen,
S.Sign,S.Verify) defined as follows:

• S.KeyGen(1λ) → (sk, vk): On input the security parameter λ, the key generation algorithm
outputs a signing key sk and a verification key vk.

• S.Sign(sk,m)→ σ: On input a signing key sk, and a message m ∈ {0, 1}∗, the signing algorithm
outputs a signature σ.
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• S.Verify(vk,m, σ)→ {0, 1}: On input a verification key vk, a message m and, a signature σ,
the verification algorithm accepts or rejects.

We require a signature scheme S to satisfy the following correctness and security properties.

Definition A.4 (Correctness). We say that a signature scheme S is correct if for all λ ∈ N, µ ∈M,
(sk, vk)← S.KeyGen(1λ), we have that

Pr[S.Verify(vk, S.Sign(sk,m)) = 1] = 1.

Definition A.5 (Unforgeability). We say that a signature scheme satisfies unforgeability if for any
PPT adversary A, the following experiment ExptA,S,uf(1

λ) outputs 1 with negligible probability:

ExptA,S,uf(1
λ):

1. The challenger runs (sk, vk)← S.KeyGen(1λ), and provides vk to A.

2. A issues a polynomial number of adaptive queries m. For each query, the challenger
computes σ ← S.Sign(sk,m) and provides σ to A.

3. At the end of the experiment, A outputs a forgery (m∗, σ∗). The experiment outputs 1 if
S.Verify(vk,m∗, σ∗) accepts and m∗ was not previously queried by A.

A.4 Public Key Encryptions

Definition A.6 (PKE). A public key encryption (PKE) scheme PKE is a tuple of algorithms
PKE = (PKE.KeyGen,PKE.Encrypt,PKE.Decrypt) defined as follows:

• PKE.KeyGen(1λ)→ (sk, pk): On input the security parameter λ, the key generation algorithm
outputs a secret key sk and a public key pk.

• PKE.Encrypt(pk,m)→ ct: On input a public key pk, and a message m ∈M, the encryption
algorithm outputs a ciphertext ct.

• PKE.Decrypt(sk, ct) → m′: On input a secret key sk, and a ciphertext ct, the decryption
algorithm outputs a message m′.

We require a public key encryption scheme PKE to satisfy the following correctness and security
properties.

Definition A.7 (Correctness). We say that a PKE scheme PKE is correct if for all λ ∈ N, m ∈M,
(sk, pk)← PKE.KeyGen(1λ), we have that

Pr[PKE.Decrypt(sk,PKE.Encrypt(pk,m)) = m] = 1.

For this work, we use the standard notion of chosen ciphertext attack (CCA2) security for public
key encryption.

Definition A.8 (Security). We say that a PKE scheme satisfies CCA security if for any PPT
adversary A, the following experiments ExptA,PKE,0(1λ) and ExptA,PKE,1(1λ) are computationally
indistinguishable:

ExptA,PKE,b(1
λ):
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1. The challenger runs (sk, pk)← PKE.KeyGen(1λ), and provides pk to A.

2. A makes a polynomial number of adaptive decryption queries ct. For each query ct, the
challenger provides PKE.Decrypt(sk, ct) to A.

3. A outputs a pair of messages (m∗0,m
∗
1).

4. The challenger computes ct∗b ← PKE.Encrypt(pk,m∗b), and provides ct∗b to A.

5. A continues making a polynomial number of adaptive decryption queries ct for which
ct 6= ct∗b .

6. A outputs a guess b′, which is the output of the experiment.

B GSW Modification

We briefly recall the GSW construction. We describe the construction ignoring the precise parameters,
and the specifics of the “gadget matrix.” A more formal description can be found in [GSW13].

Fix the security parameter λ, and let n,m, q, and χ be an appropriately chosen LWE parameters
where q is a prime. Also, let the matrix G ∈ Zn×mq be the standard gadget matrix and let w ∈ Zmq
be a vector with entry 1 in the mth component and 0 elsewhere. We have the property that
G ·w = q/2.

We define the GSW encryption scheme as follows:

• FHE.Setup(1λ, 1d): The key generation algorithm samples a uniformly random matrix A
r←

Zn×mq . It also samples a uniformly random vector s
r← Znq and an error vector e ← χ and

defines Ã =

(
A

sTA + eT

)
. Then, it sets

pp = Ã sk = ( −s 1 ).

• FHE.Encrypt(pk, µ): The encryption algorithm generates a uniform matrix R
r← {0, 1}m×m

and outputs
ct = Ã ·R + µ ·G.

• FHE.Decrypt(pk, sk, ct): The decryption algorithm computes y = 〈sk, ct ·wm〉 and outputs 0 if
y ∈ [−q/4, q/4] and outputs 1 otherwise.

Given messages µ1, µ2 ∈ Zq, we can homomorphically add and multiply on the ciphertexts as follows:

ct1 ADD ct2 = ct1 + ct2

=
(
Ã ·R1 + µ1 ·G

)
+
(
Ã ·R2 + µ2 ·G

)
= Ã · (R1 + R2) + (µ1 + µ2) ·G

ct1 MULT ct2 = ct1 ·G−1(ct2)

=
(
ÃR1 + µ1 ·G

)
·G−1(ct2)

= ÃR1 ·G−1(ct2) + µ1 · ct2
= Ã(R1 ·G−1(ct2) + µ1(ÃR2 + µ2 ·G)

= Ã
(
R1 ·G−1(ct2) + µ1 ·R2

)
+ µ1µ2 ·G
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Note that for a ciphertext ĉt = ÃR̂+ µ̂ ·G, the decryption procedure can be described as computing
the inner product 〈

sk, ĉt ·wm

〉
= (q/2) · µ̂+ eT · R̂ ·wm

and rounding the decryption noise eT · r∗ for some low-norm integer vector r̂ = R̂ ·wm.

Tweak: For the decryption noise to always be a integer multiple of a multiplicative constant c, we
can modify the construction by simply modifying the error vector e by c at setup. Namely, the
algorithm FHE.Setup defines the public key

Ã =

(
A

sTA + c · eT
)
.

Now, for any homomorphic computation, the decryption noise is the inner product c · eT · r̂, which
is an integer multiple of c.

The security of the GSW scheme relies on the public parameter matrix Ã being computationally

indistinguishable from a uniformly random matrix in Z(n+1)×m
q by LWE. It is easy to see that

multiplying the error vector e by c does not effect the reduction. In particular, given an LWE
sample (A,u), the challenger can define the public matrix

Ã =

(
A

c · uT
)
.

If u = sTA + eT , then this is the correct distribution as in the real scheme as a scalar multiplication
by a nonzero integer over a prime modulus is bijective. If u is a uniformly random vector in Zmq ,

then again, since we are working over a prime modulus, the matrix Ã is a uniformly random matrix

in Z(n+1)×m
q . Now, applying the leftover hash lemma, the ciphertext is statistically uniform and

therefore, the message is hidden.

C Proofs in Section 4

C.1 Proof of Lemma 4.14

Fix an access structure A ∈ {0, 1}-LSSS, and let M be a share matrix for A with partitions
T1, . . . , TN ⊆ [`] as specified in Definition 4.8. To prove the lemma, it is sufficient to show that for
any S ∈ A, we can efficiently find a minimal valid share set T ⊆

⋃
i∈S Ti. This can be computed

recursively by setting T =
⋃
i∈S Ti and defining

T =

{
T if (1, 0, . . . , 0) /∈ span({M[j]}j∈T\{i})
T\{i} if (1, 0, . . . , 0) ∈ span({M[j]}j∈T\{i})

for all i ∈ T . The iteration terminates if no more parties can be removed. At each recursive step, an
element Pi ∈ S′ is removed or the iteration finishes. Therefore, it is easy to see that the procedure
terminates in polynomial time. It is also easy to see that the resulting set S′ is a minimal valid
share set.
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C.2 Proof of Theorem 4.19

Given a monotone Boolean formula C : {0, 1}N → {0, 1}, we construct a share matrix for the linear
secret sharing scheme that satisfies Definition 4.8 and 4.13.

We assume that all the input wires of C have fan-out 1.2 This is without loss of generality since
given a monotone Boolean formula C : {0, 1}N → {0, 1}, we can always construct a new formula
C ′ : {0, 1}N` → {0, 1} with input fan-out 1 by replicating each input wire as a separate input to C
(here, ` is bounded by |C| = poly(N)). This provides a mapping φ : [N ]→ P([N ]) of each input wire
xi of C to a partition of input wires {xi,1, . . . , xi,`} of C ′. Now, let (s′1,1, . . . , s

′
N,`)← SS′.Share(k,AC′)

be the shares of C ′ via a linear secret sharing scheme SS′. Then, it is easy to see that defining a
secret sharing scheme SS that produces shares by running (s′1,1, . . . , s

′
N,`)← SS′.Share(k,AC′) and

setting si = {s′i,1, . . . , s′i,`} results in a special linear secret sharing scheme that satisfies correctness
and security.

Now, given a special monotone Boolean formula C : {0, 1}N → {0, 1}, we describe how to achieve
a special linear secret sharing scheme using a “folklore algorithm.” To describe the algorithm
formally, we interpret C as a tree with a unique root node r being the single output gate and the
leaf nodes being the input variables to C. We let V be the set of nodes of the tree, VOR ⊂ V the set
of all nodes that correspond to OR gates and VAND ⊂ V the set of all nodes that correspond to
AND gates.

We let n = |VOR
⋃
VAND| be the number of all nodes in the tree excluding the input nodes.

Then, we fix a canonical indexing v that identifies each node v ∈ VOR
⋃
VAND with an index i ∈ [n].

This assigns the root node r = v(1) and for each pair of nodes v(i), v(j) for i < j, the depth of v(i)
is less than the depth of v(j).

The share algorithm SS.Share(k,AC) generates the sharing matrix using the folklore algorithm
as follows:

“Folklore” Algorithm

Input: A special monotone Boolean formula C : {0, 1}N → {0, 1}.
Output: An LSSS share matrix M for the access structure induced by C.

1. Label r with a length one vector mr = (1).
2. Initialize a counter count = 1.
3. For v = v(i) for i = 1, . . . , n:

(a) If v ∈ VOR, label its children with the same vector as m.
(b) If v ∈ VAND with vector mv, then pad mv with 0’s at the end (if necessary) to make

it of length count. Denote the new vector by m′. Then, label one of its children with
the vector (m′, 1) and the other with the vector (0, . . . , 0,−1) of length count + 1.
Then increase count by 1.

4. Once the entire tree is labeled, the vectors associated with the leaf nodes form the rows
of the sharing matrix M. If these vectors have different lengths, the shorter vectors are
padded with 0’s.

2In particular, C is a special monotone Boolean formula.
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At the end of the algorithm, the matrix M consists of N rows and n′ columns where n′ is the total
number of AND gates in C.

Let P = {P1, . . . , PN} be a set of parties. Then, it is easy to see that the algorithm above
outputs a linear secret sharing share matrix M with each party Pi assigned a row of M. We now
show that the share matrix M satisfies the properties of a share matrix required by a special linear
secret sharing scheme (Definition 4.13).

We note that since each share of P consists of a single element in Zp, it is sufficient to show that
for any secret k shared into s1, . . . , sN , and any S ∈ A, there exists a set S′ ⊆ S such that S′ ∈ A
and k =

∑
i∈S′ si. Let vi ∈ V be an input node identified with party Pi and mvi its associated

vector in M. Then, we show the following claim, which proves that M satisfies the requirements of
a special linear secret sharing scheme.

Claim C.1. For a minimal valid party set S ⊆ P , we have
∑

i∈S mvi = mr.

Proof. We prove the claim by induction on the height of T .

• The claim certainly holds when T has height 1 or 2, which is the case where C simply consists
of a single input gate or two input. and a gate.

• Now, consider the case when the height of T is strictly greater than 2. Let r be the root of T
and let s and t be the children of r. Then, denote by Cs and Ct the circuits induced by the
subtree of T with root s and t, respectively and let As and At be the access structures induced
by Cs and Ct. Assume without loss of generality that the leafs of Cs and Ct correspond to
parties Ps = {P1, . . . , Pk} and Pt = {Pk+1, . . . , PN}. We must consider two cases.

– If r is an AND gate, then for any minimal valid share set S ⊆ P , we must have that
S ∩ Ps and S ∩ Pt are minimal valid share sets for As and At respectively, simply by the
minimality of S. Therefore, by construction, we have mr = ms + mt and it follows that∑

i∈S
mvi =

∑
i∈S∩Ps

mvi +
∑

i∈S∩Pt

mvi = mr

by induction.

– If r is an OR gate, then for any minimal valid share set S ⊆ P , we must again either
have S ∩ Ps is a minimal valid share set for As and S ∩ Pt = ∅ or vice versa. Since
mr = ms = mt by construction, it follows that

∑
i∈S mvi = vr by induction.

This concludes the proof of the claim.

This concludes the proof of the theorem.

D Proofs and Discussions in Section 5

D.1 Proof of Theorem 5.8

Fix the security parameter λ, depth bound d, access structure A ∈ S, circuit C : {0, 1}k → {0, 1}
of depth at most d, S ∈ A, and message µi ∈ {0, 1} for i ∈ [k]. Let (pp, sk1, . . . , skN ) ←
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TFHE.Setup(1λ, 1d,A), cti ← TFHE.Encrypt(pk, µi) for i ∈ [k], and ĉt← TFHE.Eval(pk, C, ct1, . . . , ctk).
We must show that

Pr[TFHE.FinDec(pk, {TFHE.PartDec(pk, ĉt, ski)}i∈S) = C(µ1, . . . , µk)] = 1− negl(λ).

By definition, pk = fhepk and ski = fheski where (fhepk, fhesk) ← FHE.Setup(1λ, 1d) and (fhesk1,
. . . , fheskN ) ← SS.Share(fhesk,A). The TFHE encryption algorithm TFHE.Encrypt(pk, µi) com-
putes the ciphertexts cti ← FHE.Encrypt(fhepk, µi), and TFHE.Eval(C, ct1, . . . , ctk) computes ĉt←
FHE.Eval(C, ct1, . . . , ctk). Finally, given ĉt and ski = {sj}j∈Ti , the partial decryption algorithm re-

turns p̃j ← FHE.Decode0(sj , ĉt) + ej for j ∈ Ti where ej
r← [−Bsm, Bsm], and TFHE.FinDec({pi}i∈S)

computes a minimal valid share set T ⊆
⋃
i∈S Ti for A and returns FHE.Decode1

(∑
j∈T p̃j

)
.

Now, by linearity of FHE.Decode0, we have∑
j∈T

p̃j =
∑
j∈T

FHE.Decode0(sj , ĉt) + ej

= FHE.Decode0

∑
j∈T

sj , ĉt

+
∑
j∈T

ej︸ ︷︷ ︸
eT

where |eT | ≤ `·Bsm. By the property of minimal valid share set T (Definition 4.9) and the correctness
of SS (Definition 4.5), fhesk =

∑
i∈T fheski. Therefore,∑

i∈T
pi = FHE.Decode0(fhesk, ĉt) + eT

= µ
⌊q

2

⌉
+ e+ eT

by the correctness of FHE.Decode0 (Definition 3.9). Then, by correctness of FHE.Decode1 (Defini-
tion 3.9), as long as |e+ eT | = B + ` ·Bsm ≤

⌊ q
4

⌉
, we have

Pr

[
FHE.Decode1

(∑
i∈T

pi

)
= C(µ1, . . . , µk)

]
= 1− negl(λ).

The theorem follows.

D.2 Proof of Theorem 5.10

Our proof proceeds via a sequence of hybrid experiments between an adversary A and a challenger.

• H0: This is the TFHE real security experiment ExptA,Real(1
λ, 1d) from Definition 5.5. On

input an access structure A ∈ S from A, the challenger runs the setup (pk, sk1, . . . , skN ) ←
TFHE.Setup(1λ, 1d,A) and provides pk to A. It then receives a maximal invalid party set
S∗ ⊆ {P1, . . . , PN} and a set of messages µ1, . . . , µk ∈ {0, 1}. The challenger then provides
the keys {ski}i∈S∗ and the ciphertexts {TFHE.Encrypt(pk, µi)}i∈[k] to A. For each query
(S,C) that A makes, the challenger computes ĉt← TFHE.Eval(pk, C, ct1, . . . , ctk) and provides
{TFHE.PartDec(pk, ĉt, ski)}i∈S to A.
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• H1: Same as H0, except that the challenger simulates the partial decryptions for each of A’s
queries. Specifically, when A provides the challenge maximal invalid party set S∗ ⊆ {P1,
. . . , PN}, the challenger commits to a maximal invalid share set T ∗ containing

⋃
i∈S∗ Ti

(Definition 4.9). Then, for each query (S,C) that A makes, the challenger computes ĉt ←
TFHE.Eval(pk, C, ct1, . . . , ctk) as before, but now it derives each of TFHE.PartDec(pk, ĉt, ski)
for i ∈ S∗ only from the set of elements {sj}j∈T ∗ and C(x) as follows.

Recall that the partial decryptions TFHE.PartDec(pk, ĉt, ski) consists of a set of Zq elements
pi = {p̃j}j∈Ti . Then, for each j ∈ Ti, the challenger computes p̃j :

– If j ∈ Ti ∩ T ∗, then it sets p̃j = FHE.Decode0(sj , ĉt) + ej for ej
r← [−Bsm, Bsm] as in the

real scheme.

– If j /∈ Ti ∩ T ∗, then the challenger first computes a minimal valid share set T ⊆ T ∗ ∪ {j}.
Such set T exists since T ∗ is a maximal invalid share set and therefore, T ∗ ∪ {j} is a
valid share set. The challenger then sets

p̃j =
q

2
· C(x)−

∑
j′∈T\{j}

FHE.Decode0(sj′ , ĉt) + ẽ

for ẽ
r← [−Bsm, Bsm].

The challenger then provides pi = {p̃j}j∈Ti for i ∈ S to A.

In Lemma D.1 below, we show that the hybrid experiments H0 and H1 are statistically
indistinguishable.

• H2: Same as H1, except that the challenger now samples each key share ski uniformly at random.
Specifically, on input an access structure A ∈ S from A, the challenger runs (pk, sk1, . . . , skN )←
TFHE.Setup(1λ, 1d,A) by generating the FHE keys (fhepk, fhesk) ← FHE.Setup(1λ, 1d), but
now, instead of secret sharing fhesk, it secret shares the zero strings fhesk1, . . . , fheskN ←
SS.Share(0,A). The rest of the experiment remains unchanged.

In Lemma D.2, below, we show that the hybrid experiments H1 and H2 are perfectly indistin-
guishable. Note that in this experiment, the challenger generates the keys (pk, sk1, . . . , skN )
and answers A’s queries without using sk or x1, . . . , xk. Therefore, the challenger in this
experiment corresponds to the simulator in ExptA,Ideal(1

λ, 1d).

We now argue that the consecutive hybrid experiments above are indistinguishble. For an adversary
A, we write Hi(A) to denote the output of Hi.

Lemma D.1. If B/Bsm = negl(λ), then for all adversaries A, |Pr[H0(A) = 1]− Pr[H1(A) = 1]| =
negl(λ).

Proof. The only difference A’s views in H0 and H1 is the way the challenger computes pi ←
TFHE.PartDec(pk, ĉt, ski) for each i ∈ S on A’s adaptive queries (S,C). In H0, the challenger
generates pi by computing p̃j = FHE.Decode0(sj , ĉt) + ej for j ∈ Ti, ej ← [−Bsm, Bsm] and setting
pi = {p̃j}j∈Ti . In H1, the challenger first commits to a maximal invalid share set T ∗ at setup.
Then, it computes p̃j for j ∈ Ti ∩ T ∗ as in the real scheme, but deviates from the real scheme for
j /∈ Ti ∩ T ∗. Therefore, we restrict our attention to the case of j /∈ Ti ∩ T ∗.
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In H1, the challenger first computes a minimal valid share set T ⊆ T ∗ ∪ {j} and sets

p̃j =
q

2
· C(x)−

∑
j′∈T\{j}

FHE.Decode0(sj′ , ĉt) + ẽ

for ẽ
r← [−Bsm, Bsm]. We first note that by the correctness of FHE (Definition 3.9), we have

q/2 · C(x) = FHE.Decode0(sk, ĉt) + e for some noise e ∈ [−B,B]. Therefore, we can rewrite the
relation

p̃j =
q

2
· C(x)−

∑
j′∈T\{j}

FHE.Decode(sj′ , ĉt) + ẽ

= FHE.Decode0(sk, ĉt) + e−
∑

j′∈T\{j}

FHE.Decode(sj′ , ĉt) + ẽ

= FHE.Decode

sk−
∑

j′∈T\{j}

sj , ĉt

+ e+ ẽ

Now, by the property of a minimal valid share set T ⊆ T ∗ ∪ {j}, we have
∑

j′∈T sj = sk, and
therefore, as long as j ∈ T , we have sk−

∑
j′∈T\{j} sj′ = sj . This is indeed the case since T ∗ is a

maximal invalid share set.
We now have the relation p̃j = FHE.Decode0(sj , ĉt) + e+ ẽ, which is identically distributed as

in H0 except for the additive noise term e. By assumption, B/Bsm = negl(λ) and the lemma follows
from the smudging lemma (Lemma 3.2).

Lemma D.2. If SS is a secret sharing scheme satisfying privacy (Definition 4.6), then for all
adversaries A, |Pr[H1(A) = 1]− Pr[H2(A) = 1]| = 0.

Proof. The lemma follows from the privacy property of the secret sharing scheme SS in a straight-
forward way. The only difference between H1 and H2 is in the way the key shares fhesk1, . . . , fheskN
are generated. In H1, the challenger sets fhesk1, . . . , fheskN ← SS.Share(fhesk,A), while in H2, the
challenger sets fhesk1, . . . , fheskN ← SS.Share(fhesk,A). Then, by the privacy property of SS (Defi-
nition 4.6), as long as A is given access to {fheski}i∈S∗ for an invalid set S∗, the two distributions
are identical. This is indeed the case by the specification of the security game and the lemma
follows.

Combining Lemmas D.1, and D.2, the theorem follows.

D.3 Proof of Theorem 5.12

Fix the security parameter λ, depth bound d, access structure At ∈ TAS, a circuit C : {0, 1}k → {0, 1}
of depth at most d, S ∈ A, and message µi ∈ {0, 1} for i ∈ [k]. Let (pp, sk1, . . . , skN ) ←
TFHE.Setup(1λ, 1d,A), cti ← TFHE.Encrypt(pk, µi) for i ∈ [k], and ĉt← TFHE.Eval(pk, C, ct1, . . . , ctk).
We must show that

Pr[TFHE.FinDec(pk, {TFHE.PartDec(pk, ĉt, ski)}i∈S) = C(µ1, . . . , µk)] = 1− negl(λ).

By definition, pk = fhepk, and ski = fheski where (fhepk, fhesk)← FHE.Setup(1λ, 1d) and (fhesk1, . . . ,
fheskN )← SS.Share(fhesk,At). The TFHE encryption algorithm TFHE.Encrypt(pk, µi) computes the
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ciphertexts cti ← FHE.Encrypt(fhepk, µi), and TFHE.Eval(C, ct1, . . . , ctk) computes ĉt← FHE.Eval(C,
ct1, . . . , ctk). Finally, given ĉt and ski ∈ Zq, the partial decryption algorithm computes pi ←
FHE.Decode0(ski, ĉt) + (N !)2 · ei for ei

r← [−Bsm, Bsm], and TFHE.FinDec({pi}i∈S) chooses a subset
S′ ⊆ S of size t and returns FHE.Decode1(

∑
i∈S′ λ

S′
i,0 · pi).

Now, by linearity of FHE.Decode0, we have∑
i∈S′

λS
′

i,0 · pi =
∑
i∈S′

λS
′

i,0 · (FHE.Decode0(ski, ĉt) + (N !)ei)

= FHE.Decode0

(∑
i∈S′

λS
′

i,0 · ski, ĉt

)
+
∑
i∈S′

λS
′

i,0 · (N !)2 · ei︸ ︷︷ ︸
eS′

.

By Lemma 4.12, we have |eS′ | ≤ (N !)3 · N · Bsm. By correctness of SS (Theorem 4.11), fhesk =∑
i∈S′ λ

S′
i,0 · ski. Therefore, ∑

i∈S′
λS
′

i,0 · pi = FHE.Decode0(fhesk, ĉt) + eS′

= µ
⌊q

2

⌉
+ e+ eS′

by the correctness of FHE.Decode0 (Definition 3.9). Then, by correctness of FHE.Decode1 (Defini-
tion 3.9), as long as |e+ eT | = B + (N !)3 ·N ·Bsm ≤

⌊ q
4

⌉
, we have

Pr

[
FHE.Decode1

(∑
i∈S′

λS
′

i,0 · pi

)
= C(µ1, . . . , µk)

]
= 1− negl(λ).

The theorem follows.

D.4 Proof of Theorem 5.14

Our proof proceeds via a sequence of hybrid experiments between an adversary A and a challenger.

• H0: This is the TFHE real security experiment ExptA,Real(1
λ, 1d) from Definition 5.5. On

input an access structure At ∈ TAS from A, the challenger runs the setup (pk, sk1, . . . , skN )←
TFHE.Setup(1λ, 1d,At) and provides pk to A. It then receives a party set S∗ ⊆ {P1, . . . ,
PN} of size t − 1 and a set of messages µ1, . . . , µk ∈ {0, 1}. The challenger then provides
the keys {ski}i∈S∗ and the ciphertexts {TFHE.Encrypt(pk, µi)}i∈[k] to A. For each query
(S,C) that A makes, the challenger computes ĉt← TFHE.Eval(pk, C, ct1, . . . , ctk) and provides
{TFHE.PartDec(pk, ĉt, ski)}i∈S to A.

• H1: Same as H0, except that the challenger simulates the partial decryptions for each of
A’s queries. Specifically, for each query (S,C) that A makes, the challenger computes ĉt←
TFHE.Eval(pk, C, ct1, . . . , ctk) as before, but now it derives each of TFHE.PartDec(pk, ĉt, ski)
for i ∈ S only from the set of elements {sj}j∈S∗ and C(x) as follows.

– If i ∈ S∗, then the challenger simply outputs pi = FHE.Decode0(ski, ĉt) + (N !)2 · e for

e
r← [−Bsm, Bsm] as in the real scheme.
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– If i /∈ S∗, then the challenger first computes the Lagrange coefficients λS
∗

j,i for j ∈ S∗.
Then it outputs

pi = λS
∗

0,i ·
q

2
· C(x) +

∑
j∈S∗

λS
∗

j,i · FHE.Decode0(skj , ĉt) + (N !)2 · e

for e
r← [−Bsm, Bsm].

In Lemma D.3 below, we show that the hybrid experiments H0 and H1 are statistically
indistinguishable.

• H2: Same as H1, except that the challenger now samples each key share ski uniformly
at random. Specifically, on input an access structure At ∈ TAS from A, the challenger
runs (pk, sk1, . . . , skN )← TFHE.Setup(1λ, 1d,At) by generating the FHE keys (fhepk, fhesk)←
FHE.Setup(1λ, 1d), but now, instead of secret sharing fhesk, it secret shares the zero strings
fhesk1, . . . , fheskN ← SS.Share(0,At). The rest of the experiment remains unchanged.

In Lemma D.4, below, we show that the hybrid experiments H1 and H2 are perfectly indistin-
guishable. Note that in this experiment, the challenger generates the keys (pk, sk1, . . . , skN )
and answers A’s queries without using sk or x1, . . . , xk. Therefore, the challenger in this
experiment corresponds to the simulator in ExptA,Ideal(1

λ, 1d).

We now argue that the consecutive hybrid experiments above are indistinguishble. For an adversary
A, we write Hi(A) to denote the output of Hi.

Lemma D.3. If B/Bsm = negl(λ), then for all adversaries A, |Pr[H0(A) = 1]− Pr[H1(A) = 1]| =
negl(λ).

Proof. The only difference in A’s views in H0 and H1 is the way the challenger computes pi ←
TFHE.PartDec(pk, ĉt, ski) for each i ∈ S on A’s adaptive queries (S,C). In H0, the challenger

generates pi by computing pi = FHE.Decode0(ski, ĉt) + e for e
r← [−Bsm, Bsm]. In H1, the challenger

computes pi for i ∈ S∗ as in the real scheme, but deviates from the real scheme for i /∈ S∗. Therefore,
we restrict our attention to the case of i /∈ S∗.

In H1, for i /∈ S∗, the challenger first computes the Lagrange coefficients λS
∗

j,i for j ∈ S∗. Then it
outputs

pi = λS
∗

0,i ·
q

2
· C(x) +

∑
j∈S∗

λS
∗

j,i · FHE.Decode0(skj , ĉt) + (N !)2 · e

for e
r← [−Bsm, Bsm]. We first note that by the correctness of FHE (Definition 3.9), we have

q/2 · C(x) = FHE.Decode0(sk, ĉt) + ẽ for some noise ẽ ∈ [−B,B]. Therefore, we can rewrite the
relation

pi = λS
∗

0,i ·
q

2
· C(x) +

∑
j∈S∗

λS
∗

j,i · FHE.Decode(skj , ĉt) + (N !)2 · e

= λS
∗

0,i · FHE.Decode0(sk, ĉt) + ẽ+
∑
j∈S∗

λS
∗

j,i · FHE.Decode(skj , ĉt) + (N !)2 · e

= FHE.Decode

λS∗0,i · sk +
∑
j∈S∗

λS
∗

j,i · skj , ĉt

+ ẽ+ (N !)2 · e
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Now, by the correctness property of secret sharing, we have λS
∗

0,i ·sk+
∑

j∈S∗ λ
S∗
j,i ·skj = ski. Therefore,

we have the relation pi = FHE.Decode0(ski, ĉt) + ẽ + (N !)2 · e, which is identically distributed as
in H0 except for the additive noise term ẽ. By assumption, ẽ is a multiple of (N !)2, which is the
multiplicative constant of FHE. The lemma now follows from the fact B/Bsm = negl(λ) and the
smudging lemma (Lemma 3.2).

Lemma D.4. If SS is a secret sharing scheme satisfying privacy (Definition 4.6), then for all
adversaries A, |Pr[H1(A) = 1]− Pr[H2(A) = 1]| = 0.

Proof. The lemma follows from the privacy property of the secret sharing scheme SS in a straight-
forward way. The only difference between H1 and H2 is in the way the key shares fhesk1, . . . , fheskN
are generated. In H1, the challenger sets fhesk1, . . . , fheskN ← SS.Share(fhesk,A), while in H2, the
challenger sets fhesk1, . . . , fheskN ← SS.Share(fhesk,A). Then, by the privacy property of SS (Defi-
nition 4.6), as long as A is given access to {fheski}i∈S∗ for an invalid set S∗, the two distributions
are identical. This is indeed the case by the specification of the security game and the lemma
follows.

Combining Lemmas D.1, and D.2, the theorem follows.

E Proofs in Section 7

E.1 Proof of Theorem 7.8

The compactness of the universal thresholdizer scheme from Construction 7.7 follows from the
compactness of the underlying TFHE scheme in a straightforward way. Fix the security parameter
λ, depth bound d, access structure A, message x ∈ {0, 1}k and circuit C : {0, 1}k → {0, 1} of depth
at most d. Let (pp, s1, . . . , sN )← UT.Setup(1λ, 1d,A, x), and yi ← UT.Eval(pp, si, C) for i ∈ [N ].

By construction, yi = (pi, πi) where pi is the output of TFHE.Eval, and πi is a PZK proof
of the statement Πi(comi, ĉt, pi). By the compactness property TFHE, there exists a polynomial
poly1(·) such that |ĉt|, |pi| ≤ poly1(λ, d,N). Also, the statement Πi(comi, ĉt, pi) is parameterized by
comi, ĉt, pi. We have comi = C.Com(tfheski; ri) and since |tfheski|, |ri| ≤ poly(λ, d,N), there exists
a polynomial poly2(·) such that |πi| ≤ poly(|comi|+ |ĉt|+ |pi|) ≤ poly2(λ, d,N). Finally, defining
poly = poly1 + poly2, we have

|yi| = |pi|+ |πi| ≤ poly1(λ, d) + poly2(λ, d,N) ≤ poly(λ, d,N).

This concludes the proof of the theorem.

E.2 Proof of Theorem 7.9

Fix the security parameter λ, depth bound d, access structure A, message x ∈ {0, 1}k and circuit
C : {0, 1}k → {0, 1} of depth at most d. Let (pp, s1, . . . , sN ) ← UT.Setup(1λ, 1d,A, x), and yi ←
UT.Eval(pp, si, C) for i ∈ [N ].

By construction, pp =
(
tfhepk, {cti}i∈[k], {σV,i}i∈[N ], {comi}i∈[N ]

)
and si =

(
tfheski, σP,i, ri

)
where (tfhepk, tfhesk1, . . . , tfheskN )← TFHE.Setup(1λ, 1d,A) and cti ← TFHE.Encrypt(tfhepk, xi) for
i ∈ [k]. The evaluation algorithm UT.Eval computes yi = (pi, πi) where pi ← TFHE.PartDec(tfhepk,
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TFHE.Eval(tfhepk, C, ct1, . . . , ctk)) and the combining algorithm UT.Combine parses yi = (pi, πi) and
outputs TFHE.FinDec(tfhepk, {pi}i∈S). Therefore, by evaluation correctness of TFHE, we have

Pr[UT.Combine(pp, {yi}i∈S) = C(x)] = Pr[TFHE.FinDec(tfhepk, {pi}i∈S) = C(x)] = 1− negl(λ).

This completes the proof of the theorem.

E.3 Proof of Theorem 7.10

Fix the security parameter λ, depth bound d, an access structure A, and x ∈ {0, 1}k. Let
(pp, s1, . . . , sN )← UT.Setup(1λ, 1d,A, x), and yi ← UT.Eval(pp, si, C) for i ∈ [N ].

By construction, pp =
(
tfhepk, {cti}i∈[k], {σV,i}∈[N ], {comi}i∈[N ]

)
and si =

(
tfheski, σP,i, ri

)
where

(σV,i, σP,i) ← PZK.Pre(1λ), comi ← C.Com(tfheski; ri). The evaluation algorithm UT.Eval com-
putes ĉt ← TFHE.Eval(tfhepk, C, ct1, . . . , ctk), constructs the statement Ψi(comi, ĉt, pi), and com-
putes yi = (pi, πi) where πi ← PZK.Prove(σP,i,Ψi, (tfheski, ri)). By definition of the statement
Ψi(tfheski, ri), the pair (tfheski, ri) is a valid witness and since UT.Eval simply returns the output
of PZK.Verify(σP,i,Ψi, πi), we have

Pr[UT.Verify(pp, yi, C) = 1] = Pr[PZK.Verify(σP,i,Ψi, πi) = 1] = 1

by completeness of PZK. This completes the proof of the theorem.

E.4 Proof of Theorem 7.11

Our proof proceeds via a sequence of hybrid experiments between an adversary A and a challenger.

• H0: This is the UT real security experiment ExptA,UT,Real(1
λ, 1d) from Definition 7.5. On

input an access structure A ∈ S, and a message x ∈ {0, 1}k from A, the challenger runs
(pp, s1, . . . , sN )← UT.Setup(1λ, 1d,A, x) and provides pp to A. It receives a maximal invalid
party set S ⊆ {P1, . . . , PN} and provides {si}i∈S∗ to A. For each evaluation query (S,C) that
A makes, the challenger provides {yi ← UT.Eval(pp, si, C)}i∈S to A.

• H1: Same as H0, except that the challenger simulates the PZK proof in UT.Eval. Specifically, on
each evaluation query (S,C) that A makes, the challenger computes ĉt← TFHE.Eval(tfhepk, C,
ct1, . . . , ctk) and partial decryption pi ← TFHE.PartDec(tfhepk, ĉt, tfheski) for i ∈ S as before,
but it now runs the PZK simulator π∗i ← PZK.S(Ψi(comi, ĉt, pi)) and sets yi = (pi, π

∗
i ) for

i ∈ S.

By the zero knowledge property of PZK, the hybrid experiments H0 and H1 are computationally
indistinguishable.

• H2: Same as H1, except that the challenger generates pp with commitments to the zero
string. Specifically, on input an access structure A ∈ S, and a message x ∈ {0, 1}k
from A, the challenger runs setup UT.Setup(1λ, 1d,A, x) by computing the TFHE keys
(tfhepk, tfhesk1, . . . , tfheskN )← TFHE.Setup(1λ, 1d,A) ciphertexts cti ← TFHE.Encrypt(tfhepk,
tfhepk, xi) for i ∈ [k], (σV,i, σP,i)← PZK.Pre(1λ) and ri ← {0, 1}λ for i = 1, . . . , N as before.
But now, it defines com∗i ← C.Com(0|tfheski|; ri) for i = 1, . . . N and sets pp =

(
tfhepk, {cti}i∈[k],

σV,ii∈[N ], {com
∗
i }i∈[N ]

)
.

By the computational hiding property of C, the hybrid experiments H1 and H2 are computa-
tionally indistinguishable.
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• H3: Same as H2, except that the challenger simulates the TFHE setup and partial de-
cryptions. Specifically, on input an access structure A ∈ S, and a message x ∈ {0, 1}k
from A, the challenger runs setup UT.Setup(1λ1d,A, x) by first invoking the simulator
(tfhepk, tfhesk′1, . . . , tfhesk

′
N , st)← TFHE.S1(1λ, 1d,A) instead of running TFHE.Setup. Then,

it carries out the rest of UT.Setup and the experiment as before in H2. Then, on each evaluation
query (S,C) that A makes, instead of computing ĉt← TFHE.Eval(tfhepk, C, ct1, . . . , ctk) and
partial decryptions pi ← TFHE.PartDec(tfhepk, ĉt, tfheski) for i ∈ S, the challenger computes
{p∗i }i∈S ← TFHE.S2(C, {ct1, . . . , ctk}, C(µ1, . . . , µk), S, st). It simulates PZK proofs as before.

By the simulation security of TFHE, the hybrid experiments H2 and H3 are statistically
indistinguishable.

• H4: Same as H3, except that the challenger encrypts the zero string 0 instead of x during
setup. Specifically, on input an access structure A ∈ S, and a message x ∈ {0, 1}k from A, the
challenger ignores x and runs setup as in H3 but with the zero string UT.Setup(1λ, 1d,A,0).
The challenger carries out the rest of the experiments as before.

By semantic security of TFHE, the hybrid experiments H3 and H4 are computationally
indistinguishable. Also, note that in H4, the challenger simulates the setup algorithm UT.Setup
as well as the partial evaluation algorithm UT.Eval without requiring access to the secret x.
Therefore, H4 corresponds to the UT ideal security experiment ExptA,UT,Ideal(1

λ, 1d).

Combining the indistinguishability of the consecutive hybrid experiments, we conclude that the UT
scheme in Construction 7.7 satisfies security as in Definition 7.5.

E.5 Proof of Theorem 7.12

In the robustness security experiment ExptA,Robust(1
λ, 1d), the adversary A first outputs a message

x ∈ {0, 1}k and A ∈ S. The challenger then computes (pp, s1, . . . , sN )← UT.Setup(1λ, 1d,A, x) and
provides (pp, s1, . . . , sN ). Now, the experiment outputs 1 only if A outputs a fake partial evaluation
y∗i such that the following conditions hold:

• y∗i 6= UT.Eval(pp, si, C).

• UT.Verify(pp, y∗i , C) = 1.

Recall that the verification algorithm UT.Verify on input (yi, C) first evaluates the ciphertext
ĉt← TFHE.Eval(pp, C, ct1, . . . , ctk), and constructs the statement Ψi(comi, ĉt, pi):

∃ (tfheski, ri) : comi = C.Com(tfheski; ri) ∧ pi = TFHE.PartDec(pp, ĉt, tfheski).

Then, it parses yi = (pi, πi) and returns the result of PZK.Verify
(
σV,i,Ψi(comi, ĉt, pi), πi

)
. Therefore,

since UT.Verify(y∗i , C) = 1, we have that PZK.Verify
(
σV,i,Ψi(comi, ĉt, p

∗
i ), π

∗
i

)
= 1 for y∗i = (p∗i , π

∗
i ).

This means that y∗i = (p∗i , π
∗
i ) satisfies one of the following:

• Case 1: The statement Ψi(comi, ĉt, p
∗
i ) is a true statement (has a valid witness).

• Case 2: The statement Ψi(comi, ĉt, p
∗
i ) is a false statement, but PZK.Verify(σV,i,Ψi(comi, ĉt, p

∗
i ),

π∗) = 1.
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It suffices to show that the probability of each of these cases occurring is negligible.
First assume that the statement Ψi(comi, ĉt, p

∗
i ) is a true statement. By the assumption that

y∗i 6= UT.Eval(pp, si, C), we have p∗i 6= TFHE.PartDec(pp, ĉt, tfheski). Ψi(comi, ĉt, p
∗
i ) is a true

statement only if there exists some randomness r∗i such that comi = C.Com(tfhesk∗i , r
∗
i ). However,

this is a contradiction since the commitment scheme C is perfectly binding.
Now, assume that Ψi(comi, ĉt, p

∗
i ) is a false statement, but PZK.Verify(σV,i,Ψi(comi, ĉt, p

∗
i ),

π∗) = 1. However, since the proof system PZK is a sound, the probability that there exists a proof
π∗i such that PZK.Verify(σV,i,Ψi(comi, ĉt, p

∗
i ), π

∗) = 1 is negligible. We conclude that the UT scheme
in Construction 7.7 satisfies robustness as in Definition 7.6.

F Proofs in Section 8.2.2

The proofs of Theorems 8.17, 8.18, 8.19, and 8.22 follow from the correctness properties of the
underlying universal thresholdizer UT. We provide the formal proofs of the security properties of
Construction 8.16.

F.1 Proof of Theorem 8.20

Our proof proceeds via a sequence of hybrid experiments between an adversary A and a challenger.

• H0: This is the real TS unforgeability experiment ExptA,TS,uf(1λ) from Definition 8.13. On input

an access structure A ∈ S from A, the challenger runs (pp, vk, sk1, . . . , skN )← TS.Setup(1λ,A)
and provides (pp, vk) to A. It then receives a set S ⊆ {P1, . . . , PN} such that S is a maximal
invalid set and provides {ski}i∈S to A. For each signing query (m, i) that A makes, the
challenger computes σi ← TS.PartSign(pp, ski,m) and provides σi to A. At the end of the
experiment, the adversary outputs a forgery (m∗, σ∗) and wins if TS.Verify(vk,m∗, σ∗) = 1
and m∗ was not previously queried as a signing query.

• H1: This experiment is the same as H0, except that now, the challenger invokes the UT
simulator UT.S from Definition 7.5 for setup and partial evaluations. Specifically, to run setup
TFHE.Setup(1λ, acc), the challenger sets pp = utpp and ski = utsi where (utpp, uts1, . . . , utsN , st)
← UT.S1(1λ, 1d,A). Then, it generates the keys (ssk, svk) ← S.KeyGen(1λ), sets vk = svk
and keeps ssk. Then, for each signing query (m, i) that A makes, the challenger computes
σ ← S.Sign(ssk,m) and invokes the simulator σi ← UT.S2(utpp, Cm, σ, S,∪{Pi}, st).3 It
provides σi to A. The rest of the experiment remains the same.

We now argue that the hybrid experiments H0,H1 are computationally indistinguishable. It is easy
to see that in both hybrid experiments above, the output of the experiment is efficiently computable
by the challenger. Therefore, the following two lemmas are sufficient to prove the theorem.

Below, for an adversary A, we write Hi(A) to denote the output of Hi.

Lemma F.1. If UT is a secure universal thresholdizer, then for all efficient adversaries A,
|Pr[H0(A) = 1]− Pr[H1(A) = 1]| = negl(λ).

Proof. The only difference between the experiments H0 and H1 is the way the challenger runs UT
setup and the way it answers the signing queries (m, i). In H0, the challenger sets pp = utpp and ski =

3Recall that the circuit Cm is defined as the signing circuit Cm(ssk) = S.Sign(ssk,m) (See Construction 8.16).
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utsi where (utpp, uts1, . . . , utsN )← UT.Setup(1λ, 1d,A, x). It computes σi ← TS.PartSign(pp, ski,m)
by invoking σi ← UT.Eval(utsi, Cm). Therefore, the view of A in H0 is precisely the view in the
experiment ExptA,UT,Real(1

λ, 1d) where the message m = ssk. In H1, the challenger sets pp = utpp

and ski = utsi where (utpp, uts1, . . . , utsN , st)← UT.S1(1λ, 1d,A). For the signing queries (m, i), it
invokes the simulator UT.S2(utpp, Cm, σ, S ∪ {Pi}, st) where σ ← S.Sign(ssk,m). This is precisely
the view in the experiment ExptA,UT,Ideal(1

λ, 1d) where the message m = ssk. Therefore, we have∣∣Pr[H0(A) = 1]− Pr[H1(A) = 1]
∣∣ =

∣∣Pr[ExptA,UT,Real(1
λ, 1d) = 1]− Pr[ExptA,UT,Ideal(1

λ, 1d) = 1]
∣∣

which is negligible.

Lemma F.2. If S is an unforgeable signture scheme, then for all efficient adversaries A, Pr[H1(A) =
1] = negl(λ).

Proof. Let A be any adversary in H1. We use A to construct an algorithm B that wins the
unforgeability experiment ExptA,S,uf(1

λ) (Definition A.5). Algorithm B works as follows:

1. At the beginning of the game, B receives svk from the unforgeability challenger. It instantiates
UT setup (utpp, uts1, . . . , utsN , st)← UT.S1(1λ, 1d,A). It provides pp = utpp and vk = svk to
A. Note that by the definition of the unforgeability challenger, the view of A until this point
is exactly the view in H1.

2. When A outputs a maximal invalid share set S, B provides the UT shares {utsi}i∈S . Again,
by definition, this is a perfect simulation of H1.

3. For each query (m, i) that A makes, B submits m as its own signing query to the unforgeability
challenger and receives σ = S.Sign(ssk,m). It then simulates partial signatures by running
UT simulator σi ← UT.S2(utpp, Cm, σ, S ∪ {Pi}, st). By definition, we have Cm(ssk) =
S.Sign(ssk,m). Therefore, each partial signatures σi is simulated exactly as in H1.

4. At the end of the experiment, A outputs a forgery (m∗, σ∗). Recall that (m∗, σ∗) is a valid
forgery if

• TS.Verify(vk,m∗, σ∗) = 1.

• m∗ was not previously queried as a signing query.

By definition, TS.Verify(vk,m∗, σ∗) = S.Verify(vk,m∗, σ∗). Furthermore, B invokes the signing
query to the unforgeability challenger only when A makes its partial signing queries. Therefore,
the message, signature pair (m∗, σ∗) is a valid forgery for S. The algorithm B outputs (m∗, σ∗)
as its valid forgery.

Finally, by the correctness of B, we have

Pr[H1(A) = 1] = Pr[ExptA,S,uf(1
λ) = 1]

which is negligible. This concludes the proof of the lemma.

This concludes the proof of the theorem.
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F.2 Proof of Theorem 8.21

In the robustness security experiment ExptA,TPKE,rb(1λ), A first outputs an access structure A ∈
S. The challenger then computes (pp, vk, sk1, . . . , skN ) ← TS.Setup(1λ,A) and provides all keys
(pp, vk, sk1, . . . , skN ) to A. Now, the experiment returns 1 only if A outputs a partial signature
forgery (m∗, σ∗i , i) such that the following conditions are satisfied:

• TS.PartSignVerify(pp,m∗, σ∗i ) = 1.

• σi 6= TS.PartSign(pp, ski,m
∗).

Recall that the partial signing algorithm, on input (pp, ski = utsi,m) outputs σi = UT.Eval(utpp, utsi,
Cm). Therefore, if (m∗, σ∗i ) is a valid forgery, then σ∗i 6= UT.Eval(utpp, utsi, Cm∗). However,
by definition, the partial signature verification algorithm TS.PartSignVerify outputs 1 if the UT
verification algorithm accepts UT.Verify(utpp, σ∗i , Cm∗). Therefore, if TS.PartSignVerify(pp,m∗, σ∗i ) =
1, then (m∗, σ∗i , i) is also a valid forgery for UT. This shows that

Pr[ExptA,TS,rb(1λ) = 1] = Pr[ExptA,UT,rb(1λ, 1d) = 1]

which is negligible. This concludes the proof of the theorem.

G Proofs in Section 8.3.2

The proofs of Theorems 8.30, 8.31, and 8.32 follow from the correctness properties of the underlying
universal thresholdizer UT. For robustness, the proof Theorem 8.34 follows from the same argument
used in the proof of Theorem 8.21. We provide the formal proof of Theorem 8.33.

G.1 Proof of Theorem 8.33

Our proof proceeds via a sequence of hybrid experiments between an adversary A and a challenger.

• H0: This is the real TPKE CCA security experiment ExptA,PKE,0(1λ) from Definition A.8.
On input an access structure A ∈ S from A, the challenger runs (pp, ek, sk1, . . . , skN ←
TPKE.Setup(1λ,A) and provides (pp, ek) to A. It then receives a set S ⊆ {P1, . . . , PN} such
that S is a maximal invalid set and provides {ski}i∈S to A. For each decryption queries (ct, i),
the challenger computes mi ← TPKE.PartDec(pp, ski, ct) and provides si to A. In the process,
it receives a pair of challenge messages (m∗0,m

∗
1) and provides ct∗0 ← TPKE.Enc(ek,m∗0) to A.

• H1: This experiment is the same as H0 except that now, the challenger invokes the UT
simulator UT.S from Definition 7.5 for setup and partial evaluations. Specifically, to run setup
TFHE.Setup(1λ,A), the challenger sets pp = utpp and ski = utsi where (utpp, uts1, . . . , utsN , st)
← UT.S1(1λ, 1d,A). Then, it generates (pkesk, pkepk) ← PKE.KeyGen(1λ), sets ek = pkepk
and keeps pkesk. Then, for each decryption query (ct, i), the challenger computes m ←
PKE.Decrypt(pkesk, ct) and invokes the simulator mi ← UT.S2(utpp, Cct,m, S ∪ {Pi}, st).4 It
provides mi to A. The rest of the experiment remains the same.

4Recall that the circuit Cct is defined as the decryption circuit Cct(pkesk) = PKE.Decrypt(pkesk, ct) (see Construc-
tion 8.29)
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• H2: This experiment is the same as H1 except that now, the challenger generates the challenge
ciphertext as the encryption of m∗1 instead of m∗0. More precisely, when A submits a pair of
challenge message (m∗0,m

∗
1), the challenger computes ct∗1 ← TPKE.Enc(ek,m∗1) and provides

ct∗1 to A.

• H3: This experiment is the same as H2 except that now, the challenger runs UT setup as in
the real scheme with respect to pkesk and answers the decryption queries exactly as in the
real scheme using TPKE.PartDec(pp, ski, ct). This corresponds to the real TPKE CCA security
experiment ExptA,PKE,1(1λ) from Definition A.8.

We now argue that the consecutive hybrid experiments above are indistinguishable. For an adversary
A, we write H1(A) to denote the output of Hi.

Lemma G.1. If UT is a secure universal thresholdizer, then for all efficient adversaries A,∣∣Pr[H0(A) = 1]− Pr[H1(A) = 1]
∣∣ = negl(λ).

Proof. The only difference between the experiments H0 and H1 is the way the challenger runs
UT setup and the way it answers the decryption queries (ct, i). In H0, the challenger sets pp =
utpp and ski = utsi where (utpp, uts1, . . . , utsN ) ← UT.Setup(1λ, 1d,A, pkesk). It computes mi ←
TPKE.PartDec(pp, ski, ct) by invoking mi ← UT.Eval(utsi, Cct). Therefore, the view of A in H0 is
precisely the view in the experiment ExptA,UT,Real(1

λ, 1d) where the message m = pkesk. In H1,

the challenger sets pp = utpp and ski = utsi where (utpp, uts1, . . . , utsN , st) ← UT.S1(1λ, 1d,A).
For the decryption queries (ct, i), it invokes the simulator UT.S2(utpp, Cct,m, S ∪ {Pi}, st) for
m ← PKE.Decrypt(pkesk, ct). This is precisely the view in the experiment ExptA,UT,Ideal(1

λ, 1d)
where the message m = pkesk. Therefore, we have∣∣Pr[H0(A) = 1]− Pr[H1(A) = 1]

∣∣ =
∣∣Pr[ExptA,UT,Real(1

λ, 1d)]− Pr[ExptA,UT,Ideal(1
λ, 1d) = 1]

∣∣
which is negligible.

Lemma G.2. If PKE is a secure public key encryption scheme, then for all efficient adversaries A,∣∣Pr[H1(A) = 1]− Pr[H2(A) = 1]
∣∣ = negl(λ).

Proof. Let A be any adversary that interacts with experiments H1 and H2. We use A to construct
an algorithm B that distinguishes experiments ExptA,PKE,0(1λ) and ExptA,PKE,1(1λ) (Definition A.8).
Algorithm B works as follows:

1. At the beginning of the game, B receives pkepk from the PKE challenger. It instantiates UT
setup (utpp, uts1, . . . , utsN , st) ← UT.S1(1λ, 1d,A). It provides pp = utpp and ek = pkepk to
A. Note that by the definition of the PKE challenger, the view of A at this point is exactly
the view in H1 and H2.

2. When A outputs a maximal invalid share set S, B provides the UT shares {utsi}i∈S . Again,
by definition, this is a perfect simulation of H1 and H2.

3. For each query (ct, i) that A makes, B submits ct as its own decryption query to the PKE
challenger and receives the decryption m = PKE.Decrypt(pkesk, ct). It then simulates the
partial decryptions by running the UT simulator mi ← UT.S2(utpp, Cct,m, S ∪ {Pi}, st). By
definition, we have Cm(pkesk) = PKE.Decrypt(pkesk, ct). Therefore, each partial decryptions
mi is simulated exactly as in H1.
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4. During the query phase, A outputs a pair of challenge messages (m∗0,m
∗
1). Then, B sends

(m∗0,m
∗
1) as its own challenge pair to the PKE challenger and receives ct∗b . It provides ct∗b to

A.

5. At the end of the experiment, A outputs its guess b′. Now, if B is interacting in ExptA,PKE,0(1λ),
then by definition of PKE challenger, we have ct∗b = PKE.Encrypt(pkepk,m∗0). Therefore, in
this case, B provides a perfect simulation of H1 to A. Correspondingly, if B is interacting
in ExptA,PKE,1(1λ), then ct∗b = PKE.Encrypt(pkepk,m∗1), and B provides a perfect simulation
of H2. Therefore, with the distinguishing advantage of A, the algorithm B distinguishes
ExptA,PKE,0(1λ) and ExptA,PKE,1(1λ).

What remains to check is whether B is an admissible adversary. By definition, admissible
adversary A does not submit ct∗ as part of its partial decryption queries. Since B submits a
ciphertext ct to its decryption oracle only when A submits its partial decryption query with
ct, B is admissible. This concludes the proof of the lemma.

Lemma G.3. It UT is a secure universal thresholdizer, then for all efficient adversaries A,∣∣Pr[H0(A) = 1]− Pr[H1(A) = 1]
∣∣ = negl(λ).

Proof. Follows from the proof of Lemma G.1.

Combining Lemmas G.1, G.2, and G.3, the theorem follows.
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