
Blockwise p-Tampering Attacks on Cryptographic
Primitives, Extractors, and Learners

Saeed Mahloujifar∗ Mohammad Mahmoody†

Abstract

Austrin, Chung, Mahmoody, Pass and Seth [1] studied the notion of bitwise p-tampering attacks
over randomized algorithms in which an efficient ‘virus’ gets to control each bit of the randomness with
independent probability p in an online way. The work of [1] showed how to break certain ‘privacy
primitives’ (e.g., encryption, commitments, etc.) through bitwise p-tampering, by giving a bitwise p-
tampering biasing attack for increasing the average E[f(Un)] of any efficient function f : {0, 1}n 7→
[−1,+1] by Ω(p ·Var[f(Un)]) where Var[f(Un)] is the variance of f(Un).

In this work, we revisit and extend the bitwise tampering model of [1] to blockwise setting, where
blocks of randomness becomes tamperable with independent probability p. Our main result is an efficient
blockwise p-tampering attack to bias the average E[f(X)] of any efficient function f mapping arbitrary
X to [−1,+1] by Ω(p · Var[f(X)]) regardless of how X is partitioned into individually tamperable
blocks X = (X1, . . . , Xn). Relying on previous works of [1, 27, 47], our main biasing attack immedi-
ately implies efficient attacks against the privacy primitives as well as seedless multi-source extractors,
in a model where the attacker gets to tamper with each block (or source) of the randomness with inde-
pendent probability p. Further, we show how to increase the classification error of deterministic learners
in the so called ‘targeted poisoning’ attack model under Valiant’s adversarial noise. In this model, an
attacker has a ‘target’ test data d in mind and wishes to increase the error of classifying d while she gets
to tamper with each training example with independent probability p in an online way.

∗University of Virginia, saeed@virginia.edu. Supported by University of Virginia’s SEAS Research Innovation Award.
†University of Virginia, mohammad@virginia.edu. Supported by NSF CAREER award CCF-1350939, and University of

Virginia’s SEAS Research Innovation Award.

1

Contents

1 Introduction 3
1.1 Our Results . 4

1.1.1 Attacks on Randomness of Cryptographic Primitives 4
1.1.2 Efficient Attacks for Biasing Extractors . 5
1.1.3 Attacking Learners . 6

1.2 Ideas behind Our Blockwise p-Tampering Biasing Attack 7
1.3 Further Related Work and Models . 9

2 Preliminaries 9
2.1 Distance Measures . 10
2.2 Santha-Vazirani Sources and Their Generalizations . 11

3 Blockwise p-Tampering: Definitions and Main Results 12
3.1 Main Results: Blockwise p-Tampering of Bounded Functions 14

4 Applications of p-Tampering Biasing Attacks 17
4.1 Efficient p-Tampering Attacks on Extractors . 17
4.2 Targeted Poisoning Attacks on Learners . 18

5 Efficient p-Tampering Attacks Biasing Bounded Functions 21
5.1 Biasing Real-Output Functions: Proving Theorem 3.9 . 23
5.2 Biasing Boolean Functions: Proving Theorem 3.12 . 33

5.2.1 Part 1: Ideal (Inefficient) Greedy Tampering . 33
5.2.2 Part 2: Efficient Greedy Tampering . 35

6 Open Questions 39

A Blockwise p-Tampering Attacks on Primitives: Case of Encryption 44

B Reducing Blockwise Tampering to Bitwise for Uniform Distributions 46

C Power and Limitation of Inefficient p-Tampering Attacks 46

2

1 Introduction

In this work, we study tampering attacks that efficiently manipulate the randomness of randomized al-
gorithms with adversarial goals in mind. Tampering attacks could naturally be studied in the context of
cryptographic algorithms that (wish to) access perfectly uniform and untampered randomness for sake of
achieving security. However, the scope of such attacks goes beyond the context of cryptography and could
be studied more broadly for any class of algorithms that depend on some form of untampered random input
and try to achieve specific goals (e.g., learning algorithms using untampered training data to generate a hy-
pothesis). Here, we are interested in understanding the power and limitations of such tampering attacks over
the randomness, when the adversary can tamper with, or even control, ≈ p fraction of the randomness.1

The most relevant to our study here is the work of Austrin et al. [1] that introduced the notion of bitwise
p-tampering attacks on the randomness of cryptographic primitives. In this model, the adversary generates
an efficient ‘virus’ who gets into the ‘infected’ device, can read everything, but is limited in what it can
alter. As the stream of bits of randomness R = (r1, . . . , rn) is being generated, for every bit ri, the p-
tampering virus gets to change ri with independent probability p (i.e., with probability (1−p) the bit remains
unchanged). p-tampering attacks are online, so the virus does not know the future incoming bits, but it can
base its decisions based on the history of the (potentially tampered) bits. The work of [1] proved that bitwise
p-tampering attacks can always increase the avearge of efficient bounded functions f : {0, 1}n 7→ [−1,+1]
by Ω(p ·Var[f(Un)]) where Var[f(Un)] is the variance of f(Un).

Austrin et al. [1] showed how to break a variety of ‘privacy’ cryptographic primitives (e.g., public-key
and private key encryption, zero knowledge, commitments, etc.) that have ‘indistinguishability-based’ secu-
rity games using their main efficient bitwise p-tampering biasing attack. In such cryptographic attacks, the
code of the p-tampering virus is generated by an outside adversary who only knows the public information
(e.g. public key). Previously, Dodis, Ong, Prabhakaran, and Sahai [27] had shown that for the same crypto-
graphic primitives, there are high-min-entropy Santha-Vazirani sources of randomness [50] that make them
insecure. Thus, the work of [1] was a strengthening of the results of [27] showing how to generate such
‘bad’ SV sources through efficient p-tampering attacks. The p-tampering attacks of [1], and in particular
their core attack for biasing the output of balanced bounded functions, crucially depend on the fact that the
attacker can tamper with every single bit of the randomness independently with probability p. However,
randomness is usually generated in blocks rather than bits [4,19,29,36], e.g., during the boot time [38], and
is also made available to the algorithms requesting them in blocks. Thus, it is indeed natural to consider
tampering attackers who sometimes get to change an incoming block of randomness.

Blockwise p-tampering attacks. In this work, we revisit the bitwise p-tampering model of [1] and extend
it to a setting where the tampering could happen over blocks. Suppose A is an algorithm taking X =
(X1×· · ·×Xn) as input whereX is a distribution consisting of n blocks and the i’th block is independently
sampled from the distribution Xi. For example, A could be a cryptograhpic algorithm in which Xi is the
i’th block of uniform randomness given to A. Or A could also be a learning algorithm given n i.i.d training
examples. Roughly speaking, a blockwise p-tampering attack on (the randomness of)A is an algorithm Tam
working as follows. Suppose we sample the blocks xi ← Xi one by one. Then the i’th block xi becomes
‘tamperable’ with independent probability p for each i, and it remains intact with probability 1− p. In case
xi becomes tamperable, then Tam could substitute xi with another value x′i in the support set2 of Xi in an

1Note that if the adversary can control all the randomness, we are effectively back to what we can do in the deterministic setting.
2We only allow the tampering algorithm to produce something in the support set. A more general definition allows the tampering

algorithm to make choices out of the support set, however, our restriction only makes our attacks stronger.

3

online way. Namely, when Tam gets the chance to tamper with xi it could decide on a new block x′i based
on the knowledge of previous (tampered) blocks. The tampering algorithm Tam could also depend on (and
thus know everything about) the algorithm A including all of its inputs selected so far, but it cannot write
anything except when it is given the chance to tamper with a block of randomness.

Different p-tampering attackers could pursue different goals. For example, as it was done in the bitwise
setting of [1], a p-tampering attack might aim to ‘signal out’ a secret information (e.g., the plain-text).
Another example is when Tam wants to increase the classification error of the hypothesis output by a learner
A where each block xi = (d, t) consists of a labeled example sampled from the same distribution.

We also note that, though called primarily a tampering attack, p-tampering attacks are not blind tam-
pering attackers and naturally rely on the knowledge of the previous random bits before deciding on the
tampering of the next bit/block, although such knowledge is only given to the tampering virus, and e.g.,
not the external adversary generating the code of the virus. That is a reason why the proven power of
p-tampering attacks in this work is not in contradiction with known positive results such as [21, 32, 34, 40].

1.1 Our Results

Our main result is a generalization of the biasing attack of [1] to the blockwise setting. We first describe this
result, and then we will describe some of the applications of this biasing attack.

Theorem 1.1 (Informally stated). LetX = (X1 × · · · ×Xn) be a product distribution where each of Xi’s
is efficiently samplable. For any efficient function f : Supp(X) 7→ [−1,+1] there is an efficient blockwise
p-tampering attack that increases the average of f over a sampled input by at least Ω(p) ·Var[f(X)].

See Theorem 3.9 for a formalization. Similarly to [1], we also prove a variant of Theorem 1.1 for
the special case of Boolean functions, but with better parameters (see Theorem 3.12). However, some of
the applications of this biasing lemma (e.g., for attacking cryptographic primitives, or attacking learning
algorithms with non-Boolean cost/loss functions) we need to use the non-Boolean attack of Theorem 1.1.

Our main biasing p-tampering attack on bounded functions even applies to the settings whereX is not
a product distribution. In that case, we assume thatX is sampled in a ‘stateful’ way, and that the next block
Xi is sampled conditioned on adversary’s choices of blocks. This extension allows our model to include
previous special models of p-tampering attacks against random walks on graphs [3].

We also prove some applications for our main biasing attack that rely on the blockwise nature of it. In
addition to obtaining attacks against the security of cryptographic primitives as well as multi-source ran-
domness extractors through blockwise p-tampering, we also demonstrate applications beyond cryptography.
In particular, by relying on the power of biasing attacks over non-uniform distributions, we show how to
attack and increase the error of learning algorithms that output classifiers, through an attack that injects a p
fraction of adversarial data in an online way. In what follows we briefly discuss each of these applications.

1.1.1 Attacks on Randomness of Cryptographic Primitives

As mentioned, the bitwise p-tampering attack of [1] for biasing functions was at the core of their attacks
breaking the security of cryptographic primitives by tampering with their randomness. By using our biasing
attack of Theorem 1.1 we immediately obtain blockwise attacks against the same primitives. This time, our
attacks work regardless of how randomness is packed into blocks, and is also ‘robust’ in the sense that the
attack succeeds even if the tampering probabilities p1, p2, . . . are not equal so long as p ≤ pi for all i.3

3In fact, we observe that the bitwise p-tampering attack of [1] can also be shown to be robust. Moreover, we believe robustness
is an important feature for cryptographic attacks and so worth to be studied explicitly.

4

Corollary 1.2 (Informal). Let P be one of the following primitives. CPA secure public-key or private-key
encryption, efficient-prover zero-knowledge proofs for NP, commitment schemes, or two party computation
where only one party gets the output. Then there is an efficient blockwise p-tampering attack that breaks
the security of P with advantage Ω(p). In particular, the attack succeeds even if the length of the tampered
randomness blocks are unknown a priori and only become clear during the attack.

The above theorem could be obtained by plugging in our biasing attack of Theorem 1.1 into the proofs
of [1]. However, for sake of completeness, in Section A we give a formal definition of robust blockwise
attacks breaking the CPA security of public-key encryption schemes, and here we focus on further new
applications of our blockwise p-tampering biasing attacks.

Achieving security against blockwise p-tampering? In addition to presenting the power of bitwise p-
tampering attacks, the work of [1] also showed how to achieve secure protocols against bitwise p-tampering
attacks for ‘forging-based’ primitives such as signatures for p = 1/ poly(κ) where κ is the security param-
eter. For the same primitives, when we move to the blockwise setting, whether or not achieving positive
(secure) results is possible depends on the block sizes of the tampering attack. For example, if the whole
randomness of the key generation algorithm of a signature scheme becomes tamperable as a single block
(with probability p ≥ 1/ poly(κ)) the adversary can choose an insecure key. On the other hand, if all the
blocks are of constant size (or even of size o(lg κ)) similar arguments to those in [1] could be used to make
‘forging-based’ primitives secure for any p ≤ κ−Ω(1).

1.1.2 Efficient Attacks for Biasing Extractors

Our blockwise p-tampering attacks for biasing functions are natural tools for ‘biasing attacks’ against (seed-
less) randomness extractors from block sources.

Biasing multi-source seedless extractors. We can directly use our p-tampering attacks against any spe-
cific, multi-source, seedless randomness extractors [15, 50, 55]. Namely, suppose f is an efficient seedless
extractor who takes n blocks of randomness (x1, . . . , xn) ← (X1 × · · · × Xn) where the distribution Xi

belongs to a class of randomness source. Then, for any choice of samplable X = (X1, . . . , Xn), Theo-
rem 3.12 gives an efficient p-tampering attacker who could transform the distribution X into Y such that
|E[f(Y)]| ≥ Ω(p). Note that the interesting aspect of Y is that it is identical toX in (≈ 1− p) fraction of
the blocks. In particular, as we will see, our attacker of Theorem 1.1 has the property that upon tampering
with each block, all it does is to either leave as is or ‘resample’ it once.

The second application of our p-tampering attacks against extractors is different in the sense that instead
of attacking extractors when unbiased extraction is possible, it gives an alternative algorithmic proof for a
known impossibility result [7, 27, 30, 47] regarding block Santha-Vazirani sources [50]. Below, by U ji =
Ui × · · · × Ui we refer to j blocks each consisting of i uniform bits.

Impossibility of randomness extraction from block-SV sources. The celebrated work of Santha and
Vazirani [50] proved a strong negative result about deterministic randomness extraction from sources with
high min-entropy. An SV source (see Definition 2.10) is a joint distribution (X1, . . . , Xn) over {0, 1}n
with the guarantee that every bit is δ-close to uniform even if we condition on all the previous bits. In
particular, [50] proved that for any deterministic (supposedly extractor) function f : {0, 1}n 7→ {+1,−1},
there is always an δ-SV source X = (X1, . . . , Xn) such that |E[f(X)]| ≥ Ω(δ). The work of Reingold,
Vadhan and Wigderson [47] gave an elegant simple proof for this result using the so called ‘half-space’

5

sources, and this idea found its way into the work of Dodis et al. [27] where they generalized the result
of [50] to block sources [16]. A (`, k)-block SV source is a sequence of blocks of length ` bits such that
each block has min-entropy at least k conditioned on previous blocks (see Definition 2.11).

Even though p-tampering attacks do not generate block-SV sources with ‘high’ min-entropy in general,
we show that the specific p-tampering attacker of our Theorem 1.1 does indeed generate an (`, `− p) block-
SV source. As a result, we get an alternative proof for the impossibility of deterministic extraction from
block-SV sources, but this time through efficient p-tampering attacks.4 In particular, we prove the following.

Theorem 1.3 (Efficient p-tampering attacks against block-SV extractors). Let the function f : {0, 1}`·n 7→
{+1,−1} be a ‘candidate’ efficient deterministic extractor for (`, `− p) block SV sources. Then there is an
efficient p-tampering attack that generates a (`, `− p) block SV source for which the f has average Ω(p).

Our main contribution in Theorem 1.3 is the efficiency of its p-tampering attacker, as without that con-
dition one can prove Theorem 1.3 using a computationally unbounded p-tampering attacker and the proof
implicit in [27, 47] and explicit in [7, 30] for the case of block SV sources. In fact, we prove a more gen-
eral result than Theorem 1.3 by proving the impossibility of efficient bit bit extractors from yet another
generalization of SV sources, called mutual max-divergence [31] (MMD) sources (see Definition 2.8).

1.1.3 Attacking Learners

In this work, we also use our blockwise p-tampering attack in the context of “adversarial” machine learning
[5, 45] where an adversary aims to increase the error of a learning algorithms for a specific test data that is
known to him. In what follows, the reader might find the review of the standard terminology at the beginning
of Section 4.2 useful.

Targeted poisoning attacks against learners. Poisoning attacks (a.k.a causative attacks) [2, 10, 52, 56]
model attacks against learning systems in which the adversary manipulates the training data x = (x1, . . . , xn),
where xi is the i’th labeled training example, in order to increase the error of the learning algorithm. Poison-
ing attacks could model scenarios where the tampering happens over time [48,49] e.g., because the learning
algorithm is retrained daily or weekly using potentially tamperable data. Targeted (poisoning) attacks [6,52]
refer to the setting where the adversary knows a specific test data X over which the hypothesis will be tested,
and she probably has some interest in increasing the error of the hypothesis over that particular test set X .
For simplicity of discussion, below we assume thatX = {(d, t)}where t is the label of d and the adversary’s
goal is to make the learning algorithm output a wrong label for d.

A very natural model for how the poisoning attacks occur was defined by Valiant [54]. In this model,
a training oracle OX(.) for a distribution X (from which the training sequence x = (x1, . . . , xn) will be
sampled) would be manipulated by an adversary as follows. Whenever the training algorithm queries this
oracle, with probability 1− p the answer is generated from the original oracle OX and with probability p a
stateful adversary A gets control over the oracle and answers with an arbitrary pair (d, t). Many subsequent
work (e.g., [12, 39]) studied how to make learners secure against such noise but not in the targeted setting.

Valiant’s model vs. p-tampering. Valiant’s adversarial model for the training oracle is indeed very similar
to our blockwise p-tampering model except for the fact that in the Valiant’s model, the adversary is allowed
to use wrong labels (i.e., xi = (d, t) where t is not the correct label for d). However, as we discussed above,
our p-tampering attackers are not allowed to go out of the ‘support set’ of the distribution (see Definition 4.5).

4Note that this is indeed a stronger condition than just getting a samplable source. See Remark 3.6.

6

In this work, we prove the following attack against deterministic learners of classifiers (see Theorem 4.7 for
a formalization). One subtle difference between the models is that in Valiant’s model, the adversary knows
everything about the current state of the learner, while in our model, the adversary knows the history of the
blocks. For all of our attacks, all adversary needs is to ‘continue’ the computation done by the learner, and
knowing the current state (as in Valiant’s model) allows us to do so, even if the previous blocks are unknown.
Therefore, all of our p-tampering attacks indeed apply in Valiant’s model.

Theorem 1.4 (Informal–Targeted poisoning attacks against classifiers). Let L be a deterministic learning
algorithm L that takes a sequence x = (x1, . . . , xn) of i.i.d samples from the same distribution X , where
xi = (di, `i) and `i is the label of di. Suppose, without tampering, the probability of L making a mistake
on test example d is δ over the choice of x1, . . . , xn ← X . Then there exists a p-tampering attack over the
training sequence (x1, . . . , xn) that increases the error for classifying d to δ′ ≥ δ + Ωδ(p). Moreover, if X
is efficiently samplable, the attack is efficient as well.

Note that the above attacker is a p-tampering one, meaning it never goes out of the support set of the
distribution. In other words, our attacker does not use any wrong labels in its adversarial samples! Therefore,
our attacks are ‘defensible’ in the sense that what they produce is always a possible legitimate outcome of
the honest sampling, so it could not be proved in court that the data is not generated honestly! Previous work
on poisoning attacks (e.g., see [2, 52, 56]) has studied attacks against specific learners, while our result can
be applied to any learner.

Comparison with the distribution-independent setting of [12,39]. Previous works of Kearns and Li [39]
and Bshouty, Eiron, and Kushilevitz [12] have already proved impossibility of PAC learning in Valiant’s
model of adversarial noise. In addition to using wrong label in their attacks (which is not allowed in the
p-tampering model) there is also another distinction between their model and our p-tampering poisoning
attacks. The attacks of the works [12, 39] are in the distribution-independent setting, and their negative
results heavily rely on the existence of some initial distribution that is not PAC learnable under adversarial
noise. Our attacks, on the other hand, apply even to the distribution-specific setting, where the adversary
has no control over the initial distribution, and it can always turn that distribution against the learner.

Comparison with recent positive results achieving algorithmic robustness. On the positive (algorith-
mic) side, the seminal works of Diakonikolas et al. [22] and Lai et al. [41] showed the surprising power
of algorithmic robust inference over poisoned data with error that does not depend on the dimension of the
distribution (but still depends on the fraction of poisoned data). These works led to an active line of work
(e.g., see [14, 23–26, 46] and references therein) exploring the possibility of robust statistics over poisoned
data with algorithmic guarantees. The works of [14, 25] performed list-decodable learning, and [23, 46]
studied supervised learning. In our attacks, however, similarly to virtually all attacks in the literature (over
specific learners and models) we demonstrate inherent power of poisoning attacks (that apply to any learner
and hypothesis class) to amplify the error of classifiers starting from small and perhaps acceptable error
rates, while after the attack the error probability is essentially one. Namely, our results show that in order to
resist poisoning attacks, the same algorithms should do much better in the no-attack setting, as otherwise a
poisoning attacker can increase the targeted error probability significantly.

1.2 Ideas behind Our Blockwise p-Tampering Biasing Attack

In this subsection we describe some of the ideas behind the proof of our Theorem 1.1.

7

Reduction to bitwise tampering? Our first observation is that blockwise p̃-tampering over uniformly
distribute blocks Us1× . . . Usn could be reduced to p-tampering overN =

∑
i si many uniform bits, as long

as 1 − p̃ ≤ (1 − p)si for every si. The idea is that if 1 − p̃ ≤ (1 − p)si , then the probability of the whole
block Usi getting tampered with in the blockwise model is at least the probability that at least one of the bits
are tampered with in the bitwise model. Therefore, a blockwise attacker can ‘emulate’ the bitwise attacker
internally. In Section B we formally describe this rather simple reduction.

However, this reduction is imperfect in three aspects. (1) Firstly, to use this reduction we will need to
use p ≈ p̃/s where s is the maximum length of any block. Therefore, we cannot gain any bias more than
1/s which, in particular, would be at most o(1) for non-constant block sizes s = ω(1). This prevents us
from getting applications (e.g., attacks against extractors) that require large Ω(1) bias. (2) Secondly, this
reduction only works for blocks that are originally distributed as uniform bits (i.e., Us), and so it cannot be
applied to general non-uniform distributions, which is indeed the setting of our p-tampering attacks against
learners. (3) Finally, this reduction does not preserve robustness as the p̃-tampering algorithm would need
to know the exact probabilities under which the tampering happens, while in our applications of blockwise
tampering to cryptographic primitives robustness we aim for robust attacks that do not depend on this exact
knowledge. Because of all this, in this work we aim for a direct attack analyzed in the blockwise regime.

The work of [1] used a so called ‘mild-greedy’ attack for biasing real-valued bounded function in a
bitwise p-tampering attack. Roughly speaking, this attack works as follows. When the tampering happens,
the tampering algorithm first picks a random bits b′i. Then, using a random continuation b′i+1, . . . , b

′
n it

interprets s = f(b1, . . . , bi−1, b
′
i, . . .) as how good the choice of b′i is. Then, using a biased coin based on

s, the tampering algorithm either keeps b′i or it flips it to 1− b′i. This attack, unfortunately, is tailored of the
bitwise setting, as flipping a block is not natural (or even well defined).

Our new one rejection sampling attack. In this work propose a new attack for the blockwise setting that
is inspired by the mild-greedy attack of [1]. Our attack is not exactly a ‘generalization’ of the mild-greedy
attack to the blockwise setting, as even for the case of uniform blocks of one bit, it still differs from the
mild-greedy attack, but it is nonetheless inspired by the one-greedy attack and its analysis also uses ideas
from the analysis of mild-greedy attack [1]. We call our tampering attack one rejection sampling, denoted
by ORSam, and it works as follows: given previously chosen blocks (y1, . . . , yi−1) for X (some of which
might be the tampered blocks) the tampering algorithm ORSam first samples (y′i ← Xi, . . . , y

′
n ← Xn) ‘in

its head’, then gets s = f(y1, . . . , yi−1, y
′
i, . . . , y

′
n), and outputs:{

Case 1: with probability 1+s
2 : keep y′i

Case 2: with probability 1−s
2 : use a fresh sample y′′i ← Xi.

Why does one-rejection sampling work? The main challenge is to show that the simple one-rejection
sampling attack described above actually achieves bias proportional to the variance. In order to relate the
bias to the variance of the function, we first need to define two notations. For every prefix x≤i = x1, . . . , xi
let f̂ [x≤i] = E[f(X)|X1 = x1, . . . , Xi = xi] to be the average of function f w.r.t to distribution X
conditioned on that prefix. Also let g[x≤i] = f̂ [x≤i]− f̂ [x≤i−1] be the change in average of f (i.e., f̂) when
we go from x≤i−1 to x≤i. A straightforward calculation shows that

Var[f(X)] = E
(x1,...,xn)←X

[∑
i∈[n]

g[x≤i]
2
]

=
∑
i∈[n]

E
x≤i←(X1,...,Xi)

[
g[x≤i]

2
]
. (1)

That is simply because the sequence (f̂ [x≤0], . . . , f̂ [x≤n]) forms a martingale. Suppose Y = (Y1, . . . , Yn) is
the new distribution after the p-tampering happens overX . Equation (1) suggests the following natural idea

8

for lower bounding the amount of “global gain” that is achieved for increasing the average d = E[f(Y)]−
E[f(X)] under the attack’s generated distribution by relating it to the variance Var[f(X)]. In particular, it
would suffice to lower bound the “local gains” for average of f when we apply our one rejection sampling
with probability p for a particular block i, by relating it the term E(x1,...,xn)←X [g[x≤i]

2] (for the same fixed
i). Direct calculation shows that the ‘local gain’ obtained by our one-rejection sampling attack for any prefix
x≤i is exactly p

2 · Exi+1←Xi+1 [g[x≤i, xi+1]2].
Unfortunately, a subtle point prevents us from using the above argument, because as soon tampering

happens, we deviate from the original distribution X , and the ‘prefixes’ of the blocks come from a new
distribution Y rather than X , so we cannot directly use to Equation (1) to lower bound the local gains
by relating them to Var[f(X)]. Nonetheless, it can be shown that a variant of Equation (1) still holds
in which, roughly speaking, Var[f(Y)] substitutes Var[f(X)]. Therefore, it would be sufficient to lower
bound Var[f(Y)] based on Var[f(X)]. For this goal, we employ similar ideas to those of [1] to show by
induction over i that at any moment during the attack either the average or the variance of f̂ [x≤i] under the
new tampered distribution Y is large enough. See Section 5 for more details.

1.3 Further Related Work and Models

Since the work of Boneh, DeMillo and Lipton [11] it is known that even random tampering with computation
of certain protocols could lead to devastating attacks. The work of Gennaro, Lysyanskaya, Malkin, Micali,
and Rabin [34] initiated a formal study of algorithmic tamper resilience. Along this direction, non-malleable
codes, introduced by Dziembowski, Pietrzak, and Wichs [33], become a central tool for preventing tamper-
ing attacks on the internal state of an algorithm. More recently, Chandran et al. [13] studied non-malleable
codes in the blockwise tampering model that bears similariteis to our model in this work, though our goals
are completely different. Finally, Bellare, Paterson, and Rogaway [8] initiated the study of algorithm sub-
stitution attacks where a powerful attacker can adversarially substitute components of the algorithm.

Coin-tossing. At a high level, our blockwise tampering attacks, specially for biasing Boolean functions,
have some conceptual similarities to attacks against coin-tossing protocols [9, 18, 20, 37, 44]. Indeed, both
types of attacks aim at biasing a final bit by ‘substituting’ some ‘blocks’. In our setting, the block is the next
sampled chunk of randomness, and for coin tossing blocks are maliciously chosen messages to the other
party! However, the pattern of tampering in such attacks is one out of two complementing sets (referring to
each party’s turns), while in our setting each block becomes tamperable with an independent probability p.

Tampering with ‘bounded budget’. The works of [18, 35, 42] studied the power of related tampering
attacks in the blockwise setting where the goal of the adversary is indeed to bias the output of a function.
However, in these papers, while the adversary has a ‘limited budged’ of how many times to tamper, it can
choose when to tamper with a block, while, in our model the adversary will have no control on about 1− p
fraction of the blocks, and he does not get to choose which blocks will be so. The work of Dodis [28] studies
a ‘mixture’ of both models where the adversary has a bounded budged that she can use upon choice, but she
also gets to tamper ‘randomly’ otherwise.

2 Preliminaries

Logarithms are denoted by lg(·) and, unless specified otherwise, they are in base 2. By a, b ∈ D we mean
that a ∈ D and b ∈ D. For a string x ∈ {0, 1}∗, by |x| = n we denote that x ∈ {0, 1}n. For a randomized

9

algorithm S, we only explicitly represent its input and do not represent its randomness and by y ← S(x) we
denote the process of running S(x) using fresh randomness and getting y as output.

Notation on random variables. Unless specified otherwise, all of the random variables and distributions
in this work are discrete and finite. We use uppercase letters to denote random variables and distributions
(e.g., X). For real valued random variable X , by E[X] and Var[X], we mean (in order) the expected value
and variance of X . We usually use the same letter to refer to distributions and random variables sampled
from them. By Supp(X) = {x | Pr[X = x] > 0} we denote the support set of X . The process of sampling
x from X is denoted by x← X and X ≡ Y is used to show that X and Y are distributed identically.

ByUm we denote the random variable uniformly distributed over {0, 1}m. By (X,Y) we denote random
variables X,Y that are distributed jointly. By (X × Y) we mean (X,Y) where X and Y are independently
sampled from their marginal distribution. For joint random variables (X,Y) and for any y ← Y , by
(X | y) we denote the distribution of X conditioned on Y = y. By using a random variable like X in an
expected value (or probability) we mean that the expected value (or the probability) is also over X (e.g.,
E[f(X)] = Ex←X [f(x)] and Pr[f(X) = 1] = Prx←X [f(x) = 1]). We also use the tradition that the
multiple appearances of the same random variable X in the same phrase refer to identical samples (e.g., it
always holds that Pr[X = X] = 1). For a random variable D, we also use D(x) to denote Pr[D = x].

Definition 2.1 (Bit extraction). Let X be a set of distributions over a domainD. We call a function f : D 7→
{+1,−1} an ε-extractor for X (sources) if for every X ∈ X it holds that |E[f(X)]| ≤ ε.

Definition 2.2. H∞(X) = minx∈Supp(X) lg(1/p(x)) is the min-entropy of X .

Definition 2.3 (Span of distributions). Let X = {X1, . . . , Xk} be a set of distributions over the same
domain. For α1 + · · · + αk = 1, by X =

∑
i∈[k] αiXi we refer to the distribution X such that Pr[X =

a] = X(a) =
∑

i αiXi(a). Namely, X can be sampled by the following process: first sample i ∈ [k] with
probability αi, then sample x← Xi and output x. The span of distributions in X is defined to be the set of
all convex combinations of distributions in X : Span(X) = {X =

∑
i∈[k] αiXi |

∑
i∈[k] αi = 1}.

Lemma 2.4 (Hoeffding’s inequality). Suppose A1, . . . , An are i.i.d random variables distributed over
[−1,+1] with expected value E[Ai] = µ, and let A = Ei←[n][Ai] be their average. Then, for all ε ≥ 0 we
have Pr [|A− µ| ≥ ε] ≤ e−n·ε2/2.

2.1 Distance Measures

Definition 2.5 (Statistical distance). The statistical distance (a.k.a. total variation distance) between random
variables X,Y is defined as

DSD(X,Y) = max
E⊆Supp(X)

Pr[X ∈ E]− Pr[Y ∈ E].

The following lemma gives a well known characterization of the statistical distance.

Lemma 2.6 (Characterizing statistical distance). It holds that DSD(X,Y) ≤ p iff there are distributions
Z,X ′, Y ′ such that X = (1− p)Z + pX ′ and Y = (1− p)Z + pY ′. In particular, if Y = (1− p)X + pZ
then we have DSD(X,Y) ≤ p because it always holds that X = (1− p)X + pX .

Definition 2.7 (KL-divergence). The Kullback-Leibler (KL) divergence from distributionQ to distributionP
is defined as follows: DKL(P ||Q) = Ea←P lg(P (a)/Q(a)) if Supp(P) ⊆ Supp(Q), and DKL(P ||Q) = ∞
if Supp(P) 6⊆ Supp(Q).

10

Definition 2.8 (Max-divergence [31]). The max-divergence D∞(P ||Q) from random variable Q to P is
maxa∈Supp(P) lg(P (a)/Q(a)) if Supp(P) ⊆ Supp(Q), and D∞(P ||Q) =∞, if Supp(P) 6⊆ Supp(Q).

The work of [31] defined the notion of max-divergence using e as the base for logarithm, but in this
work we use a variation of it using base 2, which is the same up to a multiplicative constant factor lg e. The
following lemma lists some of the basic properties of max-divergence (see Definition 2.8).

Lemma 2.9 (Properties of max-divergence). Let X,Y be distributions and p < 1.

1. The following conditions are equivalent.

(a) D∞(X||Y) ≤ lg(1/(1− p)).

(b) For all a ∈ Supp(X) it holds that Pr[X = a] · (1− p) ≤ Pr[Y = a].

(c) There exists some random variable Z such that Y = (1−p)X+pZ. Namely, Y can be sampled
as: with probability 1− p sample from X and with probability p sample from Z.

2. For Supp(Y) ⊆ {0, 1}m, H∞(Y) ≥ k iff D∞(Y ||Um) ≤ m− k.

3. If D∞(X||Y) ≤ r and D∞(Y ||X) ≤ r, then DKL(X||Y) ≤ r(2r − 1).

Proof Sketch. Here we only sketch the proofs as they are straightforward. The equivalence of Parts 1a and
1b directly follows from the definition of max-divergence, so here we only show the equivalence of Parts 1b
and 1c. Assuming Part 1c we have

Pr[X = a] · (1− p) ≤ Pr[X = a] · (1− p) + Pr[Z = a] · p = Pr[Y = a]

which implies Part 1b. Assuming Part 1b, we define the distribution Z over Supp(Y) as follows: Z(a) =
(Y (a) − (1 − p) ·X(a))/p. It is easy to see that Z(a) ≥ 0 and that

∑
a Z(a) = 1, so Z indeed defines a

distribution. Moreover, we have

X(a) · (1− p) + Z(a) · p = X(a) · (1− p) + (Y (a)−X(a) · (1− p)) = Pr[Y = a]

which implies that Y = (1− p)X + pZ, proving Part 1c.
Part 2 directly follows from the definitions of min-entropy and max-divergence.
Part 3 follows from the same proof give in [31] but using the logarithm base 2 instead of e.

2.2 Santha-Vazirani Sources and Their Generalizations

Definition 2.10 (SV sources [50]). A joint distributionX = (X1, . . . , Xn) whereXi ∈ {0, 1} for all i ∈ [n]
is a δ-Santha-Vazirani (δ-SV) source with bias at most δ ∈ [0, 1], if for all i ∈ [n] and all x1, . . . , xi ∈ {0, 1}
it holds that (1− δ)/2 ≤ Pr[Xi = xi | X1 = x1, . . . , Xi−1 = xi−1] ≤ (1 + δ)/2.

The following definition is a close variant of Block SV Sources defined in [16] where we allow the
blocks to have different lengths and specify the amount of loss in the min-entropy (compared to the uniform
distributing) in each block.

Definition 2.11 (Block SV Sources [16]). Suppose X = (X1, . . . , Xn) is a joint distribution where Xi ∈
{0, 1}` for all i ∈ [n]. We callX a (`, k)-block SV source if for all i ∈ [n] and all possible (x1, . . . , xi−1)←
(X1, . . . , Xi−1) it hold that H∞(Xi | x1, . . . , xi−1) ≥ k.

11

It is easy to see that a δ-SV source is a (1, 1−γ)-block-SV source for γ = lg(1+ δ) ≤ δ. The following
definition by Beigi, Etesami and Gohari [7] generalizes the above definitions of SV and Block-SV sources.

Definition 2.12 (Generalized SV Sources [7]). Let D be a set of distributions (dices) over alphabet C.
A distribution X = (X1, . . . , Xn) over Cn is a Generalized SV source w.r.t D if for all i ∈ [n] and
x1, . . . , xi−1 ∈ C there exists S ∈ Span(D) such that for all xi ∈ C it holds that

Pr[Xi = xi | X1 = x1, . . . , Xi−1 = xi−1] = Pr[S = xi].

3 Blockwise p-Tampering: Definitions and Main Results

In this section, we will describe our results formally.

Notation on sequences of random variables. By Dn we denote the product distribution D× · · · ×D (n
times). Using this notation, by Unm we mean a sequence of n blocks each distributed independently like Um.
Thus, although both of Unm and Umn are eventually m · n random bits, one is divided into n blocks and one
is divided into m blocks. For a vector x = (x1, . . . , xn) we let x≤i = (x1, . . . , xi), x<i = (x1, . . . , xi−1).

Definition 3.1 (Valid prefixes and conditional sampling). LetX = (X1, . . . , Xn) be a joint distribution. We
call x≤i = (x1, . . . , xi) a valid prefix for X if there are xi+1, . . . , xn such that (x1, . . . , xn) ∈ Supp(X)
(i.e., x≤i ∈ Supp(X≤i)). We use ValPref(X) to denote the set of all valid prefixes of X (including the
empty string x≤0). For a valid prefix y≤i ∈ ValPref(X), by (Xi | y≤i−1) we denote the conditional
distribution (Xi | X1 = y1, . . . , Xi−1 = yi−1).

Definition 3.2 (Online-samplable sequences of random variables). We call a randomized algorithm S(·) an
online sampler for a joint distribution LetX = (X1, . . . , Xn) if for every valid prefix x≤i−1 ∈ ValPref(X),
it holds that S(x≤i−1) outputs according to (Xi | x≤i−1). IfX =X (n) is a vector from a family of vectors
indexed by n, we letN = N(n) be the total length of the representation ofX (i.e., (X1, . . . , Xn) ∈ {0, 1}N)
and assume that n could be derived from N(n). In that case, an online sampler S(·) forX (n) takes also N
as input and it holds that S(1N , x≤i−1) ≡ (Xi | x≤i−1). We callX = X (n) efficiently online samplable if
there exists an online sampler S for X that runs in polynomial time (i.e. poly(N)). When n is clear from
the context we might simply drop 1N and simply write S(x≤i−1).

Definition 3.3 (Tampering algorithms for sequences of random variables). Let X = (X1, . . . , Xn) be
an arbitrary joint distribution. We call a (potentially randomized and even computationally unbounded)
algorithm Tam an (online) tampering algorithm for X if given any valid prefix x≤i−1 ∈ ValPref(X),
Tam(x≤i−1) always outputs xi such that x≤i ∈ ValPref(X). If X = X (n) is a vector from a family of
vectors indexed by n, we call Tam an efficient tampering algorithm forX if it runs in time poly(N) where
N = N(n) is the total bit length of the vectorX (i.e., (X1, . . . , Xn) ∈ {0, 1}N).

Note that in Definition 3.3, we only allow the tampering algorithm to produce something in the support
set of the joint distribution. The following definition defines a notation for representing the “chances” that
might be given to a tampering algorithm to tamper with the joint distributionX = (X1, . . . , Xn). We need
this generalization to formally define the robustness of p-tampering attack when p changes during the attack.

Definition 3.4 (Probability trees over sequences of random variables). Let X = (X1, . . . , Xn) be an ar-
bitrary joint distribution. We call a function ρ : ValPref(X) 7→ [0, 1] a probability tree over X . For
0 ≤ p ≤ q ≤ 1, we call ρ[·] a [p, q]-probability tree over X if ρ(x≤i) ∈ [p, q] for all x≤i ∈ ValPref(X).
We call ρ[·] the p-probability tree overX if ρ[x≤i] = p for all x≤i ∈ ValPref(X).

12

Now we define the outcome of an actual “tampering game” in which a tampering algorithm gets to
tamper with a joint distributionX = (X1, . . . , Xn) according to some probability tree defined overX .

Definition 3.5 (ρ-tampering variations of distributions). LetX = (X1, . . . , Xn) be an arbitrary joint distri-
bution, and let ρ[·] be a probability tree over X . We say that a tampering algorithm Tam for X generates
Y fromX through a ρ-tampering attack if Y = (Y1, . . . , Yn) is inductively sampled as follows. Given any
valid prefix y≤i−1 ∈ ValPref(Y) we will sample Yi through the following process:

• with probability 1− ρ[y≤i−1], sample Yi from (Xi | X≤i−1 = y≤i−1), and

• with probability ρ[y≤i−1], sample Yi ← Tam(y≤i−1).

Equivalently, using Definition 2.9, for all y≤i−1 ∈ ValPref(Y) we have (Yi | y≤i−1) = (1−ρ[y≤i−1])·(Xi |
X≤i−1 = y≤i−1) + ρ[y≤i−1] · Tam(y≤i−1). In this case, we also call Y a ρ-tampering variation of X . In
case ρ is the constant function p, we call Y a p-tampering variation ofX and we say that Tam generates Y
fromX through a p-tampering attack.

Note that even in cases where we end up sampling Yi from the “untampered” distribution of Xi (which
happens with probability at least 1−ρ[x≤i−1]) we still sample fromXi conditioned on the possibly tampered
prefix (y1, . . . , yi). In other words, the result of the tampering algorithm determines, in case it happens, will
completely substitute the tampered block and the sampling will continue as if the history of the blocks were
from the untampered sequence X1, . . . , Xi. For the special case that Xi’s are independent distributions
(e.g., whenX is uniform distribution over some set Σn) we will not need to do this.

Prefixes remain valid. Note that because in Definition 3.5 the algorithm Tam is a (valid) tampering algo-
rithm forX , all the resulting prefixes will remain valid forX and we will have ValPref(Y) ⊆ ValPref(X).
In fact, we get ValPref(Y) = ValPref(X) if ρ[x≤i] < 1 for all x≤i ∈ ValPref(X). A more general
definition of tampering algorithms (compared to Definition 3.3) could use a larger support set Z where
ValPref(X) ⊂ Z and only require the tampering algorithm to produce prefixes in Z . However, since our
main contributions in this paper is to give attacks, by restricting our model to require the attackers to remain
in ValPref(X) only makes our results stronger.

Remark 3.6 (Efficient tampering vs. efficient sampling). Note that an efficient tampering refers only to
when the algorithm Tam is polynomial time, and it can apply even to settings where X and its variation
generated by Tam are not efficiently samplable. On the other hand, using the standard terminology, X is
efficiently samplable if one can efficiently sample all of the blocks of X simultaneously. Of course, if X
is efficiently online samplable and if Tam is also an efficient tampering for X , then the variation Y of X
produced by tampering attack Tam will also be trivially efficiently online-samplable, but we emphasize that
this is a specific way of getting an efficient sampler for Y , and so the efficiency of our tampering attacks
shall not be confused with mere efficient samplablility of the final distribution Y .

Remark 3.7. An alternative variant of Definition 3.5 could ‘strengthen’ the tampering algorithm Tam who,
now, receives the ‘original’ sample xi before substituting it with something else. Namely, we would first
sample xi ← (Xi | y≤i−1), and then with probability 1 − p we let yi = xi and with probability p we let
yi = Tam(y≤i−1, xi). This definition is natural for scenarios in which the adversary gets to see the first
initial sample and then might decide to change or not change it. However, as long as either (1) tampering is
allowed to be inefficient or (2)X is efficiently online samplable, the power of tampering attacks under this
alternative definition is the same as those under Definition 3.5. To see why, first note that Tam(y≤i−1, xi)

13

can always ignore the extra input xi. In the other direction, suppose Tam′ is a tampering algorithm under
the alternative definition and suppose a tampering algorithm Tam(y≤i−1) is only given y≤i−1. If Tam can
obtain a sample x′i ← (Xi | y≤i−1), then it could also emulate Tam′(y≤i−1, x

′
i). Interestingly, although xi

and x′i might be different samples, this emulation of Tam′(y≤i−1, x
′
i) by Tam leads to the same distribution.

Now we define what it means for a tampering adversary to successfully bias the output of a function,
while being robust to changes in probabilities.

Definition 3.8 (Robust p-tampering attacks for biasing real functions). Let X = (X1, . . . , Xn) be a joint
distribution, f : Supp(X) 7→ R a real function and Tam a tampering algorithm forX .

• For a probability tree ρ overX , we say that Tam is a ρ-tampering attack biasing f(X) by at least δ,
if Tam generates Y fromX through a ρ-tampering attack and E[f(Y)] ≥ E[f(X)] + δ.

• For p ∈ [0, 1], we say that Tam is a p-tampering attack biasing f(X) by at least δ, if Tam a ρ-
tampering attack biasing f(X) by at least δ for the constant probability tree ρ[x≤i] = p.

• We say that Tam is a robust p-tampering attack biasing f(X) by at least δ, if for every [p, 1]-
probability tree ρ overX it holds that Tam is a ρ-tampering attack biasing f(X) by at least δ.

3.1 Main Results: Blockwise p-Tampering of Bounded Functions

Now, we are ready our main results that are about biasing real functions through efficient blockwise p-
tampering attacks. We will then describe our results about the computationally unbounded setting where the
tampering algorithm Tam is not necessarily polynomial time. Our main motivation for studying the com-
putationally unbounded setting is to understand the limitations of what amount of bias could be achieved.
We will then describe the applications of our results for attacking candidate randomness extractors (over
multiple sources or variations of SV sources) through p tampering attacks.

Theorem 3.9 (Efficient blockwise p-tampering of bounded real functions). Let X = (X1, . . . , Xn) be a
joint distribution, f : Supp(X) 7→ [−1,+1] be a real-output function defined over Supp(X). Then there is
a tampering algorithm Tam forX such that:

1. (Bias) Tam is a robust p-tampering attack biasing f(X) by at least Ω(p) · Var[f(X)]. In particular,
if the function f : Supp(X) 7→ {−1,+1} is Boolean, then the bias is at least p

2+2p ·Var[f(X)].

2. (Efficiency) Moreover, Tam could be implemented efficiently given oracle access to any online sam-
pler S(·) for X and f(·). In particular, given only two samples y1

i , y
2
i ← S(y≤i−1), Tam(y≤i−1)

chooses between y1
i , y

2
i by making use of a biased coin that only depends on f̂ [y≤i−1, y

1
i]. Such

biased coin could be sampled efficiently using further calls to S(·) and one call to f(·).

Remark 3.10 (The constant in Theorem 3.9 and the new potential function). In the original version [43] of
this work, Theorem 3.9 was stated with constant 1/7 for the general real-output case, however the old proof
using the original potential function did not hold to imply this constant. In this draft, we had used a slightly
different potential function to still get the main result with a slightly worse constant.

Theorem 3.9 above extends the previous result of [1] from bitwise to blockwise p-tampering, though
with worse constants. See Subsection 5.1 for the full proof of Theorem 3.9.

14

Importance of the efficiency features of the attacker in Theorem 3.9. As we will see in Theorem 3.12
below, we can get better biasing bounds for the Boolean case than p ·Var[f(X)]/4, however, the reason
that we pointed this out in Theorem 3.9 was that result comes along with the efficiency feature specified in
Theorem 3.9 (and this is not the case in our Theorem 3.12 below). As mentioned, the attacker of Theorem
3.9 only needs two honestly generated samples {y1

i , y
2
i } for the next tampered block Xi and chooses one of

them. Interestingly, this means that if the tampering algorithm is actually given an ‘initial true value’ xi for
blockXi (e.g., the honestly generated randomness to be used in a randomized algorithm) then the tampering
algorithm could basically just either keep xi or substitute it with another fresh sample from Xi. This is a
natural attack strategy when the adversary can “reset” the sampling procedure for the block Xi.

Biasing Martingales. An interesting special case of Theorem 3.9 is when the joint distribution X =
(X1, . . . , Xn) is a martingale (i.e., Xi ∈ R and E[Xi | x≤i−1] = xi−1) and f(X) = Xn ∈ [−1,+1]. In
this case, it holds that f̂ [x≤i] = xi, and so our attacker of Theorem 3.9 becomes extremely simple: given
any two samples y1

i , y
2
i ← (Xi | y≤i−1), Tam(y≤i−1) chooses yi = y1

i with a probability that only depends
on y1

i and chooses yi = y2
i otherwise. Note that no further calls to the online sampler nor f(·) is needed!

Moreover, this simple attack not only biases the final value Xn = f(X) but it does bias every other Xi as
well. The reason is that if we define fi(X≤i) = Xi ∈ [−1,+1], then the attacker’s algorithm would be
identical for biasing fi(·) compared to biasing fn(·) = f(·). Therefore, our attack generates a p-tampering
variation Y of X that simultaneously achieves bias Yi ≥ Xi + Ω(p) · Var[Xi] for every block i ∈ [n].
Moreover, the p-tampering is efficient if the martingale is online samplable.

Tampering with only a part of randomness. The specific way that the attacker of Theorem 3.9 chooses
between the two samples {y1

i , y
2
i } for block Xi allows us to generalize the attack to settings where the

tamping happens only over part of the randomness and some subsequent randomness R is also used for
computing f . As we will see, this corollary would also be useful for attacking randomized learners through
the so called ‘targeted poisoning’ attacks.

Corollary 3.11 (Biasing bounded ‘randomized’ functions). Let X = (X1, . . . , Xn) be a joint distribu-
tion, R another distribution, and f : Supp(X × R) 7→ [−1,+1]. For any fixed x ← X , let g(x) =
Er←R[f(x, r)] ∈ [−1,+1]. Then there is a tampering algorithm Tam forX (not receiving R) such that:

1. (Bias) Tam is a robust p-tampering attack biasing g(X) by at least Ω(p) ·Var[g(X)].

2. (Efficiency) Tam could be implemented efficiently given oracle access to any online sampler S(·) for
X and f(·, ·). In particular, Tam(y≤i−1) again chooses between two samples y1

i , y
2
i ← S(y≤i−1)

using further calls to S(·) and one call to f(·, ·) and one sample from R.

Proof of Corollary 3.11 using Theorem 3.9. To derive Corollary 3.11 from Theorem 3.9 we apply Theorem
3.9 directly to the function g(x) = E[f(x,R)], and we rely on the properties specified in the efficiency part
of Theorem 3.9 to derive the efficiency of the new attacker. All we need is to provide a sample from the
distribution Z (for choosing between y1

i , y
2
i ← S(y≤i−1)) when we try to bias g. In order to do so, we can

first sample x ← (X | y≤i−1, y
1
i) using S(·), and then output Z ← f(x,R) using one sample r ← R. By

the linearity of expectation, even though we did not really compute g(x), this way of sampling Z using only
one r ← R has the needed properties for the (average) function g as well.

15

The following theorem gives a better biasing bound for the important special case of Boolean functions.
On the down side, the attacker will be less efficient and asks more queries to the online sampler S(·).5

Theorem 3.12 (Biasing Attacks on Boolean functions). Let X = (X1, . . . , Xn) be a joint distribution,
f : Supp(X) 7→ {+1,−1} a Boolean function defined over Supp(X), and µ = E[f(X)]. Suppose S is a
sampler for X and let N be an upper bound on the total binary length of X = (X1, . . . , Xn) ∈ {0, 1}N ,
and ε < 1 be an input parameter. Then there is a tampering algorithm Tam forX that:

1. (Bias) Tam is a robust p-tampering attack biasing f(X) by ≥ p·(1−µ2)
2−p·(1−µ) −

ε
1+µ .6

2. (Efficiency) Moreover, Tam could be implemented in time poly(N/ε) given oracle access to any
online sampler S(·) forX and f(·). Thus, if ε ≥ 1/ poly(N),X is efficiently online samplable, and
f is efficient, then Tam would be efficient as well.

We prove our Theorem 3.12 using ideas from the attack of [1] also for the Boolean case. In a nutshell,
we follow the same ‘greedy’ approach, but the analysis of the attack in the blockwise setting becomes more
challenging and we can no longer get the same bias of +p in the balanced case. Indeed, as we will show
in Section C, achieving the bias of +p for balanced functions in the blockwise setting is not possible in
general! See Section 5 (in particular Section 5.2) for the full proof of Theorem 3.12.

Remark 3.13 (Robustness vs. p-obliviousness). Note that in both Theorems 3.12 and 3.9 the attackers are
robust in the sense that they work simultaneously for all [p, 1] probability trees (i.e., they only rely on the
lower-bound p for the probability of the tampering to happen for each block). However, this feature of the
attacker should not be confused with another aspect of our attackers that they are p-oblivious, meaning the
tampering algorithm Tam does not rely on knowing p either. Putting these two together, it means that the
attackers of Theorems 3.12 and 3.9 could be “generated” independently of the probability tree ρ under which
the tampering to the randomness will eventually happen, and yet the quality of obtained bias only depend
on the minimum over all the probabilities under which the blocks become tamperable.

Computationally Unbounded p-Tampering. One might wonder what power of blockwise p-tampering
attacks. Even though our focus in this work is on the computationally bounded setting, we also study the
power and limitations of computationally unbounded p-tampering attacks. Showing the power of attackers
in the unbounded model might eventually shed light into how to get better efficient attackers as well, and
proving limitations in this model imply strong limits for efficient tampering algorithms as well. In Section
C we show that the better biasing bound of Theorem 3.12 could be obtained for bounded real functions as
well, but this comes with an inefficient p-tampering, and achieving this bound efficiently remains as an open
question. Perhaps surprisingly, we also show that there are balanced functions over block sources where
the best bias by (even inefficient) p-tampering attacks is smaller than 0.7p. This comes in contrast with the
bitwise p-tampering model where p is the optimal possible bias in general. See Section C for more details.

5The sample complexity measure is an important factor in some of the applications of our biasing attacks. For example, to attack
the soundness of learning algorithms through targeted poisoning attacks, the sample complexity of the attacker translates into how
much ‘fresh’ data is needed to substitute the original training examples when the tampering happens.

6The analysis of the greedy attack of [1] shows that the amount of bias is at least p · (1 − |µ|). Our bound depends on 1 − µ2

instead of 1− |µ|. The reason behind this is that we use a better approximation of the probabilities for the output to be −1 or +1.

16

4 Applications of p-Tampering Biasing Attacks

In this subsection we describe some of the applications of our main results on blockwise p-tampering of
bounded functions in several different contexts.

4.1 Efficient p-Tampering Attacks on Extractors

Rather than proving Theorem 1.3, here we prove a more general result by defining yet another generalization
of SV sources based on the notion of max-divergence [31] (see Definition 2.8) which is tightly related
to p-tampering variations. Intuitively, we will show that X is an (`, γ) block SV source if the uniform
distribution Un` is a p-tampering variation ofX for p ≈ γ. We will then show that our p-tampering attacker
of Theorem 3.9 produces Y such that X itself is a O(p)-tampering variation of Y . We first define the
following generalization of block-SV sources based on max-divergence.

Definition 4.1 (MD and MMD Sources). Let X = (X1, . . . , Xn) be a joint distribution. For real number
r ≥ 0, we call a joint distribution Y = (Y1, . . . , Yn) an (X, r)-max-divergence (MD) source if Supp(Y) =
Supp(X) and for all i ∈ [n], x<i ∈ ValPref(X) the max-divergence D∞((Xi | x<i)||(Yi | x<i)) is at most
r. We call Y an (X, r) mutual MD (MMD) source if in additionX is an (Y , r) MD source as well.

Remark 4.2 (Sources based on other distance measures). The above definition uses max-divergence in order
to limit how ‘far’ the source Y can be from the ‘central’ random process X = (X1, . . . , Xn). Alternative
definitions could be obtained by using other distance metrics and measures. For example, we can also
define (X, r) KL sources to include all distributions Y such that DKL((Xi | x<i)||(Yi | x<i)) ≤ r. A result
of [31] (see Part 3 of Lemma 2.9) shows that any (X, r) mutual MD source is also a (X, r′) KL-source for
r′ = r(2r − 1) which is r′ ≤ r2 for any r ≤ 1.

The following claim shows that MD sources and p-tampering variations are tightly related. The proof
directly follows from definitions of MD sources and p-variations.

Claim 1 (MD sources vs. tampering variations). Y = (Y1, . . . , Yn) is an (X, r)-MD source iff it is a
p-tampering variation ofX for p = 1− 2−r.

The following claim shows that MD sources are also related to SV block sources (in the ‘reverse’ direc-
tion), and its proof directly follows from the definition of MD sources and Part 2 of Lemma 2.9.

Claim 2 (MD sources vs. block SV sources). For a joint distributionX = (X1, . . . , Xn), Un` is an (X, r)-
MD source iffX is an (`, `− r) block SV source. In particular, ifX is an (Un` , `− r)-MMD source, then it
is also an (`, `− r)-block SV source.

Theorem 1.3 follows from Claim 2 above and the following general result about the impossibility of
deterministic extraction from MMD sources.

Theorem 4.3 (Impossibility of extractors from MMD sources). LetX = (X1, . . . , Xn) be a joint distribu-
tion with an efficient online sampler, and let f : Supp(X) 7→ {+1,−1} be an efficient Boolean function.
Then, there is a p-tampering variation Y ofX where:

1. Y is an (X, p) MMD source.

2. |E[f(Y)]| ≥ Ω(p).

17

3. Y is generated by an efficient tampering algorithm Tam.

The first two items in Theorem 4.3 imply that f cannot be an extractor for (X, p) MMD sources for any
X = (X1, . . . , Xn). Moreover, one can show that the source Y is also a (X, p2) KL source because it is a
(X, p) mutual MD source (see Remark 4.2).

Efficiency of the attacker. The last condition shows that the p-tampering attack against such f (as a
candidate extractor) could be implemented by an efficient p-tampering attacker. We emphasize that the
efficiency condition again is crucial here. In fact, if we change the statement of Theorem 4.3 by (1) restricting
X = (Z × · · · × Z) to iid distributions and more importantly (2) allowing Tam to be computationally
unbounded, then we can derive this weaker version of Theorem 4.3 from the recent impossibility result
of [7] for generalized SV sources as follows. Beigi et al. [7] showed that bit extraction with o(1) bias from
generalized SV sources (Definition 2.12) is impossible if (1) all the distributions D ∈ D available to the
adversary have full support over the alphabet set C and that (2) the span of distributions D (see Definition
2.3) has full dimension |C|. To apply their result to MMD sources, we observe that (1) the distribution of
Yi where Y = (Y1, . . . , Yn) is an (X, r) MMD source has full support (i.e., Supp(Z) = C) and that (2)
conditioned on any y≤i−1, the set of all possible distributions for Yi forms a polytope with rank | Supp(Z)|.

Proof of Theorem 4.3. To prove Theorem 4.3 we use Theorem 3.9 and rely on some specific properties of
the p-tampering attacker there. Even though the function f is Boolean, for some minor technical reasons, we
will actually use the p-tampering attacker of Theorem 3.9 for real output functions, which is a bit different.
In the following we will show that this attacker has the properties listed in Theorem 4.3.

First note that without loss of generality, we can assume that E[f(X)] ≥ 0 (as otherwise we can work
with −f and bias it towards +1). In that case, the second and third properties of Theorem 4.3 follow from
the main properties of Tam as stated in Theorem 3.9. However, for getting the first property (that it gives
us an MMD source) we need to get into the actual attack’s description from the proof of Theorem 3.9 given
in Subsection 5.1, which we also describe here. This attacker Tam (for the real output case) is based on
one-rejection sampling (of Construction 5.6) modified as follows. Whenever the tampering algorithm is
given the chance to tamper with a new block (which happens with probability p), the attacker itself tosses a
coin and decides not to tamper with the block with probability 0.5, and otherwise will actually run the one-
rejection sampling of Construction 5.6. Thus, during the execution of the p-tampering attack, the tampering
actually happens with probability p/2.

As described above, the tampering happens with probability p/2, so by Claim 1, it holds that Y is an
(X, r) MD source for r ≤ lg(1/(1 − p/2)) ≤ p (by p ∈ [0, 1]). On the other hand, the one-rejection
sampling is actually used only with probability p/2. Therefore, for every possible y≤i, if we let α =
Pr[Xi = yi | y≤i−1], then it holds that Pr[Yi = yi | y≤i−1] ≤ (1− p/2) · α+ (p/2) · (2α) ≤ (1 + p/2) · α,
because, either no tampering happens with probability 1−p/2 and even if it happens, because the tampering
algorithm only uses two samples for the tampered block, by a union bound, the probability of sampling yi in
this case is at most 2α, which means thatX is an (Y , r) MD source for r ≤ lg(1 +p/2) ≤ p (by p ∈ [0, 1]).

Putting things together, it holds that Y is indeed an (X, p) MMD source.

4.2 Targeted Poisoning Attacks on Learners

Terminology. LetD be the domain containing all the objects of interest in a learning problem, and let C be
a class of concept functions mapping objects inD to a set of labels T . A labeled example from the setD for
a concept function c ∈ C is a pair x = (d, c(d)) where d ∈ D. We use Pc = {(d, c(d)) | d ∈ D} to denote

18

all the labeled examples from D. The goal of a learning algorithm L is to produce a hypothesis h ∈ H after
receiving a sequence x = (x1, . . . , xn) of labeled examples that we call the training sequence, such that h
can predict the label of a given input from D. The examples in the training sequence are usually sampled
independently from a distribution X over Pc through an oracle OX(.) that we call the training oracle. A
subset X ⊆ Pc is a test set if we use it to evaluate the performance of the hypothesis h.

Definition 4.4 (Cost and average cost). A cost function cost : H × 2Pc → [0, 1] captures the quality of
a hypothesis, and the lower the value of cost(h,X), the better h is performing on the examples in X . We
define the average cost function for a learning algorithm L and a test set X according to a specific training
oracle as follows:

costOL (X) = E
x1,...,xn←O
h←L(x1,...,xn)

[cost(h,X)]

For example the cost functions might be the fraction of examples in X that h generate a wrong label
for. The test set itself can consist of only one point, or it might be very large to model the scenario where
sampling an example from X is equivalent to sampling from X .7

Definition 4.5 (p-tampering training oracles). Let OX be the training oracle for a distribution X . A p-
tampering oracle ÔpX works as follows. Whenever the training algorithm queries this oracle, with probability
1−p the answer is generated from the original oracleOX and with probability p a stateful adversary gets the
control over the oracle and answers with an arbitrary pair (d, t) such that (d, t) ∈ Pc. We call ÔpX efficient,
if the pair (d, t) is generated using an efficient p-tampering algorithm that takes as input 1N , where N is the
total length of the training sequence x, and all the previous samples in the training sequence.

We can use our Theorem 3.9 to increase the average cost of even randomized learners where the cost
could also be a real number. In the following theorem we do exactly that. However, the quality of this
attack depends on the variance of the learners success probability (as defined in Theorem 4.6). Thus, a prov-
ably secure randomization defense against our attacks need, as the very least, to upper bound the variance
parameter defined in Theorem 4.6.

Theorem 4.6 (Power of targeted poisoning attack against real cost functions). Let C be a concept class
defined over domain D. Also let L be a (potentially randomized) learning algorithm for C which takes a
sequence of labeled examples x = (x1, . . . , xn) that are sampled using an efficient training oracle OX and
outputs a hypothesis h ∈ H. For any such learning algorithm L that tries to learn a concept c ∈ C, any
p ∈ [0, 1], any test set X and any cost function cost : H× 2Pc → [0, 1] there exists a p-tampering training
oracle ÔpX such that if we sample x using ÔpX instead of OX the average cost increases as

cost
ÔpX
L (X) ≥ costOXL (X) + Ω(p · σ2) where σ2 = Var

x1,...,xn←OX

[
E

h←L(x1,...,xn)
[cost(h,X)]

]
.

Moreover, if L is efficient, X is efficiently samplable, and cost(·) is efficiently computable, then the corre-
sponding p-tampering attack is efficient as well.

Proof. Assume L uses its own randomness r ← R in addition to (x1, . . . , xn) and outputs a hypothesis h.
For a fixed test set X , we define a function f : Cnp × Supp(R)→ [−1,+1] as follows:

f(x1, . . . , xn, r) = 2 · cost(L(x1, . . . , xn, r),X)− 1.

7In case the test data comes from X itself (i.e., X ≡ X), the average cost becomes tightly related to PAC learnability [53]. In
particular, if we define cost to be one whenever the hypothesis h generates a wrong label, then any (ε, δ)-PAC learner has average
cost at most ε+ δ. Conversely, if the average cost is at most γ, then by an averaging argument we get a (

√
γ,
√
γ)-PAC learner.

19

The output of the cost function is between 0 and 1, so the output of f is between −1 and +1. Now by using
our biasing attacks over part of the randomness of randomized functions (i.e., Corollary 3.11) there exists a
p-tampering variation Y of Xn, generated through an efficient tampering attack, that biases f as follows:

µ̂ = E
x1,...,xn←Y

r←R

[f(x1, . . . , xn, r)] > µ+ Ω(p) · v

where µ = E
x1,...,xn←Xn

r←R

[f(x1, . . . , xn, r)] and v = Var
x1,...,xn←Xn

[
E

r←R
[f(x1, . . . , xn, r)]

]
.

Since Y is a p-tampering variation of Xn generated by an efficient tampering attack, there is an efficient

p-tampering training oracle ÔpX that generates Y . By the linearity of expectation, µ̂ = 2 · costÔ
p
X

L (X) − 1,

µ = 2 · costO
p
X

L (X)− 1. In addition, we have v = 4 · σ2, so by replacing µ̂, µ and v we get

cost
ÔpX
L (X) ≥ cost

ÔpX
L (X) + Ω(p) · σ2.

This bound of the above theorem could be indeed very weak as it depends on the variance of the cost
of the generated hypothesis. In particular, the change could be o(1). As we will see, for the special case of
Boolean cost functions (e.g., classification) we can increase the error arbitrarily close to one.

Theorem 4.7 (Power of targeted poisoning attacks against classifiers). Let C be a concept class defined
over domain D. Also let L be a deterministic, learning algorithm for C which takes a sequence of labeled
examples x = (x1, . . . , xn) that are sampled using an efficient training oracle OX and outputs a hypothesis
h ∈ H. For any such learning algorithm L that tries to learn a concept c ∈ C, any p ∈ [0, 1], any test set X
and any cost function cost : H× 2Pc → {0, 1} there exist a p-tampering training oracle ÔpX such that if we
sample x using ÔpX instead of OX , the average cost increases as:

cost
ÔpX
L (X) ≥ δ +

p · (δ − δ2)

1− p · (1− δ)
where δ = costOXL (X).

Moreover, if L and cost(·) are efficient and X is efficiently samplable, then for any ε > 0 our p-tampering

training oracle can be implemented in time poly(n
ε·δ) and achieve cost

ÔpX
L (X) ≥ δ + p·(δ−δ2)

1−p·(1−δ) − ε.
The proof of Theorem 4.7 is based on Theorem 3.12.

Proof of Theorem 4.7. We define a function f : Cnp → [−1,+1] as follows:

f(x1, . . . , xn) = 2 · cost(L(x1, . . . , xn),X)− 1.

Now using Theorem 3.12, there exist a p-tampering variation Y of Xn that biases f as follows:

µ̂ = E
x1,...,xn←Y

≥ µ+
p · (1− µ2)

2− p · (1− µ)
where µ = E

x1,...,xn←Xn
[f(x1, . . . , xn)].

Since Y is a p-tampering variation ofXn, there is an p-tampering training oracle ÔpX that generates Y . With

a simple calculation we have µ̂ = 2 · costÔ
p
X

L (X)− 1 and µ = 2 · δ − 1. By replacing µ̂ and µ we get

cost
ÔpX
L (X) ≥ δ +

p · (δ − δ2)

1− p · (1− δ)
.

The efficient version of our attack also directly follows from the efficient version of Theorem 3.12.

20

A natural Boolean cost function can be defined as

cost(h,X) =

{
0 if h(d) = t for all (d, t) ∈ X
1 otherwise

where the cost function outputs 0 if the hypothesis is correct on all the examples in the test set. A special
interesting case is where X ′ contains a single element t ← X sampled from X itself, but the adversary
knows this test example and hopes to increase the error of classifying t.

Corollary 4.8 (Doubling the error). For small error δ, we can double it by using p ≈ 1/2. Indeed, for every
deterministic learning algorithm L that outputs a hypothesis h by taking a sequence of n labeled examples
generated by an oracle OX and for every Boolean cost function cost : H × 2Pc → {0, 1}, there exist a
p-tampering training oracle ÔpX , using p = 1

2(1−δ) , that doubles the average cost δ = costOXL (X) into 2δ.

5 Efficient p-Tampering Attacks Biasing Bounded Functions

In this section we will formally prove Theorems 3.9 and 3.9 . As described in Section 1.2, some of the ideas
(and even notation) that we use here goes back to the original work of Austrin et. al [1] and here we show
how to extend these arguments to the blockwise setting and overcome challenges that emerge.

Before doing so, we need to define some useful notation for the notions that naturally come up in our
proofs. We will also make some basic observations about these quantities before proving our main theorems.

Definition 5.1 (Functions f̂ , g,G,A,Q). Suppose f : Supp(X) 7→ R is defined over a joint distribution
X = (X1, . . . , Xn), i ∈ [n], and x≤i ∈ ValPref(X) is a valid prefix forX . Then we define the following
with respect to f,X , x≤i.

• fx≤i(·) is a function defined as fx≤i(x≥i+1) = f(x) where x = (x≤i, x≥i+1).

• f̂ [x≤i] = Ex≥i+1←(X≥i+1|x≤i)[fx≤i(x≥i+1)]. We also use µ = f̂ [∅] to denote f̂ [x≤0] = E[f(X)].

• We define the gain of the “node” x≤i (compared to its parent x≤i−1) as g[x≤i] = f̂ [x≤i]− f̂ [x≤i−1].
This defines the change in f̂ [x≤i] after moving to the i’th block.

• For every x≤i−1 and every distribution Z that could depend on x≤i−1 (e.g., Z is the output of a
randomized algorithm that takes x≤i−1 as input) and Supp(Z | x≤i−1) ⊆ Supp(Xi | x≤i−1) we
define:

– The average of the gain over the “children” of node x≤i−1 under distribution (Z | x≤i−1) :

GZ [x≤i−1] = E
xi←(Z|x≤i−1)

[g[x≤i]].

– The average of the absolute value of the gains:

AZ [x≤i−1] = E
xi←(Z|x≤i−1)

[∣∣g[x≤i]
∣∣].

– The average of the squares of the gains:

QZ [x≤i−1] = E
xi←(Z|x≤i−1)

[
g[x≤i]

2
]
.

21

Notation. Throughout following sections, whenever we defineX and f , then we will use all the notations
defined in Definition 5.1 with respect to f andX even if there are other distributions like Y defined.

The following lemma directly follows from the definition of µ and g[x≤i].

Proposition 5.2. For every x ∈ Supp(X), f(x) = µ+
∑

i∈[n] g[x≤i].

The following two intuitive propositions also follow from the definition of GXi [x≤i−1] .

Proposition 5.3. For every valid prefix x≤i−1 ∈ ValPref(X), we have GXi [x≤i−1] = 0.

Proof.

GXi [x≤i−1] = E
xi←(Xi|x≤i−1)

g[x≤i]

(by definition of g[x≤i]) = E
xi←(Xi|x≤i−1)

[
f̂ [x≤i]− f̂ [x≤i−1]

]
(f̂ [x≤i−1] is independent of xi) = E

xi←(Xi|x≤i−1)

[
f̂ [x≤i]

]
− f̂ [x≤i−1]

(by definitions of f̂ [x≤i−1], f̂ [x≤i]) = E
xi←(Xi|x≤i−1)

[
E

x≥i+1←(X≥i+1|x≤i)
[f(x)]

]
− E
x≥i←(X≥i|x≤i−1)

[f(x)]

= E
x≥i←(X≥i|x≤i−1)

[f(x)]− E
x≥i←(X≥i|x≤i−1)

[f(x)]

= f̂ [x≤i−1]− f̂ [x≤i−1] = 0.

Proposition 5.4. Let f : Supp(X) 7→ R be any real-output function. Then for any distribution Y such that
Supp(Y) ⊆ Supp(X) it holds that E[f(Y)]− E[f(X)] =

∑
i∈[n] EY≤i−1

[
GYi [Y≤i−1]

]
.

Proof.

(by Proposition 5.2) E[f(Y)]− E[f(X)] = E
Y

[∑
i∈[n]

[
g[x≤i]]

]
(by the linearity of expectation) =

∑
i∈[n]

E
Y

[
g[Y≤i]

]
=
∑
i∈[n]

E
(Y≤i−1)

E
(Yi|X≤i−1=Y≤i−1)

[
g[Y≤i]

]
(by the definition of G) =

∑
i∈[n]

E
Y≤i−1

[
GYi [Y≤i−1]

]
.

The above analysis holds for any distribution Y as long as Supp(Y) ⊆ Supp(X), but the following
claim is about ρ-tampering variations.

Proposition 5.5. For any probability tree ρ over X , and any ρ-tampering variation Y of X generated
by a (possibly randomized) tampering algorithm Tam, and for any y≤i−1 ∈ ValPref(X), it holds that
GYi [y≤i−1] = ρ[y≤i−1] · GTam[y≤i−1].

22

Proof. The proof simply follows from the definition of of ρ-tampering variations. When we sample from the
distribution (Yi | Y ≤i−1 = y≤i), by definition, with probability 1 − ρ[y≤i−1] we will be sampling Yi from
(Xi | X≤i−1 = y≤i−1) which by Proposition 5.3 leads to gaining GXi [y≤i−1] = 0, and with probability
ρ[y≤i−1] we will be sampling Yi from Tam(y≤i−1) which leads to gaining GTam[y≤i−1]. Putting together,
this implies an average gain of ρ[y≤i−1] · GTam[y≤i−1].

5.1 Biasing Real-Output Functions: Proving Theorem 3.9

In this Section we will prove our Theorem 3.9.

Construction 5.6. Let X = (X1, . . . , Xn) be the joint distribution and f : Supp(X) 7→ [−1,+1]. The
one rejection sampling tampering algorithm ORSam works as follows. Given the valid prefix y≤i−1 ∈
ValPref(X), the tampering algorithm would sample y≥i ← (X≥i | y≤i−1) by multiple invocations of the
online sampler S. Then it computes s = f(y1, . . . , yn) and output from the following random variable.

T =

{
Case 1: with probability 1+s

2 output yi.
Case 2: with probability 1−s

2 output a fresh sample y′i ← S(y≤i−1).

Claim 3. Let f : Supp(X)→ [−1,+1], ρ be every [p, q]-probability tree overX , and µ = E[f(X)]. Then,
the tampering algorithm ORSam of Construction 5.6 generates a ρ-tampering variation Y ofX such that

E[f(Y)] ≥ µ+
p

3 + p ·
(

q
1−q · (1 + |µ|)2 + 3− 3µ

) ·Var[f(X)].

For the special case that f : Supp(X)→ {+1,−1} is Boolean, then we get a better bound of:

E[f(Y)] ≥ µ+
p

2 + 2p
·Var[f(X)]

We first prove Theorem 3.9 using Claim 3, and then we will prove Claim 3.

Proof of Theorem 3.9. We need to show that there is an attack that can bias f by Ω(p) ·Var[f(X)]. For the
Boolean case the proof follows directly from the statement of Claim 3. For the case of real-output functions
we use an attacker that with probability 0.5 uses a fresh sample, and with probability 0.5 it runs the one-
rejection sampling attack of Construction 5.6. This algorithm gives a ρ-tampering variation Y of X such
that ∀y≤i ∈ ValPref(X), p2 ≤ ρ[y≤i] ≤ 1

2 so using Claim 3 we have:

E[f(Y)]−E[f(X)] ≥ p/2

3 + p
2 · ((1 + |µ|)2 − 3µ+ 3)

·Var[f(X)] ≥ p

6 + 10p
·Var[f(X)] ≥ Ω(p)·Var[f(X)].

Remark 5.7 (Bounds for special cases of real-valued functions). As shown above, Claim 3 can be used to
derive the lower bound of p

6+10p ·Var[f(X)] for bias of general real-valued functions through a p-tampering.
Now, for some natural special cases, we list the better bounds that are implied by Claim 3.

• Balanced functions. If the function f is balanced, or even µ ≥ 0, Claim 3 implies the stronger bound
of p

6+4p ·Var[f(X)] for the bias.

23

• Bounded tampering probability p. If we know that the tampering probability does not happen with
probability more than 1/2, namely q ≤ 1/2 (e.g., if the tampering probability is fixed for some
p = q ≤ 1/2), then we do not need to scale down the tampering probability and the one-resetting
attack of Construction 5.6 gives bias at least p

3+10p ·Var[f(X)] already.

• Having both properties. If we have both of the properties above, we get the best of both which is a
lower bound of p

3+4p ·Var[f(X)] ≥ p
7 ·Var[f(X)] for the achieved bias.

In the rest of this section, we will prove Claim 3. All along we use Y to denote the ρ-tampering variation
ofX generated by one rejection sampling algorithm ORSam of Construction 5.6.

Claim 4. Let T ≡ ORSam(y≤i−1) be a random variable defined over the randomness of ORSam running
on a valid prefix y≤i−1 ∈ ValPref(X). The probability distribution of this random variable is:

Pr[T = yi] =

(
1 +

g[y≤i]

2

)
· Pr[Xi = yi | y≤i−1].

Proof. We have two cases in the attack. We first compute the probability of Case 1.

Pr[Case 1 ∧ T = yi] = E
y>i←(X>i|y≤i−1)

[
1 + f(y)

2

]
· Pr[Xi = yi | y≤i−1] =

(
1 + f̂ [y≤i]

2

)
· Pr[Xi = yi | y≤i−1].

On the other hand, the probability of Case 2 is

Pr[Case 2 ∧ T = yi] = Pr[T = yi | Case 2] · Pr[Case 2]

= Pr[Xi = yi | y≤i−1] · E
y>i−1←(X>i−1|y≤i−1)

[
1− f(y)

2

]
= Pr[Xi = yi | y≤i−1] ·

(
1− f̂ [y≤i−1]

2

)
.

Thus, we have

Pr[T = yi] = Pr[Case 1 ∧ T = yi] + Pr[Case 2 ∧ T = yi]

=

(
1 + f̂ [y≤i]

2

)
· Pr[Xi = yi | y≤i−1] + Pr[Xi = yi | y≤i−1] ·

(
1− f̂ [y≤i−1]

2

)

=

(
1 +

g[y≤i]

2

)
· Pr[Xi = yi | y≤i−1].

Corollary 5.8. For any y≤i ∈ ValPref(X), it holds that

Pr[Yi = yi | y≤i−1] =

(
1 +

ρ[y≤i−1] · g[y≤i]

2

)
· Pr[Xi = yi | y≤i−1].

24

Proof. By definition of Y we have

Pr[Yi = yi | y≤i−1] = (1− ρ[y≤i−1]) · Pr[Xi = yi | y≤i−1] + ρ[y≤i−1] · Pr[yi = ORSam(y≤i−1)]

(by Claim 4) = (1− ρ[y≤i−1] + ρ[y≤i−1] · (1 +
g[y≤i]

2
)) Pr[Xi = yi | y≤i−1]

=

(
1 +

ρ[y≤i−1] · g[y≤i]

2

)
· Pr[Xi = yi | y≤i−1].

Lemma 1. Let X = (X1, . . . , Xn). For every function f : Supp(X) → [−1,+1] and every [p, 1]-
probability tree ρ over X , if Y is the ρ-tampering variation of distribution X generated by tampering
algorithm ORSam of Construction 5.6, and if µ = E[f(X)], then it holds that

E[f(Y)] ≥ µ+
p

2(1 + p)
·
(
E[f(Y)2]− µ2

)
.

Boolean case. The above finishes the proof for the case of Boolean f , because f(Y)2 = 1, and so

E[f(Y)]− µ ≥ p

2(1 + p)
·
(
E[f(Y)2]− µ2

)
=

p

2(1 + p)
·
(
1− µ2

)
=

p

2(1 + p)
·Var[f(X)].

Before proving the above lemma, we will need to prove several other claims.

Claim 5 (One rejection sampling’s local gains). For any y≤i ∈ ValPref(X), it holds that

GORSam[y≤i−1] = QXi [y≤i−1]/2.

Proof. First note that GORSam[y≤i−1] =
∑

yi
Pr[yi = ORSam(y≤i)] · g[y≤i]. By Claim 4 we get

GORSam[y≤i−1] =
∑
yi

Pr[Xi = yi | y≤i−1] ·
(

1 +
g[y≤i]

2

)
· g[y≤i]

=
∑
yi

Pr[Xi = yi | y≤i−1] · g[y≤i] +
∑
yi

Pr[Xi = yi | y≤i−1] · g[y≤i]
2

2

= GXi [y≤i−1] +
QXi [y≤i−1]

2
.

By Proposition 5.3 we also know that GXi [y≤i−1] = 0, so GORSam[y≤i−1] = QXi [y≤i−1]/2.

Corollary 5.9. For any y≤i−1 ∈ ValPref(X), it holds that GYi [y≤i−1] =
ρ[y≤i−1]

2 · QXi [y≤i−1].

25

Proof.

GYi [y≤i−1] =
∑
yi

Pr[yi = Yi | y≤i−1] · g[y≤i]

=
∑
yi

(
(1− ρ[y≤i−1]) · Pr[yi = Xi | y≤i−1]

)
· g[y≤i]

+
∑
yi

(
ρ[y≤i−1] · Pr

[
yi = ORSam(y≤i−1)

])
· g[y≤i]

= (1− ρ[y≤i−1]) · GXi [y≤i−1] + ρ[y≤i−1] · GORSam[y≤i−1]

(by Proposition 5.3) = ρ[y≤i−1] · GORSam[y≤i−1]

(by Claim 5) =
ρ[y≤i−1]

2
· QXi [y≤i−1].

Corollary 5.10. EY [f(Y)] = µ+
∑n

i=1 EY≤i−1

[
ρ[Y≤i−1]

2 · QXi [Y≤i−1]
]
.

Proof. Using Claim 5.4, we have EY [f(Y)] = µ +
∑n

i=1 EY≤i−1
[GYi [Y≤i−1]] . By also using Corollary 5

we obtain EY [f(Y)] = µ+
∑n

i=1 EY≤i−1

[
ρ[Y≤i−1]

2 · QXi [Y≤i−1]
]
.

Claim 6. For every x ∈ Supp(X), it holds that

f(x)2 = µ2 +
n∑
i=1

(
g[x≤i]

2 + 2f̂ [x≤i−1] · g[x≤i]
)
.

Proof. By squaring the equation in Proposition 5.2 we get

f(x)2 = µ2 +

n∑
i=1

g[x≤i]
2 + 2

n∑
i=1

g[x≤i] · (µ+

i−1∑
j=1

.g[x≤j])

By the definition of g[x≤j] it holds that f̂ [x≤i−1] = µ+
∑i−1

j=1 g[x≤j]. So we get

f(x)2 = µ2 +
n∑
i=1

(
g[x≤i]

2 + 2f̂ [x≤i−1] · g[x≤i]
)
.

Claim 7. For any y≤i−1 ∈ ValPref(X), it holds that

QYi [y≤i−1] = QXi [y≤i−1] + E
Xi|y≤i−1

[
ρ[y≤i−1]

2
· g[(y≤i−1, Xi)]

3

]
.

26

Proof.

QYi [y≤i−1] = E
Yi|y≤i−1

[g[(y≤i−1, Yi)]
2]

=
∑
yi

Pr[Yi = yi | y≤i−1] · g[y≤i]
2

(by Corollary 5.8) =
∑
yi

(1 +
ρ[y≤i−1]

2
· g[y≤i]) · Pr[Xi = yi | y≤i−1] · g[y≤i]

2

=
∑
yi

Pr[Xi = yi | y≤i−1] · g[y≤i]
2 +

ρ[y≤i−1]

2
· Pr[Xi = yi | y≤i−1] · g[y≤i]

3

= QXi [y≤i−1] + E
Xi|y≤i−1

[
ρ[y≤i−1]

2
g[(y≤i−1, Xi)]

3

]

Claim 8. For any y≤i−1 ∈ ValPref(X), it holds that

f̂ [y≤i−1] · QXi [y≤i−1] + E
Xi|y≤i−1

[
g[(y≤i−1, Xi)]

3
]
≤ QXi [y≤i−1].

Proof. EXi|y≤i−1
[g[(y≤i−1, Xi)]

3] + f̂ [y≤i−1] · QXi [y≤i−1]] is equal to:

= E
Xi|y≤i−1

[g[(y≤i−1, Xi)]
3] + f̂ [y≤i−1] · E

Xi|y≤i−1

[g[(y≤i−1, Xi)]
2]

= E
Xi|y≤i−1

[g[(y≤i−1, Xi)]
3] + E

Xi|y≤i−1

[f̂ [y≤i−1] · g[(y≤i−1, Xi)]
2]

(by linearity of expectations) = E
Xi|y≤i−1

[
g[(y≤i−1, Xi)]

3 + f̂ [y≤i−1] · g[(y≤i−1, Xi)]
2
]

= E
Xi|y≤i−1

[(
g[(y≤i−1, Xi)] + f̂ [y≤i−1]

)
· g[(y≤i−1, Xi)]

2
]

(by the definition of g[(y≤i−1, Xi)]) = E
Xi|y≤i−1

[f̂ [(y≤i−1, Xi)] · g[(y≤i−1, Xi)]
2].

Now, because f̂ [(y≤i−1, Xi)] ≤ 1, the above is at most EXi|y≤i−1
[g[(y≤i−1, Xi)]

2] = QXi [y≤i−1].

Claim 9. For any [p, 1]-probability tree ρ overX it holds that

E[f(Y)2] ≤ µ2 +
1 + p

p
·
n∑
i=1

E
Y≤i−1

[ρ[Y≤i−1]QXi [Y≤i−1]] .

27

Proof. Using Claim 6 we have

E
Y

[f(Y)2]− µ2 =
n∑
i=1

E
Y

[
g[Y≤i]

2 + 2f̂ [Y≤i−1] · g[Y≤i]
]

=
n∑
i=1

E
Y≤i−1

[E
Yi|Y≤i−1

[g[Y≤i]
2]] + 2

n∑
i=1

E
Y≤i−1

[f̂ [Y≤i−1] · E
Yi|Y≤i−1

[g[Y≤i]]]

=
n∑
i=1

E
Y≤i−1

[QYi [Y≤i−1]] + 2
n∑
i=1

E
Y≤i−1

[f̂ [Y≤i−1] · GYi [Y ≤i−1]]

(by Claim 7) =
n∑
i=1

E
Y≤i−1

[
QXi [Y≤i−1] +

ρ[Y≤i−1]

2
E

Xi|Y≤i−1

[g[(Y≤i−1, Xi)]
3]

]

+
n∑
i=1

E
Y≤i−1

[
2f̂ [Y≤i−1] · GYi [Y≤i−1]

]
(by Corollary 5.9) =

n∑
i=1

E
Y≤i−1

[
QXi [Y≤i−1] +

ρ[Y≤i−1]

2
E

Xi|Y≤i−1

[g[(Y≤i−1, Xi)]
3]

]

+

n∑
i=1

E
Y≤i−1

[
ρ[Y≤i−1]f̂ [Y≤i−1]QXi [Y≤i−1]

]
(by Claim 8) ≤

n∑
i=1

E
Y≤i−1

[
QXi [Y≤i−1] +

ρ[Y≤i−1]

2
· QXi [Y≤i−1]

]

+

n∑
i=1

E
Y≤i−1

[
ρ[Y≤i−1]

2
· f̂ [Y≤i−1] · QXi [Y≤i−1]

]

(by f̂ [Y≤i−1] ≤ 1) ≤
n∑
i=1

E
Y≤i−1

[(1 + ρ[Y≤i−1]) · QXi [Y≤i−1]]

(by ρ[Y≤i−1] ≥ p) ≤
(

1

p
+ 1

)
·
n∑
i=1

E
Y≤i−1

[ρ[Y≤i−1] · QXi [Y≤i−1]].

Now we will prove Lemma 1.

Proof of Lemma 1. Using Claim 9 we have

n∑
i=1

E
Y≤i−1

[ρ[Y≤i−1] · QXi [Y≤i−1]] ≥ p

1 + p
· (E
Y

[f(Y)2]− µ2)

By also applying Corollary 5.10 we get E[f(Y)] ≥ µ+ p
2(1+p) · (E[f(Y)2]− µ2).

Lemma 2. Let f : X → [−1,+1], µ = E[f(X)], ν = Var[f(X)], and ρ be a [0, q]-probability tree over
X . If Y is the ρ-tampering variation of distributionX generated by ORSam of Construction 5.6, then:

E
Y

[f(Y)] +
3(1− q)

2q · (1 + |µ|)2
· E
Y

[
(f(Y)− µ)2

]
≥ µ+

(1− q) · ν
q · (1 + |µ|)2

.

28

Before proving Lemma 2 we need to define a few useful functions.

Definition 5.11 (Potential function). Let t : Supp(X) → [−1,+1] be an arbitrary function, and define t̂
similarly to f̂ of Definition 5.1; namely, t̂[x≤i] = Ex≥i+1←(X≥i+1|x≤i)[tx≤i(x≥i+1)]. We define the potential
function Φ: ValPref(X)→ R based on t as follows

Φ(y≤i) = f̂ [y≤i] +
1− q
q
· t̂[y≤i] +

1− q
2q
· (t̂[y≤i])2.

Claim 10 (Potential function does not decrease). E[Φ(Y≤i)] ≥ E[Φ(Y≤i−1)].

Before proving Claim 10, note that Lemma 2 immediately follows from Claim 10.

Proof of Lemma 2. Using Claim 10 together with a simple induction we get

E[Φ(Y≤n)] ≥ E[Φ(Y≤0)].

Now by setting t(y) =
(
f(y)−µ
1+|µ|

)2
, which its outputs are in the range [0, 1]. One the one side, we get

E[Φ(Y≤n)] = E
Y

[f(Y)] +
1− q
q
· E
Y

[(
f(Y)− µ

1 + |µ|

)2
]

+
1− q

2q
· E
Y

[(
f(Y)− µ

1 + |µ|

)4
]

≤ E
Y

[f(Y)] +
3(1− q)

2q
· E
Y

[(
f(Y)− µ

1 + |µ|

)2
]

and, on the other side, by letting i = 0, we get

E[Φ(Y≤0)] = E
X

[f(X)] +
1− q
q
· E
X

[(
f(X)− µ

1 + |µ|

)2
]

+
1− q

2q
· E
X

[(
f(X)− µ

1 + |µ|

)2
]2

= µ+
(1− q) · ν
q · (1 + |µ|)2

+
(1− q) · ν2

2q · (1 + |µ|)4

≥ µ+
(1− q) · ν
q · (1 + |µ|)2

.

Now, we prove Claim 10.

Proof of Claim 10. For every y≤i ∈ ValPref(X) we define r[y≤i] = t̂[y≤i]− t̂[y≤i−1]. It is easy to see that

29

Eyi←(Xi|y≤i−1)[r[y≤i]] = 0, based on Proposition 5.3. Now we have

E[Φ(Y≤i)] = E
Y≤i

[
f̂ [Y≤i]

]
+

1− q
q

E
Y≤i

[
t̂[Y≤i]

]
+

1− q
2q

E
Y≤i

[
t̂[Y≤i]

2
]

= E
Y≤i−1

[
f̂ [Y≤i] + E

Yi|Y≤i−1

[g[Y≤i]]

]
+

1− q
q

E
Y≤i−1

[
t̂[Y≤i−1] + E

Yi|Y≤i−1

[r[Y≤i]]

]
+

1− q
2q

E
Y≤i−1

[
t̂[Y≤i−1]2 + E

Yi|Y≤i−1

[
2 · r[Y≤i] · t̂[Y≤i−1] + r[Y≤i]

2
]]

= E
Y≤i−1

[
f̂ [Y≤i]

]
+

1− q
q

E
Y≤i−1

[
t̂[Y≤i−1]

]
+

1− q
2q

E
Y≤i−1

[
t̂[Y≤i−1]2

]
+ E
Y≤i

[g[Y≤i]] +
1− q
q

E
Y≤i

[r[Y≤i]] +
1− q

2q
E
Y≤i

[
2 · r[Y≤i] · t̂[Y≤i−1] + r[Y≤i]

2
]

= E [Φ(Y≤i−1)] + E
Y≤i

[g[Y≤i]] +
1− q
q

E
Y≤i

[r[Y≤i]]

+
1− q

2q
E
Y≤i

[
2 · r[Y≤i] · t̂[Y≤i−1] + r[Y≤i]

2
]

= E [Φ(Y≤i−1)] + E
Y≤i−1

[
E

Yi|Y≤i−1

[g[Y≤i]] +
1− q
q

E
Yi|Y≤i−1

[r[Y≤i]]

]
+ E
Y≤i−1

[
1− q

2q
E

Yi|Y≤i−1

[
2t̂[Y≤i−1]r[Y≤i] + r[Y≤i]

2
]]
.

Now, it is enough to show that the the following quantity c is positive for all valid y≤i−1 ∈ ValPref(X):

c[y≤i−1] = E
yi←(Yi|y≤i−1)

[
g[y≤i] +

1− q
q
· r[y≤i] +

1− q
2q
·
(
2t̂[y≤i−1] · r[y≤i] + r[y≤i]

2
)]
.

We decompose c into four value c1, c2, c3, c4 as follows:

c1[y≤i−1] = E
yi←(Yi|y≤i−1)

[g[y≤i]], c2[y≤i−1] = E
yi←(Yi|y≤i−1)

[r[y≤i]]

c3[y≤i−1] = E
yi←(Yi|y≤i−1)

[2t̂[y≤i−1] · r[y≤i]], c4[y≤i−1] = E
yi←(Yi|y≤i−1)

[r[y≤i]
2].

Based on these definitions we have c = c1 + 1−q
q · c2 + 1−q

2q · c3 + 1−q
2q · c4. We bound each one of these

values separately then add them together. For c1 we have,

c1[y≤i−1] = E
yi←(Yi|y≤i−1)

[g[y≤i]] =
∑
yi

Pr[yi = Yi | y≤i−1] · g[y≤i]

(by Corollary 5.8) =
∑
yi

(
1 +

ρ[y≤i−1] · g[y≤i]

2

)
· Pr[Xi = yi | y≤i−1] · g[y≤i]

= E
yi←(Xi|y≤i−1)

[g[y≤i]] +
ρ[y≤i−1]

2
E

yi←(Xi|y≤i−1)
[g[y≤i]

2]

(by Proposition 5.3) =
ρ[y≤i−1]

2
E

yi←(Xi|y≤i−1)
[g[y≤i]

2].

30

For c2 we have,

c2[y≤i−1] = E
yi←(Yi|y≤i−1)

[r[y≤i]] =
∑
yi

Pr[yi = Yi | y≤i−1] · r[y≤i]

(by Corollary 5.8) =
∑
yi

(
1 +

ρ[y≤i−1] · g[y≤i]

2

)
· Pr[Xi = yi | y≤i−1] · r[y≤i]

= E
yi←(Xi|y≤i−1)

[r[y≤i]] +
ρ[y≤i−1]

2
E

yi←(Xi|y≤i−1)
[g[y≤i] · r[y≤i]]

(by Proposition 5.3) =
ρ[y≤i−1]

2
E

yi←(Xi|y≤i−1)
[g[y≤i] · r[y≤i]]

≥ ρ[y≤i−1]

2
E

yi←(Xi|y≤i−1)
[−|g[y≤i]| · |r[y≤i]|].

For c3 we have,

c3[y≤i−1] = E
yi←(yi|y≤i−1)

[2t̂[y≤i−1] · r[y≤i]]

=
∑
yi

2 Pr[yi = Yi | y≤i−1] · t̂[y≤i−1] · r[y≤i]

(by Corollary 5.8) =
∑
yi

2

(
1 +

ρ[y≤i−1] · g[y≤i]

2

)
· Pr[Xi = yi | y≤i−1] · 2t̂[y≤i−1] · r[y≤i]

= E
yi←(Xi|y≤i−1)

[2t̂[y≤i−1] · r[y≤i]] +
ρ[y≤i−1]

2
· E
yi←(Xi|y≤i−1)

[2t̂[y≤i−1] · r[y≤i] · g[y≤i]]

= 2t̂[y≤i−1] · E
yi←(Xi|y≤i−1)

[r[y≤i]] + ρ[y≤i−1] · E
yi←(Xi|y≤i−1)

[t̂[y≤i−1] · r[y≤i] · g[y≤i]]

(by Proposition 5.3) = ρ[y≤i−1] · E
yi←(Xi|y≤i−1)

[t̂[y≤i−1] · r[y≤i] · g[y≤i]]

(|t̂[y≤i−1]| is at most 1) ≥ ρ[y≤i−1] · E
yi←(Xi|y≤i−1)

[−|g[y≤i]| · |r[y≤i]|].

And finally for c4 we have,

c4[y≤i−1] = E
yi←(Yi|y≤i−1)

[r[y≤i]
2] =

∑
yi

Pr[yi = Yi | y≤i−1] · r[y≤i]2

(by Corollary 5.8) =
∑
yi

(
1 +

ρ[y≤i−1] · g[y≤i]

2

)
· Pr[Xi = yi | y≤i−1] · r[y≤i]2

= E
yi←(Xi|y≤i−1)

[(1 +
ρ[y≤i−1] · g[y≤i]

2
) · r[y≤i]2]

(g[y≤i] is at least -2) ≥ (1− ρ[y≤i−1]) · E
yi←(Xi|y≤i−1)

[r[y≤i]
2].

31

By adding this inequalities together we have

c[y≤i−1] ≥ E
yi←Yi|y≤i−1

[
ρ[y≤i−1]

2
g[y≤i]

2 − ρ[y≤i−1](1− q)
q

∣∣g[y≤i]
∣∣ · ∣∣r[y≤i]∣∣]

+ E
yi←Yi|y≤i−1

[(
(1− q)(1− ρ[y≤i−1])

2q
r[y≤i]

2

)]
= E

yi←Yi|y≤i−1

[
ρ[y≤i−1]

2

(
g[y≤i]

2 − 2(1− q)
q

∣∣g[y≤i]
∣∣ · ∣∣r[y≤i]∣∣)]

+ E
yi←Yi|y≤i−1

[
ρ[y≤i−1]

2

(
(1− q) · (1− ρ[y≤i−1])

q · ρ[y≤i−1]
r[y≤i]

2]

)]
(by ρ[y≤i−1] ≤ q) ≥ E

yi←Yi|y≤i−1

[
ρ[y≤i−1]

2

(
g[y≤i]

2 − 2(1− q)
q

∣∣g[y≤i]
∣∣ · ∣∣r[y≤i]∣∣)]

+ E
yi←Yi|y≤i−1

[
ρ[y≤i−1]

2

(
(1− q)2

q2
r[y≤i]

2

)]
= E

yi←Yi|y≤i−1

[
ρ[y≤i−1]

2

(∣∣g[y≤i]
∣∣− ∣∣(1− q) · r[y≤i]

q

∣∣)2
]
≥ 0.

So c[y≤i−1] ≥ 0 for every valid prefix y≤i−1 ∈ ValPref(X) which finishes the proof of Claim 10.

Finally, we prove Claim 3.

Proof of Claim 3. Let µ′ = E[f(Y)] and b = µ′ − µ, we have

E[f(Y)] +
3(1− q)

2q · (1 + |µ|)2
· E[(f(Y)− µ)2] = µ′ +

3(1− q)
2q · (1 + |µ|)2

·
(
E[f(Y)2] + µ2 − 2µ · µ′

)
(By µ′ = µ+ b) = µ′ +

3(1− q)
2q · (1 + |µ|)2

·
(
E[f(Y)2]− µ2 − 2µ · b

)
(By Lemma 1) ≤ µ′ + 3(1− q)

2q · (1 + |µ|)2
·
(
b · (2 + 2p)

p
− 2µ · b

)

Now using the above inequality together with Lemma 2 we get

µ′ +
3(1− q)

2q · (1 + |µ|)2
·
(
b · (2 + 2p)

p
− 2µb

)
≥ µ+

1− q
q · (1 + |µ|)2

· ν

which implies that

b ·
(

1 +
3(1− q)

2q · (1 + |µ|)2
·
(

2 + 2p

p
− 2µ

))
≥ 1− q
q · (1 + |µ|)2

· ν

and finally we get:

E[f(Y)]− E[f(X)] = b ≥ p

3 + p ·
(

q
1−q · (1 + |µ|)2 + 3− 3µ

) · ν.

32

5.2 Biasing Boolean Functions: Proving Theorem 3.12

In this section we will prove Theorem 3.12. Our proof follows ideas from the greedy attack of [1] and
extend them to the blockwise setting. Despite using a similar attack, the analysis of our attack leads to
weaker bounds because of being in the blockwise setting. In fact, to see why the analysis needs to be
different, note that as we saw in Proposition C.3, as opposed to the binary setting achieving bias of +p in
the blockwise setting for balanced functions is now impossible in general. In addition, making it efficient
becomes further challenging in the blockwise setting. The reason is that as opposed to the binary setting,
for large alphabets where we had only two choices, when the block sizes grow, we might never get a chance
to sample the best possible choice for the tampered block.

In the following, we will first prove Theorem 3.12 using an inefficient (ideal greedy) tampering algo-
rithms, and then we will show how to make it efficient with some little loss in the final bias.

5.2.1 Part 1: Ideal (Inefficient) Greedy Tampering

Construction 5.12 (Ideal Greedy). Let X = (X1, . . . , Xn) be a joint distribution and f : Supp(X) 7→
{+1,−1}. The ideal greedy tampering algorithm GTam works as follows.8 Given a valid prefix y≤i−1 ∈
ValPref(X), it holds that GTam(y≤i−1) = yi where yi is such that f̂ [y≤i] ≥ f̂ [(y1, . . . , yi−1, y

′
i)] for all

valid prefixes (y1, . . . , yi−1, y
′
i) ∈ ValPref(X). If there are multiple such yi, we choose the first one.

Lemma 5.13. For every p ≤ 1, the tampering algorithm of Construction 5.12 proves Part 1 of Theorem 3.12.
Namely, it gives a robust p-tampering attack that biases f(X) up by ≥ p·(1−µ2)

2−p·(1−µ) where µ = E[f(X)].

In the rest of this subsection we prove Lemma 5.13.

Claim 5.14 (Ideal Greedy’s local gains). For any y≤i−1 ∈ Supp(X≤i−1), it holds that

GGTam[y≤i−1] ≥ 1

2
· AXi [y≤i−1]

where GTam is the ideal greedy tampering of Construction 5.12.

Proof. Let us define

A+
Xi

[y≤i−1] =
∑

yi : g[y≤i]>0

[
Pr[yi = Xi | y≤i−1] ·

∣∣g[y≤i−1]
∣∣] and

A−Xi [y≤i−1] =
∑

yi : g[y≤i]<0

[
Pr[yi = Xi | y≤i−1] ·

∣∣g[y≤i−1]
∣∣].

It holds that AXi [y≤i−1] = A+
Xi

[y≤i−1] +A−Xi [y≤i−1]. Also, by Proposition 5.3 it holds that GXi [y≤i−1] =

A+
Xi

[y≤i−1]−A−Xi [y≤i−1] = 0. Therefore it holds that

AXi [y≤i−1] = 2 · A+
Xi

[y≤i−1]. (2)

8The ideal greedy could be defined for real-output functions as well, but as observed in [1], it will not lead to successful biasing
attacks for general real-output functions.

33

On the other hand, we have:

A+
Xi

[y≤i−1] =
∑

yi : g[y≤i]>0

Pr[yi = Xi | y≤i−1] · g[y≤i−1]

(GTam maximizes g[y≤i]) ≤
∑

yi : g[y≤i]>0

Pr[yi = Xi | y≤i−1] · GGTam[y≤i−1]

= GGTam[y≤i−1] · Pr
yi←(Yi|y≤i−1)

[g[y≤i] > 0] ≤ GGTam[y≤i−1].

Therefore by Equation (2), we get AXi [y≤i−1]/2 ≤ GGTam[y≤i−1] which proves the claim.

Claim 5.15. For any ρ-tampering variation Y ofX generated by (potentially randomized) tampering algo-
rithm Tam, and for any y≤i−1 ∈ ValPref(X) it holds that

AYi [y≤i−1] = ρ[y≤i−1] · ATam[y≤i−1] + (1− ρ[y≤i−1]) · AXi [y≤i−1].

Proof. The proof, similarly to that of Claim 5.5, directly follows from the definition of the distribution Yi.
Namely with probability ρ[y≤i−1] we will get the outcome of Tam(y≤i−1) and with probability 1−ρ[y≤i−1]
we sample from the original untampered distribution Xi.

Claim 5.16. LetX = (X1, . . . , Xn) be a joint distribution and f : Supp(X) 7→ {+1,−1} be any Boolean
function with E[f(X)] = µ. Then for any distribution Y that Supp(Y) ⊆ Supp(X), and d = E[f(Y)]− µ
it holds that:

∑
i∈[n] EY≤i−1

AYi [Y≤i−1] ≥ 1− µ2 − dµ.

Proof. Firstly, we have∑
i∈[n]

E
Y≤i−1

AYi [Y≤i−1] =
∑
i∈[n]

E
Y≤i−1

E
(Yi|Y≤i−1)

[
|g[Y≤i]|

]
=
∑
i∈[n]

E
Y

[
|g[Y≤i]|

]
= E

Y

[∑
i∈[n]

|g[Y≤i]|
]
.

On the other hand, by the triangle inequality for every y ∈ Supp(Y) we have
∑

i∈[n] |g[y≤i]| ≥
|
∑

i∈[n] g[y≤i]| = |f(y) − µ|. Therefore, if f(y) = +1, then
∑

i∈[n] |g[y≤i]| ≥ 1 − µ, and if f(y) = −1,
then

∑
i∈[n] |g[y≤i]| ≥ 1 + µ. Thus, we have:∑

i∈[n]

E
Y≤i−1

AYi [Y≤i−1] ≥ Pr[f(Y) = +1] · (1− µ) + Pr[f(Y) = −1] · (1 + µ)

=
1 + µ+ d

2
· (1− µ) +

1− µ− d
2

· (1 + µ) = 1− µ2 − dµ.

34

Putting things together, we can conclude Lemma 5.13 as follows:

(by Claim 5.16) 1− µ2 − dµ ≤
∑
i∈[n]

E
Y≤i−1

AYi [Y≤i−1]

(by Claim 5.15) =
∑
i∈[n]

E
Y≤i−1

[
ρ[y≤i−1] · AGTam[y≤i−1]

]
+
∑
i∈[n]

E
Y≤i−1

[
(1− ρ[y≤i−1]) · AXi [y≤i−1]

]
(by Claim 5.14) ≤

∑
i∈[n]

E
Y≤i−1

[
ρ[y≤i−1] · AGTam[y≤i−1]

]
+
∑
i∈[n]

E
Y≤i−1

[
2 · (1− ρ[y≤i−1]) · GGTam[y≤i−1]

]
(GTam always gives non-negative gain) =

∑
i∈[n]

E
Y≤i−1

[
(2− ρ[y≤i−1]) · GGTam[y≤i−1]

]
(by Claim 5.5) =

∑
i∈[n]

E
Y≤i−1

[2− ρ[y≤i−1]

ρ[y≤i−1]
· GYi [y≤i−1]

]
(GYi [y≤i−1] ≥ 0 and p ≤ ρ[y≤i−1]) ≤

∑
i∈[n]

E
Y≤i−1

[2− p
p
· GYi [y≤i−1]

]
(by Claim 5.4) =

(
2− p
p

)
· d.

Therefore, d ≥ p(1−µ2)
2−p·(1−µ) which finishes the proof of Lemma 5.13.

5.2.2 Part 2: Efficient Greedy Tampering

In this section we prove the Part 2 of Theorem 3.12. The high level idea of the proof is to try to approximate
the ideal greedy algorithm by multiple samples and using Hoeffding bound.

Construction 5.17 (`-Greedy tampering). LetX = (X1, . . . , Xn) be a joint distribution. Given a function
f : Supp(X) 7→ {+1,−1} the (efficient) `-greedy tampering algorithm EGTam` (or simply EGTam when
` is clear from the context) works as follows. Suppose we are given a valid prefix y≤i−1 ∈ ValPref(X).
Then:

1. Sample ` independent instances yi,1, . . . , yi,` from S(y≤i−1) ≡ (Xi | y≤i−1).

2. For each yi,j , sample ` independent xi,j,1, . . . , xi,j,` from S(y≤i−1, yi,j) ≡ (X | (y≤i−1, yi,j)).

3. Let µi,j = Ek←[`] f(xi,j,k).

4. Let j′ be the smallest number in [`] such that µi,j′ ≥ µi,j′′ for any j′ 6= j′′ ∈ [`].

5. Output yi,j′ .

Lemma 5.18. There is ` = poly(nε) such that for every p ≤ 1, the `-greedy tampering algorithm of
Construction 5.17 proves Part 2 of Theorem 3.12. Namely, for every [p, 1]-probability tree ρ over X , it
generates a p-tampering variation Y ofX such that E[f(Y)]− µ ≥ p·(1−µ2)

2−p·(1−µ) −
ε

1+µ where µ = E[f(X)].

35

In the rest of this section we prove Lemma 5.18.

Definition 5.19 (δ upper margin). We define maxδ[y≤i−1] = y′i to be the “smallest” y′i ∈ Supp(Yi) such

that (1) Pryi←(Yi|y≤i−1)

[
f̂ [y≤i] ≥ f̂ [y≤i−1, y

′
i]
]
≥ δ and (2) Pryi←(Yi|y≤i−1)

[
f̂ [y≤i] > f̂ [y≤i−1, y

′
i]
]
< δ.

Note that such y′i always exists. Now we define two sets:

Max≥δ[y≤i−1] = {y ∈ Supp(Yi | y≤i−1) | f̂ [y≤i] ≥ f̂ [y≤i−1, y
′
i]}

Max<δ[y≤i−1] = {y ∈ Supp(Yi | y≤i−1) | f̂ [y≤i] > f̂ [y≤i−1, y
′
i]}.

Note that we have Max<δ[y≤i−1] ⊂ Max≥δ[y≤i−1] and by the definition of y′i = maxδ[y≤i−1] it holds that

Pryi←(Yi|y≤i−1)

[
y ∈ Max≥δ[y≤i−1]

]
≥ δ and Pryi←(Yi|y≤i−1)

[
y ∈ Max<δ[y≤i−1]

]
< δ.

Definition 5.20 (δ-greedy tampering). We call a (potentially randomized) tampering algorithm Tam a δ-
greedy algorithm if for every valid prefix y≤i−1 ∈ ValPref(X), and every yi ← Tam(y≤i−1) we have:

f̂ [y≤i] + δ ≥ f̂ [y≤i−1,maxδ(y≤i−1)].

Proposition 5.21. For any valid prefix y≤i−1 ∈ ValPref(X), and yi ← Tam(y≤i−1) where Tam is a
δ-greedy tampering algorithm, we have g[y≤i] ≥ −3 · δ.

Proof. We have

f̂ [y≤i−1] =
∑
yi

Pr[yi = Xi | y≤i−1] · f̂ [y≤i]

=
∑

yi∈Max<δ

Pr[yi = Xi | y≤i−1] · f̂ [y≤i] +
∑

yi 6∈Max<δ

Pr[yi = Xi | y≤i−1] · f̂ [y≤i]

≤
∑

yi∈Max<δ

Pr[yi = Xi | y≤i−1] +
∑

yi 6∈Max<δ

Pr[yi = Xi | y≤i−1] · f̂ [y≤i−1,maxδ[y≤i−1]]

< δ + (1− δ) · f̂ [y≤i−1,maxδ[y≤i−1]]

≤ f̂ [y≤i−1,maxδ[y≤i−1]] + 2 · δ.

Therefore,

g[y≤i] = f̂ [y≤i]− f̂ [y≤i−1] ≥ f̂ [y≤i]− (f̂ [y≤i−1,maxδ[y≤i−1]] + 2δ) ≥ −3 · δ.

Claim 5.22 (δ-greedy’s local gains). Let Tam be a δ-greedy tampering algorithm. Then for any y≤i−1 ∈
Supp(X≤i−1), it holds that

GTam[y≤i−1] ≥ 1

2
· AXi [y≤i−1]− 7δ.

Proof. Let us define

A∗Xi [y≤i−1] =
∑

yi∈Max<δ[y≤i−1]

Pr[yi = Xi | y≤i] ·
∣∣g[y≤i]

∣∣

36

A+
Xi

[y≤i−1] =
∑

yi 6∈Max<δ[y≤i−1],g[y≤i]>0

Pr[yi = Xi | y≤i] ·
∣∣g[y≤i]

∣∣
A−Xi [y≤i−1] =

∑
yi 6∈Max<δ[y≤i−1,g[y≤i]<0

Pr[yi = Xi | y≤i] ·
∣∣g[y≤i]

∣∣.
It holds that AXi [y≤i−1] = A+

Xi
[y≤i−1] + A−Xi [y≤i−1] + A∗Xi [y≤i−1] and at the same time (by Proposi-

tion 5.3) 0 = GXi [y≤i−1] ≤ A+
Xi

[y≤i−1] +A∗Xi [y≤i−1]−A−Xi [y≤i−1]. Therefore

AXi [y≤i−1] ≤ 2 · A+
Xi

[y≤i−1] + 2 · A∗Xi [y≤i−1]. (3)

For A+
Xi

[y≤i−1] we have

A+
Xi

[y≤i−1] ≤
∑

yi 6∈Max<δ[y≤i−1],g[y≤i]>0

Pr[yi = Yi | y≤i] · g[y≤i]

≤
∑

yi 6∈Max<δ[y≤i−1],g[y≤i]>0

Pr[yi = Yi | y≤i] · g[y≤i−1,maxδ[y≤i−1]]

= g[y≤i−1,maxδ[y≤i−1]] ·
∑

yi 6∈Max<δ[y≤i−1],g[y≤i]>0

Pr[yi = Yi | y≤i−1]

≤ (GTam[y≤i−1] + δ) ·
∑

yi 6∈Max<δ[y≤i−1],g[y≤i]>0

Pr[yi = Yi | y≤i−1]

≤
∣∣GTam[y≤i−1] + δ

∣∣.
Moreover, for A∗Xi [y≤i−1] we have

A∗Xi [y≤i−1] ≤
∑

yi∈Max<δ[y≤i−1],g[y≤i]>0

Pr[yi = Yi | y≤i] · g[y≤i]

(g[y≤i] is at most 2) ≤
∑

yi∈Max<δ[y≤i−1],g[y≤i]>0

Pr[yi = Yi | y≤i] · 2

≤ 2 · Pr
yi←(Yi|y≤i)

[
g[y≤i] > 0 ∧ yi ∈ Max<δ[y≤i−1]

]
< 2 · δ.

Therefore by Equation (3), we have:

AXi [y≤i−1] ≤ 2 · |GTam[y≤i−1] + δ|+ 4 · δ
(by proposition 5.21) ≤ 2 · (GTam[y≤i−1] + 5 · δ) + 4 · δ

≤ 2 · GTam[y≤i−1] + 14 · δ

which proves the claim.

Claim 5.23 (δ-greedy’s global gain). Any δ-greedy tampering algorithm Tam is a robust p-tampering attack
for biasing f(X) by p·(1−µ2)

2−p·(1−µ) −
17·δ·n
1+µ where µ = E[f(X)].

37

Proof. First we give a lower bound on d = E[f(Y)]− µ for δ-greedy tampering algorithms.

(by Claim 5.16) 1− µ2 − dµ ≤
∑
i∈[n]

E
Y≤i−1

AYi [Y ≤i−1]

(by Claim 5.15) =
∑
i∈[n]

E
Y≤i−1

[
ρ[y≤i−1] · ATam[y≤i−1] + (1− ρ[y≤i−1]) · AXi [y≤i−1]

]
(by Claim 5.22) ≤

∑
i∈[n]

E
Y≤i−1

[
ρ[y≤i−1] · ATam[y≤i−1]

]
+
∑
i∈[n]

E
Y≤i−1

[
2 · (1− ρ[y≤i−1]) · (GTam[y≤i−1] + 7δ)

]
(by Prop. 5.21) ≤

∑
i∈[n]

E
Y≤i−1

[
ρ[y≤i−1] · (GTam[y≤i−1] + 6 · δ)

]
+
∑
i∈[n]

E
Y≤i−1

[
2 · (1− ρ[y≤i−1]) · (GTam[y≤i−1] + 7δ)

]
=
∑
i∈[n]

E
Y≤i−1

[
(2− ρ[y≤i−1]) · GTam[y≤i−1] + (14− 8 · ρ[y≤i−1]) · δ

]
(by Claim 5.5) =

∑
i∈[n]

E
Y≤i−1

[2− ρ[y≤i−1]

ρ[y≤i−1]
· GYi [y≤i−1] + (14− 8 · ρ[y≤i−1]) · δ

]
≤
∑
i∈[n]

E
Y≤i−1

[2− ρ[y≤i−1]

ρ[y≤i−1]
· (GYi [y≤i−1] + 3 · δ)

]
−
∑
i∈[n]

E
Y≤i−1

[
3 · δ + (14− 8 · ρ[y≤i−1]) · δ

]
(Prop. 5.21 and ρ[y≤i−1] ≥ p) ≤

∑
i∈[n]

E
Y≤i−1

[2− p
p
· (GYi [y≤i−1] + 3 · δ) + (11− 8 · ρ[y≤i−1]) · δ

]
(by Claim 5.4) ≤

(
2− p
p

)
· d+

17 · δ · n
p

.

Therefor we have

d ≥ p · (1− µ2)

2− p · (1− µ)
− 17 · δ · n

2− p · (1− µ)
≥ p · (1− µ2)

2− p · (1− µ)
− 17 · δ · n

(1 + µ)
.

Proof of Lemma 5.18. First, fix i ∈ [n]. With probability 1 − (1 − δ)`, there exist j′′ ∈ [`] such that
yi,j′′ ∈ Max≥δ[y≤i−1]. Also, for every fixed j ∈ [`], by Hoeffding bound,

Pr

[
|ui,j − f̂ [y≤i−1, yi,j]| ≥

δ

2

]
≤ 2 · e−`·

δ2

8 .

By a union bound, with probability at least 1− (1− δ)`− (`)(2 · e−`·
δ2

8) ≥ 1− 3`e−`·
δ2

8 we will have both
(1) j′′ ∈ [`] such that yi,j′′ ∈ Max≥δ[y≤i−1] and (2) all the approximations are δ/2 correct. If both of these

38

conditions hold, the `-greedy will be guaranteed to pick some yi,j′ that satisfies the δ-greedy definition for
the fixed level i ∈ [n]. By picking ` = poly(1/δ) (e.g., `� 1/δ3 suffices) the probability of failing in level

i will be at most 3`e−`·
δ2

8 < δ/2 < δ/(1 + µ), and by a union bound over i ∈ [n], the total probability
of failing at any level will be at most nδ/(1 + µ). So, for sufficiently large ` ≥ poly(1/δ), the `-greedy is
δ-greedy with probability at least 1− n·δ

1+µ , and so the total amount of bias for `-greedy will be least(
1− n · δ

1 + µ

)
·
(

p · (1− µ2)

2− p · (1− µ)
− 17 · δ · n

1 + µ

)
− 2 · n · δ

1 + µ
≥ p · (1− µ2)

2− p · (1− µ)
− 20 · δ · n

1 + µ
.

Now setting δ = ε
20n , we get ` = poly(n/ε), and that finishes the proof.

6 Open Questions

We conclude by describing some open questions and interesting directions for future research.

Power of k-sampling attacks for small k. A natural yet more general class of attacks that include k-
resetting attacks at special case is the class of k + 1 sampling attacks in which the tampering algorithm first
gets k+ 1 samples from the distribution of the i’th tampered block and then it chooses one of these samples
(perhaps by calls to the online sampler and the function f). Our `-greedy algorithm is indeed an ` sampling
attack but to get good bias, it needs to use many ` = poly(n/ε) samples. What is the power of `-sampling
attacks in general, when ` is small, e.g. constant?

Power of ‘very efficient’ viruses. What is the power of tampering attacks whose computational resources
is not sufficient for sampling the next block or even computing f? Such tampering algorithms are natural for
cryptographic attacks where computing f is heavy and the virus might prefer to use very limited resources
not to be detected by the system. Our efficient tampering attacks of Theorems 3.9 and 3.12 both need to run
the online sampler as well as the function f . It remains an interesting future direction to study the power
of limited tampering attacks whose decisions are more ‘local’ and cannot be based on sampling the blocks
from the original distribution or computing f . We conjecture that such efficient viruses that cannot depend
on f or the distributionX are not powerful to achieve constant bias Ω(p). However, it is interesting to find
out what is the minimum number of calls needed to f or the sampler for getting bias Ω(p).

Optimal constant. In Proposition C.3 we show that blockwise p-tampering attacks cannot achieve bias
c ·p for all p if c > (1 +µ) · ln(2

1+µ). This leaves open finding the optimal constant c for which p-tampering
attacks can always get≥ c·p bias. For balanced Boolean functions we already know 0.5 ≤ c ≤ ln(2) < 0.7.

Biasing up vs. biasing either way. Our Theorems 3.9 and 3.12 always bias the function towards +1.
Inspired by models of attacks against coin-tossing protocols [9, 17, 18, 20, 37, 44] one can ask the following
questions. What is the power of p-tampering biasing attacks whose goal is to either bias the average of the
function up or bias it down? Some of the applications of our biasing attacks (e.g., against learners) need to
bias the function always in a fixed direction to increase the ‘error’, but other attacks (e.g., against extractors)
could achieve their goal by biasing the function in either direction. Our Proposition C.3 does not apply to
this setting, as it only limits the power of biasing attacks who always want to bias the function upwards.

Acknowledgement. We thank Dimitrios Diochnos, Yevgeniy Dodis, and Yanjun Qi for useful discussions.

39

References

[1] Per Austrin, Kai-Min Chung, Mohammad Mahmoody, Rafael Pass, and Karn Seth. On the impossi-
bility of cryptography with tamperable randomness. In International Cryptology Conference, pages
462–479. Springer, 2014. 1, 3, 4, 5, 8, 9, 14, 16, 21, 33, 44, 45, 47, 48

[2] Pranjal Awasthi, Maria Florina Balcan, and Philip M Long. The power of localization for efficiently
learning linear separators with noise. In Proceedings of the 46th Annual ACM Symposium on Theory
of Computing, pages 449–458. ACM, 2014. 6, 7

[3] Yossi Azar, Andrei Z Broder, Anna R Karlin, Nathan Linial, and Steven Phillips. Biased random
walks. In Proceedings of the twenty-fourth annual ACM symposium on Theory of computing, pages
1–9. ACM, 1992. 4

[4] Boaz Barak and Shai Halevi. A model and architecture for pseudo-random generation with applica-
tions to/dev/random. In Proceedings of the 12th ACM conference on Computer and communications
security, pages 203–212. ACM, 2005. 3

[5] Marco Barreno, Blaine Nelson, Anthony D Joseph, and JD Tygar. The security of machine learning.
Machine Learning, 81(2):121–148, 2010. 6

[6] Marco Barreno, Blaine Nelson, Russell Sears, Anthony D Joseph, and J Doug Tygar. Can machine
learning be secure? In Proceedings of the 2006 ACM Symposium on Information, computer and
communications security, pages 16–25. ACM, 2006. 6

[7] Salman Beigi, Omid Etesami, and Amin Gohari. Deterministic randomness extraction from general-
ized and distributed santha–vazirani sources. SIAM Journal on Computing, 46(1):1–36, 2017. 5, 6, 12,
18, 46, 47

[8] Mihir Bellare, Kenneth G Paterson, and Phillip Rogaway. Security of symmetric encryption against
mass surveillance. In Advances in Cryptology–CRYPTO 2014, pages 1–19. Springer, 2014. 9

[9] Itay Berman, Iftach Haitner, and Aris Tentes. Coin flipping of any constant bias implies one-way
functions. In Proceedings of the 46th Annual ACM Symposium on Theory of Computing, pages 398–
407. ACM, 2014. 9, 39

[10] Battista Biggio, Blaine Nelson, and Pavel Laskov. Poisoning attacks against support vector machines.
In Proceedings of the 29th International Coference on International Conference on Machine Learning,
pages 1467–1474. Omnipress, 2012. 6

[11] Boneh, DeMillo, and Lipton. On the importance of checking cryptographic protocols for faults. In
EUROCRYPT: Advances in Cryptology: Proceedings of EUROCRYPT, 1997. 9

[12] Nader H Bshouty, Nadav Eiron, and Eyal Kushilevitz. Pac learning with nasty noise. Theoretical
Computer Science, 288(2):255–275, 2002. 6, 7

[13] Nishanth Chandran, Vipul Goyal, Pratyay Mukherjee, Omkant Pandey, and Jalaj Upadhyay. Block-
wise non-malleable codes. In LIPIcs-Leibniz International Proceedings in Informatics, volume 55.
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2016. 9

40

[14] Moses Charikar, Jacob Steinhardt, and Gregory Valiant. Learning from untrusted data. In Proceedings
of the 49th Annual ACM SIGACT Symposium on Theory of Computing, pages 47–60. ACM, 2017. 7

[15] Benny Chor and Oded Goldreich. Unbiased bits from sources of weak randomness and probabilistic
communication complexity. In Proc. 26th FOCS, pages 429–442. IEEE, 1985. 5

[16] Benny Chor and Oded Goldreich. Unbiased bits from sources of weak randomness and probabilistic
communication complexity. SIAM Journal on Computing, 17(2):230–261, 1988. 6, 11

[17] Richard Cleve. Limits on the security of coin flips when half the processors are faulty. In Proceedings
of the eighteenth annual ACM symposium on Theory of computing, pages 364–369. ACM, 1986. 39

[18] Richard Cleve and Russell Impagliazzo. Martingales, collective coin flipping and discrete control
processes. In other words, 1:5, 1993. 9, 39

[19] Henry Corrigan-Gibbs and Suman Jana. Recommendations for randomness in the operating system,
or how to keep evil children out of your pool and other random facts. In HotOS, 2015. 3

[20] Dana Dachman-Soled, Yehuda Lindell, Mohammad Mahmoody, and Tal Malkin. On the black-box
complexity of optimally-fair coin tossing. In Theory of Cryptography Conference, pages 450–467.
Springer, 2011. 9, 39

[21] Ivan Damgård, Sebastian Faust, Pratyay Mukherjee, and Daniele Venturi. Tamper resilient cryptogra-
phy without self-destruct. Cryptology ePrint Archive, Report 2013/124, 2013. http://eprint.
iacr.org/2013/124. 4

[22] Ilias Diakonikolas, Gautam Kamath, Daniel M Kane, Jerry Li, Ankur Moitra, and Alistair Stewart.
Robust estimators in high dimensions without the computational intractability. In Foundations of
Computer Science (FOCS), 2016 IEEE 57th Annual Symposium on, pages 655–664. IEEE, 2016. 7

[23] Ilias Diakonikolas, Gautam Kamath, Daniel M Kane, Jerry Li, Jacob Steinhardt, and Alistair Stewart.
Sever: A robust meta-algorithm for stochastic optimization. arXiv preprint arXiv:1803.02815, 2018.
7

[24] Ilias Diakonikolas, Daniel M Kane, and Alistair Stewart. Statistical query lower bounds for robust
estimation of high-dimensional Gaussians and Gaussian mixtures. In Foundations of Computer Science
(FOCS), 2017 IEEE 58th Annual Symposium on, pages 73–84. IEEE, 2017. 7

[25] Ilias Diakonikolas, Daniel M Kane, and Alistair Stewart. List-decodable robust mean estimation and
learning mixtures of spherical Gaussians. In Proceedings of the 50th Annual ACM SIGACT Symposium
on Theory of Computing, pages 1047–1060. ACM, 2018. 7

[26] Ilias Diakonikolas, Weihao Kong, and Alistair Stewart. Efficient algorithms and lower bounds for
robust linear regression. arXiv preprint arXiv:1806.00040, 2018. 7

[27] Dodis, Ong, Prabhakaran, and Sahai. On the (im)possibility of cryptography with imperfect random-
ness. In FOCS: IEEE Symposium on Foundations of Computer Science (FOCS), 2004. 1, 3, 5, 6, 46,
47

[28] Yevgeniy Dodis. New imperfect random source with applications to coin-flipping. Automata, Lan-
guages and Programming, pages 297–309, 2001. 9

41

http://eprint.iacr.org/2013/124
http://eprint.iacr.org/2013/124

[29] Yevgeniy Dodis, David Pointcheval, Sylvain Ruhault, Damien Vergniaud, and Daniel Wichs. Security
analysis of pseudo-random number generators with input:/dev/random is not robust. In Proceedings of
the 2013 ACM SIGSAC conference on Computer & communications security, pages 647–658. ACM,
2013. 3

[30] Yevgeniy Dodis and Yanqing Yao. Privacy with imperfect randomness. In Annual Cryptology Confer-
ence, pages 463–482. Springer, 2015. 5, 6

[31] Cynthia Dwork, Guy N Rothblum, and Salil Vadhan. Boosting and differential privacy. In Foundations
of Computer Science (FOCS), 2010 51st Annual IEEE Symposium on, pages 51–60. IEEE, 2010. 6,
11, 17

[32] Stefan Dziembowski, Sebastian Faust, and François-Xavier Standaert. Private circuits III: Hardware
trojan-resilience via testing amplification. In Edgar R. Weippl, Stefan Katzenbeisser, Christopher
Kruegel, Andrew C. Myers, and Shai Halevi, editors, ACM CCS 16: 23rd Conference on Computer
and Communications Security, pages 142–153, Vienna, Austria, October 24–28, 2016. ACM Press. 4

[33] Stefan Dziembowski, Krzysztof Pietrzak, and Daniel Wichs. Non-malleable codes. In Andrew Chi-
Chih Yao, editor, ICS, pages 434–452. Tsinghua University Press, 2010. 9

[34] Rosario Gennaro, Anna Lysyanskaya, Tal Malkin, Silvio Micali, and Tal Rabin. Algorithmic tamper-
proof (ATP) security: Theoretical foundations for security against hardware tampering. In Moni Naor,
editor, TCC 2004: 1st Theory of Cryptography Conference, volume 2951 of Lecture Notes in Com-
puter Science, pages 258–277, Cambridge, MA, USA, February 19–21, 2004. Springer, Heidelberg,
Germany. 4, 9

[35] Shafi Goldwasser, Yael Tauman Kalai, and Sunoo Park. Adaptively secure coin-flipping, revisited.
In International Colloquium on Automata, Languages, and Programming, pages 663–674. Springer,
2015. 9

[36] Zvi Gutterman, Benny Pinkas, and Tzachy Reinman. Analysis of the linux random number generator.
In Security and Privacy, 2006 IEEE Symposium on, pages 15–pp. IEEE, 2006. 3

[37] Iftach Haitner and Eran Omri. Coin flipping with constant bias implies one-way functions. SIAM
Journal on Computing, 43(2):389–409, 2014. 9, 39

[38] Nadia Heninger, Zakir Durumeric, Eric Wustrow, and J Alex Halderman. Mining your ps and qs:
Detection of widespread weak keys in network devices. In USENIX Security Symposium, volume 8,
2012. 3

[39] Michael Kearns and Ming Li. Learning in the presence of malicious errors. SIAM Journal on Com-
puting, 22(4):807–837, 1993. 6, 7

[40] Aggelos Kiayias and Yiannis Tselekounis. Tamper resilient circuits: The adversary at the gates. In
Kazue Sako and Palash Sarkar, editors, Advances in Cryptology – ASIACRYPT 2013, Part II, volume
8270 of Lecture Notes in Computer Science, pages 161–180, Bengalore, India, December 1–5, 2013.
Springer, Heidelberg, Germany. 4

[41] Kevin A Lai, Anup B Rao, and Santosh Vempala. Agnostic estimation of mean and covariance. In
Foundations of Computer Science (FOCS), 2016 IEEE 57th Annual Symposium on, pages 665–674.
IEEE, 2016. 7

42

[42] David Lichtenstein, Nathan Linial, and Michael Saks. Some extremal problems arising from discrete
control processes. Combinatorica, 9(3):269–287, 1989. 9

[43] Saeed Mahloujifar and Mohammad Mahmoody. Blockwise p-tampering attacks on cryptographic
primitives, extractors, and learners. In Theory of Cryptography Conference, pages 245–279. Springer,
2017. 14

[44] Hemanta K Maji, Manoj Prabhakaran, and Amit Sahai. On the computational complexity of coin
flipping. In Foundations of Computer Science (FOCS), 2010 51st Annual IEEE Symposium on, pages
613–622. IEEE, 2010. 9, 39

[45] Nicolas Papernot, Patrick McDaniel, Arunesh Sinha, and Michael Wellman. Towards the science of
security and privacy in machine learning. arXiv preprint arXiv:1611.03814, 2016. 6

[46] Adarsh Prasad, Arun Sai Suggala, Sivaraman Balakrishnan, and Pradeep Ravikumar. Robust estima-
tion via robust gradient estimation. arXiv preprint arXiv:1802.06485, 2018. 7

[47] Omer Reingold, Salil Vadhan, and Avi Wigderson. A note on extracting randomness from santha-
vazirani sources. Unpublished manuscript, 2004. 1, 5, 6, 46, 47

[48] Benjamin IP Rubinstein, Blaine Nelson, Ling Huang, Anthony D Joseph, Shing-hon Lau, Satish Rao,
Nina Taft, and JD Tygar. Antidote: understanding and defending against poisoning of anomaly de-
tectors. In Proceedings of the 9th ACM SIGCOMM conference on Internet measurement conference,
pages 1–14. ACM, 2009. 6

[49] Benjamin IP Rubinstein, Blaine Nelson, Ling Huang, Anthony D Joseph, Shing-hon Lau, Satish Rao,
Nina Taft, and JD Tygar. Stealthy poisoning attacks on pca-based anomaly detectors. ACM SIGMET-
RICS Performance Evaluation Review, 37(2):73–74, 2009. 6

[50] Miklos Santha and Umesh V. Vazirani. Generating quasi-random sequences from semi-random
sources. J. Comput. Syst. Sci., 33(1):75–87, 1986. 3, 5, 6, 11, 48

[51] Ronen Shaltiel. Recent developments in explicit constructions of extractors. Bulletin of the EATCS,
77(67-95):10, 2002. 45

[52] Shiqi Shen, Shruti Tople, and Prateek Saxena. A uror: defending against poisoning attacks in collab-
orative deep learning systems. In Proceedings of the 32nd Annual Conference on Computer Security
Applications, pages 508–519. ACM, 2016. 6, 7

[53] Leslie G Valiant. A theory of the learnable. Communications of the ACM, 27(11):1134–1142, 1984.
19

[54] Leslie G Valiant. Learning disjunction of conjunctions. In IJCAI, pages 560–566, 1985. 6

[55] John Von Neumann. 13. various techniques used in connection with random digits. Appl. Math Ser,
12:36–38, 1951. 5

[56] Huang Xiao, Battista Biggio, Gavin Brown, Giorgio Fumera, Claudia Eckert, and Fabio Roli. Is feature
selection secure against training data poisoning? In ICML, pages 1689–1698, 2015. 6, 7

43

A Blockwise p-Tampering Attacks on Primitives: Case of Encryption

In this section we give a formal definition of what it means to break the security of public-key encryption
through a blockwise p-tampering attack. The definition is similar to that of [1] while here we require the
attacking virus to succeed for any partitioning of the incoming randomness and shall do it in a ‘robust’ way;
namely, by only assuming that the tampering probabilities are ≥ p (rather than exactly p). The partitioning
of the randomness into blocks could be due to the fact that randomness is being generated in ‘chunks’ upon
request, or it might be due to some larger alphabets used by the machine to represent data. Our results
directly extends to more primitives studied in [1] by plugging in our blockwise tampering attacks. Thus,
we only formalize the blockwise tampering attack for the case of public-key encryption, and we refer the
reader to [1] for other primitives such as private-key encryption, commitments, secure computation, zero-
knowledge proofs, etc.

Definition A.1 (Partitioning of strings). For a sequence of (possibly empty) strings (r1, . . . , rm) we denote
their concatenation by (r1| . . . |rm) where the lengths of ri’s is not necessarily clear anymore.9 We call the
sequence (s1, . . . , sn) a partitioning of [N] if

∑
i si = N and si ≥ 0 for all i. For a string R of length

N and a partitioning S = (s1, . . . , sn) of [N] we call (r1, . . . , rm) the partitioning of R according to S if
|ri| = si and R is equal to the concatenation R = (r1| . . . |rn).

Interpretation. The partitioning (r1, . . . , rm) of a long random seed r could be as a result of various
scenarios. It could simply refer to a larger alphabet size being used in the system to represent blocks of
randomness. More naturally, each block could refer to what the ‘system’ generates upon the request of a
randomized algorithm (e.g., encryption).

As in [1], we use the following definition which guarantees a weak form of security against blockwise
p-tampering attacks by restricting the adversary to only tamper with the randomness of the encryption (and
not the key generation). However, since our results are negative by showing the power of attackers, such
restriction only makes our results stronger.

Definition A.2 (Blockwise p-tampering attacks on encryption). Suppose P = (Gen,Enc,Dec) is a public
key encryption scheme in which Enc(κ, x) uses randomness rE of length N = poly(κ, |x|) where κ is
the security parameter. We say that the adversary Adv robustly α-breaks the CPA security of P through
blockwise p-tampering if Adv can distinguish b = 0 from b = 1 in the experiment below by an advantage
of ≥ α for any partitioning s1, . . . , sn of [N].

1. A pair of keys (sk, pk)← Gen(1κ) are generated and Adv receives the public-key pk.

2. Adv generates a (supposedly p-tampering) circuit T and two of messages {x0, x1} of equal lengths.

3. The randomness rE gets generated in blocks of lengths s1, . . . , sn and the tampering algorithm T
will perform a blockwise p-tampering attack against the corresponding partitioning (r1, . . . , rn) of the
randomness rE . In particular, each new block ri is first sampled fromUsi , and then with (independent)
probability p, T is allowed to substitute ri with something of the same length si. Let r′E be the final
(possibly tampered) randomness.

4. The challenger gets xb ∈ {x0, x1} and sends c = Encpk(xb; r
′
E) to Adv.

5. Adv receives c, outputs a (hopefully distinguishing) bit b′.
9This is in contrast with the notation (r1, . . . , rm) in which the encoding will allow separating ri from each other.

44

Theorem A.3 (Blockwise p-tampering attacks on encryption). For any (correct) public-key encryption P =
(Gen,Enc,Dec) scheme there is a polynomial time adversary Adv who robustly Ω(p)-breaks the CPA
security of P through a blockwise p-tampering.

Proof Sketch for Theorem A.3. The proof follows the footsteps of [1] closely, while the only difference is
that this time we use our blockwise p-tampering attacker of Theorem 3.9 for real-output functions.

1. The adversary samples its own randomness r for a strong seeded extractor Extr(·) [51] that extracts an
bit with bias ≤ o(p) from sources with min-entropy ω(log κ). It also trivially picks x0 = 0, x1 = 1.

2. Given the public-key pk, the adversary defines the functions: f0(·), f1(·) where fb(·) takes as input
rE (i.e., Enc’s randomness) and outputs: Extr(Encpk(xb; rE)). The adversary finally lets f(rE) =
f1(rE)− f0(rE) ∈ {−1, 0, 1}.

3. The adversary generates a tampering circuit Tam of Theorem 3.9 such that biases the output of the
function f towards +1 by at least Ω(p) through a blockwise p tampering attack. The only point is
that the tampering circuit T does not know the length of the blocks ahead of the time. But, since ri is
actually given to T before T substitutes it with possible tampered r′i, T would discover the length si
at that moment. Also, note that Tam of Theorem 3.9 needs to call f internally, but that is not an issue
since f is known to the adversary and can generate T accordingly.

4. After receiving the actual ciphertext c (encrypted with the tampered randomness r′E , the adversary
applies the function to get b′ = Extr(c) and outputs b′.

The analysis. We refer the reader to [1] for the actual proof (while one has to use our blockwise tampering
attacker instead), roughly speaking, the reason that the above attack succeeds is the following.

• Because of the CPA security of the original scheme, the ciphertext will have ω(log κ) bits of min-
entropy which guarantees the strong extractor will indeed sample an almost unbiased bit in {0, 1}.

• Therefore the difference function f(rE) = f1(rE)− f0(rE) will also be an almost unbiased function
with range {−1, 0,+1} ⊂ [−1,+1].

• The correctness of the original PKE scheme, implies that Var[f(rE)] ≥ Ω(1).

• By Var[f(rE)] ≥ Ω(1), due to the properties of the p-tampering attacker of Theorem 1.2 we con-
clude that f(rE) will be biased towards +1 by Ω(p), and because the original distribution had bias
E[f(rE)] ≤ o(p), we would now get E[f(r′E)] ≥ Ω(p)− o(p) ≥ Ω(p).

• Finally note that E[f(r′E)] ≥ Ω(p) is equivalent to Pr[f(r′E) = +1] ≥ Pr[f(r′E) = −1] + Ω(p),
which in turn is equivalent to Prr′E [f1(r′E) = 1 ∧ f0(r′E) = 0]− Prr′E [f1(r′E) = 0 ∧ f0(r′E) = 1] ≥
Ω(p). Therefore, Prr′E [f1(r′E) = 1] ≥ Prr′E [f0(r′E) = 1] + Ω(p) and so the output b′ will in fact
distinguish b = 0 from b = 1 experiments with advantage Ω(p) ≥ 1/ poly(κ).

45

B Reducing Blockwise Tampering to Bitwise for Uniform Distributions

Notation. For any partitioning S = [s1, . . . , sn] of [N] (according to Definition A.1) we use US to denote
the product distribution Us1 × · · · × Usn . (Note that US has n blocks, so if n > 1 then 〈US〉 6≡ UN , and
if n < N then 〈US〉 6≡ UN1 .) Let S = (s1, . . . , sn) be a partitioning of [N] and X = (X1, . . . , Xn) be
a joint distribution such that for each i ∈ [n], Xi is a distribution over {0, 1}si . We use 〈X 〉 to denote a
distribution over {0, 1}N which is identical to X , but without the separators between blocks; namely, they
are concatenated into one block. For example, if S = [s1, . . . , sn] is a partitioning of [N], then 〈US〉 ≡ UN .

Theorem B.1 (Reducing blockwise tampering to bitwise tampering for uniform distributions). Let Y be a
p-tampering variation ofX = UN1 and S = (s1, . . . , sn) be a partitioning of [N]. If 1− p̃ ≤ (1−p)max(si),
then there exists a p̃-tampering variation Ỹ of US such that 〈Y 〉 ≡ 〈Ỹ 〉, i.e., without the separators, they
are the same distributions. Moreover, if Y can be generated by efficient p-tampering Tam from X , Ỹ can
be generated by an efficient p̃-tampering Tãm (who makes oracle calls to Tam) from US .

Proof. We define Bk
p to be the product distribution of k independent Bernoulli variables that take 1 with

probability p. We define an event E over a bit-string of size k as follows. E(b1, . . . , bk) = 1 iff, at least one
of bi’s is 1. Now we define the distribution B̂k

p ≡ (Bk
p |E). Let Tam be the tampering algorithm for UN1 that

generates Y and let s = max(si). Now, we build a new tampering algorithm Tãm for US . Given a valid
prefix ỹ≤i−1 ∈ ValPref(US), Tãm does the following:

• with probability α = ((1− p)si − (1− p̃)) /p̃

1. let (b1, . . . , bsi) = (0, . . . , 0)

2. sample ỹi ← Usi and output ỹi

• and with probability 1− α

1. sample a bit-string (b1, . . . , bsi)← B̂si
p

2. for j ∈ [si]

(a) if bj = 0 then aj ← U1

(b) else aj ← Tam([ỹ≤i−1, a≤j−1])

3. output ỹi = a

Let Ỹ be the p̃-tampering variation of US generated through Tãm. Now we show that 〈Ỹ 〉 ≡ 〈Y 〉. Namely,
we argue that Tãm is perfectly simulating the p-tampering setting for Tam on each bit, which is equivalent
to saying that the probability that Tam is used is exactly p for every bit independent of all the other bits.
Note that Tam is used to tamper the j’th bit, if and only if bj = 1. When we use Tãm in p̃ tampering setting,
with probability 1− p̃+ p̃ · (1−p)si−(1−p̃)

p̃ = (1− p)si = Pr[E] the bit-string (b1, . . . , bsi) is sampled from
the distribution Bsi

p |E, and with probability 1 − (1 − p)si = Pr[E] it is sampled from distribution Bsi
p |E.

Therefore, at the end b1, . . . , bs is indeed sampled from Bsi
p , which means the tampering happens on each

bit independently with probability p.

C Power and Limitation of Inefficient p-Tampering Attacks

First, using techniques and arguments from [7, 27, 47] we observe that the bound proved in Theorem 3.12
could be achieved even for (bounded) real-output functions, however, unfortunately we could only get this

46

bias for through a computationally unbounded p-tampering attack. Due to the inefficiency of our attacks we
find it more natural to explain our results as proving the existence of certain ‘tampering variations’ of the
original distributions.

Theorem C.1 (Inefficient blockwise p-tampering of bounded real functions). LetX = (X1, . . . , Xn) be a
joint distribution, f : Supp(X) 7→ [−1,+1] be a real function defined over Supp(X), and µ = E[f(X)].
Then there is a p-variation Y of X (generated by a possibly unbounded p-tampering algorithm) such that
E[f(Y)] ≥ µ+ p·Var[f(X)]

2−p·(1−µ) .

To prove Theorem C.1 we use a variant of the idea of so called “half-space sources” introduced in [47]
and further used in [7, 27] by tailoring it to real-output functions. Before proving the theorem we compare
its bound with what we achieved for the Boolean case.

Comparison with the bias of Theorem 3.12. Note that the bias obtained by the attacker of Theorem C.1
is the same as that of Theorem 3.12 when we restrict them to the Boolean case. However, these theorems are
incomparable as Theorem 3.12 uses an efficient tampering (assumingX is efficiently online samplable and
f is efficiently computable) but the proof of Theorem C.1 directly defines a p-tampering variation without
obtaining it through an actual efficient attack. Interestingly, the attacker of Theorem 3.12 uses a strategy
(called the greedy algorithm in [1] and by us here as well) that could lead to arbitrarily small bias when
applied to general (bounded) real functions [1]. So to prove an efficient version of Theorem C.1 one needs
to use new ideas other than those of Theorem 3.12!

Proof of Theorem C.1. First note that the following proposition directly follows from Lemma 2.9.

Proposition C.2. A distribution Y = (Y1, . . . , Yn) is a ρ-tampering variation of the distribution X =
(X1, . . . , Xn) iff Supp(Y) ⊆ Supp(X) and for every valid prefix x≤i ∈ ValPref(X) we have

Pr[Yi = xi | x<i] ≥ (1− ρ[x<i]) · Pr[Xi = xi | x<i].

Now, for 0 < h < 1, consider the distribution Y = (Y1, . . . , Yn) such that Pr[Y = x] is defined to be
Pr[X = x] ·

(
1+h·f(x)

1+h·µ

)
. This is indeed a distribution because we have that (1) Pr[Y = x] ≥ 0 for every

x ∈ Supp(Y) (because h < 1 and f(x), µ ≥ −1) and that (2) they sum up to one:

∑
x∈Supp(Y)

=
1

1 + h · µ
·

 ∑
x∈Supp(Y)

Pr[X = x] + h ·
∑

x∈Supp(Y)

Pr[X = x] · f(x)

 =
1 + h · µ
1 + h · µ

= 1.

Now we can compute the average of f over Y as follows:

E[f(Y)] =
∑

x∈Supp(X)

Pr[X = x] ·
(

1 + h · f(x)

1 + h · µ

)
· f(x)

=
µ+ h · E[f(X)2]

1 + h · µ
=
µ+ h · µ2 + h ·Var[f(X)]

1 + h · µ
= µ+ h · Var[f(X)]

1 + h · µ
.

All we have to do is to show that Y is a 2·h
h+1 -tampering variation ofX , because then by setting p = 2·h

h+1 ∈
(0, 1) we have h = p

2−p ∈ (0, 1) and the amount of bias we get would be exactly

h · Var[f(X)]

1 + h · µ
=

(
p

2− p

)
· Var[f(X)]

1 + (p/(2− p)) · µ
=

p ·Var[f(X)]

2− p · (1− µ)
.

47

In the following, we focus on proving that Y is indeed a 2·h
h+1 -tampering variation of X . For any x′ =

(x′1, . . . , x
′
n), x′′ = (x′′1, . . . , x

′′
n) ∈ Supp(X) we have:

1− h
1 + h

· Pr[X = x′]

Pr[X = x′′]
≤ Pr[Y = x′]

Pr[Y = x′′]
≤ 1 + h

1− h
· Pr[X = x′]

Pr[X = x′′]
. (4)

For i ∈ [n] and x = (x1, ...xn) define the set Zx,i as follows

Zx,i = {x′ = (x′1, ..., x
′
n) ∈ Supp(X) | x′1 = x1, . . . , x

′
i = xi}

which is the set of all samples that are equal to x in the first i blocks. By adding Inequality 4 for every
sample in Zx,i−1 and reversing it we get

1− h
1 + h

· Pr[X = x′′]

Pr[X ∈ Zx,i−1]
≤ Pr[Y = x′′]

Pr[Y ∈ Zx,i−1]
≤ 1 + h

1− h
· Pr[X = x′′]

Pr[X ∈ Zx,i−1]
. (5)

By adding Inequality 5 for every x′′ ∈ Zx,i we get

1− h
1 + h

· Pr[X ∈ Zx,i]
Pr[X ∈ Zx,i−1]

≤ Pr[Y ∈ Zx,i]
Pr[Y ∈ Zx,i−1]

≤ 1 + h

1− h
· Pr[X ∈ Zx,i]

Pr[X ∈ Zx,i−1]
.

Because Pr[X∈Zx,i]
Pr[X∈Zx,i−1]

= Pr[Xi = xi | x<i], the above is equivalent to

1− h
1 + h

· Pr[Xi = xi | x<i] ≤ Pr[Yi = xi | x<i] ≤
1 + h

1− h
· Pr[Xi = xi | x<i].

By Proposition C.2, Y is a p-tampering variation ofX for 1−p = 1−h
1+h , which is equivalent to p = 2·h

1+h .

The existence of a (possibly inefficient) p-tampering attacker of Theorem C.1 raises the intriguing ques-
tion of whether this amount of bias could be achieved through an efficient p-tampering attack.

Limitations of Possible Bias. Now, we turn to studying the limitation of p-tampering attacks in the com-
putationally unbounded setting. We show that, perhaps surprisingly, as opposed to case of p-tampering at-
tacks over uniform binary alphabet, where achieving bias p is possible for the balanced case of E[f(X)] = 0
even efficiently [1, 50], when it comes to blockwise p-tampering over uniform non-binary case, even an un-
bounded p-tampering attacker cannot achieve bias +p in general. We write the following proposition using
binary inputs with non-uniform distribution, but it can then be turned into a blockwise tampering over larger
blocks (with uniformly distributed bits).

Proposition C.3. For a given n ∈ N and µ ∈ (−1,+1), letX = (X1×· · ·×Xn) be a product distribution
over blocks such that Xi is a biased coin where Pr[Xi = +1] = (1+µ

2)1/n and Pr[Xi = −1] = 1 −
(1+µ

2)1/n. For x = (x1, . . . , xn) let f(x) = 2 · (x1+1
2) · ... · (xn+1

2) − 1. (Thus, both X and f are
parameterized by n.) Note that E[f(X)] = µ. In other words, the function is defined in a way that it is equal
to 1 if all the coins are 1, and it is −1 otherwise. We know that Pr[f(X) = 1] = ((1+µ

2)1/n)n = 1+µ
2 which

means the expected value of the function f overX is µ. Now, we claim that for any c > (1 + µ) · ln(2
1+µ),

there exists n0 ∈ N and p0 ∈ [0, 1] such that for every p < p0 and n > n0 and every p-tampering variation
Y ofX we have E[f(Y)] < E[f(X)] + c · p.

48

Proof of Proposition C.3. SinceXi = −1 for any i implies f(X) = −1, the optimal p-tampering algorithm
for biasing f towards +1 is to make every ‘coin’ Xi to be 1 upon any chance. Let t = (1+µ

2)1/n. Thus, the
p-tampering variation Y = (Y1 × ... × Yn) ofX such that every Yi is a biased coin where Pr[Yi = +1] =
(1− p) · t+ p has the highest average among all p-tampering variations ofX . It holds that

E[f(Y)] = 2 · ((1− p) · t+ p)n − 1 = 2 · (1− (1− p)(1− t))n − 1 ≤ 2 · e−(1−p)·(1−t)·n − 1.

We also have limn→∞(1− t) · n = limn→∞(1− ((1 + µ)/2)1/n) · n = − ln((1 + µ)/2).
We are interested to know the range of the constant c when we write the amount of bias achieved by the

optimal algorithm in the form µ+p · c. As we will see, for small p this constant is actually smaller than one.
In particular, we have

lim
p→0

lim
n→∞

2 · e−(1−p)·(1−t)·n − 1− µ
p

= lim
p→0

2 · e(1−p)·ln(1+µ
2

) − 1− µ
p

= (1 + µ) · ln
(

2

1 + µ

)
.

Therefore, for any c > (1 + µ) · ln(2
1+µ) there exist n0 ∈ N and p0 ∈ [0, 1] such that if p < p0 and

n > n0 then E[f(Y)] < µ+ c · p.

Proposition C.3 shows that even f is Boolean, blockwise p-tampering attacks, cannot achieve bias c · p
for all p and some c > (1 + µ) · ln(2

1+µ). For the case of balanced functions where µ = 0, it means that we
cannot achieve bias c · p for c > ln(2) ≈ 0.69. This leaves open the search for finding optimal constant c
for which p-tampering attacks can always get at least c · p bias. For case of balanced Boolean functions we
already know that 0.5 ≤ c ≤ ln(2) < 0.7.

Also note that one can get a similar result to that of Proposition C.3 for uniform non-binary blocks as
follows. Let Xi be distributed as Um and g : {0, 1}m 7→ {+1,−1} be such that E[g(Um)] ≈ (1+µ

2)1/n.
Finally, use g(Xi) instead of Xi in the definition of f in Proposition C.3.

49

	Introduction
	Our Results
	Attacks on Randomness of Cryptographic Primitives
	Efficient Attacks for Biasing Extractors
	Attacking Learners

	Ideas behind Our Blockwise TEXT-Tampering Biasing Attack
	Further Related Work and Models

	Preliminaries
	Distance Measures
	Santha-Vazirani Sources and Their Generalizations

	Blockwise p-Tampering: Definitions and Main Results
	Main Results: Blockwise TEXT-Tampering of Bounded Functions

	Applications of p-Tampering Biasing Attacks
	Efficient TEXT-Tampering Attacks on Extractors
	Targeted Poisoning Attacks on Learners

	Efficient p-Tampering Attacks Biasing Bounded Functions
	Biasing Real-Output Functions: Proving Theorem 3.9
	Biasing Boolean Functions: Proving Theorem 3.12
	Part 1: Ideal (Inefficient) Greedy Tampering
	Part 2: Efficient Greedy Tampering

	Open Questions
	Blockwise p-Tampering Attacks on Primitives: Case of Encryption
	Reducing Blockwise Tampering to Bitwise for Uniform Distributions
	Power and Limitation of Inefficient p-Tampering Attacks

