
Actively Secure Garbled Circuits with Constant Communication
Overhead in the Plain Model∗

Carmit Hazay† Yuval Ishai‡ Muthuramakrishnan Venkitasubramaniam§

Abstract

We consider the problem of constant-round secure two-party computation in the presence of active
(malicious) adversaries. We present the first protocol that has only a constant multiplicative communica-
tion overhead compared to Yao’s protocol for passive adversaries, and can be implemented in the plain
model by only making a black-box use of (parallel) oblivious transfer and a pseudo-random generator.
This improves over the polylogarithmic overhead of the previous best protocol. A similar result could
previously be obtained only in an amortized setting, using preprocessing, or by assuming bit-oblivious-
transfer as an ideal primitive that has a constant cost.

We present two variants of this result, one which is aimed at minimizing the number of oblivious
transfers and another which is aimed at optimizing concrete efficiency. Our protocols are based on a
novel combination of previous techniques together with a new efficient protocol to certify that pairs of
strings transmitted via oblivious transfer satisfy a global relation. Settling for “security with correlated
abort”, the concrete communication complexity of the second variant of our protocol can beat the best
previous protocols with the same kind of security even for realistic values of the circuit size and the
security parameter. This variant is particularly attractive in the offline-online setting, where the online
cost is dominated by a single evaluation of an authenticated garbled circuit, and can also be made non-
interactive using the Fiat-Shamir heuristic.

Keywords: Secure two-party computation, constant-round protocols, garbled circuits, low-complexity cryptography

∗This is a preliminary full version of the conference paper [HIV17], which fixes some mistakes and includes additional results.
See Appendix A for a summary of the differences.

†Bar-Ilan University. Email: carmit.hazay@cs.biu.ac.il.
‡Technion and UCLA. Email: yuvali@cs.technion.ac.il
§University of Rochester. Email: muthuv@cs.rochester.edu.



Contents

1 Introduction 2
1.1 Our Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Our Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Comparison with Prior Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Preliminaries 9
2.1 Length-Doubling Pseudorandom Generators . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 s-Wise Pseudorandom Generators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Message Authentication Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.3.1 Simple MAC for a Single Bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.2 Low-Depth MAC for Strings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.3 Special-Hiding Information-Theoretic MAC . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Secret-Sharing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.5 Oblivious Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.6 The [BMR90] Garbling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.7 Secure Multiparty Computation (MPC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.7.1 Weaker Notions of Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Framework for Actively Secure Garbled Circuits 17

4 Secure 2PC in NC0-Hybrid 19
4.1 Variant 1: Authenticating The PRG Values . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.2 Variant 2: Authenticating The Color Bits . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.2.1 Security in the Presence of WVD Attacks . . . . . . . . . . . . . . . . . . . . . . . 33

5 Realizing NC0 Functionalities in the FDCOT-Hybrid 34

6 Realizing FDCOT-IVD 36

7 Realizing FCnP via MPC-in-the-Head Approach 40

8 Information-Theoretic Protocol for Realizing FMPC 44

9 Putting it Together 46
9.1 Variant 1: Asymptotically Optimal Construction . . . . . . . . . . . . . . . . . . . . . . . . 46
9.2 Variant 2: Concretely Efficient Variant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

10 Acknowledgments 53

A Comparison with the Conference Version of This Paper 56

1



1 Introduction

Secure multiparty computation allows two or more parties to perform a distributed computation while pro-
tecting to the extent possible the secrecy of the inputs and the correctness of the outputs. The focus of this
work is on constant-round secure two-party computation. The most practical approach to this problem is
Yao’s garbling paradigm [Yao86]. It is convenient to describe Yao’s original protocol for the case of com-
puting deterministic two-party functionalities, represented by Boolean circuits, that deliver output to only
one party. (The general case can be easily reduced to this case.) We will refer to the party who gets an output
as the receiver and to the other party as the sender. The protocol proceeds by having the sender randomly
generate an encoded version of the circuit, referred to as a garbled circuit, together with pairs of input keys,
a pair for each input bit. It sends the garbled circuit to the receiver along with the input keys corresponding
to the sender’s inputs, and allows the receiver to select its own input keys using oblivious transfer (OT).
From the garbled circuit and the selected input keys, the receiver can compute the output.

This simple version of Yao’s protocol is only secure in the presence of passive (semi-honest) corrup-
tions, since it allows a malicious sender to freely manipulate the honest receiver’s output by sending a badly
formed garbled circuit. Nevertheless, being the simplest protocol of its type, it serves as a benchmark for
the efficiency of secure two-party computation. Given a length-doubling pseudo-random generator1 (PRG)
G : {0, 1}κ → {0, 1}2κ, this protocol can be used to evaluate a Boolean circuit C using O(κ|C|) bits of
communication, O(|C|) PRG invocations, and n OTs on pairs of κ-bit strings, where n is the length of the
receiver’s input. Obtaining security in the presence of active (malicious) adversaries is much more challeng-
ing. To rule out practically inefficient solutions that rely on general zero-knowledge proofs [GMW87] or
alternatively require public-key operations for every gate in the circuit [JS07, Gen09], it is useful to restrict
the attention to protocols that make a black-box use of a PRG, as well as a constant-round parallel oblivious
transfer (OT) protocol. The latter is in a sense necessary, since parallel OT is an instance of secure compu-
tation. It is convenient to abstract away from the use of an actual OT sub-protocol by casting protocols in
the OT-hybrid model, where the parties can invoke an ideal OT oracle. This is justified by the fact that the
cost of implementing the OTs is typically not an efficiency bottleneck.2 In the following, we will refer to a
protocol that only makes a black-box use of a PRG (or a stronger “symmetric” primitive)3 and OT (either
a parallel OT protocol or an ideal OT oracle) as a black-box protocol. Yao’s passively secure protocol is
black-box in this sense.

Lindell and Pinkas [LP07] (following [MF06]) presented the first constant-round black-box protocol that
achieves simulation-based security against active adversaries. Their protocol replaces expensive (and non-
black-box) zero-knowledge proofs by an ad-hoc use of a “cut-and-choose” technique. Since then, a large
body of works attempted to improve the efficiency of such protocols both asymptotically and concretely
(see, e.g., [IKL+13, NST16, NO16, WMK17, WRK17] and references therein). The main goal of the
present work is to minimize the asymptotic communication complexity of this type of protocols.

In protocols that rely on the “cut-and-choose” technique, the sender sends O(s) independent copies
of the garbled circuit, for some statistical parameter s, following which a subset chosen by the receiver

1Garbled circuits are often described and implemented using a pseudo-random function (PRF) F : {0, 1}κ×{0, 1}κ → {0, 1}κ
instead of a length doubling PRG G. Since G can be implemented via two calls to F but the converse direction is not known,
formulating positive (asymptotic) results in terms of the number of PRG calls makes them stronger.

2The number of OTs used by such protocols is typically smaller than the circuit size. Moreover, the cost of a large number of
OTs can be amortized via efficient OT extension [IKNP03, KOS15].

3It is sometimes helpful to replace the PRG by a stronger symmetric primitive, such as symmetric encryption, a correlation-
robust hash function [IKNP03], or even a random oracle. While the main question we consider was open even when the use of such
stronger symmetric primitives is allowed, our main asymptotic results only require a PRG.

2



is opened to demonstrate correctness. The parameters in this approach have been sharpened, and the best
protocols can achieve sender simulation error of 2−s using only s copies [HKE13, Lin16]. However, the
multiplicative communication overhead4 in all these protocols over Yao’s protocol is at least s, and similarly
the cryptographic cost involves at least Ω(s) PRG calls per gate, compared to O(1) in Yao’s protocol.
Using a different technique (see Section 1.2), the asymptotic communication overhead has been improved
to polylog(s) [IKO+11, IKL+13], at the cost of relying on heavy “non-cryptographic” machinery (that
includes linear-time encodable error-correcting codes and routing networks) and poor concrete efficiency.

Towards minimizing the overhead of active security, another line of works analyzed the amortized set-
ting, where multiple evaluations of the same circuit are conducted by the two parties [LR14, HKK+14,
RR16, NO16]. In this setting, a recent work of Nielsen and Orlandi [NO16] shows how to protect Yao’s
protocol against active adversaries with only a constant (amortized) multiplicative communication over-
head. Besides relying on a collision-resistant hash-function (or even private information retrieval schemes
for functions with large inputs), the main caveat is that this approach only applies in the case of multiple
circuit evaluations, and moreover the number of evaluations must be bigger than the size of the circuit.

Finally, a recent work of Wang, Ranellucci, and Katz [WRK17] obtains an actively secure version of
Yao’s protocol that can be instantiated to have constant communication overhead in the OT-hybrid model.
Unfortunately, this protocol requires Ω(κ) separate bit-OT invocations for each gate of the circuit. As
a result, its black-box implementation in the plain model has Ω̃(κ) communication overhead over Yao’s
protocol.5 A similar overhead applies to the computational cost in the plain model. We note that even in
the bit-OT hybrid, the constant-overhead variant of [WRK17] inherits from [IPS08, CC06] the use of heavy
tools such as algebraic geometric codes, and has poor concrete efficiency.

To conclude, prior to the present work there was no constant-round actively secure protocol that makes
a black-box use of oblivious transfer and symmetric primitives and has a constant communication overhead
over Yao’s protocol in plain model. This state of affairs leaves the following question open:

What is the best achievable communication overhead of constant-round “black-box” actively
secure two-party protocols in the plain model compared to Yao’s passively secure protocol? In
particular, is constant multiplicative overhead achievable?

As discussed above, it will be convenient to consider this question in the OT-hybrid model. To ensure
relevance to the plain model we will only consider a “κ-bit string-OT” hybrid, where each ideal OT is used
to transfer a string whose length is at least κ (a computational security parameter) and the communication
cost also includes the communication with the OT oracle.

1.1 Our Results

Our main result is an affirmative answer to the question of actively secure garbled circuits with constant
communication overhead. This is captured by the following theorem.

4Following the common convention in the secure computation literature, the multiplicative overhead considers the typical case
where the circuit is (polynomially) bigger than the input length and the security parameter, and ignores low-order additive terms
that are asymptotically dominated by the circuit size when the circuit size is a sufficiently large polynomial in the other parameters.
Concretely, when we say that the asymptotic multiplicative overhead is c(s), we mean that the communication complexity can be
bounded by c(s) ·O(κ|C|) + |C|ϵ · poly(n, s, κ) for every constant ϵ > 0.

5There are no known protocols for realizing many instances of bit-OT in the plain model with less than Ω̃(κ) bits per in-
stance, except via a heavy use of public-key cryptography for each OT instance [IKOS09, BGI17] or polynomial-stretch local
PRGs [IKOS08]. This is true even for passively secure bit-OT, even in the random oracle model, and even when using the best
known OT extension techniques [IKNP03, KK13].

3



Theorem 1.1 (Informal.) Let κ denote a computational security parameter, s a statistical security param-
eter, and n the length of the shorter input. Then, for any constant ϵ > 0, there exists an actively secure
constant-round two-party protocol ΠC for evaluating a Boolean circuit C with the following efficiency fea-
tures (ignoring lower order additive terms):

• It uses O(κ · |C|) bits of communication;

• It makes O(|C|) black-box calls to a length-doubling PRG of seed length κ;

• It makes n+O(s · |C|ϵ) calls to κ-bit string OT oracle, or alternatively (n+ |C|ϵ) · poly(κ) calls to
any (parallel, constant-round) bit-OT protocol in the plain model, assuming explicit constant-degree
polynomially unbalanced unique-neighbor expanders.6

Concrete efficiency. The above result is focused on optimizing the asymptotic communication complexity
while using a small number of OTs. We also present a second variant of the main result which is geared
towards concrete efficiency. Our second variant avoids the heavy machinery of linear-time encodable error-
correcting codes, algebraic geometric codes, and expander graphs that are used in the first variant at the cost
of settling for a weaker notion of security. Specifically, this variant satisfies “security with correlated abort,”
which relaxes the ideal model execution by allowing a malicious sender to specify a predicate of the honest
receiver’s input that would make the receiver abort. In particular, if the malicious sender can learn whether
the receiver aborts, this leaks one bit of information about the receiver’s input (but requires the sender to
take a risk of being caught cheating). A similar notion of security is realized by protocols based on the dual
execution paradigm [MF06, HKE12]. Security with correlated abort is arguably sufficient in many cases,
as the leakage legitimately allowed by the ideal functionality is often more significant than the very limited
type of leakage allowed by correlated abort. For instance, secure computation with one bit of leakage has
been adopted by Calctopia [cal] to perform secure computation on data stored in local private spreadsheets
of the parties. The notion of security with correlated abort realized by the second variant of our protocol is
in fact strictly stronger than the notion of security achieved by dual execution protocols in that we achieve
full security against one of the parties (the receiver).

Optimizing our second variant, we get better concrete communication complexity than the best previous
protocols in this security model. For instance, for computational security parameter κ = 128 and statistical
security parameter s = 40, our asymptotic multiplicative communication overhead over the best passively
secure protocols (in the random oracle model) is 1.625 (= 1 + 2s/κ) and concretely our overhead is 1.78
for circuits with more than 30,000 AND gates. This should be compared to: an overhead of 40 in optimized
cut-and-choose and of roughly 24 in [WRK17, KRRW18] (where these two approaches achieve full secu-
rity), and an overhead of 2 for dual-execution [MF06, HKE12]. While we have not fully implemented our
protocol, its computational cost seems comparable to that of other protocols from the literature. In contrast
to dual execution protocols, our protocol can be made non-interactive via the Fiat-Shamir heuristic, and
moreover its offline-online version has a much more efficient online phase. See Sections 1.3 and 9.2 for a
detailed concrete analysis of the second variant of our protocol and comparison with the concrete efficiency
of other recent protocols.

An optimized version of [WRK17] has recently appeared in [KRRW18] making the former compatible
with half-gates optimization while decoupling the information theoretic MAC from the garbled circuit.

6 This assumption is needed for the existence of polynomial-stretch local s-wise PRGs [MST03]. It is a mild assumption
(arguably more so than standard cryptographic assumptions) that can be instantiated heuristically (see, e.g., [IKOS08, ADI+17]).
One can dispense with this assumption by allowing O(|C|) OTs of κ-bit strings, or replacing the PRG by a stronger symmetric
primitive such as a correlation-robust hash function or a random oracle.

4



Non-interactive implementation. Another useful feature of our protocol is that, following a function-
independent preprocessing, it can be made non-interactive in the sense of [IKO+11] by using the Fiat-
Shamir heuristic. In the non-interactive variant, the receiver can post an “encryption” of its input and go
offline, allowing the sender to evaluate a circuit C on the inputs by sending a single message to the receiver.

1.2 Our Techniques

At a high level, our results combine the following main techniques. First, to break the cut-and-choose barrier
we apply an authenticated variant of the garbled circuit construction, as was previously done in [IKO+11,
WRK17]. To eliminate some of the effects of selective failure attacks by a malicious sender, we apply the
multiparty circuit garbling technique of Beaver, Micali, and Rogaway (BMR) [BMR90], which was used
for a similar purpose in the two-party protocols of [LPSY15, WRK17]. Finally, we crucially rely on a new
“certified oblivious transfer” protocol to prove in zero-knowledge that pairs of strings transmitted via OT
satisfy a global relation, providing a more efficient alternative to a similar protocol from [IKO+11].

We now give a more detailed account of our techniques. Our starting point is the work of Ishai, Kushile-
vitz, Ostrovsky, Prabhakaran, and Sahai [IKO+11] (IKOPS), which obtained a “non-interactive” black-box
protocol with polylogarithmic communication overhead. More concretely, the IKOPS protocol only makes
use of parallel OTs and a single additional message from the sender to the receiver, and its communication
complexity is polylog(s) · κ bits per gate. On a high-level, the IKOPS protocol for securely computing a
functionality F can be broken into three non-interactive reductions. We begin with explaining the IKOPS
reductions and then discuss our modified steps.

1. ReducingF to an NC0 functionality F̂ . The first step is to securely reduce the computation ofF to a
single invocation of a related NC0 functionality F̂ whose output length is O(κ·|F|). The functionality
F̂ takes from the sender a pair of keys for each wire and the purported PRG outputs on these keys. It
also takes from the receiver a secret key that is used to authenticate the information provided by the
sender. Note that F̂ is non-cryptographic and cannot check that the given PRG outputs are consistent
with the inputs. However, the authentication ensures that the output of F̂ obtained by the receiver
commits the sender to unique values. If the receiver detects an inconsistency with the authentication
information during the garbled circuit evaluation, it aborts. The protocol for F only invokes F̂ once,
and only makes a black-box use of the given PRG. In fact, two variants of this reduction are suggested
in [IKO+11]: one where F̂ authenticates every PRG output provided by the sender, and one where
only the color bits are authenticated.

2. Reducing F̂ to certified OT. The second step is an information-theoretic protocol for F̂ using an ideal
certified oblivious transfer oracle, namely a parallel OT oracle in which the receiver is additionally
assured that the pairs of strings transmitted (which also includes strings it does not receive) satisfy a
global consistency predicate. Such a protocol is obtained in two steps: (1) Start with a non-interactive
protocol for F̂ using a standard parallel OT, where the protocol is only secure in the presence of
a passive sender and an active receiver. (This is equivalent to an information-theoretic projective
garbling scheme [BHR12] or decomposable randomized encoding [IKOS08] for F̂ .) (2) Use the
certified OT oracle to enforce honest behavior of the sender. Below, we will refer to this certified OT
functionality sender-certified OT (SCOT), to distinguish it from other forms of certified OT we will
consider.

3. Reducing certified OT to parallel OT. The third step is an information-theoretic protocol for SCOT
using parallel OTs. This step is implemented using a variant of the “MPC-in-the-head” approach

5



of [IKOS07], using a virtual MPC protocol in which each transmitted OT string is received by a
different party, and an honest majority of servers is used to guarantee global consistency. The SCOT
protocol is inherently susceptible to a benign form of input-dependent selective failure attacks, but
these can be eliminated at a relatively low cost by using a local randomization technique [Kil88,
LP07, IKO+11].

The main instance of the IKOPS protocol is based on the first variant of F̂ , which authenticates the PRG
outputs. This protocol has a polylog(s) communication overhead that comes from two sources. First, the
implementation of F given F̂ (Step 1 above) is subject to selective failure attacks by a malicious sender.
These attacks make the receiver abort if some disjunctive predicate of the wire values is satisfied. (The
second variant of F̂ from [IKO+11] is subject to more complex selective failure predicates, and hence is not
used for the main result.) Such a disjunctive selective failure is eliminated in [IKO+11, IKL+13] by using
leakage-resilient circuits, which incur a polylogarithmic overhead. We eliminate this overhead by defining
an alternative NC0 functionality F̂ that introduces a BMR-style randomization of the wire labels (as done
in [LPSY15, WRK17], but using the first variant of F̂ from [IKO+11]). This implies that the receiver’s input
to F̂ grows with additional O(|C|) random bits, which results in a protocol that uses O(|C|) OTs of O(κ)-bit
strings. To reduce the number of OTs, we use a local s-wise PRG [MST03] to make the receiver’s input to
F̂ small while still ensuring that the probability of the receiver detecting failure is essentially independent
of its secret input. We note that the reduction in the number of OTs is essential in order to get a protocol
with constant communication overhead in the plain model by using only a (parallel) bit-OT protocol and a
PRG in a black box way.

Another source of polylogarithmic overhead in [IKO+11] comes from the SCOT construction, which
relies on perfectly secure honest-majority MPC protocols. The best known protocols of this type have a
polylogarithmic communication overhead [DIK10]. Our approach for reducing this overhead is to obtain an
interactive variant of SCOT that can rely on any statistically secure honest-majority MPC protocol, and in
particular on ones with constant communication overhead [DI06, CC06, IPS09]. Our new SCOT protocol
extends in a natural way the recent MPC-based zero-knowledge protocol from [AHIV17]. This gives an
efficient realization of the SCOT functionality, albeit one that is vulnerable to an input-dependent selective
failure similar to [IKO+11].

We remark that the inputs to the original functionality can be protected against selective failures via
the encoding techniques from [Kil88, LP07, IKO+11]. Concretely, the original functionality is modified
so that it accepts an encoded version of the receiver’s inputs, and this encoding is picked at random by the
receiver. However, the BMR-style randomization step introduces additional auxiliary random inputs that
are also subject to selective failure attack. And while these auxiliary BMR inputs are independent of the
original inputs, they are used to mask them, and so leakage on BMR inputs reveals information about the
original inputs. The latter fact was overlooked in the conference version of this paper [HIV17].

To make the leakage on BMR inputs harmless, we need to redesign the functionality F̂ so it takes
an encoded form of the BMR inputs which protects against the above leakage. In contrast to the original
inputs, whose protection can be done by modifying the original functionality F (which is not restricted to
be in NC0), here we need the modified F̂ to remain in NC0, since this is crucial for achieving constant
communication overhead. As a result, we cannot apply the input encoding techniques from [Kil88, LP07,
IKO+11] to protect the BMR random inputs.7

Instead, we will encode the inputs of F̂ (including the BMR inputs) by using a multiplicative secret
7For instance, the encoding used in [Kil88, LP07] requires the decoder to take the XOR of s bits for each encoded input bit.

Note that here we cannot use the Free XOR optimization from [KS08], since it does not apply with constant overhead to NC0

computations.

6



sharing scheme based on AG codes [CC06]. This encoding will suffice to protect the computation of F̂
against selective failures while keeping it in NC0 and while only increasing the circuit size of F̂ by a
constant factor. However, this modified F̂ is susceptible to a new attack, by a sender or receiver who
provide an invalid secret sharing of their inputs.8 We will be able to protect both parties against this new
attack by considering a stronger variant of the SCOT functionality. Namely, we introduce a doubly certified
oblivious-transfer functionality (DCOT) that, in addition to certifying the sender’s inputs, will provide the
result to the receiver only if the receiver’s inputs satisfy some given predicate. Finally, we show how to
efficiently reduce the DCOT functionality to the SCOT functionality.

Our first variant of authenticated garbling uses the above DCOT protocol for a consistency predicate
defined by Boolean circuits. As in [IKO+11], these Boolean circuits employ information-theoretic MACs
based on linear-time encodable codes [Spi95]. To compute such a predicate with constant communication
overhead, we rely on statistical honest-majority MPC based on algebraic geometric codes [CC06, IKOS07].
This results in poor concrete efficiency and Ω(s) computational overhead.

The second variant of our protocol eliminates the above heavy machinery and obtains good concrete
efficiency by making the following two changes: (1) using the second variant of the NC0 functionality
F̂ for Step 1 (which only authenticates color bits); (2) relaxing security to allow correlated abort, which
eliminates some of the above complications and allows us to directly use SCOT bypassing the need for
DCOT; (3) implementing an optimized SCOT protocol for a predicate defined by an arithmetic circuit over
a field of size 2O(s). Switching from boolean to arithmetic circuits allows us to use simpler constant-rate
honest-majority MPC protocols for arithmetic circuits over large fields. Such protocols are simpler than
their Boolean counterparts and have better concrete efficiency (see [IPS09], Appendix C, and [AHIV17]).
Another (asymptotic) advantage is polylogarithmic computational overhead. The second variant of our
protocol has a multiplicative communication overhead of (1 + s/κ) over the passive Yao protocol, with a
small additive overhead. The latter holds even when allowing FreeXOR optimization [KS08]. If we allow
the “half-gate” optimization of [ZRE15], then the overhead becomes (1 + 2s/κ).

1.3 Comparison with Prior Works

Comparison with Wang et al. [WRK17]. The recent results of [WRK17] are the most relevant to our
work. Like the second variant of our protocol, the protocol from [WRK17] uses a combination of: (1)
an “authenticated garbled circuit functionality” which is similar to the second variant from [IKO+11] that
only authenticates the color bits, and (2) a BMR-style randomization to defeat selective failure attacks. (In
contrast, the first variant of our protocol that we use to get our main asymptotic results relies on the first
variant of the functionality from [IKO+11] that authenticates the entire PRG outputs, since in this variant the
selective failure predicate is simple.) The main difference between the second variant of our protocol and the
protocol from [WRK17] is in how the NC0 functionality F̂ is securely realized against active adversaries.
While the work of [WRK17] uses a “GMW-style” interactive protocol for realizing F̂ , we rely on the non-
interactive SCOT-based approach of IKOPS [IKO+11] at the cost of settling for security with correlated
abort.

In slightly more detail, the protocol of [WRK17] for evaluating F̂ first creates a large number of au-
thenticated “AND triples” using a variant of the “TinyOT” protocol [NNOB12]. Then, using the AND
triples, the parties securely compute F̂ . This protocol, which follows an optimized cut-and-choose ap-
proach, has Ω(s/ log |C|) communication overhead. Alternatively, [WRK17] also proposes using a protocol
from [IPS08] to make the communication overhead constant, but this only holds in the bit-OT hybrid model

8This is in contrast to the IKOPS transformation, where the receiver has no space for cheating.

7



that cannot be instantiated in our black-box model and leads to prohibitive concrete overhead. In contrast,
our protocols realize F̂ using a passively secure non-interactive protocol in the κ-bit OT-hybrid, and apply an
improved implementation of SCOT to achieve security against active adversaries with constant communica-
tion overhead. The good concrete efficiency of the second variant of our protocol is inherited from a careful
implementation of the passively secure protocol for F̂ and a sublinear communication implementation of
SCOT.

Comparison with dual execution protocols. The dual execution paradigm for actively secure 2PC [MF06,
HKE12] has an asymptotic overhead of 2 compared to the passively secure protocol. This paradigm is based
on the observation that the passively secure protocol of Yao (in the OT-hybrid model) is already actively
secure against an active receiver, who evaluates the garbled circuit. In a dual execution protocol, the parties
engage in two instances of the passive Yao protocol, with the roles reversed in each instance, followed by
a secure equality check for the outputs. The intuition is that for at least one of the two instances the result
will be correct, since in one of the two instances the corrupted party is the evaluator (and therefore cannot
attack the protocol) while the other party remains honest. This protocol allows the corrupted party to obtain
an arbitrary bit of leakage, regardless of who is corrupted. This is weaker than the “correlated abort” notion
achieved by the second variant of our protocol, where full security is achieved against a malicious receiver.
Indeed, in dual execution protocols the adversary always learns one bit of leakage from the honest party’s
input since the predicate that makes the honest party abort is defined by a badly formed garbled circuit via
the equality check.

The cost of implementing the secure equality check in dual execution protocols may be significant,
despite some recent optimizations [KMRR15, RR16]. When the statistical security parameter s is set to 40
and computation security parameter κ is set to 128, the communication overhead of our protocol (compared
to passive Yao) is less than 2 for circuits with more than 1000 AND gates, regardless of the output size.
In contrast, the overhead of dual execution protocols is always bigger than 2 with a significant additive
term that grows with the output size. As stated above, our overhead is 1 + 2s/κ and is less than 2 for
reasonable parameter regimes. In comparison with fully-secure implementations, the work of [KRRW18]
provides the most communication efficient protocol and incurs an overhead of (4B + 3) + (4B + 2)s/κ
where B = s/ log |C| (roughly 24 for s = 40, κ = 128 and circuits with more than 3100 AND gates).

Both dual execution protocols and our protocol can be benefit from preprocessing in an offline/online
setting. In dual execution protocols, both parties will each have to store the entire garbled circuit, while in our
protocol only one of the parties maintains an “authenticated” garbled circuit. A more significant advantage
of our protocol is that its online phase can be made non-interactive while dual execution protocols require
non-trivial online interaction to perform the equality test.

Finally, we can modify our protocol so that it achieves a stronger notion of security with correlated
abort, namely one where the abort predicate is limited to a disjunction of circuit wires or their negations.
This variant requires a relatively mild assumption on the underlying PRG (which holds in the random oracle
model).

A summary of qualitative and quantitative improvements. We conclude with a summary of the improve-
ments introduced by our second construction compared to prior work.

Security. Our protocol archives worse security than “fully secure” protocols. However, its security is better
than dual execution security in the sense that we get full security against a malicious receiver whereas
in dual execution both parties can get a bit of leakage about the other party’s input.

Communication complexity. Our cost is comparable to dual execution, and significantly better than the best
fully secure protocols (e.g., a factor of 13 better than [KRRW18]). For instance, the total concrete

8



communication cost of computing a single instance of AES circuit with κ = 128 and s = 40 is, 15.12
MB for [NST17], 6.29 MB for [WRK17], 4.25 MB for [KRRW18], 432 KB for the dual execution
protocol (estimated) and only 425 KB for our protocol.

Interaction. Our protocol has the qualitative advantage of supporting “non-interactive” secure computa-
tion [IKO+11] (NISC), whereas other recent works on the concrete efficiency of 2PC, including those
based on dual execution, inherently require 3 or more messages. A NISC protocol allows the receiver
to post an “encryption” of its input and get back from the sender an “encryption” of the output. Our
protocol can be implemented in this setting given pre-computed OTs, or using 2-message (parallel)
OT protocols such as the PVW protocol [PVW08]. Recall that our NISC protocol employs κ + 2s
OTs, which is independent of the circuit size, therefore using the PVW OT protocol will not introduce
a high overhead.

Reusability. An attractive feature of NISC is the potential to reuse the receiver’s message for multiple com-
putations, where the receiver’s input is fixed and the sender’s input changes. This can be an important
feature in practice. In fact, if we use a PVW-style 2-message OT (as opposed to precomputed OTs),
the second message can originate from multiple independent senders who can each contribute one or
more inputs. Similarly to previous OT-based NISC protocols, our protocol is not fully reusable in the
sense that if a malicious sender can repeatedly learn whether the receiver aborts, it can eventually learn
the receiver’s OT selections and violate security [IKO+11, AMPR14, CDI+18]. In practice, however,
this issue is not always significant for several reasons. First, there is no problem with reusing the
receiver’s message as long as the receiver keeps its output to itself, or alternatively makes sure that no
information about the output is leaked to the sender. Second, for such a selective failure attack to be
successful, cheating should be detected by the receiver multiple times. This can come at a high price
for the sender(s), either in money or in reputation. Finally, as discussed in [IKO+11], the receiver
can prevent the attack by just posting a fresh encryption of its input once the number of aborting
executions passes the threshold of becoming risky.

2 Preliminaries

Basic notations. We denote a security parameter by κ. We say that a function µ : N → N is negligible
if for every positive polynomial p(·) and all sufficiently large κ’s it holds that µ(κ) < 1

p(κ) . We use the
abbreviation PPT to denote probabilistic polynomial-time and denote by [n] the set of elements {1, . . . , n}
for some n ∈ N.

We assume functions to be represented by a Boolean circuit C (with AND,OR,XOR gates of fan-in 2
and NOT gates), and denote the size of C by |C|. By default we define the size to include the total number of
gates, excluding NOT gates but including input gates. In the context of protocols that employ the FreeXOR
garbled circuit optimization [KS08], the size does not include XOR gates.

We specify next the definitions of computationally indistinguishable distributions and statistical distance.

Definition 2.1 Let X = {X(a, κ)}a∈{0,1}∗,κ∈N and Y = {Y (a, κ)}a∈{0,1}∗,κ∈N be two distribution ensem-

bles. We say that X and Y are computationally indistinguishable, denoted X
c
≈ Y , if for every poly(κ)-time

non-uniform D, every a ∈ {0, 1}∗, every positive polynomial p(·) and all sufficiently large κ’s,∣∣Pr [D(X(a, κ), 1κ) = 1]− Pr [D(Y (a, κ), 1κ) = 1]
∣∣ < 1

p(κ)
.

9



Note that the computational indistinguishability requirement effectively requires the inputs a to be polyno-
mially bounded in κ (as longer inputs cannot even be fully read by D).

Definition 2.2 Let Xκ and Yκ be random variables accepting values taken from a finite domain Ω ⊆
{0, 1}κ. The statistical distance between Xκ and Yκ is

SD(Xκ, Yκ) =
1

2

∑
ω∈Ω

∣∣Pr[Xκ = ω]− Pr[Yκ = ω]
∣∣.

We say that Xκ and Yκ are ε-close if their statistical distance is at most SD(Xκ, Yκ) ≤ ε(κ). We say that
Xκ and Yκ are statistically close, denoted Xκ ≈s Yκ, if ε(κ) is negligible in κ.

2.1 Length-Doubling Pseudorandom Generators

Informally speaking, a pseudorandom generator (PRG) is an efficiently computable deterministic function
that looks like a truly random string to any (non-uniform) polynomial time observer. The garbling schemes
of Yao [Yao86] and BMR [BMR90], which we employ, can be based on any length-doubling PRG GPRG :
{0, 1}κ → {0, 1}2κ, defined below.

Definition 2.3 (Length doubling pseudorandom generator) Let GPRG : {0, 1}κ → {0, 1}2κ be an effi-
cient, length-doubling, deterministic function. We say that GPRG is a pseudorandom generator if for every
polynomial-time non-uniform distinguisher D, there exists a negligible function negl such that:∣∣Pr[D(GPRG(r)) = 1]− Pr[D(R) = 1]

∣∣ ≤ negl(κ).

where r ← {0, 1}κ and R← {0, 1}2κ. The probability is taken over the choice of either r or R.

2.2 s-Wise Pseudorandom Generators

An s-wise pseudorandom generator (PRG) GsPRG : {0, 1}δ 7→ {0, 1}n satisfies the property that for a
random r the bits in GsPRG(r) are s-wise independent, in the sense that their projection to any s coordinates is
a uniformly random s-bit string. Standard constructions of such PRGs exist based on random (s−1)-degree
polynomials in a finite field. In our work, we will require s-wise PRGs that additionally have the property
of being computed by an NC0 circuit, namely ones where every output bit depends on a constant number of
input bits. Such “local” s-wise PRGs can be based on unique-neighbor bipartite expander graphs [MST03].

In more detail, consider a bipartite expander graph with left degree d, such that any subset of v ≤ s
vertices on the left has at least 3

4vd neighbors on the right. Then we associate every left vertex with an
output bit and and every right vertex with an input bit. An s-wise PRG can now be obtained setting an
output bit as the XOR of its neighbors. If we further assume that the bipartite graph has constant-degree d
for the left vertices, we obtain an s-wise PRG that can be computed by an NC0 circuit.

Some of our results require an s-wise PRGs with polynomial stretch. Concretely, for every 0 < ϵ < 1
we need an explicit NC0 construction of an s-wise PRG GsPRG from δ = O(nϵ + s) to n bits. (In fact,
δ = O(nϵ) + sO(1) would suffice for obtaining slightly weaker but qualitatively similar results.) Expander
graphs with the corresponding parameters are known to exist, and in fact a random graphs has the required
expansion property with high probability (cf. [IKL+13], Theorem 2). While no provable explicit construc-
tions are known, assuming the existence of such an explicit construction (e.g., by using the binary expansion
of π) can be viewed as a mild assumption compared to standard cryptographic assumptions. Some of our
results rely on such an assumption, which is necessary for the existence of explicit polynomial-stretch local
PRGs. See, e.g.,[IKOS08, ADI+17] for further discussion.

10



2.3 Message Authentication Codes

2.3.1 Simple MAC for a Single Bit

Our first construction for message space {0, 1} is a trivial MAC that picks two random strings {σ0, σ1} as
the key and assigns σb as the MAC for bit b ∈ {0, 1}.

2.3.2 Low-Depth MAC for Strings

We consider a second MAC that will allow for a sender to authenticate a κ-bit string via a secure computation
of an NC0 function to a receiver holding the MAC key. It is easy to see that if the MAC itself is computable
in NC0 then it can only have a constant soundness error. To overcome this barrier, we follow the approach of
[IKOS08, IKO+11] where the message to be authenticated is first locally encoded. Since the NC0 computa-
tion cannot compute the encoding, we will require from the sender to provide the encoding to the NC0 func-
tionality along with a proof, where both the MAC computation given the encoding and the proof verification
are done in NC0. We will additionally require that the encoding procedure be efficient, since the proof veri-
fication circuit size grows with the encoding circuit size. By relying on Spielman’s codes [Spi95], we obtain
an asymptotically optimal code that can be encoded by linear-size circuits. More formally, such codes imply
that there exist constants ℓlin, ℓout, ℓkey such that for every length κ, there exists an explicit linear-size circuit
Enclin : {0, 1}κ → {0, 1}ℓinκ and an NC0 function family {MACSK : {0, 1}ℓinκ → {0, 1}ℓoutκ}SK∈{0,1}ℓkeyκ

such that MACSK(Enclin(σ)) is a 2−κ information-theoretically secure MAC.

2.3.3 Special-Hiding Information-Theoretic MAC

For our concretely efficient protocol, we will employ another simple information theoretic MAC. We for-
malize the security requirement next and then present a construction.

Definition 2.4 (Special-hiding IT-MAC) Let F be a finite field. We say that a family of functions H =
{H : Fℓ × F→ F} is ϵ-secure special-hiding if the following two properties hold:

Privacy. For every x, x′ ∈ Fℓ and H ∈ H, the distributions H(x; r) and H(x′; r) are identical for a
random r ∈ F.

Unforgeability. For any x, r, x′, r′ such that (x, r) ̸= (x′, r′), we have: Pr[H ← H : H(x; r) =
H(x′, r′)] ≤ ϵ

Proposition 2.1 Let ℓ ∈ N. Define the family H = {Hw}w∈I where the index set I includes all vectors
(k0, . . . , kℓ) such that

∑ℓ
i=0 ki ̸= 0 and the hash function is defined as

H(k0,...,kℓ)((x1, . . . , xℓ), r) =
ℓ∑

i=0

ki · (r + xi)

where x0 is set to 0. ThenH is a 1
|F| -secure special-hiding IT-MAC.

Proof: We prove that the two properties defined in Definition 2.4 are met.

11



Privacy: Given x and x′ in Fℓ, we need to show that {r ← F : H(x; r)} and {r′ ← F : H(x′; r′)} are
identically distributed. This follows from the fact that given x, x′ and key w = (k0, . . . , kℓ), for every r, we
can find r′ such that Hw(x, r) = Hw(x

′, r′) by setting

r′ = r +

(
ℓ∑

i=0

ki

)−1 [ ℓ∑
i=1

ki(xi − x′i)

]

where x = (x1, . . . , xℓ) and x′ = (x′1, . . . , x
′
ℓ). We remark that (

∑ℓ
i=0 ki) has an inverse because I only

includes keys such that
∑ℓ

i=0 ki ̸= 0.

Unforgeability: Recall that robustness requires to show that for x, r, x′, r′ such that (x, r) ̸= (x′, r′),

Pr[w ← I : Hw(x; r) = Hw(x
′; r′)] ≤ 1

|F|

We argue this in two subcases.

• Case r = r′: This means x ̸= x′ and there exists j such that xj ̸= x′j where x = (x1, . . . , xℓ)
and x′ = (x′1, . . . , x

′
ℓ). Then given w = (k0, . . . , kℓ) ∈ I we can rewrite the equation Hw(x; r) =

Hw(x
′; r) as:

kj = −(xj − x′j)
−1

 ∑
1≤i≤ℓ,i ̸=j

ki(xi − x′i)


This means that if the elements ki for 0 ≤ i ≤ ℓ and i ̸= j are fixed, then the probability that kj
satisfies the preceding equation is 1

|F| .

• Case r ̸= r′: Then for any x, x′ and ki ∈ F for 1 ≤ i ≤ ℓ, k0 must satisfy the following equation for
the MACs to be the same.

k0 = −(r − r′)−1

(
ℓ∑

i=1

ki(xi − x′i)

)
which happens again with probability 1

|F| .

2.4 Secret-Sharing

A secret-sharing scheme allows distribution of a secret among a group of n players, each of whom in a
sharing phase receive a share (or piece) of the secret. In its simplest form, the goal of secret-sharing is to
allow only subsets of players of size at least t+ 1 to reconstruct the secret. More formally a t+ 1-out-of-n
secret sharing scheme comes with a sharing algorithm that on input a secret s outputs n shares s1, . . . , sn
and a reconstruction algorithm that takes as input ((si)i∈S , S) where |S| > t and outputs either a secret s′

or ⊥. In this work, we will use the Shamir’s secret sharing scheme [Sha79] with secrets in a finite field F
such that |F| > n and algebraic geometric (AG) secret sharing over constant-size fields [CC06]. We present
the sharing and reconstruction algorithms below:

Sharing algorithm: For any input s ∈ F, pick a random polynomial p(·) of degree t in the polynomial-
field F[x] with the condition that p(0) = s and output p(1), . . . , p(n), where 1, . . . , n denote distinct
nonzero field elements.

12



Functionality FOT

Functionality FOT communicates with sender S, receiver R and adversary S, and is parameterized by an
integer m.

1. Upon receiving from the sender the input (sid, (v10 , v
1
1), . . . , (v

m
0 , vm1 )) from S where vi0, v

i
1 ∈

{0, 1}t for every i ∈ [m], record ((v10 , v
1
1), . . . , (v

m
0 , vm1 )).

2. Upon receiving (sid, u1, . . . , um) from R where ui ∈ {0, 1}, send viui
to R for all i ∈ [m]. Other-

wise, abort.

Figure 1: The parallel oblivious transfer functionality.

Reconstruction algorithm: For any input (s′i)i∈S where none of the s′i are ⊥ and |S| > t, compute a
polynomial g(x) such that g(i) = s′i for every i ∈ S. This is possible using Lagrange interpolation
where g is given by

g(x) =
∑
i∈S

s′i
∏

j∈S/{i}

x− j

i− j
.

Finally the reconstruction algorithm outputs g(0).

Packed secret-sharing. The concept of packed secret-sharing was introduced by Franklin and Yung [FY92]
in order to reduce the communication complexity of secure multi-party protocols, and is an extension of
standard secret-sharing. In [FY92] the authors considered Shamir’s secret sharing with the difference that
the number of secrets s1, . . . , sℓ is now ℓ instead of a single secret, evaluated by a polynomial p(·) on ℓ
distinct points. To ensure privacy in case of t corrupted parties, the random polynomial must have degree at
least t+ ℓ. We use packed secret-sharing in our underlying MPC protocol.

Packed secret-sharing from AG codes. We will use a constant-rate packed secret sharing scheme over
constant-size fields that supports multiplication of d shared blocks. Such a scheme relies on a family of
linear error correcting codes with the following special properties.

Fact 2.2 ( [CC06, CCX12]) For any positive integer d there exists a finite field F of characteristic 2 and
an efficiently constructible family of linear error-correcting codes CK : FK → FNK with the following
properties: (1) NK = O(K); (2) The dual distance of CK is δK = Ω(K); (3) The linear code C ′

K spanned
by all point-wise products of d codewords in CK has minimal distance ∆K = Ω(K).

The secret sharing scheme defined by such a code proceeds by picking a random codeword that starts
with the message vector and discarding the message prefix.

2.5 Oblivious Transfer

1-out-of-2 oblivious transfer (OT) is a functionality that is engaged between a sender S and a receiver R. We
consider the parallel OT functionality which captures parallel executions of several OT instance; see Figure
1 for its formal description.

13



2.6 The [BMR90] Garbling

The [BMR90] garbling approach demonstrates a procedure that is applicable for any number of parties and
involves garbling each gate separately using PRGs, while ensuring consistency between the wires. This
method was recently improved by Lindell et al. in [LPSY15] that introduced an NC0 functionality for this
task based on PRFs.9 Their main observation was that the parties need not demonstrate the correctness of
their PRF computations, as an inconsistent value would immediately cause an honest party to abort with
very high probability. This is because each PRF value forms a MAC tag that is unforgeable. Moreover,
this event is not correlated with that honest party’s input. This is due to the fact that each wire value a
transmitted via some wire w is masked with a random color bit λw, and is thus hidden from the parties
during the evaluation. In this paper we consider a slightly modified variant where only the sender picked the
PRF keys while both parties pick the masking λ’s. More formally, for each gate g with input wires u, v and
output wire w, the 4 entries in a two-party garbing of g are computed as follows:

Ra,b
g = Fkau(g, a)⊕ Fkbv

(g, b)⊕ (k0w ⊕
(
(((λa ⊕ a)(λb ⊕ b))⊕ λc)(k

1
w ⊕ k0w)

)
for every pair (a, b) ∈ {0, 1}2 where F is a PRF and the wire masks λu, λv, λw ∈ {0, 1} are secret-shared
between the parties, while the PRF keys kau, k

b
v are chosen only by the sender. That is, each wire w is

associated with a pair of keys k0w and k1w, where the output key that is encrypted under the input keys in each
row is determined by the color bits λu, λv, λw (where the color bits associated with the input wires point to
the index of the row to be decrypted in each garbled gate).

The privacy guarantee follows similarly to the privacy guarantee of Yao’s garbing. Namely, the it is
possible to generate an indistinguishable fake garbling given only the function’s output F(x, y).

2.7 Secure Multiparty Computation (MPC)

Secure Two-Party Computation. We use a standard standalone definition of secure two-party computation
protocols. In this work, we only consider static corruptions, i.e. the adversary needs to decide which party it
corrupts before the execution begins. Following [HL10], we use two security parameters in our definition.
We denote by κ a computational security parameter and by s a statistical security parameter that captures a
statistical error of up to 2−s. We assume s ≤ κ. We let F be a two-party functionality that maps a pair of
inputs of equal length to a pair of outputs. Without loss of generality, our protocols only deliver output to
one party (the receiver), which can be viewed as a special case in which the other party’s output is fixed.

Let Π = ⟨P0, P1⟩ denote a two-party protocol, where each party is given an input (x for P0 and y
for P1) and security parameters 1s and 1κ. We allow honest parties to be PPT in the entire input length
(this is needed to ensure correctness when no party is corrupted) but bound adversaries to time poly(κ)
(this effectively means that we only require security when the input length is bounded by some polynomial
in κ). We denote by REALΠ,A(z),Pi

(x, y, κ, s) the output of the honest party Pi and the adversary A
controlling P1−i in the real execution of Π, where z is the auxiliary input, x is P0’s initial input, y is P1’s
initial input, κ is the computational security parameter and s is the statistical security parameter. We denote
by IDEALF ,S(z),Pi

(x, y, κ, s) the output of the honest party Pi and the simulator S in the ideal model
where F is computed by a trusted party. In some of our protocols the parties have access to ideal model

9We note that although it is more common to describe the [BMR90] garbling based on PRFs, it is important to measure the
complexity of generating the garbling in PRG calls instead. This is because switching from PRFs notation to PRGs might incur
non-constant overhead [GGM86]. In this work we rely on a single length-doubling PRG call per garbled row.

14



implementation of certain cryptographic primitives such as ideal oblivious-transfer (FOT) and we will denote
such an execution by REALFOT

Π,A(z),Pi
(x, y, κ, s).

Definition 2.5 A protocol Π = ⟨P0, P1⟩ is said to securely compute a functionality F in the presence of
active adversaries if the parties always have the correct output F(x, y) when neither party is corrupted, and
moreover the following security requirement holds. For any probabilistic poly(κ)-time adversaryA control-
ling Pi (for i ∈ {0, 1}) in the real model, there exists a probabilistic poly(κ)-time adversary (simulator) S
controlling Pi in the ideal model, such that for every non-uniform poly(κ)-time distinguisher D there exists
a negligible function ν(·) such that the following ensembles are distinguished by D with at most ν(κ)+ 2−s

advantage:

• {REALΠ,A(z),Pi
(x, y, κ, s)}κ∈N,s∈N,x,y,z∈{0,1}∗

• {IDEALF ,S(z),Pi
(x, y, κ, s)}κ∈N,s∈N,x,y,z∈{0,1}∗

Secure circuit evaluation. The above definition considers F to be an infinite functionality, taking inputs of
an arbitrary length. However, our protocols (similarly to other protocols from the literature) are formulated
for a finite functionality F : {0, 1}n×{0, 1}n → {0, 1}m described by a Boolean circuit C. Such protocols
are formally captured by a polynomial-time protocol compiler that, given security parameters 1κ, 1s and a
circuit C, outputs a pair of circuits (P0, P1) that implement the next message function of the two parties
in the protocol (possibly using oracle calls to a cryptographic primitive or an ideal functionality oracle).
While the correctness requirement (when no party is corrupted) holds for any choice of κ, s,C, the security
requirement only considers adversaries that run in time poly(κ). That is, we require indistinguishability (in
the sense of Definition 2.5) between

• {REALΠ,A(z),Pi
(C, x, y, κ, s)}κ∈N,s∈N,C∈C,x,y,z∈{0,1}∗

• {IDEALF ,S(z),Pi
(C, x, y, κ, s)}κ∈N,s∈N,C∈C,x,y,z∈{0,1}∗

where C is the class of Boolean circuits that take two bit-strings as inputs and output two bit-strings, x, y
are of lengths corresponding to the inputs of C, F is the functionality computed by C, and the next message
functions of the parties P0, P1 is as specified by the protocol compiler on inputs 1κ, 1s,C.

MPC. Let n be the number of parties, which will be denoted by P1, . . . , Pn. All parties share the public
input statement x ∈ L and a randomness share ri. The view of Pi, denoted by Vi, includes x, ri and the
messages received by Pi during the execution of a protocol Π. Note that the messages sent by an uncorrupted
player Pi as well as its local output can be inferred from Vi and x by invoking Π. The following definitions
are taken from [IKOS09] verbatim.

Definition 2.6 (Consistent views) We say that a pair of views Vi, Vj are consistent (with respect to the
protocol Π and some public input x) if the outgoing messages implicit in Vi are identical to the incoming
messages reported in Vj and vice versa.

We consider security of protocols in both the honest-but-curious (passive) and the malicious (active)
models. In the former model, one may break the security requirements into the following correctness and
privacy requirements.

15



Definition 2.7 (Correctness) We say that Π realizes a deterministic n-party functionality F(x, r1, . . . , rn)
with perfect (resp., statistical) correctness if for all inputs (x, r1, . . . , rn), the probability that the output of
some player is different from the output of F is 0 (resp., negligible in κ), where the probability is over the
independent choices of the random inputs r1, . . . , rn.

Definition 2.8 (t-Privacy) Let 1 ≤ t < n. We say that Π realizes F with perfect t-privacy if there is a PPT
simulator S such that for any inputs (x, r1, . . . , rn) and every set of corrupted players T ⊂ [n], where |T | ≤
t, the joint view ViewT (x, r1, . . . , rn) of players in T is distributed identically to S(T, x, {ri}i∈T ,FT (x, r1,
. . . , rn)). The relaxations to statistical or computational privacy are defined in the natural way. That is,
in the statistical (resp., computational) case we require that for every distinguisher D (resp., D with circuit
size poly(κ)) there is a negligible function δ(·) such that

|Pr[D(ViewT (κ, x, r1, . . . , rn)) = 1]

− Pr[D(S(κ, T, x, {ri}i∈T ,FT (x, r1, . . . , rn))) = 1]| ≤ δ(κ).

In the malicious model, in which corrupted players may behave arbitrarily, security cannot be generally
broken into correctness and privacy as above. However, for our purposes we only need the protocols to
satisfy a weaker notion of security in the malicious model that is implied by the standard general definition.
Specifically, it suffices that Π be t-private as defined above, and moreover it should satisfy the following
notion of correctness in the malicious model.

Definition 2.9 (t-Robustness) We say that Π realizes F with perfect (resp., statistical) t-robustness if it
is perfectly (resp., statistically) correct in the presence of a honest-but-curious adversary as in Defini-
tion 2.7, and furthermore for any computationally unbounded malicious adversary corrupting a set T of
at most t players, and for any inputs (x, r1, . . . , rn), the following robustness property holds. If there is no
(x, r1, . . . , rn) such that F(x, r1, . . . , rn) = 1, then the probability that some uncorrupted player outputs 1
in an execution of Π in which the inputs of the honest players are consistent with (x, r1, . . . , rn) is 0 (resp.,
is negligible in κ).

Our main theorems are proven in the presence of a static active adversary, that corrupts one of the parties
at the onset of the execution. Nevertheless, our proof utilizes an adversary that may adaptively corrupt a
subset of the servers (which is needed in the MPC-in-the-head emulation of the underlying MPC protocol).

Non-interactive secure computation (NISC). We follow the notation of [IKO+11]. NISC may involve
a trusted setup, an implementation of some (non-reactive) functionality H. We therefore refer to such an
NISC scheme as NISC/H specifying the ideal functionalityH that is accessed by the NISC protocol. In this
work we instantiateH with FOT.

2.7.1 Weaker Notions of Security

We consider secure two-party protocols where an abort event by the receiver is correlated with its input.
This weakening is formalized by allowing the sender to submit an additional input predicate to the trusted
party that computes the functionality, that is applied on the receiver’s input and is leaked to the sender. We
note that there is no leakage if the receiver’s output is never revealed to the sender. Furthermore, to obtain
the leakage from the receiver’s output, a malicious sender must take a risk of being caught cheating.

Security in the presence of correlated abort. The first relaxed notion of security considers simulation
based security in the presence of correlated abort where the malicious sender learns a predicate applied

16



on the receiver’s input. This leakage is formalized by allowing the functionality to additionally receive a
predicate P (·) from the adversary. The functionality then applies the predicate on the honest party’s input
and delivers the output to the honest party only if the predicate evaluates to 1. In this work, we consider two-
party functionalities executed between a sender and a receiver where only the receiver obtains the answer.
In such a scenario, an adversary is allowed to provide a predicate only if it corrupts the sender.

More formally, we consider REALΠ,A(z),Pi
(x, y, κ, s) as described for Definition 2.5. The ideal world

is defined differently. We denote by IDEALleak
F ,S(z),Pi

(x, y, κ, s) the output of the honest party Pi and the
simulator S in the ideal model where S provides a predicate P and F is computed by a trusted party that
delivers the output to Pi only if P returns 0 on Pi’s input, and delivers ⊥ otherwise.

Security in the presence of IVD attacks. This relaxed notion of security considers simulation based secu-
rity in the presence of input-value disjunction (IVD) attacks, where the malicious sender learns a predicate of
the receiver’s input. In Section 5 we discuss how to compile IVD security into full security. More formally,
security is defined as in correlated abort with the exception that the predicate P is a disjunctive predicate on
the receiver’s input bits.

Security in the presence of WVD attacks. Another relaxed notion of security is wire-value disjunction
(WVD) attacks which is specified by a disjunctive predicate P (·) that is applied on the wire values of the
computed circuit C (rather than on the receiver’s input value itself). Namely, P (·) includes a set of pairs
W of the form (w, b) where w is a wire in C and b ∈ {0, 1}. The functionality sends ⊥ to the receiver in
case wire w is evaluated to b. In Section 4.2.1 we present a 2PC secure protocol in the presence of WVD
attacks. More formally, security is defined as in correlated abort with the exception that the predicate P is
a disjunctive predicate on the wire values in the computation C(x, y) where C is the Boolean circuit that
describes F .

3 Framework for Actively Secure Garbled Circuits

In this section we present a general framework for designing an actively secure two-party computation
protocol for a functionality F given its Boolean circuit representation. It is based on (and can capture) the
approach of [IKO+11], but incorporates several additional ideas. The framework consists of the following
steps:

Step 1: Reduce F to a local F̂ . In this step, given a circuit for F and a (computational) security parameter
κ, we obtain an NC0 functionality F̂ and a two-party protocol Π1 that securely realizes F in the F̂-hybrid
model with active security. The protocol Π1 will have the feature of invoking F̂ just once and making only
a black-box use of a PRG. In Section 4 we describe two implementations of this step that combine Yao-
style garbling with BMR-style randomization. Our first implementation of this step is used for our main
asymptotic result and the second for our concretely efficient protocol.

Step 2: Reduce F̂ to DCOT. In this step, we obtain an actively secure protocol Π2 for F̂ where the parties
have access to an augmented OT functionality we refer to as doubly certified oblivious transfer (DCOT).
The DCOT functionality FDCOT in its core performs the parallel OT functionality but additionally assures
the receiver that the pairs of strings transmitted satisfy a global consistency predicate as long as its input is
encoded in some correct format. This step is implemented via two intermediate steps:

1. Start with a perfectly secure non-interactive protocol Π1.5 for F̂ using a standard parallel OT oracle,
where security should only hold in the presence of a passive sender and an active receiver. Such pro-
tocols were referred to in [IKO+11] as NISC/OT protocols, and can be based on any decomposable

17



randomized encoding for F̂ [IK02, IKOS08] (which can also be viewed as a perfectly secure pro-
jective garbling scheme [Yao86, BHR12] or a private simultaneous messages protocol [FKN94] with
1-bit inputs). We exploit the simplicity of F̂ to get an efficient realization of this step via the standard
reduction from

(
n
1

)
-OT to

(
2
1

)
-OT [BCR86].

2. Compile Π1.5 into a protocol Π2 in the FDCOT-hybrid where the sender and receiver rely on the
DCOT oracle to perform the parallel OTs prescribed by Π1.5 while assuring the receiver that the
sender’s inputs to the parallel OT oracle were constructed correctly according to Π1.5 while verifying
the correctness of the receiver’s input. To make the DCOT predicate simpler, we allow it to be non-
deterministic: the predicate depends on two additional NP witnesses provided by the sender and the
receiver. Condition on the receiver’s input being of the correct format, it accepts the selected strings if
the witness used by an honest sender is valid, and rejects (except with negligible probability) if there
is no valid witness that satisfies the global consistency predicate.

Step 3: Reduce DCOT to commit-and-prove and parallel OT. We obtain a constant-round protocol Π3

for the DCOT functionality in a hybrid model where the parties have access to a commit-and-prove (C&P)
oracle and a parallel OT oracle. Loosely speaking, the C&P functionality is a reactive functionality that
proceeds in two phases. In the first phase, the sender commits to an input, and in the second phase it proves
that this input satisfies some NP relation chosen by the receiver.

Our asymptotic result requires an extra intermediate step where the DCOT realization is reduced first to
commit-and-prove and receiver certified OT (RCOT). This is required in order to enforce a global certifica-
tion on the receiver’s input. Using the transformation from [IKO+11], RCOT can be reduced to parallel OT.
The details of this step can be found in Sections 5 and 6.

Our implementation of DCOT in this step deviates from the approach of [IKO+11] which relies on an
information theoretic MPC protocol to simultaneously perform both the computations of the parallel OT
and the “certification.” We decouple the two by relying on the parallel OT and the C&P functionalities
individually in separate steps, which leads to an efficiency improvement over the COT implementation
of [IKO+11].

Step 4: Reduce commit-and-prove to parallel OT. Finally, we use a protocol Π4 to reduce the C&P
functionality to parallel OT via an MPC-in-the-head approach [IKOS07]. Prior works [IMS12, IW14]
have shown how to realize C&P with sub-linear communication using PCPs and CRHFs. We provide a
leaner alternative construction that realizes the C&P functionality in the parallel OT hybrid with constant
communication overhead.10 This construction is a variant of the recent sublinear zero-knowledge protocol
from [AHIV17] and presented in Seciton 7.

Input-dependent failures. A (standard) issue (also present in [IKO+11]) that we have to address is that
Step 2 will only achieve a slightly relaxed notion of security where an active adversary corrupting the COT
sender can cause an input-dependent abort for the receiver.11 More precisely, a corrupted sender can induce
a disjunctive predicate (such as x3 ∨ x5 ∨ x7) on the receiver’s input bits that if satisfied, will make the
receiver abort. We refer to this as an input-value disjunction (IVD) attack and the resulting abort as IVD-
abort. The IVD attack on Step 2 results in the final protocol (obtained by composing all 4 steps) realizing a
relaxed functionality that allows for similar IVD attacks on F (and only such attacks). We address this issue
in our asymptotic result by encoding the receiver’s input to the NC0 functionality using AG codes.

10We remark that our protocol can be instantiated using ideal commitments (or even one-way functions in the plain model), but
we present a version based on OT as our end goal is to design an efficient secure protocol which anyway requires OT.

11For example, it can modify an honest sender’s strategy by setting some of the OT inputs to ⊥, which will cause the receiver to
abort for those values as inputs.

18



4 Secure 2PC in NC0-Hybrid

In this section, we provide our compilation from an arbitrary 2PC functionality F to an NC0 functionality
F̂ and a protocol Π1 that securely realizes F in the F̂-hybrid. We provide two such compilations which will
be variants of analogous constructions in [IKO+11]. Previous two-party protocols essentially have a sender
who creates and delivers a garbling to a receiver. In contrast, we modify the constructions in [IKO+11] to
incorporate additional randomization from the receiver inspired by the BMR approach [BMR90].

Overview. On a high-level, the BMR protocol proceeds in two phases: (1) First, in an offline phase, the
parties jointly compute a garbling of the circuit they wish to evaluate on their inputs, and (2) in an online
phase, the parties share the keys corresponding to their inputs and shares of the garbled circuit and output a
translation table. Each party then individually reconstructs the garbled circuit, evaluates the garbled circuit
using the input keys and then obtains the result of the computation.

In slight more detail and restricting our discussion to the two-party setting, there are two key differences
between the BMR approach and the standard Yao approach. First, the parties provide two keys for every
wire in the circuit so that the keys for the output wire are encrypted in a garbled row under (the respective)
keys from both parties. Second, the association of the keys with the actual values remain hidden from both
parties as both of them contribute shares (or masks) that are combined to decide the association.

One can model the offline phase in the BMR approach as an actively secure computation of a “garbling”
functionality where the parties provide keys and masks for each wire. However, unless we assume some
strong form of a PRG (i.e. PRGs that can be computed by a constant-depth circuits), the computation in the
offline phase will not be a constant-depth circuit as it involves incorporating the circuit that computes the
PRG. An important simplification considered in [LPSY15] allows the parties to locally compute the PRG
values under their keys and provide the PRG values directly as inputs to the computation in the offline phase.
Consequently, the computation in the offline phase becomes a constant-depth (NC0) circuit over the inputs.
However, such a functionality cannot guarantee the correctness of the PRG values provided by corrupted
parties. The work of [LPSY15] demonstrates that this will not be a problem and it suffices to securely
compute the modified NC0 functionality with active security in order to achieve security against active
adversaries in the overall protocol. More precisely, [LPSY15] demonstrate that bad PRG values provided
by corrupted parties do not affect the security of the overall protocol. The key insight can be understood
as follows: The presence of two keys (of the output wire) from both parties in every plaintext encrypted in
the garbled rows forces an abort whenever a bad PRG value occurs on the evaluation path of the garbled
circuit (aka active path). Since the keys to values association is randomized by both parties, the event of
such an abort will be independent of the true value associated with that wire. Furthermore, absence of an
abort implies that the computation has proceeded correctly.

The IKOPS protocol [IKO+11], on the other hand, is an extension of the standard Yao protocol where the
garbling is computed by a sender and the keys are delivered to a receiver via an OT protocol. As previously
observed [LP07, LP12], it must be ensured that an active sender does not create a bad garbled circuit. In the
IKOPS protocol, the authors show how to restrict the effect of such an attack by providing some additional
“authentication” information to the receiver. They propose two variants of this approach: In the first variant,
the NC0 functionality authenticates the PRG values, that are locally computed and provided as input by
the sender, whereas in the second variant only the color bits (or point-and-permute bits) are authenticated.
The high-level idea is that the authentication information makes the sender commit to parts of the garbling
and restricts the space of attacks that can be carried out by the sender. Nevertheless, in both these variants,
the sender may still cause the receiver to abort depending on its input or the actual wire values. To make
the abort independent of the receiver’s input, the IKOPS protocol incurs a polylog(κ) factor overhead as it

19



precompiles the functionality F to be immune to such attacks. Consequently, the resulting final protocol
has a polylog(κ) communication complexity overhead over the standard passively secure Yao protocol.

Our new approach combines the benefits of the BMR protocol with the IKOPS variants to achieve a
protocol that achieves communication efficiency with a constant overhead over the semi-honest Yao proto-
col. On a high-level, we will have the sender provide additional authentication information as in the IKOPS
protocol, but will randomize the association of keys to values following the BMR approach.

4.1 Variant 1: Authenticating The PRG Values

In our first variant the functionality authenticates the PRG values submitted by the sender for creating the
garbling. Following [IKO+11], the functionality will receive as input from the sender, for every garbled
gate, keys and the PRG evaluations under these keys and from the receiver it receives as input a MAC key
SK that is used to authenticate the PRG evaluations. The high-level idea here is to require the receiver
to verify whether the PRG values obtained during the evaluation of the garbled circuit are consistent with
authentication information received from the functionality and letting it abort if the authentication fails. As
mentioned before, we incorporate the BMR randomization by having random bits supplied by the receiver
to randomize the association of key and values for each wire.

Formally, we establish the following Lemma.

Lemma 4.1 (AuthPRG Compiler) There exists a compiler AuthPRG that given κ (PRG seed length), s
(statistical security parameter) and a two-party functionality F(x, y), expressed by a circuit C, outputs an-
other two-party functionality F̂ and protocol Π1 that securely realizes F in the F̂-hybrid with the following
features:

• F̂ is represented by an NC0 circuit of size O(|C|κ). The receiver’s inputs to F̂ include its original
input y to F and a string of length O(|C|+ κ) that it will choose uniformly at random.

• Π1 makes a single invocation to the F̂ oracle.

• Π1 makes O(|C|) black-box calls to a length-doubling PRG: GPRG : {0, 1}κ → {0, 1}2κ.

Proof: We begin with a description of the compiled functionality F̂ = FAuthPRG and then continue with
our protocol description. If s > κ then the compiler sets s = κ. This is because we require our simulation
error to be only bounded by 2−s + ν(κ) for some negligible function ν(·).

We now describe our compiler AuthPRG that on input (κ, s, desc(F)) outputs (F̂ ,Π1).

The NC0 Functionality F̂ = FAuthPRG. For the functionality F , we denote the set of wires by W and
the set of gates by G. The compiled functionality FAuthPRG obtains from the sender and the receiver their
respective inputs x and y to the function F and their making shares {λR

w}w∈W and {λS
w}w∈W . Additionally,

it receives keys and PRG evaluations from the sender and authentication keys from the receiver. Following
F , FAuthPRG creates the garbled circuit and authentication information which it delivers to the receiver. We
provide a formal description of FAuthPRG in Figure 2.

Next, we describe our protocol.

Protocol 1 (Protocol Π̂1) The parties’s common input is a Boolean circuit C, expressed by a set of wires
W and a set of gates G.

Parameters: Let s be the statistical security parameter and κ be the computational security parame-
ter. Let GPRG : {0, 1}κ → {0, 1}2κ be a PRG and let (ECC,MAC) be a 2−κ secure MAC-scheme (cf.

20



Functionality FAuthPRG

Let C represent the circuit that computes the functionality F and comprises of a set of wires W and a set
of gates G.

The sender’s inputs to the functionality are:
• Input x.
• For every wire w ∈W (excluding output wires), keys k0w, k

1
w ← {0, 1}κ and mask λS

w.
• For every gate g ∈ G with input wires a and b, the PRG values,

F g,0
a,0 , F

g,1
a,0 , F

g,0
a,1 , F

g,1
a,1 , F

g,0
b,0 , F

g,1
b,0 , F

g,0
b,1 , F

g,1
b,1 and their encodings under Enclin,

EF g,0
a,0 , EF g,1

a,0 , EF g,0
a,1 , EF g,1

a,1 , EF g,0
b,0 , EF g,1

b,0 , EF g,0
b,1 , EF g,1

b,1

• For every gate g, input wire w, b, r ∈ {0, 1}, a tag τg,rw,b,S (that will be used to generate the
MAC tag for the PRG value computed based on the key kbw).

The receiver’s inputs to the functionality are:
• Input y.
• A mask for every wire w ∈W , λR

w .
• A MAC key SK ∈ {0, 1}ℓkeyκ.

The functionality performs the following computations:
1. Compute the combined masks for every wire w ∈W as λw = λS

w ⊕ λR
w .

2. For every gate g ∈ G with input wires a and b and output wire c, compute the garbled table as
follows:

R00
g = F g,0

a,0 ⊕ F g,0
b,0 ⊕ (k0c ||0)⊕

(
(λaλb ⊕ λc)(k

1
c ||1⊕ k0c ||0)

)
R01

g = F g,1
a,0 ⊕ F g,0

b,1 ⊕ (k0c ||0)⊕
(
(λa ⊕ λaλb ⊕ λc)(k

1
c ||1⊕ k0c ||0)

)
R10

g = F g,0
a,1 ⊕ F g,1

b,0 ⊕ (k0c ||0)⊕
(
(λb ⊕ λaλb ⊕ λc)(k

1
c ||1⊕ k0c ||0)

)
R11

g = F g,1
a,1 ⊕ F g,1

b,1 ⊕ (k0c ||0)⊕
(
(1⊕ λa ⊕ λb ⊕ λaλb ⊕ λc)(k

1
c ||1⊕ k0c ||0)

)
3. Send the receiver Rec the following values:

• {(R00
g , R01

g , R10
g , R11

g )}g∈G.

• (k0w||0)⊕
(
(λw⊕xi)(k

1
w||1⊕k0w||0)

)
for every pair (w, i) where the input wire w carries

the ith bit of x.
• (k0w||0)⊕

(
(λw⊕yi)(k1w||1⊕k0w||0)

)
for every pair (w, i) where the input wire w carries

the ith bit of y.
• The masked MAC for every PRG value, namely, τg,rw,b,R = τg,rw,b,S ⊕MACSK(EF g,r

w,b).
• λw for every output wire.

Figure 2: The offline functionality FAuthPRG.

Section 2.3.2) where ECC = {Enclin : {0, 1}κ+1 → {0, 1}ℓinκ} and MAC = {MACSK : {0, 1}ℓinκ →
{0, 1}ℓoutκ}SK∈{0,1}ℓkeyκ .

Convention for expressing PRG values. The number of random bits that we need to extract from each key

21



(acting as a seed to the PRG) depends on the number of gates the wire associated with the key occurs as
an input. In standard garbling, if a wire occurs as input in T gates, then each key associated with the wire
will be used in 2T rows and in each row we will require κ (output key) +ℓout (authentication information)
+1 (point-and-permute bit) bits. In order to describe our protocol succinctly we will employ a PRF-type
definition: Fk(g, r) will represent a unique portion of κ+ ℓout+1 bits in the output of GPRG(k) that is used
for gate g in row r.

• Input: The sender is given input x and the receiver is given input y. Both parties are given the
security parameters 1κ, 1s and the description of a Boolean circuit C.

• The sender’s input to FAuthPRG:
– Input x.
– For every wire w ∈ W , keys k0w, k

1
w sampled uniformly at random from {0, 1}κ and a mask bit

λS
w ← {0, 1} sampled uniformly at random.

– For every gate g ∈ G, input wire w ∈W , point-and-permute bit b and a row r, a tag τ g,rw,b,S (that
will be used to generate the MAC tag for the PRG value computed based on the key kbw).

– For every gate g ∈ G, with input wires a and b, the PRG values,
Fk0a

(g, 0), Fk0a
(g, 1), Fk1a

(g, 0), Fk1a
(g, 1), Fk0b

(g, 0), Fk0b
(g, 1), Fk1b

(g, 0), Fk1b
(g, 1),

and their encodings under Enclin,
EF g,0

a,0 , EF g,1
a,0 , EF g,0

a,1 , EF g,1
a,1 , EF g,0

b,0 , EF g,1
b,0 , EF g,0

b,1 , EF g,1
b,1

• The receiver’s input to FAuthPRG:
– Input y.
– A mask for every wire w ∈W , λR

w .
– A MAC key SK ∈ {0, 1}γ2κ.

• The receiver’s outcome from FAuthPRG:
– {(R00

g , R01
g , R10

g , R11
g )}g∈G.

– kw||zw for every input wire w.
– The masked MAC for every PRG value, namely, τ g,rw,b,R.
– λw for every output wire.

• In addition, the sender encrypts the mask used to mask the MAC values and sends it to the receiver.
Namely, it sends the ciphertext cg,rw,b = Enckbw(τ

g,r
w,b,S) = Fkbw

(g, (2 + r))⊕ τ g,rw,b,S .

• Computing output. Upon receiving the output from the functionality, the receiver proceeds to eval-
uate the garbled circuit as follows: Let the gates be arranged in some topological order. We will
maintain the invariant that if the receiver has not aborted when it processes some gate g with input
wires a and b, then it possess keys ka and kb and row indicators (color bits) Λa and Λb.

Base case: For each input wire w ∈W , the receiver obtains kw||zw from the functionality. It sets Λw

to zw.

Induction step: Consider an arbitrary gate g ∈ G in the topological order with input wires a and b
and output wire c. By our induction hypothesis, if the receiver has not yet aborted then it has
keys ka, kb and colors Λa and Λb. Then the receiver first checks the correctness of the PRG
values as follows:

22



– For α ∈ {0, 1}, compute τ g,αa,Λa,S
= Decka(c

g,α
a,Λa

) = cg,αa,Λa
⊕ Fka(g, (2 + α)) and check if it

equals
τ g,αa,Λa,R

⊕MACSK(Enclin(Fka(g, α))).

If the checks fail, it aborts. Otherwise, it computes

kc||Λc = RΛaΛb
g ⊕ Fka(g,Λa)⊕ Fkb(g,Λb).

Finally, if the receiver has not aborted, it possesses the colors Λw for every output wire w ∈ W . It
then outputs Λw ⊕ λw as the output on wire w for every output wire.

Proof of security. We prove correctness of our compilation next. Our proof follows by showing that
for every adversary A in the FAuthPRG-hybrid world there exists a simulator S in the ideal world with
access to functionality F . We describe our simulator for active corruption of sender and receiver and prove
correctness.

Sender Sen is corrupted.

1. Simulator S internally invokes the adversary A on (1κ, 1s, x) with uniformly sampled random tape,
where x is the input given to the Sender.

2. S internally emulates functionality FAuthPRG as follows:

• S receives from the adversary its input to FAuthPRG that is consists of an input x̃, a set of
keys {k̃0, k̃1}w∈W masking bits {λS

w}w∈W , a set of alleged PRG values: F g,0
a,0 , F

g,1
a,0 , F

g,0
a,1 , F

g,1
a,1 ,

F g,0
b,0 , F

g,1
b,0 , F

g,0
b,1 , F

g,1
b,1 , their alleged encodings, EF g,0

a,0 , EF g,1
a,0 , EF g,0

a,1 , EF g,1
a,1 , EF g,0

b,0 , EF g,1
b,0 ,

EF g,0
b,1 , EF g,1

b,1 and the tag shares {τ g,rw,b,S}.

• For every w ∈W , S generates a mask λR
w .

• It then computes a simulated garbled circuit as follows. S first chooses for each wire w ∈ W
that is not an input wire, a color Λw. It then defines an active path which is induced by these
color bits. Namely, for each gate g ∈ G with input a and b and output wire c, the simulator sets
the row (Λa,Λb) in the garbled gate as

F g,Λa

a,Λa
⊕ F g,Λb

b,Λb
⊕ (kΛc

c ||Λc)

whereas the remaining three rows are uniformly sampled at random from {0, 1}κ+1. Denote the
outcome by the set of tuples {(R̃00

g , R̃01
g , R̃10

g , R̃11
g )}g∈G.

Note that the simulator does not need to sample a MAC key and generate the masked MACs for
every PRG value as it knows these PRG values and can directly check for correctness during
the evaluation of the active path it chose above. Specifically, the inputs provided by the sender
to FAuthPRG imply a disjunctive predicate P that can be defined as follows. For every (g, c) ∈
G × {0, 1} and an input wire a such that F g,c

a,c ̸= Fkca(g, a) it includes the literal vg if c = 0
and ¬vj in case c = 1. Applying this predicate on the active path chosen by the simulator will
determine whether the receiver’s aborts the computation or not.

• Finally, the simulator evaluates the garbled circuit on (x̃, ỹ), where ỹ is an arbitrary input. More
concretely, given these input strings, the simulator uses the input keys that correspond to these
values and completes the evaluation of the garbled circuit as would the honest receiver do when
given an input ỹ.

23



3. If, at some point, the receiver decrypts some garbled gate g ∈ G such that the MAC verification fails
for the active path, then the simulator aborts, sending ⊥ to the trusted party that computes F . Else,
the simulator submits x̃ to its trusted party as the adversary’s input.

4. The simulator outputs whatever the adversary does.

We next prove that conditioned on not aborting both in the real and in the ideal execution, then the adver-
sary’s view in computationally indistinguishable.

Note first that in the FAuthPRG-hybrid execution, the sender does not receive any messages, as func-
tionality FAuthPRG only communicates with the receiver, and the parties do not communicate directly. It is
therefore left to prove that the sender cannot cause any damage by providing inconsistent PRG values to the
offline functionality. Intuitively speaking, there may be two scenarios: either the adversary will get caught
by the receiver, or not. In our proof, we first claim that the adversary is caught with very high probability
due to the fact that a successful attacks boils down to forging the MAC, and that the abort event does not
leak any information about the honest party’s input. Formally, we prove the following claims.

Claim 4.2 For any two inputs y, y′, it holds that the probabilities that the receiver outputs⊥ (i.e. aborts) in
REALF̂

Π̂1,A(z),Rec
(x, y, κ, s) and REALF̂

Π̂1,A,Rec
(x, y′, κ, s) are equal.

Proof: Given the sender’s input to the NC0 functionality, we will show that for every pair of inputs y, ỹ,
there is a reversible mapping from any set of wire masks {λR

w}w to another set {λ̃R
w}w such that if the

receiver aborts on input (y, {λR
w}w, {τ

g,r
w,b,R}, SK), then it will abort on input (ỹ, {λ̃R

w}w, {τ
g,r
w,b,R}, SK).

The intuition here is that, in the evaluation, the receiver uses keys on the active path determined by the color
bits Λw. Given y and {λR

w}w, we will show that there is an equivalent set of masks {λ̃R
w}w for ỹ that will

result in the same sequence of color bits Λw and the same active path which in turn means that the same set
of keys are decrypted in every garbled gate.

Let the sender’s inputs be (x, {λS
w}w, {(k0w, k1w)}w, {F

g,0
w,0, F

g,1
w,0, F

g,0
w,1, F

g,1
w,1}g=(a,b,c),w∈{a,b}, {τ

g,r
w,b,S}).

We will inductively construct the shares λ̃R
w and show that the receiver’s evaluation will proceed identically.

Base case: When the receiver’s input are y, {λR
w}w, the key received corresponding to the wire w carrying

the ith bit of sender’s input x̃i is computed as follows:

(k0w||Λ0)⊕
(
(λw ⊕ x̃i) ∧ (k1w||Λ1 ⊕ k0w||Λ0)

)
where recall λw = λS

w ⊕ λR
w . We will set λ̃S

w = λS
w. This means that corresponding to the sender’s

inputs, the receiver obtains the same set of keys and masks Λb which would result in the same color
bits Λw for these input wires.

For the keys corresponding to the receiver’s input, the computation for the ith input wire w is:

(k0w||Λ0)⊕
(
(λw ⊕ yi) ∧ (k1w||Λ1 ⊕ k0w||Λ0)

)
.

We will now set λ̃R
w = yi ⊕ ỹi ⊕ λR

w . This means that

λS
w ⊕ λ̃R

w ⊕ ỹi = λS
w ⊕ λR

w ⊕ yi

which in turn means that the receiver will obtain the same key and result in the same computation to
obtain Λw. Let ρw, ρ̃w be the actual wire values in wire w relative to y and ỹ, respectively.

24



Induction case: When processing gate g, let the input keys ka, kb and color bits Λa,Λb be the same for
both inputs. In the computation with input y, the receiver for gate g chooses ciphertext RΛaΛb

g which
is computed as follows:

RΛaΛb
g = F g,Λb

a,Λa
⊕ F g,Λa

b,Λb
⊕ (k0c ||Λ0)⊕

(
((λa ⊕ Λa)(λb ⊕ Λb)⊕ λc) ∧ (k1c ||Λ1 ⊕ k0c ||Λ0)

)
The only part of the computation that differs in the two computation paths is the selector bit

((λa ⊕ Λa)(λb ⊕ Λb)⊕ λc) = ((λR
a ⊕ λS

a ⊕ Λa)(λ
R
b ⊕ λS

b ⊕ Λb)⊕ λR
c ⊕ λS

c ).

The evaluation will proceed identically if

((λR
a ⊕ λS

a ⊕ Λa)(λ
R
b ⊕ λS

b ⊕ Λb)⊕ λR
c ⊕ λS

c )

= ((λ̃R
a ⊕ λS

a ⊕ Λa)(λ̃
R
b ⊕ λS

b ⊕ Λb)⊕ λ̃R
c ⊕ λS

c ).

We can compute λ̃R
c so that this equation holds. This completes the induction step and the proof of

Claim 4.2.

�
Next we prove the following claim.

Claim 4.3 Condition on not aborting in the real execution, the receiver outputs F(x̃, y) with overwhelming
probability where x̃ is the adversary’s input extracted by S.

Proof: This proof follows similarly to the proof from [LPSY15]. Specifically, assuming that the sender
is cheating (without getting caught) in the garbled construction by providing inconsistent PRG values to
functionalityFAuthCol. In this case, it must be that the active path viewed by the receiver is correctly formed.
That is, for each output wire, the value kc||Λc obtained by the receiver during the evaluation implies that the
receiver can verify the correctness of the PRG values that are computed using the key kc. Denoting by Λc

the color associated with the output wire wc as observed by the receiver during the evaluation and by ρw the
actual value in this wire, there may be two potential cases:

1. Λc = λc ⊕ ρc.

2. Λc = λc⊕ρ̄c. This event implies that the adversary successfully carried out an attack, flipping the bit to
be transferred within wc. Since that implies that the sender must correctly guess MACSK(EF g,Λc

wc,Λc
) ∈

{0, 1}s (where MAC is an information theoretic object), it follows that this event occurs with proba-
bility 2−s.

�
Since the adversary A can only select inputs for a corrupted sender to be fed to F̂ the view of A in

REAL
Π̂1,A(z),Rec

(x, y, κ, s) and IDEALF ,S(z),Rec(x, y, κ, s) are identically distributed. Using Claims 4.2
and 4.3, we have that the output of the receiver in the real world and in REAL

Π̂1,A(z),Rec
(x, y, κ, s) and

IDEALF ,S(z),Rec(x, y, κ, s) are statistically close. Therefore, we can conclude with the following claim
regarding the correctness of our simulation for sender corruption.

Claim 4.4 The following executions are computationally indistinguishable:

25



• {REALF̂
Π̂1,A(z),Rec

(x, y, κ, s)}κ∈N,s∈N,x,y∈{0,1}n,z∈{0,1}∗

• {IDEALF ,S(z),Rec(x, y, κ, s)}κ∈N,s∈N,x,y∈{0,1}n,z∈{0,1}∗

Next, we move on to the case when an active sender corrupts the receiver.

Receiver Rec is corrupted.

1. Upon receiving the adversary’s input (1κ, 1s, y), the simulator S internally invokes the adversary A
on y and uniformly generated randomness.

2. S internally emulates functionality FAuthPRG as follows:

• S receives from the adversary its input to FAuthPRG that is consists of an input ỹ, a mask λR
w for

every wire w and a random seed β to an s-wise PRG.

• It then computes a simulated garbled circuit as follows. S first chooses for each wire w ∈ W
that is not an input wire, a color ΛW . It then defines an active path which is induced by these
color bits. Namely, for each gate g ∈ G with input a and b and output wire c, the simulator
computes the (Λa,Λb)th entry in the garbled gate by

F g,Λa

a,Λa
⊕ F g,Λb

b,Λb
⊕ (kΛc

c ||Λc)

whereas the remaining three rows are uniformly sampled at random from {0, 1}κ+1. Denote the
outcome by the set of tuples {(R̃00

g , R̃01
g , R̃10

g , R̃11
g )}g∈G.

3. Finally, the simulator submits ỹ to its trusted party as the adversary’s input and obtains the output z.
For every output wire w ∈ W , the simulator fixes λw = Λw ⊕ zi where zi is the ith bit associated
with wire w.

4. The simulator sends the adversary the values the garbled circuit, the input keys associated with the
input wires, the masked MAC for every PRG value in the active path, namely, τ g,rw,Λw,R, whereas the
remaining masks are picked at random, and the set of {λw}w for all the output wires.

In addition, the simulator hands the adversary the encrypted masks for the masks chosen above, and
random strings for the remaining unchosen masks (namely, the simulator sends a random string in-
stead of a ciphertext that should encrypt the mask that corresponds to a PRG value that is not associ-
ated with active path).

5. The simulator outputs whatever the adversary does.

Note that the adversary’s sees a simulated garbled circuit which is created differently than the real garbling.
We prove that the adversary’s view is indistinguishable due to the pseudorandomness of the underlying PRG.

Claim 4.5 The following executions are computationally indistinguishable:

• {REALF̂
Π̂1,A(z),Sen

(x, y, κ, s)}κ∈N,s∈N,x,y∈{0,1}n,z∈{0,1}∗

• {IDEALF ,S(z),Sen(x, y, κ, s)}κ∈N,s∈N,x,y∈{0,1}n,z∈{0,1}∗

26



Proof: Our proof follows via a sequence of hybrids games denoted by Hτ for 0 ≤ τ ≤ |G| − 1, where we
sequentially replace real garbled gates with simulated ones. For that, we consider a topological ordering on
the set G of gates in C. Concretely, C is viewed as a Directed Acyclic Graph (DAG), where the gates are
the nodes in the graph and an output wire of gate g1 which enters as input wire to gate g2 indicates the edge
(g1, g2) in the graph. We compute a topological orderings of the graph, that is, if the output wire of gate g1
enters to gate g2 then the index of gate g1 in our ordering is lower than the index of gate g2. Whenever we
use the notation gi we refer to the ith element in this topological ordering.

Hybrid Hτ . In this hybrid execution there exists a simulator Sτ that follows the instructions of simulator S
with the following changes. Specifically, Sτ creates the first τ garbled gates in the topological ordering as in
the original simulation, whereas the remaining |G|−τ gates are created as in the real protocol. Moreover, Sτ
computes the masked MAC for every PRG value and its encryption for the first τ gates as in the simulation,
whereas the remaining masked MACs and their encryptions are computed as in the real execution.

Let Hybτ
A(1

κ, 1s, z, R, x, y) denote the output distribution ofA in hybrid Hτ . Note that the distribution
in H|G| is as in the simulation with S, whereas H0 is an execution for which the garbled circuit is generated
honestly. Our proof follows by a reduction to the pseudorandomness of the PRG F . More formally, assume
by contradiction the existence of an adversary A and a distinguisher D for which the above distributions
are distinguishable by D with a non-negligible probability 1/q(κ) for infinitely many κ’s. We construct a
distinguisher DPRG that breaks the security of F with probability 1/q(κ) · τ as follows.

Fix κ and τ , then upon given the honest party’s input x and κ, τ , and inputs kΛ̄a
a and kΛ̄b

a to the PRG or
random strings. DPRG invokes the adversary as in the simulation with S , internally emulating functionality
FAuthPRG. More concretely, DPRG is defined identically to S with the exception that it does not pick the
three inactive rows in the garbled circuit at random for the τ th gate gτ , but rather uses the PRG/random
values it obtained as an input.

More concretely, let kΛ̄a
a and kΛ̄b

b be the inactive keys associated with the input wires to gate gτ . Then
DPRG extracts from its input two strings (O0

kΛ̄a
a

,O1

kΛ̄a
a

) (that correspond to F
kΛ̄a
a
(gτ ,Λa) and F

kΛ̄a
a
(gτ ,Λa⊕

1) and two strings (O0

k
Λ̄b
b

,O1

k
Λ̄b
b

) (that correspond to F
k
Λ̄b
b

(gτ ,Λb) and F
k
Λ̄b
b

(gτ ,Λb ⊕ 1)). DPRG then com-

pletes the description of the four entries in the garbling of gτ as follows:

RΛaΛ̄b
g = Fk0a

(gτ ,Λa ⊕ 1)⊕OΛ̄b⊕1

k
Λ̄b
b

)⊕ (k0c ||0)⊕
(

(λΛa ⊕ λΛaλΛb
⊕ λΛc)(k

1
c ||1⊕ k0c ||0)

)
RΛ̄aΛb

g = OΛ̄a⊕1

kΛ̄a
a

⊕ F
k
Λb
b

(gτ ,Λb ⊕ 1)⊕ (k0c ||0)⊕
(

(λΛb
⊕ λΛaλΛb

⊕ λΛc)(k
1
c ||1⊕ k0c ||0)

)
RΛ̄aΛ̄b

g = OΛ̄a

kΛ̄a
a

⊕OΛ̄b

k
Λ̄b
b

⊕ (k0c ||0)⊕
(

(1⊕ λΛa ⊕ λΛb
⊕ λΛaλΛb

⊕ λΛc)(k
1
c ||1⊕ k0c ||0)

)
The distinguisher further samples a random secret key SK for the MAC computations and honestly computes
the masked MAC for every PRG value (for both active and inactive rows). Finally, DPRG obtains the values
Rg,2, Rg,3 in order to encrypt the masking values {τ g,rw,b,S} for every PRG.

Note that the inactive keys associated with the input wires of gτ are not in use in any prior gate gτ ′ for
τ ′ < τ due to the topological order of the gates. Moreover, in case the distinguisher obtains values computed
based on the PRG then the garbling description of gτ is as in hybrid Hτ−1 whereas if it obtains truly random
strings then this gate is garbled as in Hτ as the remaining three rows are random. This concludes the proof
of Claim 4.5 and Lemma 4.1. �

Next, we provide another variant of our first compiler where we further reduce the number of random
bits input by the receiver to F̂ . This will be important in our compilation as the number of bits input by the

27



receiver to F̂ will directly correspond to the number of calls made in the final protocol to the parallel OT
functionality.

Lemma 4.6 (AuthPRG2 Compiler) Assume the existence of explicit constant-degree unbalanced unique-
neighbor expanders. There exists a compiler AuthPRG2 that takes as input κ (PRG seed), s (statistical
parameter), ϵ (statistical PRG parameter) and a two-party deterministic functionality F(x, y), computable
via a circuit C, between a sender with input x and a receiver with input y and outputs another two-party
functionality F̂ and protocol ΠF̂ that securely realizes F in the F̂-hybrid against static corruptions by
active adversaries with the following features:

• F̂ can be computed via an NC0 circuit of size O(|C|κ). The receiver’s inputs to F̂ include its original
input y to F and a string of length O(|C|ϵ + s) is chosen uniformly at random.

• ΠF̂ makes a single invocation to the F̂ oracle.

• ΠF̂ makes O(|C|) black-box calls to a length-doubling PRG: GPRG : {0, 1}κ → {0, 1}2κ.

Proof Sketch: We obtain this theorem by derandomizing the random bits provided by the receiver for
{λR

w}w∈W . Recall that in the AuthPRG compiler, the receiver’s input length is n + O(|C| + κ) which
includes n bits for y that specify the input for the original functionalityF , O(|C|) random bits for {λR

w}w∈W
and O(κ) random bits for a key of the information-theoretic MAC to the F̂ functionality. Next, we show
how we can reduce the random bits provided for {λR

w}w∈W by derandomizing it.
We begin by recalling that in our previous protocol, an active adversary corrupting the sender can cause

the receiver to abort by giving bad PRG values. In Claim 4.2, we showed that the abort condition is inde-
pendent of the receiver’s input. Next, we argue that if the receiver chooses the random bits for {λR

w}w∈W
as an output of an s-wise PRG, the abort condition is still independent of the receiver’s input. Then, we can
consider a variant of our previous construction where the receiver provides as input a seed for an s-wise PRG
and then augmenting the F̂ from our previous construction to first decode the original input and then com-
pute F̂ . Next we recall that there exists an NC0 implementation of s-wise PRG based on expander graphs
from O(αϵ + s) bits to α bits of size O(α) (c.f. Section 2.2). Instantiating this PRG with α = O(|C|) in
our construction we can conclude the proof of Lemma 4.6. It only remains to show that the abort condition
is independent of the receiver’s input and we prove this next.

Analysis when the {λR
w}w∈W are chosen according to a s-wise PRG. First we observe that the correctness

of the protocol is unaltered by switching to an s-wise PRG as the masks λR
w only affect the permutation in

each gate. However, the probability with which the receiver aborts will change as a result of this. To analyze
this, we first compute the predicate over the λR

w variables that determines when the receiver aborts.
From the proceeding argument, we know that on any active path, the receiver aborts the first point the

key and the PRG value are inconsistent. Such an abort event corresponds to the color Λw for that wire being
0 or 1, i.e. this event corresponds to a predicate that can be expressed by either Λw or its complement Λw.
As long as the PRG values are consistent on an active path, we know that the equation Λw = λR

w ⊕λS
w ⊕ ρw

holds where ρw is the actual value on the wire. Moreover, λS
w and ρw are fixed if we fix the sender’s inputs

x and mask bits {λS
w}w, and the receiver’s input y. Therefore, the abort event can be rewritten as λR

w or
λR
w . As every abort event has such a form, the abort predicate is a disjunction of the literals {λR

w}w or their
complements. We denote this predicate on the literals {λR

w}w by P . If we replace the literals from being
chosen independent to being computed based on s-wise PRG, the following lemma follows immediately:

Lemma 4.7 For every disjunctive predicate P ({λR
w}w),

28



1. If it involves fewer than s literals,

{λR
w ← {0, 1} : P ({λR

w}w)} ≡ {s← {0, 1}κ;λR
w ← GsPRG(s)w : P ({λR

w}w)},

and

2. If it involves more than s literals, then both

Pr[λR
w ← {0, 1} : P ({λR

w}w) = 1]

and
Pr[s← {0, 1}κ;λR

w ← GsPRG(s)w : P ({λR
w}w)]

are at least 1− 2−O(s) which implies that the two distributions are 2−O(s)-close.

We know that when the masks {λR
w}w are independently chosen, then the probability of abort is inde-

pendent of the receiver’s input y. Now, since the abort probability is 2−s close when the masks are replaced
with the output of an s-wise PRG, we can conclude by a simple hybrid argument that the abort probability
is statistically independent of receiver’s input.

We can modify this variant to incorporate (by now standard) optimization of Free XOR [KS08]. Implicit
in this optimization is a mechanism that restricts the space of keys sampled for the wires. On a high-level,
we will redefine our NC0 functionality that will enforce this constraint. Then, if the modification of the NC0

functionality is compatible with the proof of Claim 4.2 which shows that the abort condition is independent
of the receiver’s input, the rest of the proof will essentially follow. To incorporate the Free XOR technique,
we modify the NC0 functionality where the sender only provides one key per wire and a global constant ∆
that will define the other key. By construction, it follows that an active sender cannot violate the Free XOR
invariant between the pair of keys for each wire. Moreover, the proof of Claim 4.2 is consistent with the
Free XOR constraint and continues to hold. The rest of the proofs follow essentially as before.

4.2 Variant 2: Authenticating The Color Bits

In the second concretely efficient variant the color bits are encrypted within each garbled row in an authenti-
cated manner using an information-theoretic MAC, where the MAC secret-key is chosen by the receiver. In
contrast to the protocol described in Section 4.1, the receiver will not need to provide extra randomness and
the prover will locally construct the garbled circuit. This implies that the abort predicate P (·) (that is implicit
in the prior simulation) cannot be viewed as a disjunctive function any longer but as an arbitrary function.
Furthermore, the outcome of this function will not be independent of the receiver’s input as in Section 4.1,
and may leak a bit of information. On the other hand, this variant enjoys the property that the corresponding
COT protocol requires an NP relation that can only be based on arithmetic computations over a large field.
Therefore, we do not have to rely on the protocol of [DI06] over small fields that require algebraic geometric
codes. Instead, we can work over a large field and use Reed Solomon codes. Consequently, we achieve a
much faster and concretely efficient protocol at the price of weakening its security. Finally, we note that by
making a relatively mild assumption on the underlying PRG that holds in the random oracle model, we can
simplify the abort function; see more details in Section 4.2.1. We next prove the following lemma.

Lemma 4.8 (AuthCol Compiler) There exists a compiler AuthCol that, given κ (PRG seed length), s (sta-
tistical parameter) and a two-party deterministic functionality F(x, y) expressed by a circuit C, outputs
another two-party functionality F̂ and protocol Π1 that securely realizes F in the F̂-hybrid with correlated
abort with the receiver’s input and the following features:

29



• F̂ is represented by an NC0 circuit of size O(|C| · (κ + s)). The receiver’s inputs to F̂ include its
original input y to F and a string of length 2s that it will chosen uniformly at random.

• Π1 makes a single call to the F̂ oracle.

• Π1 makes O(|C|) black-box calls to a length-doubling PRG: GPRG : {0, 1}κ → {0, 1}2κ.

The NC0 Functionality F̂ = FAuthCol. In this variant the NC0 functionality FAuthCol computes a
BMR-style garbling for some function F that is expressed by a set of wires W and a set of garbled gates G,
where only the sender provides the keys and PRG values to be used for this generation. The main difference
over the NC0 functionality from Section 4.1 is that in this case the functionality authenticates the color bits
instead of the PRG values submitted by the sender, where authentication is computed based on the receiver’s
secret-key for an information theoretic MAC (see Section 2.3). Moreover, the receiver does not provide any
masking bits. More concretely, the functionality obtains the parties’ inputs (x, y) to the function F , as well
as the PRG evaluations from the sender, and the authenticated information from the receiver, and creates the
garbling for all gates g ∈ G. It further notifies the sender whether the receiver has aborted upon evaluating
the garbled circuit; the complete details can be found in Figure 3.

Protocol 2 (Protocol Π1) The parties’ common input is a Boolean circuit C, expressed by a set of wires
W and a set of gates G. Let s be the statistical security parameter and κ be the computational security
parameter. Let GPRG : {0, 1}κ → {0, 1}2κ be a PRG and let {MACSK : {0, 1} → {0, 1}s}SK∈{0,1}2s be an
information theoretically secure MAC computable in NC0.

• Input: The sender is given input x and the receiver is given input y. Both parties are given the
security parameters 1κ, 1s and the description of a Boolean circuit C.

• The sender’s input to FAuthCol:
– Input x.
– For every wire w ∈ W , keys k0w, k

1
w sampled uniformly at random from {0, 1}κ, and mask bit

λS
w ← {0, 1} sampled uniformly at random.

– For every gate g ∈ G, with input wires a and b, the following PRG values,
Fk0a

(g, 0), Fk0a
(g, 1), Fk1a

(g, 0), Fk1a
(g, 1), Fk0b

(g, 0), Fk0b
(g, 1), Fk1b

(g, 0), Fk1b
(g, 1).

• The receiver’s input to FAuthCol:
– Input y.
– for every w ∈W , a random mask bit λR

w ← {0, 1}.
– Two strings σ0, σ1 ← {0, 1}s chosen uniformly at random.

• The receiver’s outcome from FAuthCol:
– {(R00

g , R01
g , R10

g , R11
g )}g∈G.

– kw||zw for every input wire w.
– A mask λw for every output wire.

• Concluding the output. The receiver then proceeds to evaluate the garbled circuit as follows: Let
the gates be arranged in some topological order. We will maintain the invariant that if the receiver
has not aborted when it processes some gate g with input wires a and b, then it possess keys ka and
kb and color bits Λa and Λb.

30



Functionality FAuthCol

The functionality runs with parties S,R and an adversary S. The parties’ joint input is a Boolean circuit
C, expressed by a set of wires W and a set of garbled gates G.

The sender’s inputs to the functionality are:
• Input x.
• For every wire w ∈W , keys k0w, k

1
w ← {0, 1}κ and a mask λw.

• For every gate g ∈ G with input wires a and b, the PRG values
F g,0
a,0 , F

g,1
a,0 , F

g,0
a,1 , F

g,1
a,1 , F

g,0
b,0 , F

g,1
b,0 , F

g,0
b,1 , F

g,1
b,1 .

The receiver’s inputs to the functionality are:
• Input y.
• Two strings σ0, σ1 ← {0, 1}s.

The functionality performs the following computations:
1. For every gate g ∈ G, compute the garbled table as follows:

R00
g = F g,0

a,0 ⊕ F g,0
b,0 ⊕ (k0c ||σ0)⊕

(
(λaλb ⊕ λc)(k

1
c ||σ1 ⊕ k0c ||σ0)

)
R01

g = F g,1
a,0 ⊕ F g,0

b,1 ⊕ (k0c ||σ0)⊕
(
(λa ⊕ λaλb ⊕ λc)(k

1
c ||σ1 ⊕ k0c ||σ0)

)
R10

g = F g,0
a,1 ⊕ F g,1

b,0 ⊕ (k0c ||σ0)⊕
(
(λb ⊕ λaλb ⊕ λc)(k

1
c ||σ1 ⊕ k0c ||σ0)

)
R11

g = F g,1
a,1 ⊕ F g,1

b,1 ⊕ (k0c ||σ0)⊕
(
(1⊕ λa ⊕ λb ⊕ λaλb ⊕ λc)(k

1
c ||σ1 ⊕ k0c ||σ0)

)
2. Send the receiver R the following values:

• {(R00
g , R01

g , R10
g , R11

g )}g∈G.

• (k0w||σ0) ⊕
(
(λw ⊕ xi) ∧ (k1w||σ1 ⊕ k0w||σ0)

)
for every pair (w, i) where input wire w

carries the ith bit of x.
• (k0w||σ0) ⊕

(
(λw ⊕ yi) ∧ (k1w||σ1 ⊕ k0w||σ0)

)
for every pair (w, i) where input wire w

carries the ith bit of y.
• λw for every output wire.

Figure 3: The offline functionality FAuthCol.

Base case: For each input wire w ∈W , the receiver holds an input key kw and a color Λw that is set
to 0 if zw = σ0, and set to 1 if zw = σ1. In case the receiver does not have these values in the
correct format, it aborts.

Induction step: Consider an arbitrary gate g ∈ G in the topological sequence with input wires a
and b and output wire c. By our induction hypothesis, if the receiver has not yet aborted then it
has keys ka, kb and color bits Λa and Λb. Then the receiver computes

kc||zc = RΛaΛb
g ⊕ Fka(g,Λa)⊕ Fkb(g,Λb).

If zc ̸∈ {σ0, σ1}, the receiver aborts. Otherwise it sets the color Λc such that zc = σΛc .

Finally, if the receiver has not aborted, it possesses the colors Λw for every output wire w ∈ W . It

31



then outputs Λw ⊕ λw as the output on wire w for every output wire and forwards the message Abort
to FAuthCol. Else, in case the receiver has aborted, it forwards the message Non− Abort.

Claim 4.9 Let F a two-party functionality as above and assume that F is a PRG. Then Protocol 2 securely
computes functionality F with correlated abort with the receiver’s input in the FAuthCol-hybrid.

Proof: Our proof follows by showing that for every adversary A in the FAuthCol-hybrid world there exists
an simulator S in the ideal world with access to functionality F . We begin with the description of the
simulator while distinguishing two corruption cases.

The sender S is corrupted.

1. Simulator S internally invokes the adversary A on (1κ, 1s, x) with uniformly sampled random tape,
where x is the input given to the Sender.

2. S internally emulates functionality FAuthCol as follows:

• S receives from the adversary its input to FAuthCol that is consists of an input x̃, a set of keys
{k̃0, k̃1}w∈W masking bits {λS

w}w∈W and a set of “alleged” PRG values:
F g,0
a,0 , F

g,1
a,0 , F

g,0
a,1 , F

g,1
a,1 , F

g,0
b,0 , F

g,1
b,0 , F

g,0
b,1 , F

g,1
b,1 .

• S sends functionality F a leakage predicate P : {0, 1}∗ 7→ {0, 1}. More formally, P is the
predicate that runs the honest receiver’s algorithm using the receiver’s input and keys and PRF
values submitted to the functionality and outputs 1 if the receiver aborts. Recall that the trusted
party implementing the functionality delivers the answer to the receiver only if P returns 0.

3. S outputs whatever the adversary does.

Note first that the sender’s view is identical in both executions as it does not receive any messages. Moreover,
the receiver aborts with the same probability in both executions since the leakage functions identically
mimics the computation of FAuthCol.

The receiver R is corrupted.

1. Upon receiving the adversary’s input (1κ, 1s, y), the simulator S internally invokes the adversary A
on y and uniformly generated randomness.

2. S internally emulates functionality FAuthCol as follows:

• S receives from the adversary its input to FAuthCol that is consists of an input ỹ and two strings
σ0, σ1.

• It then computes a simulated garbled circuit as follows. S first chooses for each wire w ∈ W
that is not an input wire, a color ΛW . It then defines an active path which is induced by these
color bits. Namely, for each gate g ∈ G with input a and b and output wire c, the simulator
computes the (Λa,Λb)th entry in the garbled gate by

F g,Λa

a,Λa
⊕ F g,Λb

b,Λb
⊕ (kΛc

c ||σΛc)

whereas the remaining three rows are uniformly sampled at random from {0, 1}κ+s. Denote the
outcome by the set of tuples {(R̃00

g , R̃01
g , R̃10

g , R̃11
g )}g∈G.

32



3. Finally, the simulator submits ỹ to its trusted party as the adversary’s input and obtains the output z.
For every output wire w ∈ W , the simulator fixes λw = Λw ⊕ zi where zi is the ith bit associated
with wire w.

4. The simulator sends the adversary the values the garbled circuit, the input keys associated with the
input wires and the set of {λw}w for all the output wires.

5. The simulator outputs whatever the adversary does.

Note that the adversary’s sees a simulated garbled circuit which is created differently than the real garbling.
We prove that the adversary’s view is indistinguishable due to the pseudorandomness of the underlying PRG.

Claim 4.10 The following executions are computationally indistinguishable:

• {REALF̂
Π̂2,A(z),Rec

(x, y, κ, s)}κ∈N,s∈N,x,y∈{0,1}n,z∈{0,1}∗

• {IDEALF ,S(z),Rec(x, y, κ, s)}κ∈N,s∈N,x,y∈{0,1}n,z∈{0,1}∗

We can carry out the same proof as in Claim 4.5 by providing a reduction to the pseudorandomness of the
underlying PRG and omit the proof.

We can modify our NC0 functionality to support the optimizations of Free XOR [KS08] (similarly to the
modification made in the prior section) and half gates [ZRE15]. The latter optimization becomes possible
since the receiver does not participate in the creation of the garbled circuit.

4.2.1 Security in the Presence of WVD Attacks

Recall that the key feature of functionality FAuthPRG is that whenever the receiver decrypts a row during
the evaluation process, there must exist at most one possible value for the PRG that will result in the correct
decryption. We will now argue that the same property holds for AuthCol if we assume that the PRG behaves
as a random oracle. This is because that if a malicious sender needs to be able to produce two different
PRG values that will result in the receiver not aborting it means that the last s bits in the output of the PRG
must be the same. This is because the last s bits must decrypt to either σ0 or σ1 and the adversarial sender
cannot guess either of these strings beyond a negligible probability. This implies that the abort predicate is
a disjunction of the wire values in the computed circuit (denoted by wire-value disjunction or WVD).

More concretely, we consider a modified construction of protocol Π1 where the PRG function is realized
using the random oracle. Then, in case the sender is corrupted, the simulator defines a disjunctive predicate
P (·) as follows. For every wire w ∈W that is associated with keys k0w, k

1
w, S check whether these keys are

consistent with the respective PRG values provided by the sender. Namely, S verifies whether k0w (resp. k1w)
is consistent with F g,0

w,0 and F g,1
w,0 (resp. F g,0

w,1 and F g,1
w,1) for every gate g for which w is an input wire. In case

of inconsistency, S includes in P (·) the literal (w, 0) (resp. (w, 1)). The rest of the simulation is as in the
proof of Claim 4.9. Note that the simulation may fail only in case the adversary finds a “collision” relative
to two PRG values and the last s bits in their outputs, which occurs with negligible probability in s.

We further note that the only property that we need from the PRG in the plain model is a collision-
resistance property where no adversary can find two seeds for which the PRG outcomes agree on a subset
of the output bits. In fact, it is sufficient to construct PRGs that are injective on the last s bits to achieve this
property. This is relatively a mild assumption. We conclude with the following corollary.

33



Corollary 4.1 Assuming an injective PRG on the last s bits, there exists a compiler AuthCol that, given κ
(PRG seed length), s (statistical parameter) and a two-party deterministic functionality F(x, y) expressed
by a circuit C, outputs another two-party functionality F̂ and protocol Π1 that securely realizes F in the
F̂-hybrid in the presence of WVD attacks on the receiver’s input and the same features as in Lemma 4.8.

5 Realizing NC0 Functionalities in the FDCOT-Hybrid

We will name the parties as sender Sen and receiver Rec matching their roles in the final protocol. We will
design a protocol in three steps.

Step 1. Realizing NC0 functionality F with NISC/F1 protocol for locality one functionality F1. We
begin by considering a non-interactive protocol Π1 for F in the parallel OT-hybrid that is secure in the
presence of a passive sender and an active receiver. Such a protocol can be instantiated via a perfectly
secure projective garbling scheme [Yao86, BHR12] or a private simultaneous messages protocol [FKN94]
with 1-bit inputs. In slight more detail, the protocol from [BCR86] provides a NISC protocol in the 1-out-
of-2d OT-hybrid to compute any function with locality d. This incurs a communication cost of 2d+1 − 2
bits. Using a standard transformation, this can further be reduced to d instances 1-out-of-2 OT, where one
OT invocation is made for each of the d input bits from the receiver. In fact, this transformation can be
generalized to any n bits output NC0 functionality, where the protocol involves n parallel invocations of
1-out-of-2 string OTs, one corresponding to each input bit of the receiver, and achieves security against a
passive sender and an active receiver.

From protocol Π1, we construct a locality one (in the receiver’s bits) NC0 functionality F1 as follows.
Functionality F1 takes the selection bits b1, . . . , bn from the receiver and the choice strings (si0, s

i
1) for

i ∈ [n] from the sender for each of the n parallel OT invocations and delivers si0 ⊕ (bi ∧ (si0 ⊕ si1)) to
the receiver. We next define a new NISC protocol Π′

1 in the F1-hybrid that simply requires the sender and
receiver to execute protocol Π1 with the only exception that instead of feeding the inputs to the parallel OT
protocol, they feed the same inputs to the F1 functionality.

Formally, this transformation provides the following features:

• F1 has locality one in the input bits of the receiver.

• |F1| = O(|F|) and the receiver’s input size to F1 is equal to the receiver’s input size to F .

• Π′
1 is a NISC protocol in the F1-hybrid that realizes F with security against a passive sender and an

active receiver.

Step 2. Realizing NC0 functionality F1 with s-wise independent random F2. In our next step, we
wish to compile F1 to an NC0 functionality F2 such that the receiver’s bits are s-wise independent, i.e. the
distribution of the receiver’s input satisfies the property that for every s subset of the input bits, the receiver’s
inputs are distributed uniformly at random.

On a high level, F2 will take as input an encoding of the input bits provided by the receiver to F1. If
we rely on packed secret sharing with AG codes over a binary field (see Section 2.4), F2 will be a constant
times larger than F1 and the input bits of the receiver will be s-wise independent. Furthermore, F2 will be
an NC0 Boolean function over the bits shares of the receiver. Nevertheless, as the receiver needs to encode
its original input for the functionality, we will only achieve security against passive receivers. In order
to upgrade the receiver’s security to active, we will need the receiver to demonstrate that its input shares
correspond to a valid encoding. This will be enforced in the transformation presented in the next step.

34



More formally, in this step, we design a protocol Π2 and functionality F2 such that Π2 realizes F1 in the
F2-hybrid. Namely, the receiver first follows protocol Π′

1 and generates its input b1, . . . , bn for F1. Next,
it encodes its input via packed secret sharing with privacy threshold s. Denote the concatenation of the
receiver’s shares by σ1, . . . , σm. If we rely on algebraic geometric codes then we can have m = O(n+ s).
Recall that the functionality F1 has locality one, and the sender’s inputs to F1 can be represented as pairs
(si0, s

i
1) for i ∈ [n] where the receiver learns sibi for every i. Next, the sender encodes its inputs by packing

each of the vectors (s10, . . . , s
n
0 ) and (s11, . . . , s

n
1 ) using the same packing structure as the receiver, i.e., if the

receiver encodes the secret bi in block j and position k, then the sender encodes in position k the two secrets,
si0 within the first block and si1 within the second block. Then functionality F2 takes the sender’s shares
and emulates F1 over the shares to get secret sharing of the encoded output of F1. (This can be viewed as
emulating an MPC protocol where each party has one share corresponding to the receiver’s input and the
corresponding two shares from the sender.) In addition, corresponding to every input bit of the receiver, the
sender chooses a pair of random strings (ri0, r

i
1) of length s and the functionality delivers riσi

for every i.
This additional randomness will be required in the next step in order to upgrade the receiver’s security.

To summarize, protocol Π2 proceeds as follows. The sender and receiver encode their inputs and send
these encoding to F2. The receiver interprets the outputs from F2 as a set of shares for which it decodes
and concludes the outcome by following the receiver’s actions from the previous protocol interpreting the
output as the output received from F1.

Formally, this transformation provides the following features:

• F2 is an NC0 functionality.

• |F2| = O(|F1|).

• Π2 is a NISC protocol in the F2-hybrid that realizes F with security against a passive sender and a
passive receiver.

• The distribution of the inputs fed by an honest receiver to Π2 is s-wise independent.

Step 3. Realizing F2 in the FDCOT-IVD hybrid. We first recall that F2 is an NC0 functionality. Then
just as in Step 1, we design a non-interactive protocol Π3 for F2 in the parallel OT-hybrid. However, in this
step, we rely on oracle FDCOT (cf. Figure 4) instead of the parallel OT oracle, in order to enforce honest
behavior of both the sender and the receiver. This is achieved by instantiating the NP relations in the FDCOT

functionality with “correctness” predicates that specifies honest sender and receiver behaviors. Additionally,
an adversary controlling the sender can send an input value disjunctive (IVD) predicate P to be applied on
the input bits of the receiver. FDCOT-IVD delivers the output to the receiver only if the predicate is false.

This protocol achieves resilience to IVD attacks against a malicious sender because the receiver’s input
to FDCOT meets s-wise independent. In more detail, if the IVD predicate P contains more than s clauses
then it will result in the receiver aborting with probability at least 1−2−s, independent of the original inputs
of the receiver. Whereas, if fewer than s clauses are present then at most s input bits of the receiver, which
are distributed uniformly at random, are leaked and in particular, statistically independent of original input
of the receiver. Formally, this transformation provides the following features:

• The total size of the sender’s input to the FDCOT functionality is O(|F2|).

• The number of OT calls made to the FDCOT functionality is the same as the receiver’s input size to
F2.

35



• Π3 is a NISC protocol in the FDCOT-IVD hybrid and realizes F with security against an active sender
and an active receiver, where additionally the sender can specify an IVD predicate on the receiver’s
input bits. Recall that FDCOT-IVD delivers the output of the computation to the receiver only if the
predicate is false.

6 Realizing FDCOT-IVD

In this section, we design our protocol that securely realizes theFDCOT-IVD functionality (cf. Figure 4) with
security in the presence of active adversaries up to IVD-abort. Recall that the FDCOT has two NP-relations,
one for the sender and the other for the receiver. The main contribution here is that our protocol is in the
OT hybrid and employs the underlying PRG in black-box way where the total communication complexity
is linear in the size of the sender’s NP-relation and subquadratic in the receiver’s NP-relation.

Functionality FDCOT-IVD

Functionality FDCOT-IVD communicates with sender SDCOT and receiver RDCOT, and adversary S and is
parameterized by two NP relationsRS(·, ·),RR(·, ·) and integers m,n, κ.

1. Upon receiving input (P, {(s01, s11)}j∈[m], wS) from SDCOT where sbj ∈ {0, 1}κ and wS ∈
{0, 1}poly(n,κ) it checks if the predicate P is a disjunction of literals and records (P, s, wS) if it
is a disjunction where s = {(s01, s11)}j∈[m].

2. Upon receiving ((u1, . . . , um), wR) from RDCOT where uj ∈ {0, 1} and wR ∈ {0, 1}poly(n,κ),
record (u, wR) where u = (u1, . . . , um)). If there is no record from the sender the function-
ality waits until it receives a message from SDCOT. If there is a record (s, wS) then it sends
({suj

j }j∈[m],RS(s, wS)) to RDCOT only if P (u) ̸= 1 andRR(u, wR) = 1, and ⊥ otherwise.

Figure 4: The doubly certified oblivious transfer functionality with IVD.

On a high-level, we will use the MPC-in-the-head approach of [IKOS07] to “certify” the sender inputs
to the oblivious transfer executions. To certify the inputs of the receiver, we will use a one-sided variant
of FDCOT, that we described below as FRCOT which only certifies the receiver’s inputs. Looking ahead,
in our instantiations, the receiver certification will require an NP relation that is proportional only to the
receiver’s input size and sublinear in the circuit size. This will allow us to realize FRCOT with a mildly
inefficient protocol,12 using the work of [IKO+11]. In more detail, we will describe our protocol ΠDCOT in
the (FRCOT,FCnP)-hybrid where FRCOT is the parallel OT functionality which allows for receiver certifica-
tion (cf. Figure 5). Whereas FCnP is a slight variation of the standard commit-and-prove functionality that
allows a sender to first commit to a witness w and then, given a function H from the receiver and an image
y from the sender, delivers the output of the predicate H(w) = y; see Figure 6 for the formal description.
We specify more details about these realizations in Section 9.1.

Beside employing functionalities FRCOT and FCnP, our protocol uses a length doubling PRG and a
special-hiding information theoretic MAC that preserves the properties of privacy and robustness in a way
that enforces the sender to properly commit to its inputs; see Definition 2.4 for more details. More formally,

Protocol 3 (Protocol ΠDCOT for realizing functionality FDCOT-IVD)
12Namely, with non-constant overhead that is polylogarithmic in the functionality size.

36



Functionality FRCOT

Functionality FRCOT-IVD communicates with sender SRCOT and receiver RRCOT, and adversary S and is
parameterized by an NP relationRR(·, ·) and integers m,n, κ.

1. Upon receiving input ({(s01, s11)}j∈[m]) from SRCOT where sbj ∈ {0, 1}κ it records (sS) where s =

{(s01, s11)}j∈[m].

2. Upon receiving ((u1, . . . , um), wR) from RRCOT where uj ∈ {0, 1} and wR ∈ {0, 1}poly(n,κ),
record (u, wR) where u = (u1, . . . , um)). If there is no record from the sender the functionality
waits until it receives a message from SRCOT. If there is a record s then it sends ({suj

j }j∈[m]) to
RRCOT only ifRR(u, wR) = 1, and ⊥ otherwise.

Figure 5: The receiver certified oblivious transfer functionality.

Functionality FCnP

Functionality FCnP communicates with sender SCnP and receiver RCnP, and adversary S and is parameter-
ized by an NP relationR(·, ·) and integers n, κ.

Commit phase. Upon receiving input (z, w) from SCnP where z = {(sbj , rbj)}j∈[m],b∈{0,1} and w ∈
{0, 1}poly(n,κ), record this message.

Prove phase. Upon receiving H from RCnP, forward H to SCnP. Upon receiving y from S, check if there
exists a record (z, w) that it received from SCnP. Ignore if no such record exists. Otherwise, send 1
to RCnP only if H(z) = y andR(s, w) = 1 where s = {(s01, s11)}j∈[m]. Return 0 otherwise.

Figure 6: The commit-and-prove functionality.

• Inputs: The sender SDCOT’s input is {(s0j , s1j )}j∈[m] and a witness wS with respect to some NP
relationRS , and the receiver RDCOT’s input is u1, . . . , um and a witness wR with respect to some NP
relationRR.

• The protocol:

1. SDCOT

FRCOT←→ RDCOT : The parties engage in m oblivious transfers in parallel using FRCOT

where SDCOT uses ((k0j , r
0
j ), (k

1
j , r

1
j )) and RDCOT uses uj , as their respective inputs in the jth

(j ∈ [m]) oblivious transfer execution, where kbj is seed for the PRG and rbj is a sufficiently long
string. Additionally RDCOT provides wR as the witness to FRCOT.

2. SDCOT → RDCOT : The sender sends sbj ⊕ G(kbj) where G is a PRG that expands kbj to the
appropriate length.

3. SDCOT

FCnP←→ RDCOT : The sender commits to the witness ({(sbj , rbj)}j∈[m],b∈{0,1}, wS) by sending
it to the FCnP functionality.

4. SDCOT ← RDCOT: The receiver chooses a random MAC key H ← H and sends it to the sender
via functionality FCnP.

5. SDCOT → RDCOT: The sender sends the MAC of every string, namely {H(sbj ; r
b
j)}j∈[m],b∈{0,1}

to RDCOT. If the MACed value transmitted for (suj

j , r
uj

j ) does not match H(s
uj

j ; r
uj

j ) for some

37



j ∈ [m], then RDCOT rejects.

6. SDCOT

FCnP←→ RDCOT : The sender and receiver interact via the FCnP functionality where SDCOT

submits {H(sbj ; r
b
j)}j∈[m],b∈{0,1} and RDCOT submits H . FCnP checks if H was computed cor-

rectly on every pair (sbj , r
b
j) committed to before as part of the witness and ifR({(s0j , s1j )}j∈[m], w).

If both these checks pass, it delivers 1 to RDCOT and otherwise 0.

Theorem 6.1 Let H be a family of special-hiding MAC according to Definition 2.4 for κ-bit strings and G
be a length-doubling PRG. Then protocol 3 securely computes functionality FDCOT-IVD in the presence of
static active adversaries in the (FRCOT,FCnP)-hybrid.

Proof: Our proof follows by showing that for every adversary A in the (FRCOT,FCnP)-hybrid world there
exists a simulator S in the ideal world with access to functionality FDCOT that generates an indistinguishable
view. We begin with the description of the simulator while distinguishing two corruption cases.

The sender SDCOT is corrupted. The simulator incorporates the code of the adversary A and emulates an
execution as follows:

• First, it simulates FRCOT and FCnP and obtains ((k0j , r
0
j ), (k

1
j , r

1
j )) from the first round intercepting

the inputs sent to FRCOT. Then it obtains s0j and s1j by decrypting the message sent by the sender in
the second round and ({(Sb

j , R
b
j)}j∈[m],b∈{0,1}, w) from the third round intercepting the inputs sent to

FCnP. Note that a corrupted sender can submit Sb
j ̸= sbj or Rb

j ̸= rbj .

• Next, the simulator samples a random MAC H ← H and feeds it toAwhich responds with {hbj}j∈[m],b∈{0,1}.
If for any (j, b), H(Sb

j , R
b
j) ̸= hbj , the simulator aborts.

• Then, the simulator defines a disjunctive predicate P as follows. For every (j, b) such that H(sbj ; r
b
j) ̸=

hbj , it includes the literal vj if b = 0 and ¬vj in case b = 1.

Denote the set of literals within P by v.

• Finally, the simulator sends (P, {(S0
j , S

1
j )}j∈[m],b∈{0,1}, w) to FDCOT.

Note first that the sender’s view in the real execution is identically distributed to the simulated view because
the sender only receives a MAC key H in an execution and this is identically distributed in both the real and
simulated experiment. Therefore, it suffices to show that the outputs received by the honest receiver in both
executions are indistinguishable. This follows from the next two claims.

Claim 6.1 The probability that the honest receiver aborts in the real world is at least the probability with
which the the honest receiver aborts in the ideal world.

Proof: First, we observe that the honest receiver aborts in the ideal world if one of the following events
occurs in the internal emulation by the simulator:

F1 = the MAC value does not match the committed input or the NP relation returns 0. Specifically, the
simulator aborts if H(Sb

j , R
b
j) ̸= hbj for any (j, b). Furthermore, FDCOT delivers ⊥ if the NP relation

returns 0.

F2 = FDCOT sends ⊥ to the receiver when the predicate P is satisfied: Specifically, this event occurs when-
ever P (u) = 1.

38



As mentioned at the beginning, the view of a malicious sender in the internal emulation by the simulator
is identically distributed to the view of a malicious sender in the real world. This means that whenever F1

occurs, it follows that functionality FCnP outputs 0 as it checks both if the MACs of the committed values
are correct and if the NP relation is satisfied. Next, if F2 occurs in the internal emulation, it means that
H(s

uj

j , r
uj

j ) ̸= h
uj

j for some j. Recall that whenever this happens in the real execution, the receiver aborts
in Step 5. Therefore, we have that the probability with which the receiver aborts in the real world is at least
the probability it aborts in the ideal world. �

Claim 6.2 Conditioned on the receiver not aborting, the distribution of the output of the honest receiver in
the real and simulated world is statistically close

Proof: Consider the events F1 and F2 as described in the proof of Claim 6.1. We will prove that if these
events do not occur then the output of the honest receiver in the real world is equal to the output received
by the honest receiver in the ideal world except with negligible probability over the choice of H . Namely,
condition on events F1 and F2 not occurring, it follows that the ideal receiver receives S

uj

j for every j ∈
[m]. On the other hand, the real receiver obtains s

uj

j for every j ∈ [m]. Next, suppose that (suj

j , r
uj

j ) ̸=
(S

uj

j , R
uj

j ) for some j and uj . Now, since H is chosen uniformly at random after the malicious sender
commits to s

uj

j and S
uj

j , we conclude by the robustness of the special-hiding MAC (cf. Definition 2.4)
that except with negligible probability either H(S

uj

j , R
uj

j ) ̸= h
uj

j or H(s
uj

j , r
uj

j ) ̸= h
uj

j . The former event
implies that F1 occurs whereas the latter implies that F2 occurs, and this concludes the proof of the claim.
�
The receiver RDCOT is corrupted. In this case, we need to simulate the messages from FRCOT and FCnP to
the receiver. More precisely, the simulator internally incorporates A and then proceeds as follows:

• The receiver first provides to FRCOT the input u = (u1, . . . , um) and the witness wR which the
simulator forwards to FDCOT.

• Upon receiving from FDCOT the values ({suj

j }j∈[m], 1), the simulator internally feeds {kuj

j , r
uj

j }j∈[m]

to A as the response from FRCOT, where k
uj

j and r
uj

j are sampled according to the honest strategy.

• In round two the simulator sends the ciphertexts, where corresponding to (j, uj) it sends suj

j ⊕G(k
uj

j )
and for the other ciphertexts it sends random strings.

• Next, upon receiving a MAC key H from the receiver, the simulator sends the adversary {hbj}j∈[m],b∈{0,1}
such that huj

j = H(s
uj

j ; r
uj

j ). All the other MACs are computed relative to an arbitrary set of inputs

{s′1−uj

j }j∈[m].

• Finally, the simulator emulates the output of functionality FCnP as 1.

Indistinguishability of our simulation in the {FRCOT,FCnP}-hybrid follows directly from the pseudoran-
domness of G and the privacy property of the special-hiding MAC (cf. Definition 2.4), which states that for
every x, x′ ∈ {0, 1}ℓ and H ∈ H the following two distributions are identical:

• {r ← {0, 1}s : H(x; r)},

• {r′ ← {0, 1}s : H(x′; r′)}

This concludes our proof.

39



7 Realizing FCnP via MPC-in-the-Head Approach

In order realize functionality FCnP, we follow the MPC-in-the-head paradigm of [IKOS07]. However, we
will rely on a slightly different MPC model and make use of the watchlist mechanism in order to ensure
consistency (a-la [IPS08]) to achieve better soundness and communication complexity. Recall that the FCnP

functionality defined in the previous section proceeds in two phases. In the first phase, the sender commits
to an input x whereas in the second phase it receives a function H from the receiver and string y from the
sender, and outputs 1 to the receiver only if x is a valid witness corresponding to some statement and an NP
relation and H(x) = y. We simplify our functionality to simply take f and y from the receiver and sender
and output 1 if f(x) = y. This is without loss of generality as f can incorporate the NP relation with the
statement hard coded. Towards realizing the FCnP functionality, we first introduce our MPC model that will
be incorporated in our MPC-in-the-head paradigm.

MPC model. In the core of our improved analysis lies an alternative MPC model that captures a different
network topology than the complete topology considered thus far. In our model, we will consider a sender
client S, n servers P1, . . . , Pn, and a receiver client R. The sender has input x and the receiver has input f ,
whereas the servers do not provide any input. The MPC functionality is defined in Figure 7. We note that
the underlying MPC only checks if f(x) = y and does not realize it since it is easier and more efficient to
run the verification procedure because we can flatten the verification circuit.

(Reactive) Functionality FMPC

Functionality FMPC communicates with sender S and receiver R, and adversary S.

Commit Phase: Upon receiving input x from S store this input.

Prove Phase: Upon receiving f from R and y from S it sends 1 to R only if y = f(x).

Figure 7: The reactive MPC functionality.

More precisely, we consider the specific network where we restrict the communication to:

• Point-to-point channels between sender S and the servers and between receiver R and the servers.

• A broadcast channel between the servers. We note here that this deviates from the previous approaches
[IKOS07, IKO+11] where additionally the servers had point-to-point channels between them. Exclud-
ing these channels is one of the ways we are able to improve the soundness.

For simplicity and convenience, we will allow the servers to have access to a coin-flipping oracle that can
sample strings uniformly at random and broadcast to the servers. We will further assume that the underlying
MPC invokes the coin-flipping oracle only once (we will be able to construct such an MPC protocol). More
formally, our MPC protocol execution can be divided into the following phases:

1. Commit Phase: The servers receive inputs from the sender and perform local computation. The
servers may additionally employ the broadcast channel.

2. Statement Reveal Phase: At the end of the commit phase, the receiver sends its input f to the servers.

3. Compute Phase 1: In this phase, the servers receive inputs from the sender and perform local com-
putation and may use the broadcast channel.

40



4. Coin-Flipping Phase: At the end of the first compute phase, the servers obtain a public random string
r of length ℓ that is sampled using a coin-flipping oracle.

5. Compute Phase 2: The servers perform additional local computation that may involve the broadcast
channel and at the end of the phase, each server sends its outputs to the receiver R.

Definition 7.1 (Adaptive (tp, tr)-simulation certified oblivious-transfer) Let Π be an MPC protocol in
the framework described above between a sender client, n servers, and receiver R as described above. We
say that a protocol Π realizes f with adaptive statistical (tp, tr)-simulation if the following properties hold:

Completeness: The protocol is statistically correct, namely, the receiver learns f(x) except with negligible
probability.

Static tp-privacy: Consider a passive static adversaryA that corrupts the receiver R and at most tp servers
(at the beginning of the execution), then the view ofA can be simulated only using the outputs received
by the receivers.

Adaptive tr-simulation: Consider an active, adaptive adversary A that corrupts the sender and a total of
at most tr servers throughout the protocol. We will require standard UC simulation of the protocol Π
against an adaptive adversary A for the MPC functionality f .

We note that tr is a constant fraction of n and tp can be set to s where s is the statistical security-parameter.

Protocol description. Let Π be an MPC protocol satisfying Definition 7.1 and realizes FMPC (we discuss
implementations of Π in the next section). We will now design a malicious secure protocol ΠCnP that realizes
the FCnP functionality.

Protocol 4 (Protocol ΠCnP for realizing functionality FCnP in the FOT-hybrid with active security)

• Inputs. The sender’s input is x and the receiver’s input is f . Let ΠENC = (Gen,Enc,Dec) be an
IND-CPA (multi-message) symmetric-key encryption scheme that is constructed from PRG G.

• The protocol.

1. The sender SCnP runs the MPC protocol Π “in the head” as follows. It first picks a key ki for
each server i ∈ [n], these keys will be used to establish the watchlists.

2. Let u be an integer such that 1/u ∈ [t/2n, t/n]. The sender SCnP and receiver RCnP apply
one parallel call to FOT in which the receiver obtains ki to monitor the view of server Pi with
probability 1/u for each i ∈ [n]. Let W be the set of servers for which the receiver obtains the
key.

3. SCnP picks a random input rS and invokes S on x and a random input ri for every server Pi. It
computes the views of the servers up to the end of commit phase, denoted by (V COM

1 , . . . , V COM
n ).

It then sends the view of the ith server over the ith watchlist, namely, it sends cCOM
i = Encki(V

COM
i )

to RCnP. In addition, SCnP sends the messages that the servers broadcast in the clear. We remark
here that the broadcast message is also included as part of the view of each server. The receiver
records the broadcast messages and decrypts and obtains V COM

i for every i ∈W .

4. RCnP sends its input f to SCnP. Recall that in our MPC model, which SCnP emulates in its head,
the receiver R sends its input f to each servers. Using the message f received from RCnP, SCnP

computes y = f(x) and sends y to RCnP.

41



5. Next, SCnP computes the views of the servers up to the end of Compute Phase 1, denoted by
(V 1

1 , . . . , V
1
n ). It then sends them encrypted as c1i = Encki(V

1
i ) to RCnP. Additionally, it sends

the broadcast messages exchanged in this phase. Once again, the receiver decrypts and obtains
V 1
i for i ∈W .

6. RCnP picks a random challenge r of length ℓ and sends it to the sender. SCnP will feed r to the
servers as the message received from the coin-flipping oracle in the Challenge Phase.

7. SCnP next computes the views of the servers in Compute Phase 2, denoted by (V 2
1 , . . . , V

2
n ),

sends them to RCnP over the watchlists as c2i = Encki(V
2
i ) and includes the broadcast messages.

In addition, it also sends the view of R in the internal emulation. The receiver obtains V 2
i for

i ∈W .

8. The receiver next checks if there are any inconsistencies in the views obtained over the watchlist.
More precisely, for every server i ∈W , the receiver (re-)performs the computation and checks if
all messages sent by the server were correct. Messages include the broadcast message between
the servers and the message relayed to the receiver R. The broadcast message were sent in the
clear and can be checked directly. The final message sent by the server to R can be checked as
it is included in the view of R. It aborts if any of the checks fail.

9. Finally, RCnP outputs what R outputs in its view.

We proceed with the proof to the following theorem.

Theorem 7.2 Let G be a length-doubling PRG. Then, protocol 4 securely computesFCnP in theFOT-hybrid.

Proof: Our proof follows by showing that for every adversary A in the FOT-hybrid execution there exists
an simulator S in the ideal execution with access to functionality FCnP. We begin with the description of
the simulator while distinguishing two corruption cases.

The sender SCnP is corrupted. It is easy to see from the protocol that the only message that the sender
receives from the receiver are the function is Step 4 and the random challenge r in Step 6. Hence generating
a view of an adversary A controlling the sender only requires generating r uniformly at random within
the simulation. The more challenging part in the simulation is extracting an input on behalf of the sender
for the FCnP functionality and deciding when to deliver the output to the receiver. Towards this S defines
an adversary B for the underlying MPC protocol Π. By the guarantee of the adaptive tr-(UC) simulation
property of Π there exists a corresponding simulator SB in the FMPC-hybrid. Our simulation follows by
simultaneously executing B and SB. In more detail, S constructs an adversary B as follows:

• Upon receiving the input (1κ, x), it internally incorporates the code of A and begins emulating an
execution by running the adversary A on this input and uniformly generated randomness.

• B internally emulates functionality FOT where in Step 2 it receives from A keys ki for every server
Pi within A’s message to the FOT functionality. B records these keys.

• Next, B receives encryptions of views of the servers c1, . . . , cn in the commit phase from which it
extracts the view V COM

i for each server i by decrypting the ciphertexts as V COM
i = Decki(ci) where

ki are the keys recorded in the previous step.

• B corrupts the sender and then sends as input to each server Pi according to what is specified in V COM
i .

42



• Recall that every message that is broadcast by the servers in any phase is provided in the clear by A
and is included in the view of each server (V COM

1 , . . . , V COM
n ). Let TCOM be the subset of servers for

which the broadcast messages incorporated in their views differ from the broadcast messages relayed
by A. B adaptively corrupts the servers in TCOM and use the (incorrect) broadcast message included
in the view for its computation.

• Next, B receives f from the receiver R (emulated by S) and forwards it internally to A as received
fromRCnP. In response,A provides encrypted views of the servers in the Compute Phase from which
B extracts V 1

1 , . . . , V
1
n . On behalf of the corrupted sender, B sends to each server the corresponding

message recorded in the server’s view V 1
i . Let T 1 be the servers for which the broadcast message is

inconsistent with what is sent in the clear by A. If |T 1 ∪ TCOM| > tr, then B aborts. Otherwise it
corrupts the servers in T 1− TCOM and uses the incorrect broadcast message incorporated in the view.

• The servers receive a random string r from the coin-flipping oracle next in the MPC execution. B
feeds r internally to A as received fromRCnP. In response, A gives encrypted views of the servers in
Compute Phase 2 from which B extracts V 2

1 , . . . , V
2
n and proceeds exactly as in Compute Phase 1 by

computing the set of servers T 2 with inconsistent views. Again, B aborts if |T 2 ∪ T 1 ∪ TCOM| > tr
and otherwise it corrupts the servers in T 2 − T 1 − TCOM. Finally, on behalf of the corrupted servers
TCOM ∪ T 1 ∪ T 2, B sends a message to R as recorded in the corresponding view V 2

i .

• Finally, B outputs the view of A in the internal emulation.

Our simulator S for protocol ΠCnP will internally run SB with B (where the input for SB is the input S
obtains for A. Upon extracting B’s input x, SB sends it on behalf of the corrupted sender to FMPC emulated
by S, which intercepts x and sends it to FCnP. Next, SB expects to receive f from the receiver. Specifically,
S receives f from FCnP which it internally emulates for SB as received from R. In response, SB provides y
which S forwards to FCnP. Finally, S outputs whatever SB outputs.

We first claim that indistinguishability of the simulation and the correctness of the receiver’s output
follow directly from the adaptive tr-simulation of B. This is because as long as fewer than tr servers are
corrupted overall then we have that the MPC execution with adversary B proceeds exactly as specified in
the views submitted by SCnP.

Next, we observe that if more than tr servers are corrupted S aborts. We prove here that in this case
RCnP aborts except with negligible probability. Specifically, since RCnP uses the watchlist mechanism to
observe each server with probability 1/u where u ∈ [tp/2n, tp/n], it holds that the expected number of
servers watched by the receiver is tp. We will show that with probability at most (1 − tr

n )
tp the receiver

in protocol ΠCnP misses all the servers for which the view is inconsistent with the watchlist views. This is
negligible if tr

n is O(1).
We calculate this probability by computing the probability that the watchlist includes a server carrying

an incorrect broadcast message or carrying an incorrect final message to the receiver R. Towards this, we
can define a graph G with nodes for each server and two special nodes B and R where B corresponds to
all broadcast messages and R denotes the receiver. Then an edge is included in G between a server and B
if some broadcast message included in the view of this server is different from the message relayed by A.
Moreover, an edge between R and a server is included in G if the message sent by the server included in the
view of the server is different from the message received by R included in the view of R. No we observe that
if any server that has any edge incident on it in included in the watchlist W , then the adversary is caught.
Since by our assumption there are more than tr edges, it follows that the probability that the adversary is not
caught is at most (1− tr

n )
t.

43



The receiver RCnP is corrupted.

• Upon receiving the receiver’s input (1κ, f), the simulator S internally invokes the adversaryA on this
input and uniformly generated randomness.

• S internally emulates functionality FOT as follows:

1. S generates a key kj for each server Pj using Gen.

2. S receives from the adversary its input to FOT which consists of ũ1, . . . , ũm. Recall that the
receiver also obtains keys for each server with probability 1/u where u ∈ [t/2n, t/n], S sends
ki to the receiver with probability 1/u. Let T be the subset of [n] containing the indexes of the
servers for which the adversary learns the key. The adversary, acting as the receiver, expects to
receive in the commit phase commitments to the servers views. To emulate these, S relies on
the tp-privacy of the underlying MPC protocol Π to generate the views V Com

i for the servers in
{Pi}i∈T . More specifically, S defines a passive adversary B for Π that corrupts all the servers
in T , and runs the simulation for the MPC protocol with this adversary B. Specifically, let
SB denote the corresponding simulator for B guaranteed by the tp-privacy property, where SB
provides the views for the servers in T . S defines the views for i ∈ T according to what it
received from SB and sets the rest of the views to the all 0’s string. In addition it extracts the
broadcast messages from the views and feeds it in the clear.

3. S obtains the function f from the adversary which it forwards the FCnP functionality, receiving
the value 1. Following this, SB provides views of the servers in T in Compute Phase 1 which it
encrypts and feeds to A just as in the Commit Phase.

4. Next, it receives from the adversary a challenge r and instructs SB to send this challenge to
B. Following this, SB provides the message sent by the servers in T and the view of R in the
internal emulation. S simply forwards this view to the receiver R to A.

Note that the differences between the two executions are with the way the Vi’s views are generated (for
the corrupted servers these are generated from the corrupted receivers outputs whereas the rest of the views
are set to zero). Moreover, the broadcast messages are computed by the simulator SB. Then indistinguisha-
bility of simulation follows directly from the tp-privacy of the underlying MPC protocol and the privacy of
the symmetric key encryption.

To instantiate our MPC protocol we will rely on a variant of the MPC protocol of [IPS09] found in
Appendix C. We specify its details in the next section.

8 Information-Theoretic Protocol for Realizing FMPC

In this section, we present our instantiations for an MPC protocol to realize FMPC. Recall that in our MPC
model, we consider a sender client S, n servers P1, . . . , Pn and a receiver client R. The sender has input x
and the receiver has input f , whereas the servers have no input. The security guarantee requires the MPC
protocol to be tp-private and statistical tr-robust. We will instantiate the MPC protocols for our two main
results as follows:

Communication efficient variant. For our communication efficient protocol, that achieves constant over-
head, we will instantiate the underlying MPC protocol with a variant of the protocol from [DI06] further
used in [IKOS07]. We point out that our MPC functionality is different from the functionality used in

44



[IKOS07] as we introduce an initial phase where the sender stores the input within the servers and another
phase where the receiver provides the function f . Nevertheless, we can rely on essentially the same MPC
protocol since [DI06], as well as other prior protocols such as [BGW88, CCD88] and [DI05] already have
an input sharing phase where all parties share their inputs. Therefore, incorporating an input sharing phase
as such will not require any modification of the MPC protocol.

We recall next that the MPC protocol of [DI06] incurs a communication complexity of O(poly(κ) · |C|)
where C is the circuit representing the function computed by the servers and κ is a computational parameter.
In order to avoid this blowup, [IKOS07] squash the circuit C that represents a polynomial-sized verification
circuit for an NP-relation, by considering an extended witness of size |C| that includes the intermediate
values in the computation of C(w) in addition to w itself. In order to verify the computation of C(w) it
suffices to verify the computation of each gate in the computation of C(w) from the extended witness. The
squashed circuit takes as input the extended witness and has output of size |C| which includes for every gate
the result of checking the output value w.r.t to its two input values. Now, an output of 1|C| of the squashed
circuit is interpreted as an output 1 for the original computation and any other output is interpreted as 0. In
our MPC protocol, the circuit C is not determined before the receiver reveals function f . Hence, we need
to modify the MPC protocol to first share the original input and then only after f is revealed, the sender
additionally shares the intermediate values of the computation under f with the servers.

The resulting MPC protocol will have the same asymptotic communication complexity as the variant
used in [IKOS07] and therefore we obtain the following lemma (which is a reformulation of Lemma 4.8
[IKOS07]) for our MPC protocol).

Lemma 8.1 (Reformulation of Lemma 4.8 [IKOS07]) Let f be a function which can be computed by a
circuit C. Then, f can be realized by a perfectly t-private and statistically t-robust MPC protocol Πf with
t = O(n) and the following efficiency features:

• Commit Phase and Compute Phase 1 involves a total of O(|C|) + poly(t, n, log(|C|)) sent from the
sender to the n servers.

• The random challenge r between Compute Phase 1 and Compute Phase 2 is of length poly(t, n, log(|C|)).

• Phase 2 involves broadcast messages whose total length is O(|C|) + poly(t, n, log(|C|)).

Concretely efficient variant. In our concretely efficient variant, we will not use the MPC protocol from
[DI06, IKOS07] that applies to boolean circuits and has a high concrete communication and computation
overhead. In particular, this protocol employs secret sharing via AG codes [CC06]. Instead we will rely on
the variant of the MPC protocol from [DI06] described in [IPS09], which applies to arithmetic circuits over
large fields and has a small concrete overhead. Our concretely efficient variant will employ a function f that
can be cast as an arithmetic circuit. In a companion work [AHIV17], we employ a similar MPC protocol
to obtain concretely efficient sublinear zero-knowledge arguments. As mentioned above, we will have to
consider an analogous variant to incorporate the additional phases in our MPC model.

Below, we summarize the result in the following lemma.

Lemma 8.2 (Reformulation of Lemma 4 [AHIV17]) Let s ∈ N be the statistical parameter and f be a

function which can be computed by an arithmetic circuit C over a finite field |F| > 2s. Let α =

√
tp|C|
2

and β =
√

18|C|
tp

. Then, f can be realized by a perfectly tp-private and statistically tr-robust MPC protocol

Πf with 2−s error where tp = s(− log(4/5))−1, tr = ⌊n5 ⌋ − 1 and n = 5(α + tp) + 1 and the following
efficiency features:

45



• The view size of each server is s(β + 1) bits.

• The random challenge r between the Compute Phase 1 and Compute Phase 2 is of length s.

• Phase 2 involves broadcast messages whose total length is 3s(α+ t).

9 Putting it Together

In this section we instantiate our framework for two-party computation by instantiating the computation of
our two NC0 functionalities and the information-theoretic MPC protocols and obtain different efficiency
guarantees, both in the asymptotic and concrete regimes. We use the following convention:

• We use κ and s for the computational and statistical security parameter respectively.

• We use n to denote the input lengths of the parties and m to denote the output length of the function
F that the parties want to securely compute.

Both of our variants will have constant overhead communication complexity over the passively secure
Yao protocol. The second uses a large number of OTs but has better concrete efficiency.

9.1 Variant 1: Asymptotically Optimal Construction

The first variant incurs communication complexity of O(|C|κ) bits in the κ-bit string OT hybrid. We first
provide a basic result for this variant that will employ O(|C|) calls to κ-bit string OT functionality. Next, by
relying on an information-theoretic PRG, we will be able to reduce the number of calls to n + O(s · |C|ϵ)
for an arbitrary constant ϵ > 0. Such information-theoretic PRGs exist assuming explicit constant-degree
unbalanced unique-neighbor expanders.

The basic result we obtain in this variant is the following theorem.

Theorem 9.1 There exists a protocol compiler that given κ (PRG seed length), s (statistical security param-
eter), and a two-party deterministic functionality F expressed as a Boolean circuit C : {0, 1}n×{0, 1}n →
{0, 1}m, outputs a protocol ΠC that securely realizes F in the κ-bit string OT hybrid, namely using ideal
calls to κ-bit string OT. The protocol ΠC has the following efficiency features:

• It makes O(|C|) + poly(log(|C|), s) black-box calls to a PRG GPRG : {0, 1}κ → {0, 1}2κ.

• It makes n+O(s · |C|ϵ) calls to a κ-bit string OT oracle.

• It communicates O(κ · |C|) + poly(log(|C|), log κ, s) bits.

Remark 9.1 Recall that we require the distinguishing advantage to be bounded by 2−s + ν(κ) for some
negligible function ν(·). We state our asymptotic result with s as a parameter as we would like to make the
distinction between protocols that achieve 2−s error versus negligible in s error. Furthermore, it allows us
to compare our protocols with prior works that achieve the same simulation error. We remark that we can
assume s < κ without loss of generality as we require the distinguishing error to be bounded by a negligible
function in κ and if s is bigger than κ, we can let s = κ.

Proof of Theorem 9.1. We follow the framework described in Section 3.

46



1. Following an approach based on [LP07, SS13], we first transform the original functionality F into a
new functionality FIVD that will resist input-dependent attack.

• The circuit size of FIVD is O(κ · |C| + κ · s) for any circuit C that computes the original func-
tionality F .

• The receiver’s input length in FIVD is O(|C|) +O(max(n, s)) = O(|C|+ s).

2. We next compile FIVD using the AuthPRG2 compiler to obtain a protocol in the FDCOT-hybrid fol-
lowing the transformations presented in Sections 5.

This protocol F2 has the following features:

• The receiver’s input length (which corresponds to the number of parallel OT invocations) is
n+O(s · |C|ϵ).
• The sender’s algorithm makes O(|C|+s · |C|ϵ) black-box calls to a length-doubling PRG GPRG :
{0, 1}κ → {0, 1}2κ.

• The total length of the sender’s inputs to the functionality is O(κ · |C|+ κ · s · |C|ϵ).
• The NP relation associated with the sender in the FDCOT-IVD can be computed via a boolean

circuit of size O(κ · |C|+κ ·s) and the NP relation associated with the receiver can be computed
via a circuit of size O(n+ s · |C|ϵ).

We will track the number of OTs and the sum total of the lengths of the sender OT inputs. However,
at the end, we will rely on a standard transformation that takes nOT parallel OTs where the sum of
OT input lengths is ℓOT and compile it to nOT parallel OTs with κ-bit inputs that will require the
sender to make ⌈ ℓOT

κ ⌉ calls to the underlying length doubling PRG GPRG and send one additional
message to the receiver of length ℓOT. This transformation simply requires the sender to use κ-bit
keys sampled independent from a semantically-secure encryption scheme as the OT sender inputs and
send encryptions of the corresponding inputs with that key.

3. We first replace the oracle call to FDCOT-IVD within F2 with protocol ΠDCOT from Section 6 that
is realized in the (FRCOT,FCnP)-hybrid. Then we replace the oracle call to FCnP with our protocol
ΠCnP where we instantiate our MPC protocol using a variant of the protocol from [DI06] further used
in [IKOS07]. The resulting protocol is in the FRCOT-hybrid and realizes FDCOT-IVD against active
adversaries. The communication complexity of the protocol can be computed as follows:

(a) The sender and receiver first invoke the FRCOT-functionality where the number of OT calls is
n + O(s · |C|ϵ) and the sender’s input length for each OT choice in each invocation is κ. The
NP relation associated with the receiver can be computed via a circuit of size O(n+ s · |C|ϵ).

(b) The protocol makes O(|C|+s·|C|ϵ) black-box calls to a length-doubling PRG GPRG : {0, 1}κ →
{0, 1}2κ.

(c) The total bits communicated in the protocol can be computed from the following:

• The sender transmits “encrypted” values whose sum total is O(κ · |C|+ κ · s · |C|ϵ) bits.
• The sender transmits a MAC of length s corresponding to each OT input. There are totally
O(|C|+s) strings transmitted via 1-out-of-2 OTs. Therefore, sending the MACs will require
the sender to transmit 2 · s ·O(n+ s · |C|ϵ) = O(s · n+ s2 · |C|ϵ) bits.

Therefore, the protocol involves O(κ · |C|) + κ · s · |C|ϵ bits of communication.

47



(d) The NP-relation associated with FCnP is of size O(κ · C + κ · s · |C|ϵ). We can conclude the
communication complexity of the protocol realizingFCnP to be O(κ·C+κ·s·|C|ϵ) and involves
O(|C|) + s · |C|ϵ calls to the PRG.

4. In our final step of the transformation we replace the oracle call to FRCOT with the protocol from
[IKO+11] to achieve full security. Since the overhead induced by [IKO+11] is polylogarithmic in the
circuit size that computes this functionality, we get a protocol with following features.

• The protocol makes O(|C|+s·|C|ϵ) black-box calls to a length-doubling PRG GPRG : {0, 1}κ →
{0, 1}2κ.

• The protocol involves O(κ · |C|+ s ·κ · |C|ϵ)+κ ·n ·poly(log s, log |C|) bits of communication.

• The protocol incurs n+O(s · |C|ϵ) calls to O(κ)-bit string OTs.

This concludes the proof of Theorem 9.1.

Remark 9.2 As discussed in Footnote 6 and Section 2.2, the combinatorial assumption about explicit s-wise
PRGs is a seemingly mild assumption that was already used in other contexts.

This theorem provides the first black-box protocol that simultaneously achieves asymptotically constant
overhead communication complexity over Yao’s passively secure protocol and requires sublinear (in circuit
size) number of calls to a OT protocol. In contrast, prior works have either obtained constant overhead (eg,
[WRK17], albeit in the bit-OT hybrid model) or a small number of calls to the OT oracle (eg, protocols
based on cut-and-choose).

9.2 Variant 2: Concretely Efficient Variant

Our second variant will also achieve a communication complexity of O(κ · |C|) bits and employ O(n + s)
calls to a κ-bit string OT oracle. We will identity the precise constant in the overhead. In this variant we will
be able to incorporate the Free XOR optimization [KS08] and half-gates optimizations [ZRE15]. However,
we will settle for security with correlated abort.

Theorem 9.2 There exists a protocol compiler that, given κ (PRG seed length), s (statistical security pa-
rameter) and a functionality F(x, y) expressed as a circuit C : {0, 1}n × {0, 1}n → {0, 1}m, outputs a
protocol ΠC which securely realizesF in the κ-bit string OT-hybrid with correlated abort with the receiver’s
input and the following features:

• The protocol makes |C|+ 2 · s+max(4 · n, 8 · s) calls to κ-bit string OT.

• The protocol communicates (in bits)

4 · (κ+ s) · |C|+ 2 · s · (n+ 2 · s+max(4 · n, 8 · s)) + 18 · s1.5 ·
√
|C|.

Proof of Theorem 9.2. The compilation takes as input a circuit C and security parameter κ and proceeds
by following the same approach as in our first variant with the exception that we use our transformation in
the FAuthCol-hybrid as described in Section 4.2 and the MPC protocol instantiated above. More precisely,

48



1. We transform the original functionality F into FIVD that is resistant to IVD attacks just as in the
previous compilation. At the end of the section, we provide bounds for the additive terms. The circuit
size of FIVD will therefore be |C| and the reciever input size will be n + max(4 · n, 8 · s) where
max(4 · n, 8 · s) is the length of the encoding of the receiver’s input following [LP07].

2. Next, we compile FIVD to F̂ using FAuthCol-hybrid as described in Section 4.2 which correlates the
abort event on the receiver’s side with its input. The NC0 functionality F̂ has the following features:

• The receiver’s input size is n+ 2 · s+max(4 · n, 8 · s).
• The output length of the NC0 functionality that depends on the receiver’s input bits is 4 · |C| · s.

Note that F̂ includes an additional n2 XOR gates compared to FIVD. These are required to
decode the receiver’s input before the computation begins. We will not include these gates in
our circuit size as we can rely on the Free XOR optimization.

3. We next consider an information-theoretic protocol Π that realizes F̂-IVD in the FSCOT-IVD-hybrid.
This proceeds in two steps: (1) Take a non-interactive protocol for F̂ using a parallel OT oracle, where
the protocol only needs to be secure in the presence of a passive sender and an active receiver. (2) Use
the FSCOT-IVD oracle to enforce honest behavior of the sender up to IVD attacks. We describe the
steps in more detail to understand the concrete overhead of the steps.

First, we compute the communication complexity of the passive protocol that realizes the NC0 func-
tionality in (1). Note that the computation of F̂ involves a computation with locality one. This means
for every input bit of the receiver we need to execute one 1-out-of-2 string OT. The sum total of the
OT sender input lengths will be 4 · |C| · s.

This protocol incurs the following costs:

• The receiver’s input size is n+ 2 · s+max(4 · n, 8 · s).
• The sum total of the sender OT inputs is 4 · s · |C| bits.
• The length of the sender’s message is 4 · κ · |C|.
• The sender predicate that will be the NP relation used in the FSCOT-IVD oracle can be expressed

as an arithmetic circuit over the GF(2s) field. We will only count the number of multiplication
gates, as addition will be free. Recall that the global predicate is required to enforce honest
behavior of the sender in Π. Given the sender inputs to the parallel OT, we compute the size of
the global predicate as follows:
Witness size of the NP relation. The witness to the NP statement includes (1) The PRF values

which totals to 4 · |C| field elements, and (2) for each wire w, λw.
The total witness size (i.e. input size of the NP-relation) is 4 · |C|+ |C| field elements.

Number of multiplications: We compute the number of multiplications in GF(2s) in the NP-
relation.
Consider one of the garbled rows for a gate g with input wires a, b and output wire c. The
MAC part of the row can be expressed as:

F a
prg + F b

prg + σ0 + fg,row(λa, λb, λc) · (σ1 − σ0).

where F a
prg, F

b
prg, λa, λb, λc, k

0
c , k

1
c will be included in the witness for the predicate. The

function fg,row can further be expressed as

c1 · λa · λb + c2 · λa + c3 · λb + c4 · λc + c5 (1)

49



for some coefficient c1 through c5.
First, we observe that σ0 and σ1 are provided by the receiver. We consider the computation
of each bit of this string. For every position i, if the ith bit of σ0 and σ1 − σ0 are b1 and b2
respectively, the result will be vb1b2g,row, where

vb1b2g,row = F a
prg + F b

prg + b1 + fg,row(λa, λb, λc) · b2.

We note here that vb1b2g,row is independent of the position in the MAC part. This means we
need to compute fg,row only once per row. This involves only one multiplication λa · λb.
Recall that the masked MAC values are transmitted via the OT. vb1b2g,row can be computed in a
different way from the sender’s OT inputs. In fact, this involves simply addition operations.
In the NP-relation we check using addition gates if the vb1b2g,row computed two different ways
are equal.

Binary constraints. The λw values need to be sampled from {0, 1} and since we are operating
in GF(2s) we need enforce this constraint. We express this as

λ2
w − λw = 0

This will require a single multiplication per wire for a total of |C| multiplications.

Combining the above, we have a total of 2 · |C| multiplications.

4. We replace the oracle call to FSCOT-IVD in Π with a slight variant of the protocol ΠDCOT from
Section 6. Recall that ΠDCOT is the protocol that realizes FDCOT-IVD in the (FRCOT,FCnP)-hybrid.
To realize FSCOT we can use the same protocol with the exception that the parties will useFOT instead
of the FRCOT functionality. This is sufficient as FSCOT only requires to certify the sender’s inputs. We
then replace the oracle call toFCnP with our protocol ΠCnP in theFOT-hybrid where we instantiate our
MPC protocol using [AHIV17]. The resulting protocol realizes FCOT-IVD against static corruptions
by active adversaries. This communication complexity of the protocol can be computed as follows:

(a) The sender communicates 4 · s · |C| bits to the OT functionality and 4 · κ · |C| bits in a direct
message to the receiver in the first step of the protocol as part of the passively secure protocol
for realizing the F̂IVD functionality.

(b) Transmitting a MAC for each OT input. We transmit a MAC value of length s for each OT string
independent of its length. There are 2 · (n+2 · s+max(4 ·n, 8 · s)) strings transmitted via OTs.
Therefore, sending the MACs will require the sender to transmit 2 ·s ·(n+2 ·s+max(4 ·n, 8 ·s))
bits.

(c) The commit-and-prove protocol. The communication complexity of this protocol can be bounded
by 8·s1.5 ·

√
I + 3 ·M bits, where M represents the number of field multiplications over GF(2s)

involved in the computation of the NP-relation and I denotes the any additional witness bits
(involved only in additions). Our NP-relation can be expressed as an arithmetic circuit over
GF(2s), including the global predicate from the previous step and an additional check to ensure
that the MACs are correct. From the previous step we know that the first part requires 2 · |C|
multiplications for verifying the OT inputs whereas the second part, verifying the MACs does
not require any multiplication. The input size of the NP relation is 5 · |C|. For an arithmetic
circuit C we denote by |C| the number of multiplication gates. Our proof length is given by

5.5 · s1.5 ·
√

5 · |C|+ 3 · 2 · |C|)

50



Circuit Size Yao (passive) Our Comm Overhead
6800 0.21 0.42 1.96
1024 0.03 0.09 2.89
2048 0.06 0.15 2.36
4096 0.13 0.26 2.07
8192 0.25 0.48 1.9

16384 0.5 0.91 1.81
32768 1.01 1.78 1.76
65536 2.02 3.49 1.73
131072 4.03 6.89 1.71
262144 8.06 13.66 1.69
524288 16.13 27.17 1.69
1048576 32.25 54.13 1.68
2097152 64.5 107.97 1.67
4194304 129 215.52 1.67

Table 1: We give our total estimated communication cost in MB of our concretely efficient variant where
κ = 128 and s = 40.

Finally, the overall communication complexity of the protocol in the κ-bit string OT-hybrid for circuits with
more than 30000 AND gates is

4 · (κ+ s) · |C|︸ ︷︷ ︸
Garbled Circuit

+ 2 · s · (n+ 2 · s+max(4 · n, 8 · s))︸ ︷︷ ︸
MAC for every OT input

+18 · s1.5 ·
√
|C|︸ ︷︷ ︸

CnP protocol

.

As stated in Section 4.2.1, we conclude with a corollary that simplifies the leakage function into WVD-
style leakage and further holds in the random oracle model.

Corollary 9.3 Assuming an injective PRG on the last s bits, there exists a protocol compiler that, given
κ (PRG seed length), s (statistical security parameter) and a functionality F(x, y) expressed as a circuit
C : {0, 1}n × {0, 1}n → {0, 1}m, outputs a protocol ΠC which securely realizes F in the κ-bit string
OT-hybrid in the presence of WVD attacks on the receiver’s input and the same features as in Theorem 9.2.

Computational efficiency. In contrast to the concrete communication complexity, which is implementation
independent, the concrete computation cost is sensitive to many implementation details. Although we have
not implemented our protocol, we believe that it can be reasonably fast. The parties engage in O(|C|) in-
stances of parallel OT execution which can be implemented efficiently via OT-extensions [IKNP03, KOS16].
Reconstructing the garbled circuit from the output of the parallel OTs relies only on simple bitwise XOR
operation on bit strings. The computationally intensive part of the COT protocol is sharing several blocks
of secrets via packed secret-sharing and evaluating polynomials by both the sender and the receiver. Since
we instantiate our packed-secret sharing scheme over a large finite field, this can be done efficiently via
Fast Fourier Transforms. An implementation of a similar FFT-based protocol is provided in [AHIV17].
Furthermore, the communication complexity of the COT protocol is significantly smaller than the overall

126800 is the size of the AES circuit excluding XOR gates.

51



communication (as can be seen in the calculations above). This allows trading a slight increase in the com-
munication cost for more significant improvements in computational cost by using a larger number of FFTs
on shorter blocks.

Incorporating Free XOR [KS08] and half gates [ZRE15] optimizations. The concretely efficient variant
described is compatible with the standard garbled circuit optimizations.

In the Free XOR optimization, key-pairs for every wire are chosen so that they have a fixed difference.
This allows to discard the XOR gates while garbling, where we can incorporate the same optimization for
the garbled circuit in our case as well. Moreover, we recall that our concretely efficient variant implies that
an encrypted MAC is transmitted for each garbled row along with the garbled circuit. Then we point out that
the MACs need not be transmitted for XOR gates. This is because the MAC authenticates the color bits for
the evaluator, where the color bit of the output wire of an XOR gate is a deterministic computation over the
color bits of its input gates, namely, the XOR of the color bits. In other words, no additional authentication
is required for the color bit of the output of an XOR gate.

In the half gate optimization, an AND gate is decomposed into two special types of gates which are
further optimized via row-reduction. As before, this optimization can be incorporated for the garbled circuit
in our concretely efficient variant. However, row reduction does not apply to the MACs. In other words, a
MAC needs to be transmitted for rows that are “reduced”. This means for every AND gate, 2 ciphertexts but
4 MACs are transmitted and the overhead of our communication becomes (1+2s/κ). This outperforms dual-
execution for various parameter regimes, eg, (s = 40, κ = 128), (s = 60, κ = 128), and (s = 80, κ = 256).

Non-interactive variant. With function independent preprocessing for generating random OTs between
the sender and the receiver, we can make our protocol non-interactive in the sense of [IKO+11], namely
implement the protocol with one message from the receiver to the sender, followed by one message from the
sender to the receiver. At a high-level, this is done by executing the passively secure information theoretic
“Yao-style” protocol, followed by our commit and prove protocol. By OT preprocessing we can make the
passively secure NISC/OT protocol a two-message protocol in the online phase. Our commit and prove pro-
tocol is public coin and can be made non-interactive via a standard Fiat-Shamir transform [FS87]. However,
in the non-interactive case, the statistical security parameter s becomes a computational parameter, since
a malicious sender can just try sampling 2s instances of its message until finding one that would lead the
receiver to accept a badly formed transcript. It is therefore needed in this case to use a larger value of s, say
s = 80. A useful feature of non-interactive protocols is that the sender can use the same encrypted receiver
input for multiple evaluations.13

Offline-online variant. Our protocol is particularly attractive in the offline-online setting. In an offline
preprocessing phase, before the inputs are known, the sender and the receiver can run the entire protocol
except for the oblivious transfers that depend on the receiver’s input. Following this offline interaction,
the receiver verifies that the information obtained from the sender is consistent, and can then “compress”
this information into a single authenticated garbled circuit whose size is comparable to a standard garbled
circuit. In an online phase, once the inputs are known, the receiver uses a small number of OTs to obtain
the input keys, and performs garbled circuit evaluation and verification whose total cost is comparable to a
single garbled circuit evaluation.

13As discussed in [IKO+11], the multiple evaluation setting is subject to selective failure attacks when the sender can learn the
receiver’s output in each evaluation.

52



10 Acknowledgments

We thank Peter Rindal, Mike Rosulek and Xiao Wang for helpful discussions and the anonymous TCC
reviewers for their helpful comments.

The first author was supported by the European Research Council under the ERC consolidators grant
agreement n. 615172 (HIPS), and by the BIU Center for Research in Applied Cryptography and Cyber
Security in conjunction with the Israel National Cyber Bureau in the Prime Minister’s Office. The second
author was supported by a DARPA/ARL SAFEWARE award, DARPA Brandeis program under Contract
N66001-15-C-4065, NSF Frontier Award 1413955, NSF grants 1619348, 1228984, 1136174, and 1065276,
ERC grant 742754, NSF-BSF grant 2015782, ISF grant 1709/14, BSF grant 2012378, a Xerox Faculty Re-
search Award, a Google Faculty Research Award, an equipment grant from Intel, and an Okawa Foundation
Research Grant. This material is based upon work supported by the Defense Advanced Research Projects
Agency through the ARL under Contract W911NF-15-C-0205. The views expressed are those of the authors
and do not reflect the official policy or position of Google, the Department of Defense, the National Science
Foundation, or the U.S. Government. The third author was supported by Google Faculty Research Grant
and NSF Awards CNS-1526377 and CNS-1618884.

References
[ADI+17] Benny Applebaum, Ivan Damgård, Yuval Ishai, Michael Nielsen, and Lior Zichron. Secure arithmetic

computation with constant computational overhead. In CRYPTO, pages 223–254, 2017.

[AHIV17] Scott Ames, Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubramaniam. Ligero:
Lightweight sublinear arguments without a trusted setup. In Proc. ACM CCS 2017, to appear, 2017.

[AMPR14] Arash Afshar, Payman Mohassel, Benny Pinkas, and Ben Riva. Non-interactive secure computation based
on cut-and-choose. In EUROCRYPT, pages 387–404, 2014.

[BCR86] Gilles Brassard, Claude Crépeau, and Jean-Marc Robert. All-or-nothing disclosure of secrets. In
CRYPTO, pages 234–238, 1986.

[BGI17] Elette Boyle, Niv Gilboa, and Yuval Ishai. Group-based secure computation: Optimizing rounds, com-
munication, and computation. In EUROCRYPT, pages 163–193, 2017.

[BGW88] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. Completeness theorems for non-cryptographic
fault-tolerant distributed computation (extended abstract). In STOC, pages 1–10, 1988.

[BHR12] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of garbled circuits. In CCS, pages
784–796, 2012.

[BMR90] Donald Beaver, Silvio Micali, and Phillip Rogaway. The round complexity of secure protocols (extended
abstract). In STOC, pages 503–513, 1990.

[cal] Calctopia. https://www.calctopia.com/.

[CC06] Hao Chen and Ronald Cramer. Algebraic geometric secret sharing schemes and secure multi-party com-
putations over small fields. In CRYPTO, pages 521–536, 2006.

[CCD88] David Chaum, Claude Crépeau, and Ivan Damgård. Multiparty unconditionally secure protocols (ex-
tended abstract). In STOC, pages 11–19, 1988.

[CCX12] Ignacio Cascudo, Ronald Cramer, and Chaoping Xing. The arithmetic codex. In IEEE Information
Theory Workshop, pages 75–79, 2012.

53



[CDI+18] Melissa Chase, Yevgeniy Dodis, Yuval Ishai, Daniel Kraschewski, Tianren Liu, Rafail Ostrovsky, and
Vinod Vaikuntanathan. Reusable non-interactive secure computation. IACR Cryptology ePrint Archive,
2018:940, 2018.

[DI05] Ivan Damgård and Yuval Ishai. Constant-round multiparty computation using a black-box pseudorandom
generator. In CRYPTO, pages 378–394, 2005.

[DI06] Ivan Damgård and Yuval Ishai. Scalable secure multiparty computation. In CRYPTO, pages 501–520,
2006.

[DIK10] Ivan Damgård, Yuval Ishai, and Mikkel Krøigaard. Perfectly secure multiparty computation and the
computational overhead of cryptography. In EUROCRYPT, pages 445–465, 2010.

[FKN94] Uriel Feige, Joe Kilian, and Moni Naor. A minimal model for secure computation (extended abstract). In
STOC, pages 554–563, 1994.

[FS87] Amos Fiat and Adi Shamir. How to prove yourself: Practical solutions to identification and signature
problems. In CRYPTO, pages 186–194, 1987.

[FY92] Matthew K. Franklin and Moti Yung. Communication complexity of secure computation (extended ab-
stract). In STOC, pages 699–710, 1992.

[Gen09] Craig Gentry. Fully homomorphic encryption using ideal lattices. In STOC, pages 169–178, 2009.

[GGM86] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions. J. ACM,
33(4):792–807, 1986.

[GMW87] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game or A completeness
theorem for protocols with honest majority. In STOC, pages 218–229, 1987.

[HIV17] Carmit Hazay, Yuval Ishai, and Muthuramakrishnan Venkitasubramaniam. Actively secure garbled cir-
cuits with constant communication overhead in the plain model. In TCC, pages 3–39, 2017.

[HKE12] Yan Huang, Jonathan Katz, and David Evans. Quid-pro-quo-tocols: Strengthening semi-honest protocols
with dual execution. In IEEE Symposium on Security and Privacy, pages 272–284, 2012.

[HKE13] Yan Huang, Jonathan Katz, and David Evans. Efficient secure two-party computation using symmetric
cut-and-choose. In CRYPTO, pages 18–35, 2013.

[HKK+14] Yan Huang, Jonathan Katz, Vladimir Kolesnikov, Ranjit Kumaresan, and Alex J. Malozemoff. Amortiz-
ing garbled circuits. In CRYPTO, pages 458–475, 2014.

[HL10] Carmit Hazay and Yehuda Lindell. Efficient Secure Two-Party Protocols - Techniques and Constructions.
Information Security and Cryptography. Springer, 2010.

[IK02] Yuval Ishai and Eyal Kushilevitz. Perfect constant-round secure computation via perfect randomizing
polynomials. In ICALP, pages 244–256, 2002.

[IKL+13] Yuval Ishai, Eyal Kushilevitz, Xin Li, Rafail Ostrovsky, Manoj Prabhakaran, Amit Sahai, and David
Zuckerman. Robust pseudorandom generators. In ICALP, pages 576–588, 2013.

[IKNP03] Yuval Ishai, Joe Kilian, Kobbi Nissim, and Erez Petrank. Extending oblivious transfers efficiently. In
CRYPTO, pages 145–161, 2003.

[IKO+11] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, Manoj Prabhakaran, and Amit Sahai. Efficient non-
interactive secure computation. In EUROCRYPT, pages 406–425, 2011.

[IKOS07] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge from secure multiparty
computation. In STOC, pages 21–30, 2007.

[IKOS08] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Cryptography with constant computa-
tional overhead. In STOC, pages 433–442, 2008.

54



[IKOS09] Yuval Ishai, Eyal Kushilevitz, Rafail Ostrovsky, and Amit Sahai. Zero-knowledge proofs from secure
multiparty computation. SIAM J. Comput., 39(3):1121–1152, 2009.

[IMS12] Yuval Ishai, Mohammad Mahmoody, and Amit Sahai. On efficient zero-knowledge pcps. In TCC, pages
151–168, 2012.

[IPS08] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Founding cryptography on oblivious transfer - effi-
ciently. In CRYPTO, pages 572–591, 2008.

[IPS09] Yuval Ishai, Manoj Prabhakaran, and Amit Sahai. Secure arithmetic computation with no honest majority.
In TCC, pages 294–314, 2009.

[IW14] Yuval Ishai and Mor Weiss. Probabilistically checkable proofs of proximity with zero-knowledge. In
TCC, pages 121–145, 2014.

[JS07] Stanislaw Jarecki and Vitaly Shmatikov. Efficient two-party secure computation on committed inputs. In
EUROCRYPT, pages 97–114, 2007.

[Kil88] Joe Kilian. Founding cryptography on oblivious transfer. In STOC, pages 20–31, 1988.

[KK13] Vladimir Kolesnikov and Ranjit Kumaresan. Improved OT extension for transferring short secrets. IACR
Cryptology ePrint Archive, 2013:491, 2013.

[KMRR15] Vladimir Kolesnikov, Payman Mohassel, Ben Riva, and Mike Rosulek. Richer efficiency/security trade-
offs in 2pc. In TCC, pages 229–259, 2015.

[KOS15] Marcel Keller, Emmanuela Orsini, and Peter Scholl. Actively secure OT extension with optimal overhead.
In CRYPTO, pages 724–741, 2015.

[KOS16] Marcel Keller, Emmanuela Orsini, and Peter Scholl. MASCOT: faster malicious arithmetic secure com-
putation with oblivious transfer. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, Vienna, Austria, October 24-28, 2016, pages 830–842, 2016.

[KRRW18] Jonathan Katz, Samuel Ranellucci, Mike Rosulek, and Xiao Wang. Optimizing authenticated garbling
for faster secure two-party computation. In CRYPTO, pages 365–391, 2018.

[KS08] Vladimir Kolesnikov and Thomas Schneider. Improved garbled circuit: Free XOR gates and applications.
In ICALP, pages 486–498, 2008.

[Lin16] Yehuda Lindell. Fast cut-and-choose-based protocols for malicious and covert adversaries. J. Cryptology,
29(2):456–490, 2016.

[LP07] Yehuda Lindell and Benny Pinkas. An efficient protocol for secure two-party computation in the presence
of malicious adversaries. In EUROCRYPT, pages 52–78, 2007.

[LP12] Yehuda Lindell and Benny Pinkas. Secure two-party computation via cut-and-choose oblivious transfer.
J. Cryptology, 25(4):680–722, 2012.

[LPSY15] Yehuda Lindell, Benny Pinkas, Nigel P. Smart, and Avishay Yanai. Efficient constant round multi-party
computation combining BMR and SPDZ. In CRYPTO, pages 319–338, 2015.

[LR14] Yehuda Lindell and Ben Riva. Cut-and-choose Yao-based secure computation in the online/offline and
batch settings. In CRYPTO, pages 476–494, 2014.

[MF06] Payman Mohassel and Matthew K. Franklin. Efficiency tradeoffs for malicious two-party computation.
In PKC, pages 458–473, 2006.

[MST03] Elchanan Mossel, Amir Shpilka, and Luca Trevisan. On e-biased generators in NC0. In FOCS, pages
136–145, 2003.

[NNOB12] Jesper Buus Nielsen, Peter Sebastian Nordholt, Claudio Orlandi, and Sai Sheshank Burra. A new ap-
proach to practical active-secure two-party computation. In CRYPTO, pages 681–700, 2012.

55



[NO16] Jesper Buus Nielsen and Claudio Orlandi. Cross and clean: Amortized garbled circuits with constant
overhead. In TCC, pages 582–603, 2016.

[NST16] Jesper Buus Nielsen, Thomas Schneider, and Roberto Trifiletti. Constant round maliciously secure 2pc
with function-independent preprocessing using LEGO. IACR Cryptology ePrint Archive, 2016:1069,
2016.

[NST17] Jesper Buus Nielsen, Thomas Schneider, and Roberto Trifiletti. Constant round maliciously secure 2PC
with function-independent preprocessing using LEGO. In NDSS, 2017.

[PVW08] Chris Peikert, Vinod Vaikuntanathan, and Brent Waters. A framework for efficient and composable
oblivious transfer. In CRYPTO, pages 554–571, 2008.

[RR16] Peter Rindal and Mike Rosulek. Faster malicious 2-party secure computation with online/offline dual
execution. In 25th USENIX Security Symposium, USENIX Security 16, Austin, TX, USA, August 10-12,
2016., pages 297–314, 2016.

[Sha79] Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979.

[Spi95] Daniel A. Spielman. Linear-time encodable and decodable error-correcting codes. In STOC, pages 388–
397, 1995.

[SS13] Abhi Shelat and Chih-Hao Shen. Fast two-party secure computation with minimal assumptions. In CCS,
pages 523–534, 2013.

[WMK17] Xiao Wang, Alex J. Malozemoff, and Jonathan Katz. Faster secure two-party computation in the single-
execution setting. In EUROCRYPT, pages 399–424, 2017.

[WRK17] Xiao Wang, Samuel Ranellucci, and Jonathan Katz. Authenticated garbling and efficient maliciously
secure multi-party computation. In Proc. ACM CCS, to appear, 2017. Full version: Cryptology ePrint
Archive, Report 2017/030.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In FOCS, pages
162–167, 1986.

[ZRE15] Samee Zahur, Mike Rosulek, and David Evans. Two halves make a whole - reducing data transfer in
garbled circuits using half gates. In EUROCRYPT, pages 220–250, 2015.

A Comparison with the Conference Version of This Paper

The main difference between this full version and the earlier conference version [HIV17] is a correction to
the protocol proving the main asymptotic result (Informal Theorem 1.1, Theorem 9.1). While the correction
fixes the proof of the main theorem, this comes at the cost of poor concrete efficiency and higher asymptotic
computational complexity.

To recover a concretely efficiency variant of the protocol, we need to relax the standard notion of security
and settle for the weaker notion of “security with correlated abort.” The current protocol can be seen as
a leaner and more efficient variant of the concretely efficient protocol presented in [HIV17], which was
incorrectly claimed to be fully secure. See Section 1.1 for a more detailed comparison between the current
concretely efficient protocol and alternative protocols from the literature, including protocols based on the
dual execution paradigm.

In what follows, we explain the problem and our fix. (See Section 1.2 for a more detailed overview.) The
problem arises in Step 2 of the framework from Section 3 where we reduce the security to the certified OT
(COT) functionality. As specified in the text, this reduction holds only in the presence of IVD attacks, where
a malicious sender can cause a selective failure attack on the receiver’s input. We recall that the inputs to the

56



original functionality are randomized using [Kil88, LP07, IKO+11] and are immune to these attacks, but
the BMR randomization introduced in our functionality introduces additional input bits from the receiver
and an input-dependent selective failure can result from these bits. In the conference version [HIV17] it is
argued that an abort resulting from the IVD attack on these bits would be independent of the original inputs.
However, since the receiver obtains circuit wire values that are masked with these random bits, leakage on
the random bits leads to indirect leakage on the input.

In order to explain our fix, we recall the two instantiations for our NC0 functionality. The first instantia-
tion from Section 4.1 is used to obtain the asymptotic result, whereas the instantiation presented in Section
4.2 implies a concretely efficient protocol. We modify the former construction so that it achieves full se-
curity in the presence of malicious attacks, whereas our concrete result only satisfies the relaxed notion of
security with correlated abort discussed above.

Specifically, we design a new COT protocol for NC0 predicates where the receiver’s input is encoded
via an s-wise independent encoding to protect the receiver against against selective failure attacks. To make
the communication overhead constant, this encoding is realized using algebraic geometric (AG) codes. This
further requires that the receiver proves that its encoded input is well formed. To this end we define a new
“doubly certified OT” functionality DCOT (see Section 6) to support the proof on the receiver’s side, where
a technique from [IKO+11] is used to directly ensure that the sender’s input is well formed. We explain
these steps in details in Section 5.

Due to the use of AG codes, the above approach is not concretely efficient. In the concretely efficient
variant of our protocol we provide a leaner version of the protocol, which avoids the use of AG codes
and only satisfies security with correlated abort. This protocol is leaner than the concretely efficient pro-
tocol from [HIV17] in that it avoids the use of the BMR randomization technique. We can in fact slightly
strengthen the notion of security achieved by this protocol, showing that in the random oracle model the
predicate that makes the receiver abort is of the wire-value disjunction (WVD) type, namely it can be ex-
pressed as a disjunction of circuit wires or their negations. See Section 4.2.1 for more details.

57


