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Abstract. Realizing indistinguishablility obfuscation (I0) based on well-understood
computational assumptions is an important open problem. Recently, realizing
functional encryption (FE) has emerged as promising directing towards that goal.
This is because: (1) compact single-key FE (where the functional secret-key is
of length double the ciphertext length) is known to imply IO [Anath and Jain,
CRYPTO 2015; Bitansky and Vaikuntanathan, FOCS 2015] and (2) several strong
variants of single-key FE are known based on various standard computation as-
sumptions.

In this work, we study when FE can be used for obtaining 10. We show any
single-key FE for function families with “short” enough outputs (specifically the
output is less than ciphertext length by a value at least w(n + ), where n is the
message length and « is the security parameter) is insufficient for IO even when
non-black-box use of the underlying FE is allowed to some degree. Namely, our
impossibility result holds even if we are allowed to plant FE sub-routines as gates
inside the circuits for which functional secret-keys are issued (which is exactly
how the known FE to IO constructions work).

Complementing our negative result, we show that our condition of “short” enough
is almost tight. More specifically, we show that any compact single-key FE with
functional secret-key output length strictly larger than ciphertext length is suffi-
cient for IO. Furthermore, we show that non-black-box use of the underlying FE
is necessary for such a construction, by ruling out any fully black-box construc-
tion of IO from FE even with arbitrary long output.

1 Introduction

The goal of program obfuscation is to make computer programs “unintelligible” while
preserving their functionality. Over the past four years, we have come a long way from
believing that obfuscation is impossible [BGIT01, GK05] to having plausible candidate
constructions [GGH ™' 13b, BR14, BGK* 14, AGIS14, MSW 14, AB15, GGH15, Zim15,
GLSW15, BMSZ16, GMM™ 16, DGG™ 16, Linl6a, LV16, AS16, Lin16b, LT17]. Fur-
thermore, together with one-way functions, obfuscation has been shown to have numer-
ous consequences, e.g. [GGH™13b, SW14, GGHR14, BZ14, BPR15].
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However, all these constructions are based on the conjectured security of new com-
putational assumptions [GGH13a, CLT13, GGH15] the security of which is not very
well-understood [GGH13a, CHL* 15, CGH" 15, CLLT15, HJ16, MSZ16, CGH16, CLLT16,
ADGM16]. In light of this, it is paramount that we base security of IO on better under-
stood assumptions. Towards this goal, one of the suggested approaches is to first realize
some kind of a Functional Encryption (FE) scheme based on standard computational
assumptions and then use that to realize IO. This directions is particularly promising
because of the following.

1. Compact single-key FE is known to imply 10. Recent results by Ananth and Jain [AJ15]
and Bitansky and Vaikuntanathan [BV15] show how to base IO on a compact FE
scheme — namely, a single-key FE scheme for which the encryption circuit is in-
dependent of the function circuit for which the functional secret-key is given out.
Furthermore, these results can even be realized starting with FE for which at most
one functional secret-key can be given out (i.e., the functional encryption scheme
is single-key secure, and this is what we refer to by FE all along this paper). Fur-
thermore, the construction works even if the ciphertext is weakly compact, i.e. the
length of the ciphertext grows sub-linearly in the circuit size but is allowed to grow
arbitrarily with the depth of the circuit.

2. Positive results on single-key FE. The construction of 10 from compact single-key
FE puts us in close proximity to primitives known from standard assumptions. One
prominent work, is the single-key functional encryption scheme of Goldwasser,
Kalai, Popa, Vaikuntanathan and Zeldovich [GKP™ 13] that is based on LWE. Inter-
estingly, this encryption scheme is weakly compact for boolean circuits. However,
in this scheme the ciphertext grows additionally with the output length of the circuit
for which the functional secret-key is given out. Hence, it doesn’t imply IO.

In summary, the gap between the known single-key FE constructions from LWE and the
single-key FE schemes known to imply 1O (for the same ciphertext length properties) is
only in the output length of circuit for which the functional secret-key is issued. In light
of this, significant research continues to be invested towards realizing 10O starting with
various kinds of FE schemes (e.g. [BNPW 16, BLP16]). This brings us to the following
question.

Main Question: What kind of FE schemes are sufficient for I0?

1.1 Our Results

The main result of this work is to show that single-key FE schemes that support only
functions with ‘short output’ are incapable of producing IO even when non-black-box
use of the FE scheme is allowed in certain ways. The non-black-box use of FE is mod-
eled in a way similar to prior works by Brakerski, Katz, Segev, and Yerukhimovich
[BKSY11], Asharov and Segev [AS15], and Garg, Mahmoody, and Mohammed [GMM17].
We specifically use the monolithic framework of [GMM17] which is equivalent to the
fully black-box framework of [IR89, RTV04] applied to monolithic primitives (that can
include all of their subroutines as gates inside circuits given to them as input). This
monolithic model captures the most commonly used non-black-box techniques in cryp-
tography, including the ones used by Ananth and Jain [AJ15] and Bitansky and Vaikun-



When does Functional Encryption Imply Obfuscation? 3

thanathan [BV15] for realizing IO from FE. More formally, we prove the following
theorem.

Theorem 1 (Main Result-Informal). Assuming one-way functions exist and NP ¢
coAM, there is no construction of 10 from “short” output single-key FE where one is
allowed to plant FE gates arbitrarily inside the circuits that are given to FE as input.
An FE scheme is said to be “short” output if

t(n,k) < pn, k) —wn + k),

where n is the plaintext length, « is the security parameter, p is the ciphertext length (for
messages of length n) and t is the output length of the functions evaluated on messages
of length n.

As a special case, the above result implies that single-key FE for boolean circuits and
other single-key FE schemes known from standard assumptions are insufficient for IO
in an monolithic black-box way.

Complementing this negative result, we show that above condition on ciphertext
length ¢ is almost tight. In particular, we show that a “long output” single-key FE —
namely, a single-key FE scheme with ¢ = p + 1 (supporting an appropriate class of
circuits) is sufficient for realizing 1O. This construction is non-black-box (or, monolithic
to be precise) and is obtained as a simple extension of the previous results of Ananth
and Jain [AJ15] and Bitansky and Vaikuntanathan [BV15].

Finally, we show that some form of non-black-box techniques (beyond the fully
black-box framework of [RTVO04]) is necessary for getting 10 from FE, regardless
of the output lengths. Namely, we prove a fully black-box separation from FE to IO.
Previously, Lin [Linl6a] (Corollary 1 there) showed that the existence of such fully
black-box construction from FE to IO would imply a construction of IO from LWE
and constant-degree PRGs. Our result shows that no such fully black-box construction
exists (but the possibility of IO from LWE and constant-degree PRGs remains open).

1.2 Comparison with Known Lower Bounds on 10

Sequence of works [AS15, CKP15, Pas15, MMNI15, BBF16, MMN™ 16a, MMN* 16b],
under reasonable complexity assumptions,®> proved lower bounds for building IO in a
black-box manner from one-way functions, collision resistant hash functions, trapdoor
permutations or even constant degree graded encoding oracles. Building on these work,
authors [GMM 7] showed barriers to realizing IO based on non-black-box use of zero-
one encryption primitives — namely, encryption primitives where the provided secret-
keys either allow for complete decryption, or keep everything hidden. This includes
encryption primitives such as attribute-based encryption [GVW13], predicate encryp-
tion [GVW15], and fully homomorphic encryption [Gen09, BV11b, BV11a, GSW13].
In comparison, this work aims to show barriers to getting IO through a non-black-box
use of single-key FE, an encryption primitive that is not ‘zero-one’, but has been pre-
viously shown to imply IO in certain settings. The work of Asharov and Segev [AS15]

3 Note that since statistically secure IO exists if P = NP, therefore we need computational
assumptions for proving lower bounds for assumptions implying 10.
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proved lower bounds on the complexity of assumptions behind IO with oracle gates (in
our terminology, restricted monolithic) which is a stronger primitive than 10.*

On the Relation to [GMM17] and [GKP*13]. Note that, as mentioned above, the
work [GMM17] rules out the existence of monolithic IO constructions from attribute-
based encryption (ABE) and the existence of monolithic IO constructions from fully
homomorphic encryption (FHE). Furthermore, this result can be further broadened to
separate IO from ABE and FHE in a monolithic way. One can then ask why the result
in this paper does not follow as a corollary from [GMM17] and [GKP* 13], where they
construct single-key (non-compact) FE for general circuits from ABE and FHE.

We note that our result does not follow from the above observation for two reasons.
First, the single-key FE construction of [GKP13] also uses a garbling scheme in order
to garble circuits with FHE decryption gates, whereas the impossibility of [GMM17]
does not capture such garbling mechanisms in the monolithic model. However, if one
could improve the result of [GMM17] in the monolithic model by adding a garbling
subroutine that can accept ABE and FHE gates, then we can compose the results of
[GMM17] and [GKPT13] and obtain an impossibility of IO from ¢-bit output (non-
compact) FE. Secondly, we note that this resulting ¢-bit output FE scheme has the
property that ¢ < p/poly(k) (i.e. the ciphertext size is a (polynomial) multiplicative
factor of the output length of the function), whereas in this work we show the stronger
impossibility of basing IO on single-key FE for output-length ¢t < p — w(k).

Other Non-Black-Box Separations. Proving separations for non-black-box construc-
tions are usually very hard. However, there are several works that go done this line. The
work of Pass, Venkitasubramaniam and Tseng [PTV11] showed that, under believable
assumptions, there are no non-black-box constructions of certain cryptographic primi-
tives (e.g., one-way permutations) from one-way functions, as long as the security re-
ductions are black-box. Pass [Pas11] and Gentry and Wichs [GW11] proved further sep-
arations in this model by separating certain primitives from any falsifiable assumptions
[Nao03], again, as long as the security proof is black-box. Finally, the recent work of
Dachman-Soled [Dac16] showed that certain classes of constructions with some care-
fully defined non-black-box power are not capable of basing public-key encryption on
one way functions.

1.3 Technical Overview

In order to demonstrate the ideas behind our impossibility, we start by recalling how the
constructions of 10 from FE [AJ15, BV 15] work. Here, we present an ‘over-simplified’
version of their construction which aims at describing the ideas presented here at a high
level. In their construction, an obfuscation for a circuit C' : {0,1}* — {0, 1} is a se-
quence of k + 1 functional keys of x + 1 instances of a single-key FE scheme along
with a ciphertext c4. These functional secret keys FSKy, ..., FSK,; corresponding

* In fact, their separation is unconditional, while statistical IO can be built if P = NP. So any
separation for IO needs to rely on computational assumptions before proving P # NP.



When does Functional Encryption Imply Obfuscation? 5

to public keys PK; ... PK, ; are generated independently and the ciphertext cy is ob-
tained by encrypting the “empty” string under the first public-key PK;. The ciphertext
does contain some cryptographic keys. This includes the secret-key of a secret-key en-
cryption scheme denoted by s. The expression “empty” just refers to the fact that this
ciphertext will be used to evaluate the obfuscation on all inputs. This will become clear
in the following. The first x function keys implement the “bit-extension” functionality.
That is, the 7*" function key corresponds to a function that takes in an (i — 1)-bit string
y € {0,1}*~1 as input and outputs encryptions of (y|0) and (y|1) under the public-key
PK,41. Finally, the functional key FSK,. 11 corresponds to the circuit C. To evaluate
the obfuscated circuit on an input 2z € {0, 1}", one does the following: decrypt ¢, un-
der FSK; to obtain encryptions of 0 and 1 denoted as ¢y and ¢; respectively. Next, it
decrypts ¢, (wWhere z is the first bit of z) using FSK5 and so on. Proceeding in this
manner, in k steps the evaluator obtains an encryption of x under PK,,;; which can
then be used to compute C(x) using FSK, 1. Note that since the FE scheme does
not hide the circuits embedded inside the functional secret-keys, therefore an encrypted
version of the circuit C' (under the key s also placed inside c4) is embedded inside this
key. The key s is passed along in each ciphertext. One can think of the construction as
having a binary tree structure where evaluating the circuit on an input x corresponds to
traversing along the path labeled x.

Observe that, for this construction, each functional secret-key is generating an out-
put that is larger than the size of the ciphertext that is decrypted using it. In particular,
the decryption yields two ciphertexts — an output that is double the size of the input.
On the other hand, in case the output of a functional secret key is “sufficiently smaller”
than a ciphertext, then this explosion in number of ciphertexts does not seem possible
anymore. This is also the key to our impossibility. Roughly speaking, at the core of the
proof of our impossibility result is to show that in this “small” output setting, the total
number of ciphertexts that an evaluator can compute remains polynomially bounded,
for this we use information theoretic arguments that interpret the answers of the oracle
as advice about the oracle and prove a lower bound on the length of the total advice
needed for getting exponentially many ciphertexts. Using this fact, we next argue that
functional encryption cannot construct obfuscation (even in the monolithic model).

Turning the above high level intuition into an impossibility proof requires several
new ideas that we now elaborate upon below.

More Details of the Proof of Separation As mentioned before, monolithic construc-
tions of IO from FE are the same as fully black-box constructions of 10 from monolithic
FE which is a primitive that is similar to FE but it allows FE gates to be used in the cir-
cuits for which keys are issued. Therefore, to prove the separation, we can still use
oracle separation techniques from the literature on black-box constructions [IR89].

In fact, for any candidate constriction 10" of 10 from monolithic FE, we construct
an oracle O relative to which secure monolithic FE exists but the construction 10°
becomes insecure (against polynomial-query attackers). In order to do this, we will em-
ploy an intermediate primitive: a variant of functional witness encryption defined by
Boyle, Chung, and Pass [BCP14]. We call this variant customized FWE (cFWE for
short) and show that (1) relative to our oracle cFWE exists, (2) cFWE implies mono-
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lithic FE in a black-box way, and that (3) the construction 109 is insecure. In order
to get (1) we directly define our oracle O to be an idealized version of cFWE. To get
(2) we use the power of cFWE.> To get (3) we rely on the fact that cFWE is weakened
in a careful way so that it does not imply 10. Below, we describe more details about
our idealized oracle for cFWE and how to break the security of a given candidate 1O
construction relative to this oracle. We first recap the general framework for proving
separations for IO.

General recipe for proving separations for 10. Let 7 be our idealized cFWE oracle. A
general technique developed over the last few years [CKP15, MMN™ 16b, GMM17] for
breaking IO using a polynomial number of queries to the oracle (i.e. the step (3) above)
is to “compile out” the oracle Z from the obfuscation scheme and get a new secure
obfuscator IO’ = (i0’, Ev') in the plain-model that is only approximately-correct.
Namely, by obfuscating iO’(C) = B and running B over a random input we get the
correct answer with probability 99/100. By the result of [BBF16], doing so implies a
polynomial query attacker against IO in model Z. Note that this compiling out process
(of Z from I07) is not independent of the oracle being removed since different oracles
may require different approaches to be emulated. However, the general high-level of
the compiler that is used in previous work [CKP15, MMN™16b, GMM17], and we
use as well, is the same: The new plain-model obfuscator i0’, given a circuit C' to
obfuscate would work in two steps. The first step of iO’ is to emulate iOF (C) (by
simulating the oracle 7) to get an ideal-model obfuscation B, making sure to ‘lazily’
evaluate (emulate) any queries issued to Z. The second step of the compiler is to learn
the queries that are likely to be asked by Ev’? (B, z) for a uniformly random input x,
denote by @Qp, which can be found by by emulating Ev’® (B, x;) enough number of
times for different uniformly random z;. Finally, the output of iO’ is the plain-model
obfuscation B’ = (B, Qp), where B is the ideal-model obfuscation and @ p is the set
of learned queries. To evaluate the obfuscation over a new random input x, we simply
execute Ev'(B, z) = EvZ (B, z) while emulating any queries to Z consistently relative
to Q. Any compiler (for removing Z from I0) that uses the approach describe above
is in fact secure, because we only send emulated queries to the evaluator that could be
simulated in the ideal world Z. The challenge, however, is to prove the correctness of
the new obfuscator. So we shall prove that, by having enough iterations of the learning
process (in the learning step of iQ’), the probability that we ask an unlearned emulation
query occurs with sufficiently small probability.

The Challenge Faced for Compiling Out Our Customized Functional Witness En-
cryption Oracle. When 7 is defined to be our idealized cFWE oracle, in order to prove
the approximate correctness of the plain-model obfuscator, we face two problems.

1. The Fuzzy Nature of FWE: Unlike ‘zero-one’ primitives such as witness encryp-
tion and predicate encryption, functional witness encryption mechanisms allow for
more relaxed decryption functionalities. In particular, decrypting a ciphertext does
not necessarily reveal the whole message m. In fact, the decryptor will learn only

3 In fact, as shown in [BCP14], without our customization, the original FWE implies, not just
10 itself, but even di-10.
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f(w,m), which is a function of the encrypted message and witness. As a result,
even after many learning steps, when the actual execution of the obfuscated circuit
starts, we might aim for evaluating a ciphertext (generated during the obfuscation
phase) on a new function. This challenge did not exist in the previous separations
of [GMM17] that deals with the ‘zero-one’ primitives, because the probability of
not decrypting a ciphertext during all the learning steps and then suddenly trying to
decrypt it during the final evaluation phase could be bounded to be arbitrary small.
However, here we might try to decrypt this ciphertext in all these steps, every time
with a different function, which could make the information gathered during the
learning step useless for the final evaluation.

2. Unlearnable Hidden Queries: To get monolithic FE from our cFWE (step (2)
above), our cFWE needs to be restricted monolithic. Namely, we allow the func-
tions evaluated by cFWE to accept circuits with all possible gates that compute
the subroutines of cFWE itself. However, for technical reasons, we limit how the
witness verification is done in cFWE to only accept one-way function gates. Now,
since we are dealing with an oracle that is an ideal version of our cFWE primitive,
the function f¥WE(m, w) may also issue queries of their own. The challenge is
that there could be many such indirect/hidden queries asked during the obfuscation
phase (in particular during the learning step) that we cannot send over to the final
evaluator simply because these queries are not suitable in the ideal world.

Resolving Challenges. Here we describe main ideas to resolve the challenges above.

1. To resolve the first challenge, we add a specific feature to cFWE so that no cipher-
text ¢ = Enc(z = (a,m)) would be decrypted more than once by the same person.
More formally, we add a subroutine to FWE (as part of our cFWE) that reveals the
message © = (a, m) fully, if one can provide two correct witnesses w; # ws for
the attribute a. This way, the second time that we want to decrypt c, instead we can
recover the whole message « and run the function f on our own! By this trick, we
will not have to worry about the fuzzy nature of FWE, as each message is now de-
cryped at most once. In fact, adding this subroutine is the exact reason that cFWE
is a weaker primitive than FWE.

2. To resolve the second challenge, we rely on an information theoretic argument.
Suppose for simplicity that the encryption algorithm does not take an input other
than the message® . Suppose we use a random (injective) function Enc: = + c¢
for encryption, mapping strings of length n to strings of length p = p(n). Then, if
p > n, information theoretically, any q query algorithm who has no special advice
about the oracle has a chance of ~ ¢ - 2"7P to find a valid ciphertext. If p > n
this probability is very small, so intuitively we would need about p — n — log(q)
bits of advice to find such ciphertext. On the other hand, any decryption query over
a ciphertext ¢ will only return ¢ = ¢(n) bits, which in our paper is assumed to be
t < p — n. Therefore, if we interpret the decryption like a ‘trade’ of information,
we need to spend =~ {2(p — n) bits to get back only s < o(p — n) bits. This is
the main idea behind our argument showing that during the learning phase, we will
not discover more than a polynomial number of new ciphertexts, unless we have

® This is not true as the encryption is randomized, but allows us to explain the idea more easily.



8 Sanjam Garg, Mohammad Mahmoody, and Ameer Mohammed

encrypted them! By running the learning step of the compiler enough number of

times, we will learn all such queries and can successfully finish the final evaluation.
By the using above two ideas, we can successfully compile out our oracle Z from any
107 construction.

2 Preliminaries

In this section we define the primitives that we deal with in this work and are defined
prior to our work. We also give a brief background on black-box constructions and their
monolithic variants.

Notation. We use ““|” to concatenate strings and we use ““,” for attaching strings in a way
that they could be retrieved. Namely, one can uniquely identify z and y from (z, y). For
example (00/11) = (0011), but (0,011) # (001, 1). When writing the probabilities,
by putting an algorithm A in the subscript of the probability (e.g., Pr 4[-]) we mean the
probability is over A’s randomness. We will use n or x to denote the security parameter.
We call an efficient algorithm V a verifier for an NP relation R if V(w,a) = 1 iff
(wya) € R.Wecall Lg = Ly = {a | Jw,(a,w) € R} the corresponding NP
language. By PPT we mean a probabilistic polynomial time algorithm. By an oracle
PPT/algorithm we mean a PPT that might make oracle calls.

2.1 Obfuscation

The definition of IO below has a subroutine for evaluating the obfuscated code. The
reason for defining the evaluation as a subroutine of its own is that when we want to
construct IO in oracle/idealized models, we allow the obfuscated circuit to call the or-
acle as well. Having an evaluator subroutine to run the obfuscated code allows to have
such oracle calls in the framework of black-box constructions of [RTV04] where each
primitive Q is simply a class of acceptable functions that we (hope to) efficiently imple-
ment given oracle access to implementations of another primitive P (see Definition 12).

Definition 1 (Indistinguishability Obfuscation (10)). An Indistinguishability Obfus-
cation (10) scheme consists of two subroutines:
— Obfuscator 10 is a PPT that takes as inputs a circuit C' and a security parameter
1% and outputs a “circuit” B.
— Evaluator Ev takes as input (B, x) and outputs y (supposedly, equal to C(x)).
The completeness and soundness conditions assert that:
— Completeness: For every C, with probability 1 over the randomness of O, we get
B «+ i0(C, 1*) such that: For all x it holds that Ev(B, x) = C(x).
— Security: for every distinguisher D there exists a negligible function p(-) such that
for every two circuits Cy, C1 that are of the same size and compute the same func-
tion, we have:

|PED(O(Co, 1%) = 1] = Pr[D(O(Cy, 1%) = 1]| < ()
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Definition 2 (Approximate 10). For function 0 < e(n) < 1, an e-approximate 10
scheme is defined similarly to an 10 scheme with a relaxed completeness condition:
— e-Approximate Completeness. For every C' and n we have:

TF:{)[B =i0(C,1%),Ev(B,z) = C(x)] > 1 — (k)

2.2 Functional Encryption

We will mainly be concerned with single-key functional encryption schemes which we
define below so in the rest of this work whenever we refer to functional encryption, it is
of the single-key type. We define a single-key functional encryption for function family
F = {F,.}nen (represented as a circuit family) as follows:

Definition 3 (Single-Key Functional Encryption [BV15]). A single-key functional
encryption (FE) for function family F consists of three PPT algorithms (Setup, Enc, Dec)
defined as follows:
— Setup(1%): Given as input the security parameter 1%, it outputs a master public
key and master secret key pair (MPK, MSK).
- KGen(MSK;, f): Given master secret key MSK and function f € F, outputs a
decryption key SK.
- Enc(MPK, x): Given the master public key MPK and message x, outputs cipher-
text ¢ € {0, 1}7.
— Dec(SKy, ¢): Given a secret key SK ¢ and a ciphertext ¢ € {0, 1}™, outputs a string
y€{0,1}".
The following completeness and security properties must be satisfied:
— Completeness: For any security parameter k, any | € F with domain {0,1}" and
message x € {0,1}", the following holds:

Dec(SKy, Enc(MPK, z)) = f(z)

where (MPK, MSK) < Setup(1”) and SKy <— KGen(MSK, f)
— Security: For any PPT adversary A, there exists a negligible function negl(-) such
that:

1
Pr[IND'fE(17) = 1] < 3 + negl(x),

where INDi‘F E is the following experiment.

Experiment IND'" (1%):

1. (MSK, MPK) < Setup(1*)

2. (f,xo,21) < A(MPK) where |xo| = |z1| and f(zo) = f(z1)
3.5 < {0,1}, ¢ < Enc(MPK, ), SK; + KGen(MSK, f)

4. « AMPK,SK;, ¢)

5. Output 1 if b = b" and 0 otherwise.

— Efficiency: We define two notions of efficiency for single-key FE supporting the
Sfunction family F:
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o Compactness: An FE scheme is said to be compact if the size of the encryption
circuit is bounded by some fixed polynomial poly(n, k) where n is the size of
the message, independent of the function f chosen by the adversary.”

o Function Output Length: An FE scheme is said to be t-bit-output if outlen(f) <
t(n, k) for any f € F, where outlen(f) denotes the output length of f. Given
ciphertext length p(n, k), we say an FE scheme is long-output if it is (p-+1)-bit-
output for some i > 1 and short-output if it is only (p — w(n + k))-bit-output
where n is the size of the message.

Definition 4 (Functional Witness Encryption (FWE) [BCP14]). Let V be a PPT al-
gorithm that takes as input an instance-message pair v = (a, m) and witness w then
outputs a bit. Furthermore, let F be a PPT Turing machine that accepts as input a wit-
ness w and a message m then outputs a string y € {0,1}*. For any given security
parameter k, a functional witness encryption scheme consists of two PPT algorithms
P = (Enc, Decy f) defined as follows:
— Enc(1%,a,m) : given an instance a € {0, 1}*, message m € {0, 1}*, and security
parameter k, outputs ¢ € {0, 1}*.
— Decy r(w,c) : given ciphertext ¢ and “witness” string w € {0,1}*, outputs a
message m' € {0,1}*.
A functional witness encryption scheme satisfies the following completeness and secu-
rity properties:
— Correctness: For any security parameter r, any m € {0,1}*, and any (w, (a,m))
such that V¥ (w, a) = 1, it holds that
Pr [Decy r(w,Enc(1%,a,m)) = F¥'(w,m)] = 1
Enc,Dec
— Extractability: For any PPT adversary A and polynomial p; (.), there exists a PPT
extractor E and a polynomial ps(.) such that for any security parameter k, any a
for which VF (w, a) = 1 for some w, and any mq, my where |mg| = |m1|, if:

1
Pr [A(l“,c) =b|b & {0,1}, ¢ + Enc(1%,a,myp)| > B +pi(K)
Then:

Pr[EA(1%,a,mg,m1) = w : VF(w,a) = 1 AFP(w,mg) # FF(w,m1)] > pa(k)

2.3 Background on Black-box Constructions

Definition 5 (Cryptographic Primitive [RTV04]). A primitive P = (F,R) is de-
fined as set of functions F and a relation R between functions. A (possibly inefficient)
function F € {0,1}* — {0,1}* is a correct implementation of P if F € F, and a
(possibly inefficient) adversary A breaks an implementation F € F if (A, F) € R. We
sometimes refer to an implementation ' € F as a set of t functions (or subroutines)
F={F,.., F}.

" A couple of other weaker notions of compactness for FE have also been considered in the
literature. However, all these notions are known to be monolithically equivalent to compact
single-key FE. Therefore, we restrict our discussion just to compact single-key FE.
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Definition 6 (Indexed primitives). Let W be a set of (possibly inefficient) functions.
An W-indexed primitive P|W)] is indeed a set of primitives {P[W|}wew indexed by
W e W where, for each W € W, P[W] = (FIW], R[W)) is a primitive according to
Definition 5.

Definition 7 (Restrictions of indexed primitives). For P[W| = {(F[W], R[W]) }wew
and P'W'] = {(F'[W], R [W)]) }Ywew:, we say P'[W'] is a restriction of P[W) if the
following conditions hold: (1) W C W, and (2) for al W € W', F'[W] C F[W],
and (3) for all W € W', R'[W] = R[W].

We now proceed to apply the above definition of restrictions on indexed primitives
to give the definition of monolithic (and restricted monolithic) primitives. We will then
apply them to the case of functional encryption. We refer the reader to [GMM17] for a
more in-depth study of the monolithic framework.

Definition 8 (Universal Circuit Evaluator). We call an oracle algorithm w() a uni-
versal circuit evaluator if it accepts a pair of inputs (C, x) where C () is an oracle-aided
circuit and x is a string in the domain of C then outputs C)(z) by forwarding all of
C’s oracle queries to its own oracle.

Definition 9 (Monolithic Primitive [GMM17]). We call the restricted primitive P'[W'] =
{(F'[W],RIW]) }wew the monolithic variant of PIW] = {(FIW], RIW])}wew if
the following holds:

— Forany F and W € W, if W = w¥ for some universal circuit evaluator w'") and
F e FlW]thenW € W and F € F'[W].

Definition 10 (Restricted Monolithic Primitive [GMM17]). We call the restricted
primitive P'|W'| = {(F'[W], R[W]) }wewr the restricted monolithic variant of P|W] =
{(FIW], R[W1)}wew if is satisfies Definition 9 but the condition is replaced with the
following:

— Forany Fand W e W, if W = w’ for some universal circuit evaluator w'"),
F' CF e FW]then W e W and F € F'[W].

That is, the subroutines of F that w'") may call are a strict subset of all the subroutines
contained in implementation F.

Definition 11 (Monolithic Functional Encryption). A monolithic functional encryp-
tion scheme FE = (FE. Setup, FE. Enc, FE. Keygen, FE. Dec) for the function fam-
ily F is defined the same as Definition 3 except that, for any f € F, f is an oracle-aided
circuit that can call any subroutine of FE.

Definition 12 (Black-box Construction [RTV04]). A (fully) black-box construction
of a primitive Q from a primitive P consists of two PPT algorithms (Q, S):
1. Implementation: For any oracle P that implements P, QF implements Q.
2. Security reduction: for any oracle P implementing P and for any (computationally
unbounded) oracle adversary A successfully breaking the security of QF, it holds
that ST4 breaks the security of P.

Definition 13 (Monolithic Construction of 10 from FE). A monolithic construction
of 10 from FE is a fully black-box construction of 10 from monolithic FE.
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2.4 Tools for Lower Bounds of 10

Definition 14 (Sub-models). We call the idealized model/oracle O a sub-model of the
idealized oracle T with subroutines (I, . ..,Iy), denoted by O C Z, if there is a (pos-
sibly empty) S C {1, ..., k} such that the idealized oracle O works as follows:

— First sample I < T where the subroutines are I = (I, ..., I).

— Provide access to subroutine I; iff i € S.
If S = O then the oracle O will be empty and we will be back to the plain model.

Definition 15 (Simulatable Compiling Out Procedures for 10). Suppose O C— Z. We
say that there is a simulatable compiler from 10 in idealized model T into idealized
model O with correctness error ¢ if the following holds.

For every implementation Pr = (i0p,Evp) of §-approximate 10 in idealized
model T there is a implementation Po = (100,Eve) of (6 + €)-approximate 10 in
idealized model O such that the security of the two are related as follows:

Simulation: There is an efficient PPT simulator S and a negligible function yu(-)
such that for any C':

A(SGO*(C,1%)),109(C,1%)) < u(k)
where A(.,.) denotes the statistical distance between any two given random variables.

Lemma 1 (Lower Bounds for 10 using Oracle Compilers [GMM17]). Suppose & =
Zo T Zy--- C Iy = T for constant k = O(1) are a sequence of idealized models.
Suppose for every i € [k] there is a simulatable compiler for 10 in model T; into model
T, with correctness error £; < 1/(100k). Also suppose primitive P can be black-box
constructed in the idealized model L. Then there is no fully black-box construction of
10 from P.

3 Monolithic Separation of 10 from Short-Output FE

In this section, we prove our main impossibility result which states that we cannot con-
struct an IO scheme in a monolithic way from any single-key functional encryption
scheme that is restricted to handling only functions of “short” output length. More for-
mally, we prove the following theorem.

Theorem 2. Assume the existence of one-way functions and that NP ¢ co-NP. Then
there exists no monolithic construction of 10 from any single-key t-bit-output functional
encryption scheme where t(n, k) < p(n, k) —w(n+k), n is the message length, p is the
ciphertext length, and k is the security parameter of the functional encryption scheme.

To prove Theorem 2, we will apply Lemma 1 for the idealized functional witness
encryption model I" (formally defined in Section 3.1) to prove that there is no black-
box construction of IO from any primitive P that can be black-box constructed from
the I'. In particular, we will do so for P that is the monolithic functional encryption
primitive. Our task is thus twofold: (1) to prove that P can black-box constructed from
I" and (2) to show a simulatable compilation procedure that compiles out " from any
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IO construction. The first task is proven in Section 3.2 and the second task is proven
in Section 3.3. By Lemma 1, this would imply the separation result of IO from P and
prove Theorem 2.

Our oracle, which is more formally defined in Section 3.1, acts an idealized version
of a single-key short-output functional encryption scheme, which makes the construc-
tion of secure FE quite straightforward. As a result, the main challenge lies in showing
a simulatable compilation procedure for IO that satisfies Definition 15 in this idealized
model, and therefore, it is instructive to look at how the compilation process works and
what challenges are faced with dealing with oracle I

3.1 The Ideal Model

In this section, we define the distribution of our idealized (randomized) oracle that can
be used to realize (restricted-monolithic) functional witness encryption. We also pro-
vide several definitions regarding the algorithms in this model and the types of queries
that these algorithms can make.

Definition 16 (Randomized Functional Witness Encryption Oracle). Let V be a

PPT algorithm that takes as input (w, a), outputs b € {0, 1} and runs in time poly(|al).

Also, let F be a PPT algorithm that accepts as input a witness w and a message m then

outputs a string y € {0, 1}°. We denote the random (V, F, p)-functional witness encryp-

tion (rFWE) oracle as I'v g, = {I'v.fp}nen where T'v g, = (Enc, Decy r, RevAtt

,RevMsgy,) is defined as follows:

- Enc: {0,1}" +— {0,1}*™) is a random injective function mapping strings = €
{0,1}™ to “ciphertexts” ¢ € {0, 1}P where p(n) > n.

- Decyr: {0,1} — {0,1}" U {L}: Given (w,c) € {0,1}¢ as input where ¢ €
{0, 1}*™), Decy (w, c) allows us to decrypt the ciphertext ¢ = Enc(z) to get
back x, parse it as x = (a, m), then get F(w,m) as long as the predicate test is
satisfied on (w, a). More formally, the following steps are performed:

1. If h = such that Enc(x) = ¢, output L. Otherwise, continue to the next step.
2. Find x such that Enc(x) = ¢, and parse it as © = (a, m).
3. IfV(w,a) = 1, output F(w, m). Otherwise, output L.

— RevAtt: {0,1}? s {0,1}* U {L} is a function that, given an input ¢ €
{0,132, would output the corresponding attribute a € {0,1}* for which
Enc((a,m)) = c. If there is no such a then output 1.

- RevMsgy: {0,1}¢ — {0,1}* U {L}: Given (w1, wy,c) where wy # wy and
¢ € {0,1}P"), if there exist x = (a,m) such that Enc(z) = c and V (w;,a) = 1
fori € {1,2} then reveal m. Otherwise, output L.

When it is clear from context, we sometimes omit the subscripts from Decy f, RevMsg,,,
and f\/,p and simply write them as Dec, RevMsg, and I', respectively. Furthermore, we
denote any query-answer pair (q, 3) asked by some oracle algorithm A to a subroutine

T € {Enc, Dec, RevAtt, RevMsg} as (¢ — ().

Definition 17 (Restricted-Monolithic Randomized Functional Witness Encryption
Oracle). We define a randomized restricted-monolithic functional witness encryption
oracle Iy g, as an rFWE oracle T'y g, = (Enc, Decy g, RevAtt, RevMsg) where V
and F satisfy the following properties:
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— Vis a PPT oracle algorithm that takes as input (w, a), interprets a®) as an oracle-
aided circuit that can only make Enc calls, then outputs a™*°(w).
— F is a PPT oracle algorithm that takes as input (w, m), parses w = (21, z2), in-

terprets 2 as an oracle-aided circuit that can make calls to any subroutine in
I' = (Enc, Dec, RevAtt, RevMsg), then outputs z{ (m).

While the above oracle shares similar traits to a restricted-monolithic primitive (see
Definition 10), the actual functionality of F is slightly modified to simplify the notion
of using only part of w. For the purposes of this section, we will use the restricted-
monolithic tFWE I" in order to prove our separation result of IO from monolithic func-
tional encryption - mainly because this oracle is sufficient for getting monolithic FE.
Nevertheless, we will still make use of I later on in in the full version of this paper to
prove the fully black-box separation of IO from (non-monolithic) functional encryption.

Next, we present the following definition of canonical executions that is a property
of algorithms in this ideal model. This normal form of algorithms helps us in reduc-
ing the query cases to analyze since there are useless queries whose answers can be
computed without needing to ask the oracle.

Definition 18 (Canonical executions). We define an oracle algorithm A relative to
the restricted-monolithic rFWE oracle to be in canonical form if the following condi-
tions are satisfied:
— If A has issued a query of the form Enc(z) = ¢, then it will not ask Decy (., c),
RevAtt(c), or RevMsgy, (., ., ¢) as it can compute the answers of these queries on
its own. In particular, for Decy g and RevMsg,, queries, it would run V and F
directly to compute the query answers correctly.
— Before asking any Decy r(w, ¢) query where Enc(z) = c for some x = (a,m), A
would go through the following steps first:
o A would get a <+ RevAtt(c) then run VE*(w, a) on its own, making sure
to answer any queries of V using Enc. If VE"(w, a) = 0 then do not issue
Decy r(w, ¢) to I' and use L as the answer instead. Otherwise, continue to the
next step.
o If A has beforehand ran VE™ (w', a) = 1 for some w' # w then it does not ask
Decy r(w, ¢) and instead computes the answer to this query on its own. That
is, it first gets m + RevMsg(w,w’, c), computes on its own FI'(w, m) and
outputs FL'(w, m) if VE*(w, a) = 1 or otherwise L.
o If A has not asked Decy g(w', ¢) for any w' # w (or did but it received 1 as
the answer) then it directly asks Decy (w, ¢) from the oracle.
— Before asking any RevMsgy, (w1, wa, ¢) query where Enc(x) = c for some x =
(a,m), A would go through the following steps first:
o A would get a + RevAtt(c) then run V¥ (w;, a) for all i € {1,2} on its
own, making sure to answer any queries of V using Enc. If VE"(w;, a) = 0
for some i then do not issue RevMsgy, (w1, wa, ¢) to I and use L as the answer
instead. Otherwise, continue to the next step.
o After issuing RevMsg,, (w1, wa, ¢) to I and getting back an answer m # 1,
ask the query Enc(x) where x = (a, m) then run F'' (w1, m) and F' (wa, m).
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Note that any oracle algorithm A can be easily modified into a canonical form by
increasing its query complexity by at most a polynomial factor assuming that F has
extended polynomial query complexity.

Remark 1. We observe the following useful property regarding the number of queries
of a specific type that a canonical algorithm in the I" oracle model can make. Namely,
given a canonical A, for any ciphertext ¢ = Enc(x) where = (a, m) for which A has
not asked Enc(z) before, A would ask at most one query of the form RevAtt(c), at
most one query of the form Decy r(w, ¢) for which VE"®(w, a) = 1, and at most one
query of the form RevMsgy (wy, ws, ¢) for which VE€(w; a) = 1 where i € {1,2}.
Furthermore, A would never ask a query if VF"(w, a) = 0 since this condition can be
verified independently by A and the answer can be simulated as it would invariably be
L.

Looking ahead, we will use this property later on to prove an upper bound on the
number of ciphertexts that an adversary can decrypt without knowing the underlying
message. Furthermore, we stress that this property holds specifically due to the presence
of the RevMsg subroutine which leaks the entire message of a given ciphertext once
two different valid witnesses are provided. As a result, this shows that decrypting a
ciphertext more than once (under different witnesses) does not help as the message
could be revealed instead.

We also provide the following definitions to classify the ciphertext and query types.
This would simplify our discussion and clarify some aspects of the details later in the
proof.

Definition 19 (Ciphertext Types). Let A be a canonical algorithm in the I ideal
model and suppose that Q) 4 is the set of query-answer pairs that A asks during its
execution. For any q of the form Decy r(w, ¢), RevAtt(c), or RevMsgy, (w1, we, ¢), we
say that c is valid if there exists x such that ¢ = Enc(z), and we say that ¢ is unknown
if the query-answer pair (x > ¢)gnc is not in Q 4.

Definition 20 (Query Types). Let A be a canonical algorithm in the I' ideal model
and let Q) 4 be the query-answer pairs that it has asked so far. For any query new query
q issued to I', we define several properties that such a query might have:

— Determined: We say q is determined with respect to Q) 4 if there exists (q — )1 €
Q 4 for some answer (3 or there exists some query (¢ — ') € Q4 that deter-
mines that answer of q without needing to issue q to I'.

— Direct: We say q is a direct query if A issues this query to I to get back some
answer [3. The answers to such queries are said to be visible to A.

— Indirect: We say q is an indirect query if q is issued by FI' during a Dec query that
was issued by A. The answers to such queries are said to be hidden from A.

3.2 Monolithic Functional Encryption Exists Relative to I"

In this section, we show how to construct a semantically-secure monolithic FE scheme.
Namely, we prove the following:
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Lemma 2. There exists a correct and subexponentially-secure implementation of mono-
lithic functional encryption in the I' oracle model with measure one of oracles.

We do this in two steps: we first show how to construct a restricted-monolithic
variant of a functional witness encryption from the ideal oracle I" and then show how
to use it to construct the desired functional encryption scheme. Our variant of FWE that
we will construct is defined as follows.

Definition 21 (Customized Functional Witness Encryption (CFWE)). Given any
one-way function R, let V be a PPT oracle algorithm that takes as input an instance-
message pair x = (a, m) and witness w, interprets a as an oracle circuit then outputs
a®(w) while only making calls to R. Furthermore, let F be a PPT oracle algorithm that
accepts as input a string w = (21, z2) and a message m, interprets zy as a circuit then
outputs a string y = z1(m). For any given security parameter k, a customized func-
tional witness encryption scheme defined by V' and F consists of three PPT algorithms
P = (Enc, Decy r, RevAtt) defined as follows:
— Enc(1%,a,m) : given an instance a € {0,1}*, message m € {0, 1}*, and security
parameter k, outputs ¢ € {0, 1}*.
— RevAtt(c) : given a ciphertext ¢, outputs the corresponding attribute a under
which the message is encrypted.
— Decy r(w,c) : given ciphertext c and “witness” string w € {0,1}*, outputs a
message m’' € {0,1}*.
A customized functional witness encryption scheme satisfies the following completeness
and security properties:
— Correctness: For any security parameter k, any m € {0, 1}*, and any (w, (a, m))
such that w and VE(w, a) = 1, it holds that

E P% [DeCVJ:(wa EDC(1K7G,, m)) = FP(wam)} =1

— Instance-Revealing: For any security parameter k, any m € {0,1}*, and any
(w, (a,m)) such that VE(w, a) = 1, it holds that

Pr[RevAtt(Enc(1”,a,m)) =a] =1

— Weak Extractability: For any PPT adversary A and polynomial p:(.), there exists
a PPT extractor E and a polynomial po(.) such that for any security parameter K,
any a for which VE(w, a) = 1 for some w, and any mqy, m, where |mg| = |my

if:

5

Pr [A(l“,c) =blb & {0,1}, ¢ < Enc(1%,a,myp)| > = + p1(k)

Then:
EA(1% a,mo,my) = w: VE(w,a) = 1 AFFP (w,mp) # FF (w,my)

Pr v > p2(K)
EA(1%,a,mo,m1) = (w1, ws) : wy # wy AVE(wy,a) =1 AVE(wy,a) =1
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Customized FWE in the I" Ideal Model Here we provide the construction of cus-
tomized FWE using the Iy, F oracle. We note that I' can be thought of as an ideal
customized FWE and hence the construction of the CFWE primitive is straightforward.

Construction 3 (Customized Functional Witness Encryption) LetV and F be as de-
fined in Definition 21. For any security parameter k and oracle I\, f sampled according
to Definition 17, we will implement a customized FWE scheme P defined by V and func-
tion class F as follows:

- CFWE.Enc(1%,a,m) : Given a € {0,1}*, message m € {0,1}" and security
parameter 1%, let n = O(n’ + |a| + k). Sample v < {0, 1}" uniformly at random
then output ¢ = Enc(zx) where x = (a, (m,1)).

- CFWE.Dec(w, ¢) : Given string w and ciphertext c € {0,1}?, get y <— Decy r(w, ¢),
then output y.

- CFWE.Rev(c) : Given ciphertext ¢ € {0,1}?, outputs RevAtt(c).

Claim. Construction 3 is a correct and subexponentially-secure implementation of cus-
tomized functional witness encryption in the I oracle model with measure one.

For the proof of correctness and security for this construction, we refer the reader
to the full version of this paper.

From CFWE to Functional Encryption

Construction 4 (Functional Encryption) Let Pr = (FE. Setup, FE. Keygen, FE. Enc,
FE. Dec) be the functional encryption scheme for the function family F that we would
like to construct. Suppose Sig = (Sig.Gen, Sig.Sign, Sig.Ver) is a secure signature
scheme.

Define a language L with an associated PPT verifier V such that an instance a of
the language corresponds to the signature verification circuit Sig.Ver(vk, .) that takes
as input w = (f,sky) so that V(w,a) = a(w) = 1 if and only if Sig.Ver(vk,w) =1
for some oracle-aided f € F, sky < Sig.Sign(sk, f), and (sk,vk) < Sig.Gen(1%).
Furthermore, let F' be a PPT algorithm that takes as input w = ( f,sky) and a message
m then outputs y = F'(w, m) = f(m).

Given a customized functional witness encryption scheme CFWE = (CFWE.Enc,
CFWE.Decy r, CFWE.Rev) for V and F' defined above, signature scheme Sig, and
security parameter k, we implement the monolithic FE scheme Pr as follows:

— FE.Setup(1”) : Generate (sk,vk) < Sig.Gen(1%). Output (MPK, MSK) where
MPK = vk and MSK = sk.
- FE.Keygen(MSK, f) : Given MSK = sk and f € F, output SKy = (f,sky)

where sk; < Sig.Sign(MSK, f).

- FE.Enc(MPK,m) : Given MPK € {0,1}"* and message m € {0,1}", output

ciphertext c = CFWE.Enc(1%, MPK, m).

— FE.Dec(SKy,c) : Given SKy = (f, sky) and ciphertext ¢ € {0,1}?, call and
output the value returned by CFWE.Decy ¢/ (SKy, ¢).

Claim. Construction 4 is a fully black-box construction of monolithic functional en-
cryption from customized FWE.
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Proof. We first show that the construction is correct. Given (MPK, MSK) < FE. Setup(1%),
for any encryption ¢ «— FE. Enc(MPK, m) of a message m € {0, 1}”/ and functional
decryption key SK; < FE.Keygen(MSK, f) for a function f € F, we get that, if
V(w,a) = a5&(w) = Sig.Ver(vk, (f, sk¢)) = 1 then:

FE.Dec(SK;,c) = CFWE.Decy ¢ ((f, sky), c) = F'((f, sky),m) = f7¥(m)

Note that, since this is an monolithic construction, f can have oracle gates to any sub-
routine in Pr. As a result, we need to make sure that \V are F’ are specified in a way so
that all monolithic computations are valid. First, V only has one Sig.Ver gate which is
supported by OWFs. Furthermore, F’ calls f which has oracle gates to any subroutine in
Pr. Nevertheless, we can reduce each gate to Pr to CFWE or OWF gates. In particular,
FE. Setup can be reduced to Sig.Gen gates, FE. Keygen can be reduced to Sig.Sign
gates, FE. Enc can be reduced to CFWE.Enc gates, and FE. Dec can be reduced to
CFWE.Dec gates. Thus, all gates in F’ can be reduced to those in FWE or one-way
functions.

Next, we prove the security of the scheme by reducing it to the underlying secu-
rity of CFWE and Sig. Let A be a computationally bounded adversary that asks one
functional secret key query and breaks the security of the FE scheme. That is, for some
non-negligible £(.):

1
Pr[INDSE(1%) = 1] > 5 +elr)

where IND'{¥ is the experiment of Definition 3.

Towards contradiction, we will now show that, given A, we can build an attacker B
that can break the strong existential unforgeability of the signature scheme under cho-
sen message attack. On receiving the public-key MPK from the (signature game) chal-
lenger, B forwards MPK to A and upon receiving (f, mg, m1), requests the signature
for f and then randomly chooses a message to encrypt. Note that, since FE. Enc(MPK, m;) =
CFWE.Enc(1”, MPK, my), B can use A to build a distinguisher A’ against CFWE. B
then runs the black-box straight-line extractor EA (guaranteed to exist by the secu-
rity definition of CFWE) where at least one of the following events will happen with
non-negligible probability:

— The extractor returns a single witness w* = (f*, sky+) such that V(w*, MPK)
outputs 1 and F'(w*,mg) # F'(w*,m1) = [f*(mo) # f*(m1). Note that
this implies that sk~ is a valid forgery since f* cannot be the function f that A
requests the signature for (because f(mg) = f(m1) in that case) and w* passed
verification thus violating the security of the signature scheme.

— The extractor returns a pair of witnesses (w7, w3 ) such that wj # w3 and V (w3, MPK)
= V(wj, MPK) = 1. This either implies that w; = (f*, sks+) for some ¢ € {1,2}
is a valid witness and f* # f in which case we have a signature forgery, or it im-
plies that w; = (f, sk’;) for some i € {1,2} and hence sk’ # sk (since even if
w;_; = (f, sky) we have that w} # w;_,) which is also signature forgery.

In both of the above cases, an attack against the FE scheme results in an attack against
the underlying signature scheme.
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3.3 Compiling out I" from 10

In this section, we show a simulatable compiler for compiling out I3, when F is
short-output. We adapt the approach outlined in Section 2 to the restricted-monolithic
tFWE oracle Iy = (Enc, Decy r, RevAtt, RevMsgy, ) while making use of Lemma
1, which allows us to compile out I’y F in two phases: we first compile out part of I,
to get an approximately-correct obfuscator 0° in the random instance-revealing wit-
ness encryption model (that produces an obfuscation B€ in the ©-model), and then use
the previous result of [GMM17] to compile out @ and get an obfuscator O’ in the plain-
model. Since we are applying this lemma only a constant number of times, security
should still be preserved. Specifically, we will prove the following claim:

Claim. Let F be a PPT oracle Turing machine that accepts as input a witness w and a
message m then outputs a string y € {0,1}® where s(n) < ¢(n). Let © be a random
instance-revealing witness encryption oracle. Then for any I3 r, satisfying t(n) <
p(n) —w(n) and for © C Iy F ,, the following holds:

— For any IO in the Iy, ideal model, there exists a simulatable compiler with
correctness error € < 1/200 for it that outputs a new obfuscator in the random
instance-revealing witness encryption oracle © model.

— [GMM17] For any IO in the @ oracle model, there exists a simulatable compiler
with correctness error e < 1/200 for it that outputs a new obfuscator in the plain
model.

We observe that by compiling out only the Dec queries of I', we will end up with
queries only to Enc, RevAtt, and RevMsg. However, we note that Enc and RevAtt al-
ready are part of © and RevMsg can in fact be interpreted as the decryption subroutine
of © where w’ = (wy, wy) is defined as the witness to the decryption subroutine. There-
fore, the second part of Claim 3.3 follows directly by [GMM17], where they showed
how to compile out the ideal witness encryption oracle from any IO scheme, and thus
we focus on proving the first part of the claim. We will present the construction of the
obfuscator in the random instance-revealing witness encryption model that, given an ob-
fuscator in the I" model, would compile out and emulate queries to Dec, while forward-
ing any Enc, RevAtt, RevMsg queries to ©. Throughout this section, for simplicity of
notation, we will denote I" = Iy  , to be the oracle satisfying ¢(n) < p(n) — w(n).

Remark 2. For simplicity of exposition, we assume that the compiler only asks the
oracle for queries from I7,. However, our argument directly extends to handle arbitrary
calls to the oracle I" using the following standard technique. As we will show, the
“error” in our poly-query compiler in the ideal model will be at most poly(q) /2™ (where
q = poly(k) is a fixed polynomial over the security parameter « of the IO construction)
when we only call I',. It is also the case that this error adds up when we work with
several input lengths ny,no, ..., but it is still bounded by union bound. Therefore,
the total error of the transformation will be at most O(poly(n1)/2™!) where n; is the
smallest integer for which I7,, is queried at some point. To make n; large enough (to
keep the error small enough) we can modify all the parties to query I' on all oracle
queries up to input parameter n; = c(log(x)) for sufficiently large c. (Note that this
will be a polynomial number of queres in total.)
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Algorithm 1: EmulateCall

Input: Query-answer set Q, query g to a subroutine of
T € {Enc, Dec, RevAtt, RevMsg} of I
Oracle: Random Instance-Revealing Witness Encryption Oracle
6 = (WEnc, WDec, WRevAtt)
Output: A query-answer pair pg4, and the set W of hidden queries
Begin:
if 3 (¢ — B)r € Q for some answer /3 then
| Setpg = (¢ B)r
end
if ¢ = x is a query to Enc then
| Setpg = (z — WEnc(z))gnc
end
if ¢ = cis a query to RevAtt then
| Setpg = (c = WRevAtt(c))gnc
end
if ¢ = (w1, w2, ¢) is a query to RevMsg,, then
| Setpg = (z — WDecys ((w1,w2),¢))Enc
end
/* We simulate Dec queries */
if ¢ = (w, ¢) is a query to Decy r then
Let ar be the attribute returned by EmulateCall((Q, gr) where gg is the query
RevAtt(c)
Emulate b + V®"°(w, ar) while emulating any queries using EmulateCall
ifb=1and 3 ((a,m) — ¢)gnc € Q then
Emulate y < F” (w, m) while simulating any queries using EmulateCall
Set W to be the set of query-answer pairs asked by F
Set pg = ((w, ) = Y)Dec
else
‘ Set Pq = ((w,c) = L)Dec
end

end
Return (pq, W)
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The new obfuscator O® in the instance-revealing witness encryption model Given
a d-approximate obfuscator O = (iO, Ev) in the rFWE oracle model, we construct an
(6 + £)-approximate obfuscator O = (1/0\7 ﬁ/) in the © oracle model. Throughout this
process, we can assume that iO and Ev are in their canonical form as in Definition 18.

—6
Subroutine iO (C):

1. Emulation phase: Emulate 07 (C). Initialize Qo = @ to be the set of query-
answer pairs asked by the obfuscation algorithm iO. For every query ¢ asked by
i07(0), call (p,, W) + EmulateCall®(Qo,q) and add p, to Qo.

2. Learning phase: Set Qp = @ to be the set of direct (visible) query-answer pairs
asked during this phase (so far) and Q% = @ to be the set of indirect (hidden)
query-answer pairs (see Definition 20). Let & = ({p + k)/e where {p < [iO]

represents the number of queries asked by iO. Choose A & [k] uniformly at random
then for i = {1, ..., A} do the following:

— Choose z; < {0,1}/€! uniformly at random
- Run Ev’'(B, z;). For every query ¢ asked by Ev' (B, z;), run (p,, W) «
EmulateCall®(Qo UQp UQ%Y, q), then add p, to Qp and W to Q.

—~06 ~
3. The output of the ©@-model obfuscation algorithm 10 (C) willbe B = (B, @p).

—~6 ~
Subroutine Ev (B, 2): Initialize Q5 = @ to be the set of queries asked when eval-

uating B. To evaluate B = (B,Qp) on a new random input z we simply emulate
Ev’ (B, 2) as follows. For every query g asked by Ev’ (B, z), run and set (p,, W) =
EmulateCall®(Qp U Qp,q) then add (p, UW) to Q5.

The running time of iO. We note that the running time of the new obfuscator i0
remains polynomial time since we are emulating the original obfuscation once followed
by a polynomial number A of learning iterations. Furthermore, since we are working
with the restricted-monolithic oracle (see Definition 17), the way that F is defined (as
a universal circuit evaluator) makes it so that the number of recursive calls that appear
due to emulating F!" is upper-bounded by some polynomial (in fact even quadratic).

Proving Approximate Correctness. Define Q% to be the set of hidden queries asked

during the final execution phase. Set Q7 = Qo UQpUQLUQzU Q% to be the set of

all (visible and hidden) query-answer pairs asked during all the phases. We consider two

distinct experiments that construct the © oracle model obfuscator exactly as described

above but differ when evaluating B:

— Real Experiment: ﬁ}@(é’ z) emulates Ev’ (B, z) on a random input z and an-
swers any queries using EmulateCall.

— Ideal Experiment: E\\/F(E, z) executes Ev’ (B, z) and answers all the queries of
Ev’ (B, z) using the actual oracle I".

Note that the actual emulation of the new obfuscator is statistically close to an ideal

emulation of the obfuscation and learning phases using /" and so it suffices to compare
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only the real and ideal final execution phases. In essence, in the real experiment, we can

think of the execution as Ev’ (B, z) where I is the oracle simulated using the learned
query-answer pairs (p and oracle @. We will compare the real experiment with the
ideal experiment and show that the statistical distance between these two executions
is at most . In order to achieve this, we will identify the events that make the exe-

cutions Ev’ (B, z) and Ev’ (B, z) diverge (i.e. without them happening, they proceed
statistically the same).

Let ¢ be a new query that is being asked by Evl (B, z) (i.e. in the real experi-
ment) and handled using EmulateCall®(Qp U @5, q). The following are the cases
that should be handled:

1. If ¢ is a query of type Enc(x), then the answer to ¢ will be distributed the same in
both experiments as they will be both answered using the subroutine WEnc(c) of
o.

2. If g is a query of type RevAtt(c), then the answer to g will be distributed the same
in both experiments as they will be both answered using the subroutine WRevAtt(c)
of 6.

3. If ¢ is a query of type RevMsg,, (w1, ws, ¢), then the answer to ¢ will be distributed
the same in both experiments as they will be both answered using the subroutine
WDecy: (w', ¢) where w' = (w1, wa).

4. If q is a query of type Decy r(w, c) whose answer is determined by Qp U Q5 in
the real experiment then it is also determined by Q7 2 (Qp U Q) in the ideal
experiment and the answers are therefore distributed the same.

5. Suppose ¢ is a query of type Decy r(w, c) that is not determined by Qp U Q3
in the real experiment. Then the answer returned by EmulateCall is L since the
underlying encryption query ((a,m) — ¢)gnc is not known. In that case, we have
to consider three different counterparts in the ideal experiment:

(a) Bad Event 1: If g is not determined by ()7 in the ideal experiment then this
implies that the ideal execution Ev’ (B, z) is for the first time hitting a valid
ciphertext that was never generated by an encryption query asked during any of
the phases. In that case, since Enc is injective, the answer returned by I" would
be L with overwhelming probability.

(b) Bad Event 2: The query ¢ is determined by Q7 \ (@B U Qp) in the ideal
experiment and the ideal execution Ev’’ (B, z) has hit a valid unknown cipher-
text that was generated by an encryption query in the obfuscation phase that
was never learned. In this case, the answer will be F' (w, m) if the verification
passes and | otherwise.

(c) Bad Event 3: The query ¢ is determined by Q7 \ (@p U Q) in the ideal
experiment then and the ideal execution Ev’ (B, z) has hit a valid unknown
ciphertext that was generated as a hidden query (i.e. issued by inner F execu-
tions) during the learning or evaluation phases. In this case, the answer will be
FZ'(w, m) if the verification passes and | otherwise.

Notice that the answer to such a query in the ideal experiment differs from that in

the real experiment (which always outputs 1 ). However, we will show below that

such an event is unlikely to occur.
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For circuit input z, let F(z) be the event that either one of Cases 5a, 5b, or 5¢

happen. More specifically, this is the event that Evl (B, z) asks a query ¢ of the form
Decy r(w, ¢) where cis a valid ciphertext that was either (i) never generated before dur-
ing any of the phases, (ii) generated during the obfuscation phase, or (iii) generated by
a hidden query in the learning and/or final evaluation phases. Assuming that event F/(z)
does not happen, both experiments will proceed identically the same and the output dis-

tributions of Ev’ (B, z) and Ev’ (B, z) will be statistically close. More formally, the
probability of correctness for iO is:

gr[Evf (B,z) # C(2)] = I;r[Evf (B,z) # C(2) A=E(2)] + gr[Evf (B,z) # C(2) A E(2)]

< fzr[EVF(B, z) # C(z) N—E(z)] + f;r[E(z)]
By the approximate functionality of ¢O, we have that:
PriOT(0)(2) # O(2)] = PrEv" (B, 2) # C(2)] < 8(x)

Therefore,

Pr[Ev (B, 2) # C(2) A —E(2)] = Pr[Ev (B, 2) # C(2) A—E(2)] <6 (1)
We are thus left to show that Pr[E(z)] < e. Since both experiments proceed the same
up until E happens, the probability of E happening is the same in both worlds and we
will thus choose to bound this bad event in the ideal world.

Proof Intuition. At a high-level, in order to show that E is unlikely, we will show
that the learning procedure and final execution phases, when treated as a single non-
uniform query-adaptive algorithm A, will only ask a bounded number of queries for
valid ciphertexts whose corresponding underlying message is unknown to this algo-
rithm. Then, given this upper bound on such queries, we ensure that by running the
learning procedure for sufficient number of times, the final execution phase will not
ask such queries to unknown ciphertexts with high probability and we maintain the
approximate correctness of the obfuscation.

In order to prove this upper bound on the number of ciphertexts that will be hit, we
start with the query-adaptive A which consists of the combination of the learning and
final execution phases that accepts as input an obfuscation B in the I oracle model and
is able to adaptively query I" when running B on multiple randomly chosen inputs. We
then show through a sequence of reductions to other adversaries that the advantage of
such an attacker in hitting a specific number of unknown ciphertexts is upper bounded
by the advantage of a different non-adaptive attacker A in hitting the same number of
ciphertexts (up to some factor). We then finally show that A has a negligible advantage
in succeeding.

We begin by defining the notion of query adaptivity for oracle algorithms and spec-
ify what it means for an adversary to hit a ciphertext.

Definition 22 (Query Adaptivity). Let A be a poly-query randomized oracle algo-
rithm that asks T queries to some idealized oracle . Suppose Q) is the set of queries
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that A will ask. We define the level of query adaptivity of A as being one of two possible
levels:

— Non-adaptive: Q) consists of T queries, possibly from different domains, and chosen
by A before it issues any query and/or independently of the answers of any previous
query.

— Fully adaptive: Q = (qu, ..., q-) consists of T queries possibly from different do-
mains where, for each i € [T, q;11 is determined by the answer returned by q;.

Definition 23 (Ciphertext Hit). Let A be a T-query oracle algorithm that has ac-
cess to I'. We say that A has hit a ciphertext c if it queries Dec(.,c), RevAtt(c),
or RevMsg(., .,¢) and c is a valid unknown ciphertext (that is, A has never asked
Enc(x) = ¢). We denote the set of ciphertexts that A has hit by H 4.

Our goal is to prove the following lemma which provides the desired upper bound
on the number of ciphertexts that an attacker A can hit.

Lemma 3 (Hitting Ciphertexts). Let Iy  be as in Definition 17, n be a fixed number,
and t(n) < p(n) — w(n), where t is the upper bound on the output length of F and p is
the ciphertext length. Let A be an adaptive T-query oracle algorithm that takes as input
z and has access to I\ r. Let H 4 be the set of unknown valid ciphertexts that A hits.
Then for security parameter (of the obfuscation scheme) k, n > lgk, 7 < poly(k) <
k9 we have that for any s < 7:

Pr{|Ha| > 5] < O(20~ (tH(m)s)
where o = |z| 4+ (t + 2n)s.

Proof. We will define a sequence of adversaries and show reductions between them in
order to prove the upper bound stated above. Throughout, we assume that the algorithms
are in canonical form (see Definition 18).

1. Attacker A: This is the original adaptive 7-query attacker as defined in the state-
ment of the lemma where it will receive some input z and can ask 7 queries to I'.
The goal of the adversary is to hit at least s unknown valid ciphertexts via queries
to Dec, RevAtt or RevMsg.

2. Attacker A,: This is the same attacker as A but does not accept any input and
is modified as follows. For any Dec, RevAtt or RevMsg queries asked to I" with
some answer y # 1, A, will instead use an answer that is part of some fixed string
u € {0,1}* hardcoded within A,, where « = |z| + (¢ + 2n)s. The Enc queries are
handled normally as before. The goal of this adversary is to hit at least s unknown
valid ciphertexts via queries to Dec, RevAtt or RevMsg.

3. Attacker A’: This is the same attacker as A, for any fixed u. However, aside from
Enc queries which are handled normally using I, the other query types are instead
replaced with a single subroutine Test that takes as input a ciphertext c and outputs
1 if cis valid, and O otherwise. The goal of this adversary is to hit at least s unknown
valid ciphertexts via queries to Test.
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4. Attacker A : This is the non-adaptive attacker where it will ask all its queries at
once at the start of the experiment. Furthermore, it will not ask any Enc queries but
will be constrained to asking only Test queries. The goal of this adversary is to hit
at least s unknown valid ciphertexts via queries to Test.

Lemma 4. For every A, there exists some u € {0,1}* such that Pr[|Hy| > s] <
2Pr[|Ha,| > s

Proof. Recall that A accepts z as input and, when it hits s ciphertexts, it would receive
back at most (¢ + 2n) since we can either get back ¢ bits information as a result of
getting back an answer from Decy r or at most n bits of information from queries of
RevAtt and RevMsg,,. Furthermore, by the canonicalization of A, it can ask for any ¢
at most one query of each type Decy r, RevAtt, and RevMsgy,. Thus, in order to say
that A, would succeed at hitting s with the same amount of information, the length of
whas to be = |z| + (¢t + 2n)s. Now, by a union bound over all u, the probability of
success for A is given as follows:

Pr[[Ha| > s] <Pr[3u:|Ha,|>s] <Y Pr[|Ha,|>s] <2°Pr[|Ha,| > s

Lemma 5. Foranyu € {0,1}%, Pr[|Ha,| > s] = Pr[|Ha/| > s]

Proof. Since A, does not obtain any information regarding the actual answers to the
Dec, RevAtt and RevMsg queries that it asks, we can think of these subroutines simply
as a testing procedure that A,, can use to determine whether any given ciphertext c is
valid or not, and this is signaled by whether the oracle returns | or not to any of these
queries. Therefore, we can interpret A, as an adversary A’ that simply calls Test instead
of Dec, RevAtt and RevMsg queries as this yields the same result.

Lemma 6. Pr[|H /| > s] < Pr[|Hz| > s]

Proof. Given attacker A’ we can define A that uses A’ and only issues Test queries
(non-adaptively). Any Enc queries that A’ asks (from a specific Enc domain of size n)
can be lazily evaluated (emulated) by A. Furthermore, any Test queries that A’ asks
will be answered using one of A’s pre-issued Test queries while remaining consistent
with the previous Enc queries that were issued.

Lastly, we state and prove the following lemma which will be used to bound the
number of ciphertexts that any (poly-query) non-adaptive algorithm might obtain and
use for its decryption and/or reveal queries.

Lemma 7 (Hitting Ciphertexts for Non-Adaptive Learners). Let I" be as in Defini-
tion 16 and t(n) < p(n) — w(n) where t is an upper bound on the output length of F
and p is the ciphertext length. Let A be a non-adaptive T-query canonical algorithm
as defined above and H ; be the set of unknown valid ciphertexts that A hits via Test
queries. Then for security parameter K, fixed n > lg k, 7 < poly(k), we have that for
any s < T:

Pr[|Hz| > 5] < O(2~(trw(n))s)
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Proof. Suppose t < p —dn for d = w(1) and let 7 < k¢ = 24'18% < 2d'n where
d" = d/2 = w(1) for the purposes of upper-bounding the probability for all poly-
query algorithms A. Recall that the function Enc(.) is injective and maps messages
x € {0,1}" to ciphertexts ¢ € {0,1}?("™). For simplicity, assume that we want to
compute the probability that | H ;| = s. For any set of s ciphertexts that are in the image
of some fixed s-sized set of the domain Enc(.), the probability that the 7 queries will hit
these s ciphertexts is given by (:) / (2:)) By a union bound over all the different s-sized
sub-domains of Enc(.), we find that for sufficiently large security parameter x:

pllrg| =o1 < (%)

O ey T e
S S

n(14+d/2) 2\ °
< <M> < O(2-(E+etnsy

The last inequality follows from the short-output property, that is ¢ < p — d - n for some
d = w(1). Note that Pr[|H 3| = s + 1] < Pr[|H 3| = s| and therefore Pr[|H 7| > s] is
dominated by the largest term represented by Pr[|H 7| = s].

Putting things together. By Lemmas 4, 5, and 6, and using Lemma 7, we find that:
Pr[|Ha| > 5] < O(20 ()3

Note that, for simplicity, Lemma 3 only considers hitting unknown ciphertexts from
some fixed domain of size n. However, we observe that this argument can be extended
for learners that can ask queries for different domain sizes as well.

Claim. Pr[E(z)] < € + negl(k)

Proof. Let A to be an adaptive non-uniform oracle algorithm in the ideal hybrid that
has access to I" and works as follows:

— Initialize the query-answer set Q 4 = &

- Fori={1,...,k}, run Ev’ (B, z;). For any query q asked by Ev’ (B, z), if (¢ —
a)T € Q4 for subroutine T then answer with a. Otherwise, handle the query in
the canonical form as in Definition 18, and if a query was sent to I', add the new
query-answer pair (¢ — a)7 to Q4.

— Output Ev’ (B, z)

In essence, A would run the learning and final execution phases (in total k& executions)
making sure to only forward to I the queries that are distinct and which cannot be com-
puted from ) 4 so far. Given the above canonical A, we observe that for any unknown
valid ciphertext ¢ = Enc(x) where © = (a, m), A would ask at most one query of the
form RevAtt(c), at most one query of the form Dec(w, ¢) for which VE"¢(w, a) = 1,
and at most one query of the form RevMsg(w1,ws,c) for which VE*¢(w;,a) = 1
where i € {1,2}. Furthermore, A would never ask a query if VE2¢(w,a) = 0 since

<2n€)s <7‘e>3 oMo Qd'n6 S
T — — X n ’
( ) < s s < s s < (2 (1+d") g2

)S
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this condition can be verified independently by A and the answer can be simulated as it
would invariably be L.
Given A, we can bound the number of distinct unknown ciphertexts that the k ex-

where Hp, is the set of

ecutions will hit, which we denote by |Hgp| = ’Ule Hp,

ciphertexts hit by the ith evaluation Ev’ (B, z;). Note that the total number of queries
that will be asked across all executions is k¢ = poly(x) where {p is the circuit size
of Ev(B,.). It is straightforward to see that, for any s, Pr[|H4| > s] = Pr[|Hp| > $]
since whenever one of the k executions hits an unknown ciphertext ¢ for this first time,
A will also forward it to the oracle and hit it for the first time as well.

Since A accepts as input the obfuscated circuit of size [iO| = £o, by Lemma 3,
the probability that A hits at least s = ({o + k) ciphertexts is at most 2(0~«(")s <
2-w(M* — negl(k). Therefore, the k¢ z-query algorithm A will hit at most s = (£o +5)
new unknown ciphertexts with overwhelming probability. Therefore we have that,

PrHHB| > S] = Pr[|HA| > 3] < 250—0-)(71)5

Since the maximum possible number of learning iterations £ > s and U;‘:l Hp, C

U;ill Hp, for any i, the number of learning iterations that increase the size of the
set Hp of unknown ciphertext hits (via one of the bad event queries) is at most s. A
ciphertext that was hit could have its encryption query generated during the obfuscation

phase or as one of the hidden queries issued by F during one of the k executions. We

say A & [k] is bad if it is the case that Uj‘:l Hp, C U;‘;l Hp, (i.e. A is an index
of a learning iteration that increases the size of the hit ciphertexts). This would imply
that after A learning iterations in the ideal experiment, the final execution with Hz :=

j‘;l Hp, would contain an unknown ciphertext that it we will hit for this first time
and for which we cannot consistently answer the queries that reference it. Thus, given
that we have set k = ({po + k)/e, the probability (over the selection of ) that ) is bad

is at most s/k < e.

Proving Security. To show that the resulting obfuscator is secure, it suffices to show
that the compilation process represented as the new obfuscator’s construction is simu-
latable. We show a simulator Sim (with access to I") that works as follows: given an ob-
fuscated circuit B in the I" ideal model, it runs the learning procedure as shown in Step
2 of the new obfuscator iO to learn the heavy queries () g then outputs B = (B,QB).

A~

Note that this distribution is statistically close to the output of the real execution of iO
and, therefore, security follows.
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