
On Secure Two-Party Computation
in Three Rounds

Prabhanjan Ananth∗
University of California, Los Angeles

prabhanjan@cs.ucla.edu

Abhishek Jain†
Johns Hopkins University
abhishek@cs.jhu.edu

Abstract

We revisit the exact round complexity of secure two-party computation. While four rounds are
known to be sufficient for securely computing general functions that provide output to one party
[Katz-Ostrovsky, CRYPTO’04], Goldreich-Krawczyk [SIAM J. Computing’96] proved that three
rounds are insufficient for this task w.r.t. black-box simulation.

In this work, we study the feasibility of secure computation in three rounds using non-black-box
simulation. Our main result is a three-round two-party computation protocol for general functions
against adversaries with auxiliary inputs of a priori bounded size. This result relies on a new two
round input-extraction protocol based on succinct randomized encodings.

We also provide a partial answer to the question of achieving security against non-uniform ad-
versaries. Assuming sub-exponentially secure iO and one-way functions, we rule out three-round
protocols that achieve polynomial simulation-based security against the output party and exponen-
tial indistinguishability-based security against the other party.

1 Introduction

The notion of secure computation [39, 24] is fundamental in cryptography. Informally speaking, secure
two-party computation allows two mutually distrusting parties to jointly compute a function over their
private inputs in a manner such that no one learns anything beyond the function output.

An important measure of efficiency of secure computation protocols is round complexity. Clearly, the
smaller the number of rounds, the lesser the impact of network latency on the communication between
the parties. Indeed, ever since the introduction of secure computation, its round complexity has been
the subject of intensive study, both in the two-party and multiparty setting.

In this work, we study the exact round complexity of secure two-party computation against malicious
adversaries in the plain model (i.e., without any trusted setup assumptions). We focus on the classical
unidirectional message model where a round of communication consists of a single message sent by one
party to the other.

In this setting, constant round protocols can be readily obtained by compiling a two-round semi-
honest protocol (e.g., using garbled circuits [39] and oblivious transfer [37, 15]) with constant-round zero-
knowledge proofs [26, 16, 21] following the GMW paradigm [24]. Katz and Ostrovsky [30] established
an upper bound on the exact round complexity of secure two-party computation by showing that four
rounds are sufficient for computing general functions that provide output to one party. On the negative
side, Goldreich and Krawczyk [22] proved that two-party computation with black-box simulation cannot
be realized in three rounds.
∗Supported in part by grant 360584 from the Simons Foundation
†Supported in part by a DARPA/ARL Safeware Grant W911NF-15-C-0213 and a sub-award from NSF CNS-1414023

1

Ever since the introduction of non-black-box techniques in cryptography nearly two decades ago [3],
the following important question has remained open:

Can secure two-party computation be realized in three rounds using non-black-box simulation?

In this work, we address this question and provide both positive and negative results.

1.1 Our Results

We investigate the feasibility of three-round secure two-party computation against malicious adversaries
in the plain model. We consider functions where only one party (a.k.a receiver) learns the output. The
other party is referred to as the sender.

I. Positive Result. Our main result is a three-round two-party computation protocol for general
functions that achieves security against adversarial senders with auxiliary inputs of arbitrary polynomial
size and adversarial receivers with auxiliary inputs of a priori bounded size.

In order to obtain our result, we devise a new non-black-box technique for extracting adversary’s
input in only two rounds based on succinct randomized encodings [9, 12, 32] and two-round oblivi-
ous transfer (OT) with indistinguishability-based security [36]. To prove security of our three-round
protocol, we additionally require two-message witness indistinguishable proofs (a.k.a. Zaps) [14] and
Learning with Errors (LWE) assumption.

Theorem 1. Assuming the existence of succinct randomized encodings, two-round OT, Zaps and LWE,
there exists a three-round two-party computation protocol (P1, P2) for computing general functions that
achieves security against adversarial P1 with auxiliary inputs of arbitrary polynomial size and adversarial
P2 with auxiliary inputs of bounded size.

On Succinct Randomized Encodings. A succinct randomized encoding (SRE) scheme allows one to
encode the computation of a Turing machineM on an input x such that the encoding time is independent
of the time it takes to compute M(x). The security of SRE is defined in a similar manner as standard
(non-succinct) randomized encodings [28]. Presently, all known constructions of SRE are based on
indistinguishability obfuscation (iO) [4, 17]. We note, however, that SRE is not known to imply iO and
may likely be a weaker assumption.1

On Bounded Auxiliary Inputs. Our positive result is motivated by the recent beautiful works of [8] and
[7] on three-round zero-knowledge proofs that achieve security against adversaries with auxiliary inputs
of a priori bounded size. Specifically, [8] considers malicious verifiers with bounded-size auxiliary inputs
while [7] consider malicious provers with bounded-size auxiliary inputs.

Our positive result can be viewed as a generalization of [8] to general-purpose secure computation.

Outputs for Both Parties. Theorem 1 only considers functions that provide output to one party. As
observed in [30], a protocol for this setting can be easily transformed into one where both parties receive
the output by computing a modified functionality that outputs signed values. Now the output recipient
can forward the output to the other party who accepts it only if the signature verifies.

II. Negative Result. We also explore the possibility of achieving security in the case where each
adversarial party may receive auxiliary inputs of arbitrary polynomial size.

1If SRE satisfies an additional “output compactness” property where the size of an encoding of (M,x) is also independent
of the size of the machine’s output, i.e., |M(x)|, then sub-exponentially secure SRE is known to imply iO [2]. We do not
require such output compactness property for our result.

2

We provide a partial answer to this question. We show that three-round secure two-party computa-
tion for general functions is impossible if we require simulation-based security against PPT adversarial
receivers and exponential indistinguishability security against adversarial senders. Our result relies on
the existence of sub-exponentially secure iO and one-way functions.

Theorem 2. Suppose that sub-exponentially secure iO and one-way functions exist. Then there exists a
two-party functionality f such that no three-round protocol Π for computing f can achieve the following
two properties:

• Simulation-based security against PPT adversarial receivers.

• 2O(L)-indistinguishability security against adversarial senders, where L denotes the length of the
first message in Π.

Here, 2k-indistinguishability security means that for any pair of inputs (y, y′) for the receiver, an
adversarial sender can distinguish which input was used in a protocol execution with probability at
most 1

2k
.

We stress that Theorem 2 even rules out non-black-box simulation techniques.

Discussion. Our negative result can be viewed as a first step towards disproving the existence of
three-round two-party computation against non-uniform adversaries. We remark that ruling out non-
black-box techniques in three-rounds is highly non-trivial even when we require exponential (indistin-
guishability) security for one party. Indeed, a somewhat analogous question regarding the existence
of three-round zero-knowledge proofs was recently addressed by Kalai et al. in [29]. Specifically, [29]
prove the impossibility of three-round (public-coin) zero-knowledge proofs with non-black-box simula-
tors assuming sub-exponentially secure iO and one-way functions and exponentially secure input-hiding
obfuscation for multi-bit point functions.2

A proof system achieves statistical security against adversarial provers. In a similar vein, Theorem 2
requires exponential indistinguishability-security against adversarial senders. As such, Theorem 2 can
be viewed as providing a complementary result to [29].

Needless to say, it remains an intriguing open question to extend our lower bound to rule out
protocols that achieve polynomial-security against adversarial senders.

1.2 Our Techniques

In this section, we describe the main ideas used in our positive and negative results.

I. Positive Result. We start by describing the main ideas in our positive result. We first describe the
setting: we consider two parties P1 and P2 holding private inputs x1 and x2, respectively, for computing
a function f . At the the end of the protocol, P2 gets f(x1, x2) while P1 gets no output. We want to
achieve security against adversarial P1 who may receive auxiliary inputs of unbounded (polynomial)
size and adversarial P2 who may receive auxiliary inputs of an a priori bounded size.

Recently, Bitansky et. al. [8] constructed a three-round zero-knowledge argument of knowledge
(ZKAOK) that achieves standard soundness guarantee and zero-knowledge guarantee against adver-
sarial verifiers with bounded auxiliary inputs. Given their protocol, a natural starting idea to achieve
our goal is to “compile” a two-round semi-honest two-party computation protocol into a maliciously
secure one (a la [24]) with their ZKAOK system. Note, however, that while we have enough rounds in
the protocol to enforce semi-honest behavior on P1 using ZKAOK, we cannot use the same approach
for P2. Nevertheless, as a first step, let us fix a three-round protocol that guarantees security against
adversarial P1. For concreteness, we instantiate the semi-honest two-party computation using garbled

2Their result, in fact, extends to constant-round protocols.

3

circuits and two-round oblivious transfer. We also use a delayed-input ZKAOK [33] where the instance
is only used in the last round. This property is satisfied by argument system of [8].

• In the first round, P1 sends the first message of a delayed-input ZKAOK.

• In the second round, P2 sends the second message of ZKAOK together with the receiver message
of a two-round oblivious transfer (OT) computed using its input for f .

• In the third round, P1 sends garbled circuit for f with its input hardwired, together with the OT
sender message (computed using the inputs labels for the garbled circuit) and the third message
of ZKAOK to prove that the garbled circuit and the OT sender message are computed “honestly”.

Main Challenge #1. Note that in the above protocol, it is already guaranteed that P2’s input is
independent of P1’s input. Nevertheless, this is not enough and in order to achieve security against
malicious P2, we need to construct a polynomial-time simulator that can extract P2’s input by the end
of the second round, and then simulate the third round of the protocol to “force” the correct output
on P2. In light of our lower bound, we need to devise a two-round input extraction procedure that
works against adversaries with bounded auxiliary inputs. At first, it is not at all clear how such an
input-extraction protocol can be constructed. In particular, black-box techniques do not suffice for this
purpose [22]. Instead, we must use non-black-box techniques.

The problem of extraction in two-rounds or less was recently considered by Bitansky et al. [8].
They study extractable one-way functions and then use them to construct three-round ZKAOK against
verifiers with bounded non-uniformity. We note, however, that their notion of extractable one-way
functions is unsuitable for our goal of extracting adversary’s input. In particular, in their notion, the
extracted value can be from a completely different distribution than the actual value x used to compute
the one-way function. In contrast, we want to extract a “committed” input of the adversary.

Main Challenge #2. To make matters worse, we cannot hope to extract the input of a malicious
adversary in two rounds with guarantee of correct extraction. Indeed, two-round zero-knowledge proofs
(with polynomial-time simulation) are known to be impossible against non-uniform verifiers even w.r.t.
non-black-box simulation [25].3

In light of the above, we settle on a “weak extraction” guarantee, namely, where correctness of
extraction is only guaranteed if the adversary behaves honestly. Note that this means that our simulator
may fail to extract the input of P2 if it behaves maliciously. In this case, it may not be able to produce
an indistinguishable third message of the protocol.

For now, we ignore this important issue and proceed to describe a two-round protocol that enables
weak input-extraction. Later, we describe how we construct our scheme using only this weak extraction
property.

(Weak) Input-Extraction in Two Rounds. We want to construct a two-round protocol that allows a
simulator (that has access to the Turing machine description and bounded auxiliary input of adversarial
P2) to extract P2’s input for f as long as P2 behaves semi-honestly in this protocol. However, an
adversarial P1 should not be able to learn any information about an honest P2’s input. For simplicity
of exposition, below, we restrict ourselves to the case where P2 is a uniform Turing machine. It is easy
to verify that our protocol also works when P2 has an auxiliary input of bounded length.

We first note that the problem of constructing an input-extraction protocol can be reduced to the
problem of constructing a “trapdoor” extraction protocol where the trapdoor is a random string. This is

3Bitansky et al. [8] construct a two-round zero-knowledge argument against verifiers with bounded non-uniformity.
Using their system, however, would necessarily require even P1 (who will play the role of the verifier) to have bounded
non-uniformity. Our goal instead is to limit the bounded non-uniformity assumption to P2 and allow P1 to be fully
non-uniform.

4

because the trapdoor can be set to the randomness r used by P2 for computing its OT receiver message
in our three-round protocol described earlier. If we use an OT protocol where the receiver’s message is
perfectly binding (e.g., [36]), then once the simulator has extracted P2’s randomness in OT, it can also
recover its input.

In order to construct a trapdoor extraction protocol, we build on ideas from Barak’s non-black-box
technique [3]. Consider the following two-party functionality g: it takes as input a string TM from P1

and a tuple (β, trap,m) from P2. It treats TM as a valid Turing machine and computes β′ = TM(m).
If β′ = β, it outputs trap, else it outputs ⊥.4 Let Π be a two-round two-party computation protocol
for computing g.

Now, consider the following candidate two-round protocol for extracting a trapdoor from P2: P1

sends the first message of Π computed using input TM = 0. Let msg1 denote this message. Upon
receiving msg1, P2 first prepares an input tuple (β, trap,m) for g as follows: it samples a random string
β of length ` s.t. ` >> |msg1| and sets trap to be a random string and m = msg1. Finally, P2 sends the
second message of Π computed using (β, trap,m) together with β.

A non-black-box simulator that knows the Turing machine description TM2 of adversarial P2 can
set its input TM = TM2 in the above protocol. If P2 behaves semi-honestly, then at the end of the
protocol, the simulator should obtain trap. Security against a malicious P1 can be argued using the
fact that β >> |msg1| in the same manner as the proof of soundness in Barak’s protocol.

A reader familiar with [3] may notice a major problem with the above extraction protocol. Note
that since Π is a secure computation protocol, its running time must be strictly greater than the size
of the circuit representation of g. Now, since the functionality g internally computes the next-step
function of P2, the running time of Π is strictly greater than the running time of P2!

Our key idea to solve this problem is to delegate the “expensive” computation inside g to P1 (or more
accurately, the simulator when P2 is corrupted).5 Let M be an “input-less” Turing machine that has
hardwired in its description a tuple (TM, β, trap,m). Upon execution, it performs the same computation
as g. Now, instead of using the two-party computation protocol to compute the function g, we use it to
compute a “secure encoding” of M . We want the encoding scheme to be such that the time to encode
M is independent of the running time of M . Note that in this case, the running time of the protocol is
also independent of the running time ofM . The honest P1 ignores the encoding it obtains at the end of
the two-party computation protocol. However, the simulator can simply “decode” the secure encoding
to learn its output.

An encoding scheme with the above efficiency property is referred to as a succinct randomized
encoding (SRE) [9, 12, 32]. By using an SRE scheme, we are able to resolve the running-time problem.

Using Weak Extraction Guarantee. Finally, we explain how we obtain our construction by only relying
on the weak extraction property of our input extraction protocol. Note that if an adversarial P2 cheats
in the input extraction protocol, then due to the weak extraction guarantee, the simulator may extract
an incorrect input (or no input at all). In this case, the simulated garbled circuit computed by the
simulator would be easily distinguishable from the garbled circuit in the real execution. Therefore, we
need a mechanism that “hides” P1’s third round message from P2 if P2 cheated in the input-extraction
protocol. On the other hand, if P2 did behave honestly, then the mechanism should “reveal” the third
round message to P2.

We solve this problem by using conditional disclosure of secrets [19, 1]. Recall that a CDS scheme
consists of two players: a sender S and a receiver R. The parties share a common instance x of an NP
language. Using this instance, the sender S can “encrypt” a secret message m s.t. a receiver R can only
“decrypt” it using a witness w for x.

4Note that g internally transforms TM into a circuit and uses it to perform the rest of the computation.
5Indeed, an honest P1 is never required the functionality g. However, when P2 is corrupted, then the simulator acting

on behalf of P1 does compute g to learn the trapdoor.

5

Using a CDS scheme for NP, we modify our protocol as follows. Now, P1 will send a CDS encryption
of the garbled circuit for f and its OT sender message. The instance for this encryption is simply the
transcript of the input extraction protocol. In order to decrypt, P2 must use a witness that establishes
honest behavior during the input extraction protocol. The input and randomness of P2 in the input-
extraction protocol constitutes such a witness. In other words, if P2 cheated in the input-extraction
protocol, then it cannot recover the third round message of P1.

A subtle point here is that a CDS scheme only promises security against adversarial receivers when
the instance used for encryption is false. Therefore, in order to use the security of CDS, we must ensure
that there does not exist a valid witness if P2 cheats in the input extraction protocol. We achieve this
property by ensuring that the input-extraction protocol is perfectly binding for P2.

We implement a CDS scheme using a two-round two-party computation protocol that achieves in-
distinguishability security against malicious receivers and semi-honest senders. Such a scheme can be
implemented using garbled circuits and two-round oblivious transfer of [36]. Finally, to prevent an
adversarial P1 from created “malformed” CDS encryptions, we require P1 to prove its well-formedness
using delayed-input ZKAOK.

II. Negative Result. We now provide an overview of our lower bound.
Recall that simulation-based security for any two-party computation protocol is argued by construct-

ing a polynomial-time simulator who can simulate the view of the adversary in an indistinguishable
manner without any knowledge of the honest party input. One of the main tasks of such a simulator is
to extract the input of the adversary. We establish our negative result by ruling out the possibility of
extracting the input of adversarial receiver in a three-round secure computation protocol.

More concretely, we consider three round protocols (P1, P2) where P2 receives the output. We
describe a two-party functionality f and an adversary P2 such that no polynomial-time simulator can ex-
tract P2’s input from any three-round protocol Π for computing f , if Π achieves 2O(L)-indistinguishability
security against P1. Here, L is the length of the first message of Π.

Note that in a three-round protocol, P2 only sends a single message. Clearly, black-box techniques
are insufficient for extracting P2’s input in this setting. The main challenge here is to rule out extraction
via non-black-box techniques.

In order to “hide” the input of an adversarial P2 from a non-black-box simulator who has access to
P2’s code, we make use of program obfuscation [4]. Namely, we construct a “dummy” adversary P2, who
receives as auxiliary input, an obfuscated program that has an input hardwired in its description and
uses it to compute the adversary’s message in the two-party computation protocol. During the protocol
execution, the adversary simply uses the obfuscated program to compute its protocol message. Our
goal is to then argue that having access to the code of this dummy adversary as well as his obfuscated
auxiliary input gives no advantage to a polynomial-time simulator. We note that a similar strategy was
recently used by Bitansky et al. [8] in order to prove the impossibility of extractable one-way functions.

Below, we first describe our proof strategy using the strong notion of virtual black-box obfuscation
[4]. Most of the main challenges that we address already arise in this case. Later, we explain how we
can derive our negative result using the weaker notion of indistinguishability obfuscation.

Function f . Recall that the main reason why the simulator needs to extract the adversary’s input is
to learn the function output from the ideal functionality. In order to ensure that the simulator cannot
“bypass” input extraction, we choose a function with unpredictable outputs. Furthermore, we also want
that the input of the honest party cannot be trivially determined from the function.

We choose f to be a pseudorandom function PRF that takes as input a PRF key x1 from P1 and
an input x2 from P2 and outputs the evaluation of the PRF on x2 using key x1. It is easy to see that
f satisfies the above desired properties.

Adversary P2 and Auxiliary Input Z. Towards a contradiction, let Π be any three-round two-party

6

protocol for securely computing f with the security properties stated in Theorem 2.
The auxiliary input Z consists of an obfuscated program that has an input x2 and a keyK hardwired

in its description:

1. Upon receiving a message msg1 from P1 as input, the program honestly computes the protocol
message msg2 of P2 (as per protocol Π) using input x2 and randomness r = F (K,msg), where F
is another PRF.

2. Upon receiving a protocol transcript (msg1,msg2,msg3), it re-computes the randomness r used to
compute msg2. Using the transcript, randomness r and input x2, it computes the output honestly.

The adversary P2 does not perform any computation on its own. Upon receiving a message msg1

from P1, it runs the obfuscated program on msg1 to obtain msg2 and then forwards it to P1. Finally,
upon receiving msg3 from P1, it submits the protocol transcript (msg1,msg2,msg3) to the obfuscated
program to obtain an output y.

Proof Strategy: Attempt #1. For any simulator S for Π, let Q denote the possible set of queries made
by S to the ideal function. The core argument in our proof is that the query set Q cannot contain
P2’s input x2. At a high-level, our strategy for proving this is as follows: first, we want to switch the
auxiliary input Z to a different auxiliary input Z ′ that has some other input x′2 hardwired inside it.
We want to rely upon the security of Π against adversarial P1 in order to make this switch. Once we
have made this switch, then we can easily argue that the Q cannot contain x2 since the view of S is
independent of x2.

Problem: Rewinding Attacks. The above proof strategy runs into the following issue: since the adversary
P2 includes the protocol output in its view, a simulator S may fix the first two messages of the protocol
and then try to observe the output of P2 on many different third messages. Indeed, a simulator may
be able to learn non-trivial information by simply observing whether the adversary accepts or aborts
on different trials.

A naive approach to try to address this problem is to simply remove the output from adversary’s
view. That is, we simply delete the second instruction in the obfuscated program Z. Now, P2 never
processes the messages received from P1. This approach, however, immediately fails because now a
simulator can simply simulate a “rejecting” transcript. Since there is no way for the distinguisher to
check the validity of the transcript (since P2’s output is not part of its view), the simulator can easily
fool the distinguisher.

Non-uniform Distinguishers. We address this problem by using non-uniform distinguishers, in a manner
similar to [25]. Specifically, we modify P2 to be such that it simply outputs the protocol transcript
at the end of the protocol. The PRF key K hardwired inside Z (and used to compute P2’s protocol
message) is given as non-uniform advice to the distinguisher. Note that this information is not available
to the simulator.

Now, given K and the protocol transcript, the distinguisher can easily compute P2’s output. There-
fore, a simulator can no longer fool the distinguisher via a rejecting transcrupt. Furthermore, now, the
protocol output is not part of P2’s view, and therefore, rewinding attacks are also ruled out.

Revised Proof Strategy. Let us now return to our proof strategy. Recall that we want to switch the
auxiliary input Z to a different auxiliary input Z ′ that has some other input x′2 hardwired inside it.
Once we have made this switch, then we can easily argue that the Q cannot contain x2 since the view
of S is independent of x2.

We make the switch from auxiliary input Z to Z ′ via a sequence of hybrids. In particular, we go
through 2L number of hybrids, one for every possible first message msg1 of P1. In the ith hybrid, we use
an auxiliary input Zi that has both x2 and x′2 hardwired inside it. On input first messages msg1 < i, it

7

uses x2 to compute the second message, and otherwise, it uses x′2. In order to argue indistinguishability
of hybrids i and i + 1, we use the security of protocol Π against malicious P1. Indeed, this is why we
require 2O(L)-indistinguishability security against adversarial P1.

In order to perform the above proof strategy using indistinguishability obfuscation (as opposed to
virtual black-box obfuscation), we make use of puncturable PRFs and use the “punctured programming”
techniques [38] that have been used in a large body of works over the last few years. We refer the reader
to the technical sections for further details.

1.3 Related Works

Katz and Ostrovsky [30] constructed a four-round two-party computation protocol for general functions
where one of the parties receives the output. Recently, Garg et al. [18] extended their work to the
simultaneous-message model.

Three round zero-knowledge proofs were first constructed in [27, 6] using “knowledge assumptions.”
More recently, [8, 7] construct three-round zero-knowledge proofs adversaries that receive auxiliary
inputs of a priori bounded size. Our positive result is directly inspired by these works.

A recent work of Döttling et al. [13] constructs a two-round two-party computation protocol for
oblivious computation of cryptographic functionalities. They consider semi-honest senders and mali-
cious receivers, and prove game-based security against the latter. In contrast, in this work, we consider
polynomial-time simulation-based security.

2 Preliminaries

We denote the security parameter by λ. We assume familiarity with standard cryptographic primitives.

General Notation. If A is a probabilistic polynomial time algorithm, then we write y ← A(x) to
denote that one execution of A on x yields y. Furthermore, we denote y ← A(x; r) to denote that A
on input x and randomness r, outputs y. If D is a distribution, we mean x

$←− D to mean that x is
sampled from D.

Two distributions D1 and D2, defined on the same sample space, are said to be computationally
distinguishable, denoted by D1

∼=c,ε D2 if the following holds: for any PPT adversary A and sufficiently
large security parameter λ ∈ N it holds that,

|Pr[1← A(1λ, s1) : s1
$←− D1(1λ)]− Pr[1← A(1λ, s2) : s2

$←− D2(1λ)]| ≤ ε,

If ε is some negligible function then we denote this by D1
∼=c D2.

Languages and Relations. A language L is a subset of {0, 1}∗. A relation R is a subset of {0, 1}∗×
{0, 1}∗. We use the following notation:

• Suppose R is a relation. We define R to be efficiently decidable if there exists an algorithm A
and fixed polynomial p such that (x,w) ∈ R if and only if A(x,w) = 1 and the running time of
A is upper bounded by p(|x|, |w|).

• Suppose R is an efficiently decidable relation. We say that R is a NP relation if L(R) is a NP
language, where L(R) is defined as follows: x ∈ L(R) if and only if there exists w such that
(x,w) ∈ R and |w| ≤ p(|x|) for some fixed polynomial p.

8

Modeling Real World Adversaries: Uniform versus Non Uniform. One way to model real
world adversaries A is by representing them as a class of non uniform circuits C, one circuit per
input length. This is the standard definition of adversaries considered in the literature. We call such
adversaries non uniform adversaries.

Yet another type of adversaries are µ-bounded uniform adversaries: in this case, the real world A
is represented by a probabilistic Turing machine M and can additionally receive as input auxiliary
information of length at most µ(λ). The description size of A is the sum total of the description size of
M and µ(λ). We say that A is uniform if it does not receive any additional auxiliary information. In
this case, the description size of A is nothing but the description size of the Turing machine representing
A.

Notation for Protocols. Consider a two party protocol Π between parties P1 and P2. We define the
notation P1.MsgGen[Π] (resp., P2.MsgGen[Π]) to denote the algorithm that generates the next message
of P1 (resp., P2). The notation β ← P1.MsgGen[Π](α, st; r) indicates that the output of next message
algorithm of party P1 on input α, current state st and randomness r is the string β. Initially, st is set
to ⊥. For convenience of notation, we assume that the MsgGen[·] is a stateful algorithm and hence, we
avoid describing the parameter st explicitly.

We denote the view of a party in a secure protocol to consist of its input, randomness and the
transcript of messages exchanged by the party. For a party P with input y (that includes randomness),
we denote its view by ViewP,y.

2.1 Secure Two-Party Computation

A secure two-party computation protocol is carried out between two parties P1 and P2 (modeled as
interactive Turing machines) and is associated with a deterministic functionality f . Party P1 has input
x1 and P2 has input x2. At the end of the protocol, P2 gets the output.

Simulation-based Security. We follow the real/ideal world paradigm to formalize the security of a
two party computation protocol Π2PC secure against malicious adversaries.6 We follow the description
presented in Lindell-Pinkas [34]. First, we begin with the ideal process.

Ideal Process: The ideal world is associated with a trusted party and parties P1, P2. At most one
of P1, P2 is controlled by an adversary7. The process proceeds in the following steps:

1. Input Distribution: The environment distributes the inputs x1 and x2 to parties P1 and P2

respectively.

2. Inputs to Trusted Party: The parties now send their inputs to the trusted party. The honest
party sends the same input it received from the environment to the trusted party. The adversary,
however, can send a different input to the trusted party.

3. Aborting Adversaries: An adversarial party can then send a message to the trusted party to
abort the execution. Upon receiving this, the trusted party terminates the ideal world execution.
Otherwise, the following steps are executed.

6Malicious adversaries can arbitrarily deviate from the protocol. The other type of adversaries commonly considered
are semi-honest adversaries, where the adversaries follow the protocol but try to gain information by observing the
conversation with the honest party. Both type of adversaries are allowed to substitute the inputs they receive from the
external environment with inputs of their choice.

7This means that at most one of the parties could deviate from the rules prescribed by the ideal process.

9

4. Trusted party answers party P2: Suppose the trusted party receives inputs x′1 and x′2 from
P1 and P2 respectively. It sends the output out = f(x′1, x

′
2) to P2.

5. Output: If the party P2 is honest, then it outputs out. The adversarial party (P1 or P2) outputs
its entire view.

We denote the adversary participating in the above protocol to be B and the auxiliary input to B is
denoted by z. We define IdealΠ2PC

f,B (x1, x2, z) to be the joint distribution over the outputs of the adversary
and the honest party8.

Real Process: In the real process, both the parties execute the protocol Π2PC. At most one of P1, P2

is controlled by an adversary. We denote the adversarial party to be A. As in the ideal process, they
receive inputs from the environment. We define RealΠ2PC

f,
−→
P

(x1, x2, z) to be the joint distribution over the
outputs of the adversary and the honest party, where z denotes the auxiliary information.

We define the security of two party computation as follows:

Definition 1 (Security). Consider a two party functionality f as defined above. Let Π2PC be a two
party protocol implementing f . We say that Π2PC securely computes f if for every PPT malicious
adversary A in the real world, there exists a PPT adversary B in the ideal world such that: for every
auxiliary information z ∈ {0, 1}poly(λ),

IdealΠ2PC
f,B (x1, x2, z) ∼=c RealΠ2PC

f,A (x1, x2, z)

In this work, we are interested in the setting when the adversary corrupting P2 (who receives the output)
in the above protocol is µ-uniform. We allow for adversarial P1 to be non-uniform. We formally define
this below.

Definition 2 (Security Against µ-Bounded Uniform P2). Consider a two party functionality f as
defined above. Let Π2PC be a two party protocol computing f . We say that Π2PC securely computes
f if the following holds:

• For every µ-bounded uniform malicious adversary A in the real world corrupting party P2, there
exists a PPT adversary B in the ideal world such that: for every auxiliary information z ∈
{0, 1}µ(λ),

IdealΠ2PC
f,B (x1, x2, z) ∼=c RealΠ2PC

f,A (x1, x2, z)

• For every PPT non-uniform malicious adversary A in the real world corrupting P1, there exists
a PPT adversary B in the ideal world such that: for every auxiliary information z ∈ {0, 1}poly(λ),

IdealΠ2PC
f,B (x1, x2, z) ∼=c RealΠ2PC

f,A (x1, x2, z)

3 Building Blocks

We describe the building blocks used in our results.
8If P1 is honest, it does not have any output.

10

3.1 Garbling Schemes

We recall the definition of garbling schemes [39, 5].

Definition 3 (Garbling Schemes). A garbling scheme GC = (Gen,GrbC,GrbI,EvalGC) defined for a
class of circuits C consists of the following polynomial time algorithms:

• Setup, Gen(1λ): On input security parameter λ, it generates the secret parameters gcsk.

• Garbled Circuit Generation, GrbC(gcsk, C): On input secret parameters gcsk and circuit
C ∈ C, it generates the garbled circuit Ĉ.

• Generation of Garbling Keys, GrbI(gcsk): On input secret parameters gcsk, it generates the
wire keys 〈k〉 = (k1, . . . ,k`), where ki = (k0

i , k
1
i).

• Evaluation, EvalGC(Ĉ, (kx11 , . . . , kx``)): On input garbled circuit Ĉ, wire keys (kx11 , . . . , kx``), it
generates the output out.

It satisfies the following properties:

• Correctness: For every circuit C ∈ C of input length `, x ∈ {0, 1}`, for every security parameter
λ ∈ N, it should hold that:

Pr

C(x)← EvalGC(Ĉ, (kx11 , . . . , kx``)) :

gcsk← Gen(1λ),

Ĉ ← GrbC(gcsk, C),
((k0

1, k
1
1), . . . , (k0

` , k
1
`))← GrbI(gcsk)

 = 1

• Security: There exists a PPT simulator Sim such that the following holds for every circuit C ∈ C
of input length `, x ∈ {0, 1}`,{(

Ĉ, kx11 , . . . , kx``

)}
∼=c

{
Sim(1λ, φ(C), C(x))

}
,

where:

– gcsk← Gen(1λ)

– Ĉ ← GrbC(gcsk, C)

– ((k0
1, k

1
1), . . . , (k0

` , k
1
`))← GrbI(gcsk)

– φ(C) is the topology of C.

Theorem 3 ([39]). Assuming one-way functions, there exists a secure garbling scheme.

Deterministic Garbling. For our results, we need a garbling scheme where the circuit garbling
algorithms and the garbling key generation algorithms are deterministic. Any garbling scheme can be
transformed into one satisfying these properties by generating a PRF key as part of the setup algorithm.
The randomness in the circuit garbling and the garbling key generation algorithms can be derived from
the PRF key.

11

3.2 Oblivious Transfer

We recall the notion of oblivious transfer [37, 15] below. We adopt the indistinguishability security
notion. Against malicious senders, indistinguishability security says that a malicious sender should
not be able to distinguish the receiver’s input. Defining security against malicious receivers is more
tricky, we require that if c is the choice bit committed to by the receiver then the receiver should get
no information about the bit bc in the pair (b0, b1), where (b0, b1) is the pair of bits used by the honest
sender. This is formalized by using unbounded extraction.

Definition 4 (Oblivious Transfer). A 1-out-2 oblivious transfer (OT) protocol OT is a two party protocol
between a sender and a receiver. A sender has two input bits (b0, b1) and the receiver has a choice
bit c. At the end of the protocol, the receiver receives an output bit b′. We denote this process by
b′ ← 〈Sen(b0, b1), Rec(c)〉.

We require that an OT protocol satisfies the following properties:

• Correctness: For every b0, b1, c ∈ {0, 1}, we have:

Pr[bc ← 〈Sen(b0, b1), Rec(c)〉] = 1

• Indistinguishability security against malicious senders: For all PPT senders Sen∗, for all
auxiliary information z ∈ {0, 1}∗ we have,

|Pr[1← 〈Sen∗(z), Rec(0)〉]− Pr[1← 〈Sen∗(z), Rec(1)〉]| ≤ 1

2
+ negl(λ).

• Indistinguishability Security against malicious receivers: For all PPT receivers Rec∗, we
require that the following holds. There exists an extractor Ext (not necessarily efficient) that
extracts a bit from the view of Rec∗ such that the following holds: For any auxiliary information
z ∈ {0, 1}∗,

|Pr[1← 〈Sen({bc, bc}c∈{0,1}), Rec∗(z)〉 | c← Ext(ViewRec∗,z)]

− Pr[1← 〈Sen({bc, bc}c∈{0,1}, Rec∗(z)〉 | c← Ext(ViewRec∗,z)]| ≤ 1

2
+ negl(λ).

We define `-parallel 1-out-2 OT to be a protocol that is composed of ` parallel executions of 1-ou-2 OT
protocol.

For our main result, we require an oblivious transfer protocol that satisfies the following additional
property.

Definition 5 (Uniqueness of Transcript). Consider an 1-out-2 oblivious transfer protocol OT between
two parties P1 (sender) and P2 (receiver). We say that OT satisfies uniqueness of transcript prop-
erty if the following holds: Consider an execution of P1(b0, b1; r1) and P2(c; r2) and let the transcript
of the execution be denoted by Transcript = (OT1, . . . , OTk). Suppose there exists c′ ∈ {0, 1} and string
r′2 such that the execution of P1(b0, b1; r1) and P2(c′; r′2) leads to the same transcript Transcript then it
should hold that c′ = c and r2 = r′2. Also it follows that, given r2, we can recover c in polynomial time.

Remark 1. The above property can also be defined for the n-parallel 1-out-2 oblivious transfer protocol.
If a n-parallel 1-out-2 oblivious transfer protocol, denoted by OTn, is composed of n parallel copies
of OT and if OT satisfies uniqueness of transcript property then so does OTn. In particular, given
the randomness of the receiver of OTn, it is possible to recover the n bit length string of the receiver
efficiently.

12

Instantiation: Naor-Pinkas Protocol [35]. Naor-Pinkas proposed a two message oblivious transfer
protocol whose security is based on the Decisional Diffie-Hellman (DDH) assumption.

We claim that their protocol satisfies uniqueness of transcript property. In order to do that, we recall
the first message (sent by receiver to sender) in their protocol: Let bit be the input of receiver. Consider
a group G where DDH is hard. Let g be a generator of G. The receiver generates ga, gb and cbit = ab.
It generates c1−bit at random such that cbit 6= c1−bit. It sends v1 = ga, v2 = gb, v3 = gc0 , v4 = gc1 to the
sender.

The elements v1 and v2 uniquely determine a and b. Furthermore, exactly one of v3 or v4 corresponds
to gab and this uniquely determines the bit. Furthermore, note that this also uniquely determines the
randomness used.

While we only deal with 1-out-2 OT protocol above, we can generalize the above proof to also work
for n-parallel 1-out-2 OT protocol.

Theorem 4 ([35]). Assuming DDH, there exists an oblivious transfer protocol satisfying Definition 5
as well as the uniqueness of transcript property.

3.3 Two Message Secure Function Evaluation

As a building block in our construction, we consider a two message secure function evaluation protocol.
Since we are restricted to just two messages, we can only expect one of the parties to get the output.

We designate P1 to be the party receiving the output and the other party to be P2. That is, the
protocol proceeds by P1 sending the first message to P2 and the second message is the response by P2.

Indistinguishability Security. We require malicious (indistinguishability) security against P1 and
malicious (indistinguishability) security against P2. We define both of them below.

First, we define an indistinguishability security notion against malicious P1. To do that, we employ
an extraction mechanism to extract P1’s input x∗1. We then argue that P1 should not be able to
distinguish whether P2 uses x0

2 or x1
2 in the protocol as long as f(x∗1, x

0
2) = f(x∗1, x

1
2). We don’t place

any requirements on the computational complexity of the extraction mechanism.

Definition 6 (Indistinguishability Security: Malicious P1). Consider a two message secure function
evaluation protocol for a functionality f between parties P1 and P2 such that P1 is getting the output.
We say that the two party secure computation protocol satisfies indistinguishability security against
malicious P1 if for every adversarial P ∗1 , there is an extractor Ext (not necessarily efficient) such the
following holds. Consider the following experiment:
Expt(1λ, b):

• P ∗1 outputs the first message msg1.

• Extractor Ext on input msg1 outputs x∗1.

• Let x0
2, x

1
2 be two inputs such that f(x∗1, x

0
2) = f(x∗1, x

1
2). Party P2 on input msg1 and xb2, outputs

the second message msg2.

• P ∗1 upon receiving the second message outputs a bit out.

• Output out.

We require that, ∣∣∣Pr[1← Expt(1λ, 0)]− Pr[1← Expt(1λ, 1)]
∣∣∣ ≤ negl(λ),

for some negligible function negl.

13

We now define security against malicious P2. We insist that P2 should not be able to distinguish which
input P1 used to compute its messages.

Definition 7 (Indistinguishability Security: Malicious P2). Consider a two message secure function
evaluation protocol for a functionality f between parties P1 and P2 where P1 gets the output. We say that
the two party secure computation protocol satisfies indistinguishability security against malicious
P2 if for every adversarial P ∗2 , the following holds: Consider two strings x0

1 and x1
2. Denote by Db the

distribution of the first message (sent to P2) generated using xb1 as P1’s input. The distributions D0

and D1 are computationally indistinguishable.

Instantiation. We can instantiate such a two message secure evaluation protocol using garbled cir-
cuits and `1-parallel 1-out-2 two message oblivious transfer protocol OT by Naor-Pinkas [35]. Recall
that this protocol satisfies uniqueness of transcript property (Definition 5). We denote the garbling
schemes by GC.

We describe this protocol below. The input of P1 is x1 and the input of P2 is x2. Recall that P1 is
designated to receive the output.

• P1 → P2: P1 computes the first message of OT as a function of its input x1 of input length `1.
Denote this message by OT1. It sends OT1 to P2.

• P2 → P1: P2 computes the following:

– It generates Gen(1λ) to get gcsk.

– It then computes GrbC(gcsk, C) to obtain Ĉ. C is a circuit with x2 hardwired in it; it takes
as input x1 and computes f(x1, x2).

– It computes GrbI(gcsk) to obtain the wire keys (k1, . . . ,k`1), where every ki is composed of
two keys (k0

i , k
1
i).

– It computes the second message of OT, denoted by OT2, as a function of (k1, . . . ,k`1).

It sends (Ĉ, OT2) to P1.

• P1: Upon receiving (Ĉ, OT2), it recovers the wire keys (k1, . . . , k`1). It then executes EvalGC(Ĉ, (k1, . . . ,
k`1)) to obtain out. It outputs out.

The correctness of the above protocol immediately follows from the correctness of garbling schemes and
oblivious transfer protocol. We now focus on security.

Theorem 5. Assuming the security of GC and OT and assuming that OT satisfies uniqueness of
transcript property (Definition 5), the above protocol is secure against malicious P1 (Definition 6).

Proof. We first describe the inefficient extractor Ext that extracts P1’s input from its first message.
From the uniqueness of transcript property of OT, it follows that given P1’s first message OT1, there
exists a unique input x∗1 and randomness r that was used to compute the message of P1. Thus, Ext can
find this input x∗1 by performing a brute force search on all possible inputs and randomness.

We prove the theorem with respect to the extractor described above. In the first hybrid described
below, challenge bit b is used to determine which of the two inputs of P2 needs to be picked. In the
final hybrid, P2 always picks the first of the two inputs.

Hyb1.b for b
$←− {0, 1}: Let x∗1 be the input extracted by the extractor. Let x0

2 and x1
2 be two inputs such

that f(x∗1, x
0
2) = f(x∗1, x

1
2). Party P2 uses xb2 to compute the second message.

14

Hyb2.b for b
$←− {0, 1}: Let x∗1 be the input extracted by the extractor. We denote the ith bit of x∗1 to

be x∗1,i. As part of the second message, the wire keys (k1, . . . ,k`1), where every ki is composed of two
keys (k0

i , k
1
i). Instead of generating OT2 as a function of (k1, . . . ,k`1), it generates OT2 as a function

of (k′1, . . . ,k
′
`1

). k′i contains
(

0, k
x∗1,i
i

)
if x∗1,i = 1, otherwise it contains

(
k
x∗1,i
i , 0

)
.

Hybrids Hyb1.b and Hyb2.b are computationally distinguishable from the indistinguishability security
against malicious receivers property of the oblivious transfer protocol.

Hyb3.0: Let x∗1 be the input extracted by the extractor. Let x0
2 and x1

2 be two inputs such that
f(x∗1, x

0
2) = f(x∗1, x

1
2). P2 computes the second message as in the previous hybrid. Instead of using xb2

in the computation of the garbled circuit, it instead uses the input x0
2.

Hybrids Hyb2.b and Hyb3.0 are computationally indistinguishable from the security of the garbling
schemes9.

The final hybrid does not contain any information about the challenge bit. This completes the proof.

Theorem 6. Assuming the security of OT, the above protocol is secure against malicious P2 (Defini-
tion 7).

Proof. The proof of this theorem directly follows from the security against malicious senders property
of the oblivious transfer protocol.

3.4 Conditional Disclosure of Secrets (CDS) Protocols

We require another key primitive, conditional disclosure of secrets (CDS) [19, 1] protocol. A CDS
protocol consists of two parties P1 and P2. Both these parties share a common instance X belonging
to a NP language. Further, P2 has a secret s and P1 additionally has a private input w. If w is a valid
witness for X then we require that P1 should be able to recover the secret s at the end of the protocol.
However, if X does not belong to the language then we require that P1 does not get any information
about the secret.

We give the formal definition below.

Definition 8 (CDS Protocols). Conditional Disclosure of Secret protocol, associated with a NP relation
R, is an interactive protocol between two parties P1 (receiver) and P2 (sender). Both P1 and P2 hold
the same instance X. Party P2 holds the secret s ∈ {0, 1}λ and P1 holds a string w ∈ {0, 1}∗. At the
end of the protocol P1 outputs s′. We denote this by s′ ← 〈P1(X, w), P2(X, s)〉.

We require that the CDS protocol satisfies the following properties:

• Correctness: If (X, w) ∈ R then it holds with probability 1 that s← 〈P1(X, w), P2(X, s)〉.

• Soundness: If X /∈ L(R) then, for any boolean distinguisher P ∗1 , for any s0, s1 ∈ {0, 1}λ and for
any auxiliary information z ∈ {0, 1}∗, it holds that,

|Pr[1← 〈P ∗1 (X, s0, s1, z), P2(X, s0)〉]− Pr[1← 〈P ∗1 (X, s0, s1, z), P ∗2 (X, s1)〉] |

≤ negl(λ)

for some negligible function negl.
9Formally this is argued by first simulating the garbled circuit and then switching the input.

15

Construction of Two Message CDS protocol. Since a CDS protocol is a special case of two
party secure computation, we show how a two message secure function evaluation protocol (Section 3.3)
implies a two message CDS protocol.

Theorem 7. Consider a NP relation R. Consider the following two party functionality f that takes as
input ((X′, w); (X, s)) and outputs s if and only if ((X, w) ∈ R) ∧X = X′, otherwise it outputs 0. A
two message secure function evaluation protocol for f is a CDS protocol associated with the relation R.

Proof. The correctness of the CDS protocol immediately follows from the correctness of the two message
secure function evaluation protocol. We now argue soundness.

Consider an instance X /∈ L(R). We now invoke the security of two message SFE (specifically,
Definition 6). There exists an extractor Ext that extracts x∗1 from P ∗1 ’s first message. We claim that
for every x2 of the form (X, s′), it holds that f(x∗1, x2) outputs 0. This follows from the fact that
X /∈ L(R). Using this fact, it follows that P ∗1 cannot distinguish whether P2 used the input (X, s0) or
(X, s1) to compute its message. The theorem thus follows.

3.5 Zero Knowledge Proof Systems

We now recall the notion of zero knowledge [23]. In the definition below, we consider computationally
bounded provers.

Definition 9 (Zero Knowledge Argument of Knowledge). A Zero Knowledge Argument of Knowl-
edge (ZKAoK) system (Prover,Verifier) for a relation R, associated with a NP language L(R), is
an interactive protocol between Prover and Verifier. Prover takes as input (y,w) and verifier Verifier
takes as input y. At the end of the protocol, verifier outputs accept/reject. This process is denoted by
〈Prover(y,w), Verifier(y)〉. It consists of the following properties:

• Completeness: For every (y,w) ∈ R, we have:

Pr [accept← 〈Prover(y,w), Verifier(y)〉] = 1

• Extractability: For every PPT Prover∗, there exists an extractor Ext (that could use the code of
Prover∗ in a non black box manner) such that the following holds: for every auxiliary information
z ∈ {0, 1}∗,∣∣∣Pr[accept← 〈Prover∗(y, z), Verifier(y)〉]− Pr[w∗ ← Ext(1λ, z) : (y,w∗) ∈ R]

∣∣∣
≤ negl(λ)

• Zero Knowledge: For every (y,w) ∈ R, for every PPT Verifier∗, there exists a PPT simulator
Sim (that could use the code of Verifier∗ in a non black box manner) such that the following holds:

{〈Prover(y,w), Verifier∗(y)〉} ≈c
{

Sim(1λ,y)
}

We define a ZKAoK system to be k-message if the number of messages between Prover and Verifier is k.

We require zero knowledge systems satisfying additional properties. We consider them one by one.

Bounded Uniform Zero Knowledge. In the zero knowledge property considered in the definition above,
we require that the malicious verifier is uniform.

16

Definition 10 (µ-Bounded Uniform Zero Knowledge). A proof system (Prover,Verifier) for a relation
R is said to be µ-bounded uniform ZKAoK if the following holds:

• It satisfies correctness and extractability properties as in Definition 9.

• µ-Bounded Uniform Zero Knowledge: For every (y,w) ∈ R, for every PPT Verifier∗ (rep-
resented as a Turing machine), there exists a PPT simulator Sim (that could use the code of
Verifier∗ in a non black box manner) such that the following holds: for any auxiliary information
z ∈ {0, 1}µ(|y|).

{〈Prover(y,w), Verifier∗(y, z)〉} ≈c
{

Sim(1λ,y, z)
}

Remark 2. The special case of 0-bounded uniform zero knowledge (interpreted as a constant function
that always outputs 0) reduces to having the malicious verifiers as uniform algorithms (in particular,
they receive no external advice).

Delayed Statement-Witness. Another useful property we require is to be able to choose the statement
and the witness in the last message of the protocol. We call this, delayed statement-witness property.

Definition 11 (Delayed Statement-Witness). A Zero Knowledge (proof or argument) system is said
to satisfy delayed statement-witness property if both the statement and the witness are fixed only in the
last message of the protocol. In particular, all the messages except the last message depend only on the
length of the instance and the witness.

Instantiation. In this work, we require a ZKAoK system that is both bounded uniform zero knowl-
edge and satisfies delayed statement-witness property. The protocol of Bitansky et al. [8] satisfies both
these properties. Their protocol can be instantiated from Zaps [14], DDH and the Learning with Errors
(LWE) assumption.

Theorem 8 ([8]). Assuming Zaps, DDH and LWE, there exists a ZKAoK system that satisfies both
µ-bounded uniform zero knowledge for some function µ, and delayed statement-witness property.

3.6 Succinct Randomized Encodings

We recall the notion of succinct randomized encodings [9, 12, 32] next.

Definition 12. A succinct randomized encodings scheme SRE = (E,D) for a class of Turing machines
M consists of the following probabilistic polynomial time algorithms:

• Encoding, E(1λ,M, x): On input security parameter λ, Turing machine M ∈M and input x, it
outputs the randomized encoding 〈M,x〉.

• Decoding, D(〈M,x〉): On input randomized encoding of M and x, it outputs out.

We require that the above algorithms satisfies the following properties:

• Correctness: We require that the following holds for every M ∈M, x ∈ {0, 1}∗,

Pr
[
D(〈M,x〉) = M(x) : 〈M,x〉 ← E(1λ,M, x)

]
= 1

• Security: For every PPT adversary A, there exists a PPT simulator Sim such that the following
holds:

{〈M,x〉} ≈c
{

Sim(1λ, 1|M |, 1|x|,M(x))
}
,

where:

17

– 〈M,x〉 ← E(1λ,M, x)

Input-less Turing machines. In this work, we consider input-less Turing machines. These are Turing
machines which on input ⊥, executes some computation and outputs out. We denote the randomized
encoding of an input-less TM to be 〈M〉 ← E(1λ,M,⊥).

3.7 Indistinguishability Obfuscation for Circuits

We define the notion of indistinguishability obfuscation (iO) for circuits [4, 17] below.

Definition 13 (Indistinguishability Obfuscator (iO) for Circuits). A uniform PPT algorithm iO is
called an ε-secure indistinguishability obfuscator for a circuit family {Cλ}λ∈N, where Cλ consists of
circuits C of the form C : {0, 1}` → {0, 1}, if the following holds:

• Completeness: For every λ ∈ N, every C ∈ Cλ, every input x ∈ {0, 1}`, where ` = `(λ) is the
input length of C, we have that

Pr
[
C ′(x) = C(x) : C ′ ← iO(λ,C)

]
= 1

• ε-Indistinguishability: For any PPT distinguisher D, there exists a negligible function negl(·)
such that the following holds: for all sufficiently large λ ∈ N, for all pairs of circuits C0, C1 ∈ Cλ
such that C0(x) = C1(x) for all inputs x ∈ {0, 1}`, where ` = `(λ) is the input length of C0, C1,
we have: ∣∣∣Pr [D(λ, iO(λ,C0)) = 1]− Pr[D(λ, iO(λ,C1)) = 1]

∣∣∣ ≤ ε
If ε is negligible in λ then we refer to iO as a secure indistinguishability obfuscator.

Remark 3. In our work, we require indistinguishability obfuscators where the indistinguishability prop-
erty holds against adversaries running in sub-exponential time (rather than polynomial time). We
refer to such indistinguishability obfuscators as sub-exponentially secure indistinguishability obfusca-
tors. Currently, the existence of several cryptographic primitives are based only on the assumption of
sub-exponential iO.

3.8 Puncturable Pseudorandom Functions

We define the notion of puncturable pseudorandom functions below.

Definition 14. A pseudorandom function of the form PRFpunc(K, ·) is said to be a µ-secure puncturable
PRF if there exists a PPT algorithm Puncture that satisfies the following properties:

• Functionality preserved under puncturing. Puncture takes as input a PRF key K and an
input x and outputs K\{x} such that for all x′ 6= x, PRFpunc(K\{x}, x′) = PRFpunc(K,x

′).

• Pseudorandom at punctured points. For every PPT adversary (A1,A2) such that A1(1λ)

outputs an input x, consider an experiment where K $←− {0, 1}λ and K\{x} ← Puncture(K,x).
Then for all sufficiently large λ ∈ N,∣∣Pr[A2(K\{x}, x,PRFpunc(K,x)) = 1]− Pr[A2(K\{x}, x, Uχ(λ)) = 1]

∣∣ ≤ µ(λ)

where Uχ(λ) is a string drawn uniformly at random from {0, 1}χ(λ).

18

If µ is negligible, we refer to PRFpunc as a secure puncturable PRF.

As observed by [10, 11, 31], the GGM construction [20] of PRFs from one-way functions yields punc-
turable PRFs.

Theorem 9 ([20, 10, 11, 31]). If µ
poly -secure one-way functions exist, for some fixed polynomial poly,

then there exists µ-secure puncturable pseudorandom functions.

4 Generation Protocols

A crucial ingredient in our two party secure computation protocol is a protocol that enables extraction
of the input of P2 during the simulation phase. To achieve this, we introduce the notion of generation
protocols10 below.

This is a two party protocol between a sender and a receiver. The sender has a trapdoor and in
the end of the protocol, the receiver outputs a string. It consists of two properties: (i) soundness:
any adversarial receiver having black-box access to the code of the sender will not be able to recover
the trapdoor of the sender, (ii) extractability: an extractor can successfully recover the trapdoor of the
sender. In the extractability property, we only consider the case when the sender is semi-honest (i.e.,
it behaves according to the description of the protocol).

To make sure that both soundness and extractability don’t contradict each other, we make sure
that the extractor has more capabilities than an adversarial receiver – for instance, an extractor could
rewind the receiver or it could have non black box access to the code of the receiver.

The formal definition of generation protocols is provided below.

Definition 15 (Generation Protocols). A generation protocol is an interactive protocol between two
parties P1(also termed receiver) and P2 (also termed sender). The input to both parties is auxiliary
information z. Party P2, in addition, gets as input trapdoor K ∈ {0, 1}poly(λ). At the end of the
protocol, P1 outputs K ′. We denote this process by K ′ = 〈P1(z), P2(z,K)〉.

The following properties are associated with a generation protocol:

• Soundness: For any PPT non-uniform boolean distinguisher P ∗1 , for any large enough security
parameter λ ∈ N: for every two strings K0,K1 ∈ {0, 1}poly(λ) and auxiliary information z ∈
{0, 1}poly′(λ),

|Pr [1← 〈P ∗1 (z,K0,K1), P2(z,K0)〉]− Pr [1← 〈P ∗1 (z,K0,K1), P2(z,K1)〉]|

≤ 1

2
+ negl(λ)

for some negligible function negl. That is, any distinguisher P ∗1 having black box access to P2

cannot distinguish whether which of K0 and K1 was used in the protocol.

• Extractability: For every semi-honest PPT P ∗2 , there exists a PPT extractor ExtGP (that could
possibly use code of P ∗2 in a non black box manner) such that the following holds: for any auxiliary
information z ∈ {0, 1}poly′(λ),

– The view of P ∗2 (z,K) when it is interacting with P1(z,K) is computationally indistinguishable
from the view of P ∗2 (z,K) when it is interacting with ExtGP(1λ, z).

– Pr
[
K ′ ← 〈ExtGP(1λ, z), P ∗2 (z,K)〉 and K ′ = K

]
≥ 1− negl(λ)

10The name “generation protocol" is taken from the work of [3]. The definition in their work is slightly different, however
they too use the notion of generation protocols to achieve trapdoor extraction.

19

Extractability Against µ-Bounded Uniform Senders. We consider generation protocols where
the extractability property needs to hold against senders modeled as µ-bounded uniform algorithms.
We formally define this below.

Definition 16. A protocol GenProt between sender P1 and receiver P2 is said to be µ-bounded uni-
form generation protocol if the following holds:

• It satisfies the soundness property in Definition 16.

• Extractability against µ-bounded uniform senders: For every semi-honest PPT P2 (mod-
eled as a Turing machine), there exists a PPT extractor ExtGP (that could possibly use code of P2

in a non black box manner) such that the following holds: for any bounded auxiliary information
z ∈ {0, 1}µ(λ),

Pr
[
K ′ ← 〈ExtGP(1λ, z), P2(z,K)〉 and K ′ = K

]
≥ 1− negl(λ)

Remark 4. If µ in the above definition is a constant function that always outputs 0 then this boils
down to the case when the sender is a uniform algorithm (hence, no external advice). In this case, we
refer to the above generation protocol as uniform generation protocol.

4.1 Two-Message GP from Succinct RE

We present a two-message generation protocol starting from a succinct randomized encoding scheme and
a two party secure function evaluation protocol. The security of this scheme will be against µ-bounded
uniform senders.

Tools. The first tool we use is succinct randomized encodings for Turing machines, denoted by
SRE = (E,D). Another tool we use is a two message secure function evaluation protocol Π2PC. In
particular, we use the two message secure function evaluation protocol defined in Section 3.3. We de-
note P1 and P2 to be the parties involved in this protocol. Only P1 outputs in the protocol. Recall
that this protocol satisfies indistinguishability security (Definitions 6 and 7).

Functionality of Π2PC: The functionality f associated with Π2PC is the following: f on input
x2 = (β,K,m,R2,md, θ) from P2 and x1 = (M,R1) (here, |M | ≤ O(µ(λ) + λ)) from P1, it computes
the following:

• If md = 1 then compute the succinct randomized encoding 〈N〉 ← E(1λ, N [β,K,m,M],⊥;R)
(i.e., R is the randomness used in E), where R is set to R1 ⊕ R2. The Turing machine N is an
input-less Turing machine (refer Section 3.6) that does the following: hardwired inside it are the
values (β,K,m,M).

1. It first computes M(m) to get as output out.

2. It interprets the first |β| number of bits of out to be the string β′.

3. It checks if β′ = β. If so, it outputs K. Otherwise, it outputs ⊥.

It outputs 〈N〉.

• If md = 2 then:

1. It outputs θ.

20

Construction. We describe the protocol below. Denote the receiver to be P1 and the sender to be
P2. Call this protocol GenProt.

• Upon input z, P1 (receiver) prepares an input x1 for Π2PC as a µ(λ)-length string of all zeroes. It
takes the role of the party P1 in the protocol Π2PC. It computes the first message msg1 of Π2PC

using the input x1. That is, msg1 ← P1.MsgGen[Π2PC](1λ, x1). It sends msg1 to P2 (sender).

• Upon input z and trapdoor K, P2 (sender) first picks a string β of length `β = poly(λ) such that
`β >> |msg1|. In particular, we require that 2−(`β−µ(λ)−λ) to be negligible. It sets m = msg1.
It samples a string R uniformly at random.

It takes the role of P2 in the protocol Π2PC. It then sets its input to Π2PC to be x2 = (β,K,msg1, R,
md, θ), where md = 1 and θ = 0. Using x2 and msg1, it computes the second message msg2 of
Π2PC using the input x2. That is, msg2 ← P2.MsgGen[Π2PC](1λ, x2,msg1). It sends (β,msg2)
to P1.

Finally, P1 computes the output of Π2PC and recovers the randomized encoding 〈N〉. It then evaluates
the decoding algorithm D(〈N〉) to get the output K ′. It outputs K ′.

This concludes the construction. We argue that the above protocol satisfies the properties of the
generation protocol.

Theorem 10. Assuming the security of Π2PC (Definition 7) and SRE, GenProt satisfies soundness.

Proof. Suppose P ∗1 receives as input two trapdoors K0 and K1. In this case we need to argue that
a malicious P ∗1 having just black box access to (honest) P2 will be unable to distinguish whether P2

is using K0 or K1. In fact, we argue a stronger property: we argue that the behavior of P ∗1 can
be simulated by a PPT simulator even without the knowledge of K. That is, for every adversarial
receiver P ∗1 , there exists a PPT simulator Sim, for every K ∈ {0, 1}poly(λ) and auxiliary information
z ∈ {0, 1}poly′(λ),

|Pr[1← 〈P ∗1 (z), P2(z,K)〉]− Pr[1← 〈P ∗1 (z), Sim(z)〉]| ≤ 1

2
+ negl(λ)

Note that the above property implies soundness property.

Description of Sim(z). It receives as input msg1 from P1. It generates msg2 as follows:

• Let SimSRE be the simulator of the succinct randomized encodings scheme. It then executes
SimSRE(1λ, 1`1 , 1`2 , v), where `1 is the size of M , `2 is the size of m as defined in the description
of functionality for Π2PC and v is set to be ⊥. The output of SimSRE(1λ, 1`1 , 1`2 , v) is denoted by
〈N〉.

• It sets x2 = (0, 0, 0, 0, 2, 〈N〉). It then computes msg2 as a function of x2 and msg1. The
generation of msg2 is performed by running the algorithm of (honest) P2 in Π2PC. That is,
msg2 ← P2.MsgGen[Π2PC](1λ, x2,msg1).

• Finally, it samples a string β of length `β .

Sim then sends (β,msg2) to P2. This ends the description of Sim.

We focus on proving the above stronger property. In the following hybrids, we use extractor Ext asso-
ciated with Π2PC (see Definition 6). Recall that Ext need not necessarily be efficient.

21

Hyb1: This corresponds to the real experiment where P ∗1 (z) is interacting with P2(z,K). The output
of this hybrid is the output of P ∗1 .

Hyb2: In this hybrid, party P2 deviates from the description of the protocol. It uses the extractor Ext
to extract x∗1 = (M,R1). It then sets x′2 = (0, 0, 0, 0, 2, θ) and uses this input to generate the second
message of the protocol Π2PC. That is, msg2 ← P2.MsgGen[Π2PC](1λ, x′2,msg1), where msg1 is the
message sent by P ∗1 . Here, θ is set to be the output f(x∗1, (β,K,msg1, R2, 1, 0)), where R2 is sampled
uniformly at random. P2 sends (β,msg2) to P ∗1 , where β is a string of length `β sampled uniformly at
random. The output of this hybrid is the output of P ∗1 .

Since Ext need not be efficient, P2 is not necessarily efficient.

Claim 1. Assuming the security of Π2PC, hybrids Hyb1 and Hyb2 are computationally indistinguishable.

Proof. Suppose x∗1 = (M,R1), interpreted as the description of a Turing machineM (with the bounded
auxiliary information part of this) along with randomness R1, is the input extracted by the extractor
Ext from the first message of the generation protocol. Let x′2 be the input used by P2 in Hyb1 and let
x′′2 be the input used by P2 in Hyb2. We have that f(x1, x

′
2) = f(x1, x

′′
2). And thus, from the security

of Π2PC (Definition 6), we have that P ∗1 cannot distinguish whether P2 used x′2 or x′′2. The claim thus
follows.

Hyb3: In this hybrid, P2 essentially executes the simulator Sim described above.

Claim 2. Assuming the security of SRE, hybrids Hyb2 and Hyb3 are computationally indistinguishable.

Proof. Suppose x∗1 = (M,R1), interpreted as a Turing machine M (with the auxiliary information
hardcoded in it) along with randomness R1, is the input extracted by the extractor Ext from the
first message msg1 of Π2PC. Sample string β of length `β uniformly at random. We first make the
following observation. The probability that for any γ, M(γ) outputs the random string β is at most
2−O(`β−µ(λ)−λ), which is negligible. Thus with overwhelming probability we have that N [β,K,msg1,M]
outputs ⊥.

The only difference between Hyb2 and Hyb3 is that in Hyb2, θ is set to 〈N〉 whereas in Hyb3, θ is
set to be the simulated randomized encoding corresponding to the output ⊥. As observed above, N
outputs ⊥ except with negligible probability. Thus, we can invoke the security of randomized encodings
to argue that Hyb2 and Hyb3 are computationally indistinguishable.

From the indistinguishability of Hyb1 and Hyb3, we have that P ∗1 cannot distinguish whether it is
interacting with P2 versus interacting with Sim. This completes the proof.

Theorem 11. Assuming the correctness, security properties of Π2PC (Definition 6) and SRE, GenProt
satisfies extractability against µ-uniform senders.

Proof. We design an extractor ExtGP that extracts the trapdoor from the semi-honest sender P ∗2 . The
extractor has the knowledge of the code used by P ∗2 . Call the Turing machine executed by P ∗2 to be
M (which has auxiliary information hardcoded in it). Since we are assuming that P ∗2 is µ-bounded
uniform, we have |M | ≤ O(µ(λ) + λ): this is to account for the auxiliary information whose length is
at most µ(λ) and representing the Turing machine requires size at most λ.

Now, the extractor proceeds as follows: it sets the input to Π2PC to be M . It then computes the
first message msg1 of Π2PC and sends it to P ∗2 . Then, P ∗2 computes (β,msg2) and sends it to the
extractor.

22

• From the security of Π2PC (Definition 6), the view of P ∗2 when interacting with P1 is computa-
tionally indistinguishable from the view of P2 when interacting with ExtGP. Recall that P1 uses
the input 0 in the first message and ExtGP uses the input M in the first message.

• Since P ∗2 is semi-honest, it computes the second message of Π2PC honestly. From the correctness
of Π2PC, it follows that the extractor can recover the randomized encoding 〈N〉 from Π2PC. From
the correctness of SRE, it further follows that the decoding of 〈N〉 yields K if and only if the
first `β bits of M(msg1) yields β. Since M was chosen to be the code of P ∗2 , it follows that the
decoding of 〈N〉 does yield K.

From the above two bullets, we have that GenProt satisfies extractability property.

5 Three-Round Secure Computation

Consider any boolean functionality f : {0, 1}`1 ×{0, 1}`2 → {0, 1}, where the output is delivered to the
second party. We construct a three-round secure two-party computation protocol Π2PC that securely
computes f against bounded non-uniform adversaries. We denote the two parties involved in the
protocol as P1 and P2.

Building Blocks. We describe the building blocks used in our protocol.

1. Garbling scheme for circuits (Definition 3), denoted by GC = (Gen,GrbC,GrbI,EvalGC).
Without loss of generality we can assume that GrbC and GrbI are deterministic algorithms.

2. Two message `2-parallel 1-out-2 oblivious transfer protocol (Definition 4), denoted
by OT. We require security against malicious receivers. We additionally require that the OT protocol
satisfies uniqueness of transcript property (Definition 5).
3. Three message Zero Knowledge Argument of Knowledge (ZKAoK) System (Defi-
nition 9) for NP. We require that the 3-message ZKAoK system ZK = (Prover,Verifier) satisfies the
delayed statement-witness property (Definition 11).

We denote the relation associated with the above system to be Rzk. And let L(Rzk) be the associ-
ated language. The relation Rzk is described in Figure 2.

4. Two Message Generation Protocol (Definition 16) denoted by GenProt. In particular, we
are interested in generation protocols satisfying special extraction property. We consider a two message
generation protocol. The role of the sender of GenProt is played by P2 and the role of the receiver of
GenProt is played by P1.

5. Two Message Conditional Disclose of Secret (CDS) Protocol (Definition 8), denoted
by CDSProt. The associated relation Rcds is described in Figure 1.

6. Other tools. We additionally use pseudorandom functions, denoted by PRF, in this construction.

Protocol Π2PC. We now proceed to describe protocol Π2PC.

1. P1 → P2: On input x1 of length `1, party P1 does the following:

• Compute the prover’s message of ZK, denoted by ZK1.
• It computes the first message of the generation protocol using randomness Rrecgp . That is,
GP1 ← Rec.MsgGen[GenProt](Rrecgp).

23

Relation Rcds for CDS Protocol

Input: y = (OT1, s,GP1, GP2)
Witness: w = (x2, R

rec
ot ,K,R

sen
gp)

(y, w) is in relation Rcds if and only if the following conditions are satisfied:

1. OT1 is generated as a function of x2 and Rrecot . That is, OT1 ← Rec.MsgGen[OT](x2;Rrecot).

2. The trapdoor K was used honestly to generate the message GP1 using GenProt. The randomness
used by the sender in this protocol is Rsengp . That is, GP1 ← Sen.MsgGen[GenProt](K;Rsengp).

3. Rrecot ← PRF(K, 1).

4. s← PRF(K, 2)⊕ x2.

Figure 1: Relation Rcds associated with CDS

Relation Rzk for ZKAoK Protocol

Input : y = (CDS1, CDS2, OT1, OT2)

Witness : w = (Rgc, R
sen
ot , R

sen
cds , Ĉ)

(y, w) is in relation Rzk if and only if the following conditions are satisfied:

1. Garbling key is generated as follows; gcsk ← Gen(1λ;Rgc). Garbled circuit Ĉ is generated as
Ĉ ← GrbC(gcsk, C). Wire keys are generated as 〈k〉 ← GrbI(gcsk).

2. The second message of OT is generated as OT2 ← Sen.MsgGen[OT](〈k〉, OT1;Rsenot).

3. CDS2 is computed as a function of CDS1 and randomness Rsencds . That is, CDS2 ←
Sen.MsgGen[CDSProt](CDS1;Rsencds).

Figure 2: Relation Rzk associated with ZKAoK

It sends (ZK1, GP1) to P2.

2. P2 → P1: Party P2 computes the third message as follows:

• Compute the verifier’s message of ZK. Denote this by ZK2.

• It computes Rrecot = PRF(K, 1), randomness used in OT.

• It computes the first message of OT, denoted by OT1, as a function of its input x2 and
randomness Rrecot . That is, OT1 ← Rec.MsgGen[OT](x2;Rrecot), where Rec is the receiver
algorithm of OT. Here, x2 is interpreted as a vector with the ith entry being the ith bit of
x2.

• Generate the second message of GenProt, i.e., GP2, as a function of GP1, and freshly sampled
randomness Rsengp . That is, GP2 ← Sen.MsgGen[GenProt](K,GP1;Rsengp).

• Compute s = PRF(K, 2)⊕ x2.

24

• Generate the first message of CDS protocol, denoted by CDS1, as a function of instance
y = (OT1, s,GP1, GP2), witness w = (x2, Rot) and randomness Rreccds. That is, CDS1 ←
Rec.MsgGen(y, w;Rreccds).

It sends (ZK2, OT1, GP2, CDS1, s) to P1.

3. P1 → P2: P1 computes the final message as follows:

• Execute gcsk ← GC.Gen(1λ;Rgc), where Rgc is the randomness used in the algorithm. Ex-
ecute 〈k〉 = (k1, . . . ,k`2) ← GC.GrbI(gcsk), where `2 is the input length of party P2. For
every i ∈ [`2], we have ki = (k0

i , k
1
i).

• It computes the garbled circuit Ĉ ← GrbC(gcsk, C), where C is a boolean circuit defined as
C(y) = f(x1, y), where y is of length `2.

• It computes the second message of OT as a function of first message and randomness Rsenot .
That is, OT2 ← Sen.MsgGen[OT](〈k〉, OT1;Rsenot).

• It computes the second message of CDSProt as a function of first message CDS1, instance
y (its computed the same way as P2 does), secret s = Ĉ and randomness Rsencds . That is,
CDS2 ← Sen.MsgGen[CDSProt](CDS1,y, s;R

sen
cds).

• It computes the final message of ZK, namely ZK3. This is computed as a function of instance
(CDS1, CDS2, OT1, OT2) and witness (Rgc, R

sen
ot , R

sen
cds , Ĉ).

Finally, P2 recovers out from its view using the algorithm in Figure 3.

Output Computation:

P2 computes the following:

• Checks if the verifier of ZK accepts on input the transcript of ZK. If the
check fails, abort.

• From the transcript of OT protocol, recover the value 〈k〉x2
=

(kb11 , . . . , k
b`2
`2

).

• Recover the garbled circuit Ĉ from the transcript of the CDS protocol.

• Finally, execute the evaluation algorithm EvalGC(Ĉ, 〈k〉x2) to obtain the
value out.

Output out.

Figure 3: Computation of Output

Theorem 12. Assuming the security of the following primitives: garbling scheme GC, oblivious transfer
protocol OT, ZKAoK system ZK, generation protocol GenProt, conditional disclosure of secrets protocol
CDSProt and pseudorandom functions PRF, we have that Π2PC is secure against malicious adversaries
(Definition 1).

Proof. Here we give the proof of Theorem 12. We start by arguing correctness of the protocol.

• From the correctness of CDS protocol, it follows that P2 receives Ĉ, where C = f(x1, ·) and Ĉ is
computed according to the description of the garbling scheme.

25

• From the correctness of oblivious transfer protocol, it follows that P2 receives the garbling wire
keys w.r.t its input x2, where the wire keys are computed according to the description of the
garbling scheme.

• From the correctness of garbling schemes, it follows that the evaluation of Ĉ on the wire keys
obtained above leads to the output f(x1, x2), as desired.

• From the correctness of zero knowledge, it follows that P2 accepts P1’s argument with probability
1.

We now proceed to prove security. We consider two cases, depending on which party is corrupted.

Case 1. P1 is corrupted: Let A be the real world adversary that corrupts P1. We describe the ideal
world simulator below.

SimAP1
: Upon receiving the first message from A, the simulator employs the rewinding extractor of ZK,

denoted by ExtZK, to extract the input x1 of P1. The simulator executes other protocols, i.e., OT,
CDSProt and GenProt honestly as given in the description of P2 with the exception that the input x2

is set to 0. That is, the first message of oblivious transfer OT1 is generated as a function of 0 and s is
set to 0 ⊕K, where K is the trapdoor in the generation protocol. CDS1 is generated honestly as in
the description of the protocol.

Lemma 1. The joint view of A and P2 in the real world is computationally indistinguishable from the
joint view of SimAP1

and P2 in the ideal world.

Proof. We employ the standard hybrid argument. The hybrids are described below.

Hyb1: This corresponds to the real world. The output of this hybrid is the joint view of A and P2.

Hyb2: In this hybrid, instead of executing the honest verifier of ZK, use the rewinding extractor of
ZK to extract the input x1 of P1. Once x1 is extracted, P2 just computes the output out = f(x1, x2)
where x2 is the input of P2. The rest of the messages are computed according to the description of the
protocol. The output of P2 is out.

Claim 3. Assuming the extractability property of ZK, hybrids Hyb1 and Hyb2 are computationally
indistinguishable.

Proof. The extractability property of ZK dictates that if the prover convinces the verifier with prob-
ability ε (in Hyb1) then the extractor successfully extracts P1’s input with probability ε ± negl(λ) (in
Hyb2). Hence, the extractability property immediately implies the computational indistinguishability
of Hyb1 and Hyb2.

Hyb3: Recall that in the previous hybrids, the common trapdoor K is used to generate messages in OT,
GenProt and also to generate the string s. However, in this hybrid the second message of GenProt, party
P2 uses the trapdoor K ′ which is picked uniformly at random and independent of all other parameters.
In particular, the trapdoor K is still used to generate the string s and also in the generation of OT
protocol.

Claim 4. Assuming the soundness of GenProt, hybrids Hyb2 and Hyb3 are computationally indistin-
guishable.

26

Proof. The soundness property of GenProt dictates that any adversarial party having black box access
to P2 cannot distinguish whether P2 is using K and K ′ in the generation protocol. This should be true
if the adversary is given both the trapdoors K and K ′. Thus this property implies the computational
indistinguishability of Hyb2 and Hyb3.

Hyb4: Recall that in the previous hybrid, the string s and the OT messages were both generated using
K. In particular, s was generated using PRF(K, 2) and the OT message is generated using PRF(K, 1). In
this hybrid, we replace PRF(K, 2) and PRF(K, 1) with two uniformly random and independent strings.

Claim 5. Assuming the security of PRF, hybrids Hyb3 and Hyb4 are computationally indistinguishable.

Since the PRF key K was removed in Hyb3, the proof of the above claim directly follows from the
security of PRF.

Hyb5: The second message of OT is generated by P2 using the input 0.
Since the randomness in the oblivious transfer protocols is uniform (instead of being generated as

an output of pseudorandom function), we can use the security against adversarial senders property of
the OT protocol to argue that hybrids Hyb4 and Hyb5 are computationally indistinguishable.

Claim 6. Assuming the security of OT, hybrids Hyb4 and Hyb5 are computationally indistinguishable.

Hyb6: This corresponds to the ideal world. The output of this hybrid is the joint view of the simulator
SimAP1

and the party P1.

Claim 7. The output distributions of Hyb5 and Hyb6 are identically distributed.

Proof. The hybrid P2 employed in Hyb5 behaves identically to the description of the simulator SimAP1
.

The claim thus follows.

Case 2. P2 is corrupted: Let A be the adversary that corrupts P2. We describe the simulator as follows.

SimAP2
: It runs the simulator of ZK to simulate the messages corresponding to ZK. It runs the extraction

procedure of GenProt to obtain the trapdoor K. If K = ⊥, it aborts. Let s be the string sent by
malicious P2 as part of the third message in the protocol. It then extracts the input of P2 in two ways:

• It then computes x′2 = s⊕K.

• It then recovers x′′2 from the transcript of the oblivious transfer protocol, where it sets the ran-
domness of P2 as PRF(K, 1).

If x′2 6= x′′2 then it sets Ĉ to ⊥. Otherwise, it submits x′2 to the ideal functionality and in response it
receives out. And then, it does the following.

Let Simgc be the simulator of the garbling scheme GC. The simulator SimAP2
generates (Ĉsim,k

∗)←
Simgc(1

λ, φ(C), out), where C is as described in the protocol. It uses k∗ = (k∗1, . . . ,k
∗
n) in the oblivious

transfer protocol as follows: it generates a 2`2 bit string with the ith pair in k∗ set to be k∗i = (k∗i , k
∗
i)

(i.e, both the bits are identical). The CDS messages are generated honestly with Ĉ being used as the
secret in the protocol.

Lemma 2. The joint view of P1 and A in the real world is computationally indistinguishable from the
view of SimAP2

and A in the ideal world.

27

Proof. We employ the standard hybrid argument. We describe the hybrids below.

Hyb1: This corresponds to the real world. The output of this hybrid is the joint view of P1 and A.

Hyb2: In this hybrid, P1 generates ZK using the simulator of ZK instead of generating them using the
honest prover. The rest of the messages are generated honestly as in the description of the protocol.

The proof of the following claim is immediate.

Claim 8. Assuming that ZK satisfies zero knowledge property, hybrids Hyb1 and Hyb2 are computa-
tionally indistinguishable.

Hyb3: P1 runs the extractor of GenProt to obtain the trapdoor K. Then it does the following: it
computes Rot = PRF(K, 1) and x′2 = s ⊕ PRF(K, 2). Using Rot, it recovers the receiver’s input x′′2
from the transcript of the oblivious transfer. Note that here we are using the uniqueness of transcript
property. P1 computes the rest of the messages as in the previous hybrid. In particular, the extracted
values are not yet used in this hybrid.

The proof of the claim below is immediate.

Claim 9. The output distributions of hybrids Hyb2 and Hyb3 are identically distributed.

We prove the following claim that will be useful later.

Claim 10. Suppose that x′2 6= x′′2 in Hyb3. Assuming the extractability property of GenProt and unique-
ness of transcript property of OT, it follows that the CDS instance y associated with Hyb3 is such that
y /∈ L(Rcds).

Proof. We assume that the claim is false. That is, y ∈ L(Rcds). This means that P2 has generated
messages in both GenProt and OT according to the description of the protocols described above. Thus,
P2 is a semi-honest adversary. This means that it explicitly uses a trapdoor K in the generation of
messages in GenProt. Further, it explicitly uses as randomness PRF(K, 1) for some string K. From the
extractability property of GenProt, it follows that P1 can successfully extract K from the transcript
of P2. Furthermore from the uniqueness of transcript property, it follows that using PRF(K, 1) as
randomness, it can recover the input x′′2. Let x′2 be set to PRF(K, 2)⊕ s. Since y ∈ Rcds, it means that
x′2 = x′′2. This contradicts the hypothesis. Thus the claim follows.

Hyb4: Let x′2 and x′′2 be computed as in the previous hybrid. If x′2 6= x′′2 then the secret in the CDS
protocol is set to be ⊥. Otherwise, it generates the message in the CDS protocol as in the previous
hybrid. The rest of the hybrid is the same as before.

Claim 11. Assuming the security of CDSProt, hybrids Hyb4 and Hyb5 are computationally indistin-
guishable.

Proof. From Claim 10, it follows that if x′2 6= x′′2 then the instance y associated with the CDS protocol
is such that y /∈ L(Rcds). We can now invoke the security of CDS to argue that P2 cannot distinguish
which secret P1 uses to compute its messages. Thus, the proof of claim follows.

Hyb5: If x′2 6= x′′2 then the secret in the CDS protocol is set to be ⊥. If x′2 = x′′2, then the simulator
behaves as follows: it generates the second message of the oblivious transfer protocol by setting its 2`2
bit string as kx′2 , where the ith (i ∈ [`2]) pair contains (k0

i , k
0
i) if ith bit of x′2 is 0, otherwise it contains

(k1
i , k

1
i) if ith bit of x′2 is 1. The rest of the hybrid is generated as before.

The following claim is immediate.

Claim 12. Assuming the security of OT (security against adversarial senders), hybrids Hyb4 and Hyb5

are computationally indistinguishable.

28

Hyb6: If x′2 6= x′′2 then the secret in the CDS protocol is set to be ⊥. If x′2 = x′′2 then the simulator
SimAP2

executes as follows:

• It submits x′2 to the ideal functionality. It receives as output out. It then executes the simulator
of the garbling scheme on input out to get (Ĉsim,k

∗)← Simgc(1
λ, 1φ(C), out).

• It generates the message in the protocol OT as before. But this time it uses k∗ to generate the
2n bit string.

• It uses Ĉsim as the secret in the CDS protocol.

The following claim is immediate.

Claim 13. Assuming the security of GC, hybrids Hyb5 and Hyb6 are computationally indistinguishable.

Hyb7: This corresponds to the ideal world.

Claim 14. The output distributions of Hyb6 and Hyb7 are identical.

Proof. The description of P1 in Hyb6 is identical to the description of the simulator SimAP2
. Thus the

claim follows.

From the indistinguishability of every consecutive hybrids described above, we have that the hybrids
Hyb1 and Hyb7 are computationally indistinguishable. This completes the proof.

Instantiating the building blocks (see Section 3), we obtain the following corollary.

Corollary 1. Assuming DDH, LWE, Zaps and succinct randomized encodings, protocol Π2PC is a secure
µ-bounded uniform two party computation protocol satisfying Definition 2.

6 Lower Bound against Non-Uniform Adversaries

In this section, we investigate the feasibility of three-round two party computation protocols that achieve
security against non-uniform adversaries.

Notation. We denote the first party, namely the sender, by P1. The second party, namely, the output
receiver is denoted by P2. We consider two-party computation protocols that achieve:

• Simulation Security against Receivers: Standard simulation-based security against non-
uniform PPT P2.

• Exponential indistinguishability security against Senders: For any fixed pair of inputs
(x2, x

′
x) for P2, a non-uniform PPT P1 can distinguish whether an honest P2’s input in a protocol

execution was x2 or x′2 only with exponentially small probability.

Below, we formalize the exponential-indistinguishability security requirement against adversarial
senders. We then proceed to state our result.

Exponential Indistinguishability Security against Senders. We formally define our security
requirement against adversarial senders that we refer to as INDexp security.

29

Definition 17 (c-INDexp Security). A two party secure computation protocol Π2PC between parties P1

and P2 for a two-party functionality F is said to achieve c-INDexp security if for any non-uniform
PPT P ∗1 , every pair of inputs (x2, x

′
2) for P2, sufficiently large security parameter λ ∈ N, auxiliary

information z ∈ {0, 1}poly(λ), the following holds:∣∣Pr[1← 〈P ∗1 (z), P2(x2)〉]− Pr[1← 〈P ∗1 (z), P2(x′2)〉]
∣∣ ≤ 1

2λc
,

where 〈P ∗1 (z), P2(x2)〉 denotes the single bit output of P ∗1 (z) in the protocol execution of Π2PC with
P2(·).

In the discussion below, whenever clear from the context, we will drop c from c-INDexp security.

Remark 5. Note that secure two-party computation protocols that achieve statistical security against
malicious P1 satisfy INDexp property.

Our Result. We now proceed to describe our negative result. Assuming the existence of sub-
exponentially secure indistinguishability obfuscation and one-way functions, we rule out the existence
of three-round two-party computation protocols for the PRF functionality that achieve INDexp security
against P1 and standard simulation-based security against P2. More precisely, we will show that if
there exists a protocol Π2PC for computing the PRF functionality that achieves INDexp-security against
non-uniform P1, then it cannot achieve simulation-based security against non-uniform P2. In order to
prove this, we will construct an explicit non-uniform adversary A that corrupts P2.

We will in fact prove a stronger theorem below where we rule out protocols whose security depends
on the length of the first message. In particular, if the length of first message of the protocol is
L = L(λ), for some fixed polynomial L, then we roughly require 1

2L(λ) -indistinguishability security
against non-uniform PPT P1.

Theorem 13. Let PRF be a pseudorandom function and let f : {0, 1}`1(λ) × {0, 1}`2(λ) → {0, 1}`3(λ) be
a two-party function defined as f(x1, x2) = PRF(x1, x2).

Let λ be the security parameter. Let Π2PC be any protocol for computing f such that its first message
is of length L(λ) ≤ λ

c
2 , and it achieves c-INDexp security against non-uniform PPT P1. Let λ′ = λc.

Then, assuming the existence of 1
2λ′

-secure iO and 1
2λ′

-secure puncturable PRFs, there exists a PPT
adversary A corrupting P2, and auxiliary information z ∈ {0, 1}poly(λ) such that for any ideal world
PPT adversary B, there exists a non-uniform PPT distinguisher D s.t.∣∣∣Pr

[
1← D

(
IdealΠ2PC

f,B (x1, x2, z)
)]
− Pr

[
1← D

(
RealΠ2PC

f,A (x1, x2, z)
)]∣∣∣ > 1

poly(λ)
,

for some polynomial poly.

Proof. We prove by contradiction. That is, we assume that Π2PC is secure. Let PRF, λ′ and c be as
defined in the theorem statement. Let PRFpunc be a 1

2λ′
-secure puncturable pseudorandom function

and let iO be a 1
2λ′

-secure indistinguishability obfuscator for all circuits. The input domain of PRFpunc
consists of strings of length λc and the output domain consists of strings of length same as the length
of the randomness used by party P2 in Π2PC.

We now construct a (real world) PPT adversary A, controlling P2, and a PPT distinguisher D which
distinguishes the real process and ideal process. At this stage, we cannot argue that the distinguishing
probability is non-negligible. We later, by employing a sequence of hybrids, modify this adversary A
until we obtain an adversary A2.N.2.1. We then show that any simulator defined with respect to this
adversary will be such that the corresponding ideal world will be distinguishable from the real process
with inverse polynomial probability, as desired. We start with the initial description of adversary A.

30

Description of A. Internally, the description of A contains as auxiliary information indistinguisha-
bility obfuscation of C, where C is defined in Figure 4. We denote the obfuscated circuit to be Ĉ.
That is, Ĉ ← iO(1λ

′
, C). Hardwired inside it are values x2 ∈ {0, 1}`2(λ) and PRF key Kp

$←− {0, 1}λ′ .
Whenever party P1 sends the first message msg1, execute Ĉ(msg1) to get msg2. Send msg2 to P1.
Finally, it receives message msg3 from P1. It outputs (msg1,msg2,msg3).

Circuit C

Input : msg1

Hardwired Values : Input x2, pseudorandom function key Kp.

1. Derive the randomness R← PRFpunc(Kp,msg1).

2. Using randomness R, generate P2’s second message msg2 as a function
of msg1 and input x2. Also generate state st. That is, (msg2, st) ←
P2.MsgGen[Π2PC](msg1, x2;R).

3. Output msg2.

Figure 4: Circuit C

Description of D. The distinguisher has hardwired inside it the PRF key Kp. Upon receiving
(msg1,msg2,msg3) from ideal/ real process, it first computes R ← PRFpunc(Kp,msg1). It then gener-
ates P2’s second message msg2 along with state st as a function of msg1 and randomness R. It then
outputs out, where out is the value output by P2 on input the view (msg1,msg2,msg3, R, st).

We now prove the theorem. Consider the following sequence of hybrids.

Hybrids. In every hybrid, we modify the adversary A (defined above) and we calculate the distin-
guishing probability between ideal and real processes. In particular, we define the adversary A in the
hybrid X to be AX . We look at the input query made by the simulator to the ideal functionality in
the hybrid X. We denote this by QX .

We let N = L(λ) to be the length of the first message of the protocol.

Hyb1: In this hybrid, A1 behaves identically as A. The input query of the simulator is denoted by Q1.

Hyb2.i.1 for i ∈ [N]: Sample x∗2 ∈ {0, 1}`2 at random. The adversary A2.i.1 contains the hardwired
circuit Ĉ2.i.1, where Ĉ2.i.1 is obtained by computing the indistinguishability obfuscation of C2.i.1 (Fig-
ure 5); Ĉ2.i.1 ← iO(1λ

′
, C2.i.1). The input query of the simulator is denoted by Q2.i.1.

Hyb2,i.2.0 for i ∈ [N]: Sample x∗2 ∈ {0, 1}`2 at random. The adversary A2.i.2.0 contains the hardwired
circuit Ĉ2.i.2.0, where Ĉ2.i.2.0 is obtained by computing the indistinguishability obfuscation of C2.i.2.0

(Figure 6); Ĉ2.i.2.0 ← iO(1λ
′
, C2.i.2.0). The input query of the simulator is denoted by Q2.i.2.0.

Hyb2,i.2.1 for i ∈ [N]: Sample x∗2 ∈ {0, 1}`2 at random. The adversary A2.i.2.1 contains the hardwired
circuit Ĉ2.i.2.1, where Ĉ2.i.2.1 is obtained by computing the indistinguishability obfuscation of C2.i.2.1

(Figure 6); Ĉ2.i.2.1 ← iO(1λ
′
, C2.i.2.1). The input query of the simulator is denoted by Q2.i.2.1.

31

Circuit C2.i.1

Input : msg1

Hardwired Values : Inputs x2, x∗2, punctured PRF key Kp\{i} (obtained by
executing Puncture(K, i)).

• Interpret msg1 as integer j.

• If j ≥ i:

1. Derive the randomness R← PRF(Kp\{i},msg1).

2. Using randomness R, generate P2’s second message msg2 as a func-
tion of msg1 and input x2. Also generate state st.

3. Output msg2.

• If j < i:

1. Derive the randomness R← PRF(Kp\{i},msg1).

2. Using randomness R, generate P2’s second message msg2 as a func-
tion of msg1 and input x∗2. Also generate state st.

3. Output msg2.

Figure 5: Circuit C2.i.1

Indistinguishability of hybrids. We now argue that every consecutive pair of hybrids are compu-
tationally indistinguishable. In every hybrid, we observe the query made by the simulator to the ideal
functionality. In the first hybrid, the probability that x∗2 is queried is negligible in λ. We argue that
in the subsequent hybrids, the probability that x∗2 is queried is also negligible – here, we crucially use
the fact that λ′ is a larger security parameter than λ. In the final hybrid, x∗2 is queried with negligible
probability. Moreover, the adversarial P ∗2 uses x∗2 as its input in the final hybrid. Thus, the probability
that the output recovered by the distinguisher in the final hybrid is computationally uncorrelated with
x∗2 from the security of pseudorandom functions. This completes the proof.

Claim 15. Pr[Q1 = x∗2] = 1
2`2(λ)

.

Proof. Since x∗2 is not used anywhere in the experiment and since x∗2 is picked uniformly at random,
the probability that Q1 contains x∗2 is negligible.

Claim 16. Assuming the 1
2λ′

-security of iO, we have Ĉ2.1.1
∼=c, 1

2λ
′
Ĉ1.

Proof. Since the circuits C2.1.1 and C1 are functionally equivalent, we can invoke the security of iO
which proves the claim.

We thus have the following corollary.

Corollary 2. Pr[Q2.1.1 = x∗2] = 1
2`2(λ)

.

Claim 17. Assuming the 1
2λ′

-security of PRF and iO, for every i ∈ [N], we have that Ĉ2.i.1
∼=c, 2

2λ
′

Ĉ2.i.2.0.

32

Circuit C2.i.2.b

Input : msg1

Hardwired Values : Inputs x2, x∗2, punctured PRF keyKp\{i}, bit b, message
msg∗

2.

• Interpret msg1 as integer j.

• If j > i:

1. Derive the randomness R← PRF(Kp\{i},msg1).

2. Using randomness R, generate P2’s second message msg2 as a func-
tion of msg1 and input x2. Also generate state st.

3. Output msg2.

• If j < i:

1. Derive the randomness R← PRF(Kp\{i},msg1).

2. Using randomness R, generate P2’s second message msg2 as a func-
tion of msg1 and input x∗2. Also generate state st.

3. Output msg2.

• If j = i:

1. Output msg∗
2, where msg∗

2 is generated as follows: it is generated
as a function of uniform randomness, message msg1, and input y,
where y = x2 if b = 0, otherwise y = x∗2.

Figure 6: Circuit C2.i.2.b

Proof. We consider an intermediate hybrid, where the following circuit is obfuscated: this circuit es-
sentially executes C2.i.2.0 except that in “If j = i" branch, use randomness drawn from a PRF (instead
of using uniform randomness).

From the security of PRF, it follows that Ĉ2.i.2.0 is indistinguishable from the above hybrid circuit.
This follows because the output of the PRF at point i is indistinguishable from random even given
the punctured key K\{0}. From the security of iO, it follows that Ĉ2.i.1 is indistinguishable from
the obfuscation of the above hybrid circuit. This is because both the hybrid circuit and C2.i.1 are
functionally equivalent. Since the security loss in the above two hybrids is 1

2λ′
, we have that the total

security loss in the indistinguishability of Ĉ2.i.1 and Ĉ2.i.2.0 is 2
2λ′

.

The following corollary is immediate.

Corollary 3. |Pr[Q2.i.1 = x∗2]− Pr[Q2.i.2.0 = x∗2]| ≤ 1
2`2(λ)

+ 2
2λ′

Claim 18. Assuming the c-INDexp security of Π2PC, for every i ∈ [N], we have that Ĉ2.i.2.0
∼=c, 1

2λ
′

Ĉ2.i.2.1.

Proof. Assume that the two obfuscated circuits are distinguishable by a PPT distinguisher with distin-
guishing probability strictly greater than 1

2λ′
. Denote the distinguisher by B. In this case, we construct

33

a malicious P ∗1 that uses B to contradict the security of Π2PC. Let the honest party P2 use either x2 or
x∗2 in the real world execution of the protocol Π2PC.

Party P ∗1 now behaves as follows: it sends string msg1 such that msg1 when interpreted as an integer
yields i. It receives message msg2 from honest party P2. It then constructs a circuit C∗ identical to
C2.i.2.0 (or C2.i.2.0) with msg2 hardwired inside it. It then applies the obfuscation algorithm iO on this
circuit to obtain Ĉ∗. It sends Ĉ∗ to the distinguisher B.

If the honest party P2 used x2 then we are in the hybrid when B receives obfuscation of Ĉ2.i.2.0,
otherwise if P2 used x∗2 then it receives obfuscation of Ĉ2.i.2.1. Since we assumed that B distinguishes
these two obfuscated circuits with probability strictly greater than 1

2λ′
we have that the malicious party

P ∗1 distinguishes whether P2 used x2 or x∗2 with probability strictly greater than 1
2λ′

. This contradicts
the c-INDexp security of Π2PC.

Corollary 4. Pr[Q2.i.2.0 = x∗2]− Pr[Q2.i.2.1 = x∗2]| ≤ 1
2`2(λ)

+ 1
2λ′

.

The proof of the following claim follows along the same lines as the proof of Claim 17.

Claim 19. Assuming the 1
2λ′

-security of PRF and iO, for every i ∈ [N − 1], we have Ĉ2.i.2.1
∼=c, 2

2λ
′

Ĉ2.i+1.1.

The proof of the following corollary is immediate.

Corollary 5. |Pr[Q2.i.2.1 = x∗2]− Pr[Q2.i+1.1 = x∗2]| ≤ 1
2`2(λ)

+ 2
2λ′

.

Finishing the proof. Now consider the adversary A2.N.2.1. Consider the following two lemmas.

Lemma 3. Pr[Q2.N.2.1 = x∗2] ≤ 1
2`2(λ)

+ 1
2λ
.

Proof. Observe that the security loss in every hybrid is at most O(1)

2λ′
= O(1)

2λ20c
. There are at most O(1)2λ

c

number of hybrids. The lemma thus follows.

Lemma 4. Let A2.N.2.1 be the PPT real world adversary (that is, it uses the obfuscated circuit Ĉ2.N.2.1).
Let B be the associated simulator and let D be the distinguisher as defined earlier. Define the following
quantity:

pi[x1, x2] =
∣∣∣Pr
[
1← D

(
IdealΠ2PC

f,B (x1, x2)
)]
− Pr

[
1← D

(
RealΠ2PC

f,A2.N.2.1
(x1, x2)

)]∣∣∣
There exists x1, x2 such that pi[x1, x2] ≥ 1

poly(λ) , for some polynomial poly.

Proof. We will look at the real world and the ideal processes separately. We determine the output
recovered by D from the output of A2.N.2.1 in both the processes. Let out be the output recovered by
D.

Real Process: From the description of adversary A2.N.2.1 and D, it follows that output out = f(x1, x
∗
2)

with probability 1.

Ideal Process: From Lemma 3, the probability that Q2.N.2.1 = x∗2 is negligible. That is, the probability
that the simulator queries x∗2 to the ideal functionality is negligible.

Consider the following claim.

Claim 20. Assuming PRF is a secure pseudorandom function, we have Pr[out = f(x1, x
∗
2)] ≤ 1

2 +negl(λ)
for some negligible function negl.

34

Proof. Recall that f(x1, x
∗
2) is defined to be PRF(x1, x

∗
2). Since x∗2 was never queried to the ideal

functionality (i.e., PRF oracle), it follows that B will not be able to distinguish between f(x1, x
∗
2) and

a bit picked uniformly at random. Thus, the claim follows.

From the above claim, we have the fact that the distinguisher distinguishes the real process from the
ideal process with probability ≥ 1

poly(λ) . This proves the statement of the lemma.

References

[1] William Aiello, Yuval Ishai, and Omer Reingold. Priced oblivious transfer: How to sell digital
goods. In Advances in Cryptology - EUROCRYPT 2001, International Conference on the Theory
and Application of Cryptographic Techniques, Innsbruck, Austria, May 6-10, 2001, Proceeding,
pages 119–135, 2001.

[2] Prabhanjan Ananth and Abhishek Jain. Indistinguishability obfuscation from compact functional
encryption. In Advances in Cryptology - CRYPTO 2015 - 35th Annual Cryptology Conference,
Santa Barbara, CA, USA, August 16-20, 2015, Proceedings, Part I, pages 308–326, 2015.

[3] Boaz Barak. How to go beyond the black-box simulation barrier. In Foundations of Computer
Science, 2001. Proceedings. 42nd IEEE Symposium on, pages 106–115. IEEE, 2001.

[4] Boaz Barak, Oded Goldreich, Russell Impagliazzo, Steven Rudich, Amit Sahai, Salil P. Vadhan,
and Ke Yang. On the (im)possibility of obfuscating programs. In Joe Kilian, editor, Advances
in Cryptology - CRYPTO 2001, 21st Annual International Cryptology Conference, Santa Barbara,
California, USA, August 19-23, 2001, Proceedings, volume 2139 of Lecture Notes in Computer
Science, pages 1–18. Springer, 2001.

[5] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of garbled circuits. In Pro-
ceedings of the 2012 ACM Conference on Computer and Communications Security, CCS ’12, pages
784–796, New York, NY, USA, 2012. ACM.

[6] Mihir Bellare and Adriana Palacio. The knowledge-of-exponent assumptions and 3-round zero-
knowledge protocols. In Advances in Cryptology - CRYPTO 2004, 24th Annual International
CryptologyConference, Santa Barbara, California, USA, August 15-19, 2004, Proceedings, pages
273–289, 2004.

[7] Nir Bitansky, Zvika Brakerski, Yael Tauman Kalai, Omer Paneth, and Vinod Vaikuntanathan. 3-
message zero knowledge against human ignorance. In Theory of Cryptography - 14th International
Conference, TCC 2016-B, Beijing, China, October 31 - November 3, 2016, Proceedings, Part I,
pages 57–83, 2016.

[8] Nir Bitansky, Ran Canetti, Omer Paneth, and Alon Rosen. On the existence of extractable one-way
functions. SIAM Journal on Computing, 45(5):1910–1952, 2016.

[9] Nir Bitansky, Sanjam Garg, Huijia Lin, Rafael Pass, and Siddartha Telang. Succinct randomized
encodings and their applications. In STOC, 2015.

[10] Dan Boneh and Brent Waters. Constrained pseudorandom functions and their applications. In
Advances in Cryptology-ASIACRYPT 2013, pages 280–300. Springer, 2013.

35

[11] Elette Boyle, Shafi Goldwasser, and Ioana Ivan. Functional signatures and pseudorandom functions.
In Public-Key Cryptography–PKC 2014, pages 501–519. Springer, 2014.

[12] Ran Canetti, Justin Holmgren, Abhishek Jain, and Vinod Vaikuntanathan. Indistinguishability
obfuscation of iterated circuits and RAM programs. In STOC, 2015.

[13] Nico Döttling, Nils Fleischhacker, Johannes Krupp, and Dominique Schröder. Two-message, obliv-
ious evaluation of cryptographic functionalities. In Advances in Cryptology - CRYPTO 2016 -
36th Annual International Cryptology Conference, Santa Barbara, CA, USA, August 14-18, 2016,
Proceedings, Part III, pages 619–648, 2016.

[14] Cynthia Dwork and Moni Naor. Zaps and their applications. In 41st Annual Symposium on
Foundations of Computer Science, FOCS 2000, 12-14 November 2000, Redondo Beach, California,
USA, pages 283–293, 2000.

[15] Shimon Even, Oded Goldreich, and Abraham Lempel. A randomized protocol for signing contracts.
In Advances in Cryptology: Proceedings of CRYPTO ’82, Santa Barbara, California, USA, August
23-25, 1982., pages 205–210, 1982.

[16] Uriel Feige and Adi Shamir. Witness indistinguishable and witness hiding protocols. In Proceedings
of the 22nd Annual ACM Symposium on Theory of Computing, May 13-17, 1990, Baltimore,
Maryland, USA, pages 416–426, 1990.

[17] Sanjam Garg, Craig Gentry, Shai Halevi, Mariana Raykova, Amit Sahai, and Brent Waters. Can-
didate indistinguishability obfuscation and functional encryption for all circuits. In 54th Annual
IEEE Symposium on Foundations of Computer Science, FOCS 2013, 26-29 October, 2013, Berke-
ley, CA, USA, pages 40–49. IEEE Computer Society, 2013.

[18] Sanjam Garg, Pratyay Mukherjee, Omkant Pandey, and Antigoni Polychroniadou. The exact round
complexity of secure computation. In Advances in Cryptology - EUROCRYPT 2016 - 35th Annual
International Conference on the Theory and Applications of Cryptographic Techniques, Vienna,
Austria, May 8-12, 2016, Proceedings, Part II, pages 448–476, 2016.

[19] Yael Gertner, Yuval Ishai, Eyal Kushilevitz, and Tal Malkin. Protecting data privacy in private
information retrieval schemes. J. Comput. Syst. Sci., 60(3):592–629, 2000.

[20] Oded Goldreich, Shafi Goldwasser, and Silvio Micali. How to construct random functions. Journal
of the ACM (JACM), 33(4):792–807, 1986.

[21] Oded Goldreich and Ariel Kahan. How to construct constant-round zero-knowledge proof systems
for NP. J. Cryptology, 9(3):167–190, 1996.

[22] Oded Goldreich and Hugo Krawczyk. On the composition of zero-knowledge proof systems. SIAM
J. Comput., 25(1):169–192, 1996.

[23] Oded Goldreich, Silvio Micali, and Avi Wigderson. Proofs that yield nothing but their validity
and a methodology of cryptographic protocol design. In Foundations of Computer Science, 1986.,
27th Annual Symposium on, pages 174–187. IEEE, 1986.

[24] Oded Goldreich, Silvio Micali, and Avi Wigderson. How to play any mental game. In STOC, 1987.

[25] Oded Goldreich and Yair Oren. Definitions and properties of zero-knowledge proof systems. J.
Cryptology, 7(1):1–32, 1994.

36

[26] S. Goldwasser, S. Micali, and C. Rackoff. The knowledge complexity of interactive proof-systems.
In STOC, pages 291–304, 1985.

[27] Satoshi Hada and Toshiaki Tanaka. On the existence of 3-round zero-knowledge protocols. In
Advances in Cryptology - CRYPTO ’98, 18th Annual International Cryptology Conference, Santa
Barbara, California, USA, August 23-27, 1998, Proceedings, pages 408–423, 1998.

[28] Yuval Ishai and Eyal Kushilevitz. Randomizing polynomials: A new representation with applica-
tions to round-efficient secure computation. In Foundations of Computer Science, 2000. Proceed-
ings. 41st Annual Symposium on, pages 294–304. IEEE, 2000.

[29] Yael Tauman Kalai, Guy N. Rothblum, and Ron D. Rothblum. From obfuscation to the security
of fiat-shamir for proofs. In CRYPTO, 2017.

[30] Jonathan Katz and Rafail Ostrovsky. Round-optimal secure two-party computation. In Advances
in Cryptology - CRYPTO 2004, 24th Annual International CryptologyConference, Santa Barbara,
California, USA, August 15-19, 2004, Proceedings, pages 335–354, 2004.

[31] Aggelos Kiayias, Stavros Papadopoulos, Nikos Triandopoulos, and Thomas Zacharias. Delegatable
pseudorandom functions and applications. In Proceedings of the 2013 ACM SIGSAC conference
on Computer & communications security, pages 669–684. ACM, 2013.

[32] Venkata Koppula, Allison Bishop Lewko, and Brent Waters. Indistinguishability obfuscation for
turing machines with unbounded memory. In STOC, 2015.

[33] Dror Lapidot and Adi Shamir. Publicly verifiable non-interactive zero-knowledge proofs. In Ad-
vances in Cryptology - CRYPTO ’90, 10th Annual International Cryptology Conference, Santa
Barbara, California, USA, August 11-15, 1990, Proceedings, pages 353–365, 1990.

[34] Yehuda Lindell and Benny Pinkas. An efficient protocol for secure two-party computation in
the presence of malicious adversaries. In Annual International Conference on the Theory and
Applications of Cryptographic Techniques, pages 52–78. Springer, 2007.

[35] Moni Naor and Benny Pinkas. Oblivious transfer and polynomial evaluation. In Proceedings of the
thirty-first annual ACM symposium on Theory of computing, pages 245–254. ACM, 1999.

[36] Moni Naor and Benny Pinkas. Efficient oblivious transfer protocols. In Proceedings of the Twelfth
Annual Symposium on Discrete Algorithms, January 7-9, 2001, Washington, DC, USA., pages
448–457, 2001.

[37] Michael O Rabin. How to exchange secrets with oblivious transfer. IACR Cryptology ePrint
Archive, 2005:187, 2005.

[38] Amit Sahai and Brent Waters. How to use indistinguishability obfuscation: deniable encryption,
and more. In David B. Shmoys, editor, Symposium on Theory of Computing, STOC 2014, New
York, NY, USA, May 31 - June 03, 2014, pages 475–484. ACM, 2014.

[39] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In FOCS, pages
162–167, 1986.

37

	Introduction
	Our Results
	Our Techniques
	Related Works

	Preliminaries
	Secure Two-Party Computation

	Building Blocks
	Garbling Schemes
	Oblivious Transfer
	Two Message Secure Function Evaluation
	Conditional Disclosure of Secrets (CDS) Protocols
	Zero Knowledge Proof Systems
	Succinct Randomized Encodings
	Indistinguishability Obfuscation for Circuits
	Puncturable Pseudorandom Functions

	Generation Protocols
	Two-Message GP from Succinct RE

	Three-Round Secure Computation
	Lower Bound against Non-Uniform Adversaries

