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Abstract

A secret-sharing scheme realizes the forbidden graph access structure determined by a graph G =
(V,E) if the parties are the vertices of the graph and the subsets that can reconstruct the secret are the
pairs of vertices in E (i.e., the edges) and the subsets of at least three vertices. Secret-sharing schemes
for forbidden graph access structures defined by bipartite graphs are equivalent to conditional disclosure
of secrets protocols.

We study the complexity of realizing a forbidden graph access structure by linear secret-sharing
schemes. A secret-sharing scheme is linear if the secret can be reconstructed from the shares by a linear
mapping. We provide efficient constructions and lower bounds on the share size of linear secret-sharing
schemes for sparse and dense graphs, closing the gap between upper and lower bounds. Given a sparse
(resp. dense) graph with n vertices and at most n1+β edges (resp. at least

(
n
2

)
− n1+β edges), for

some 0 ≤ β < 1, we construct a linear secret-sharing scheme realizing its forbidden graph access
structure in which the total size of the shares is Õ(n1+β/2). Furthermore, we construct linear secret-
sharing schemes realizing these access structures in which the size of each share is Õ(n1/4+β/4). We
also provide constructions achieving different trade-offs between the size of each share and the total
share size.

We prove that almost all forbidden graph access structures require linear secret-sharing schemes with
total share size Ω(n3/2); this shows that the construction of Gay, Kerenidis, and Wee [CRYPTO 2015]
is optimal. Furthermore, we show that for every 0 ≤ β < 1 there exist a graph with at most n1+β edges
and a graph with at least

(
n
2

)
− n1+β edges such that the total share size in any linear secret-sharing

scheme realizing the associated forbidden graph access structures is Ω(n1+β/2). Finally, we show that
for every 0 ≤ β < 1 there exist a graph with at most n1+β edges and a graph with at least

(
n
2

)
− n1+β

edges such that the size of the share of at least one party in any linear secret-sharing scheme realizing
these forbidden graph access structures is Ω(n1/4+β/4). This shows that our constructions are optimal
(up to poly-logarithmic factors).

∗The first and the forth authors are supported by ISF grants 544/13 and 152/17 and by the Frankel center for computer science.
The second author is supported by the grant 2017 SGR 705 from the Government of Catalonia and the grant RTI2018-095094-B-
C21 “CONSENT” from the Spanish Government. A preliminary version of this paper appeared in Theory of Cryptography – TCC
2017, vol 10678 of Lecture Notes in Computer Science, Springer, 2017 [11].
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1 Introduction

A secret-sharing scheme, introduced by [19, 50, 40], is a method in which a dealer, which holds a secret, can
distribute shares to a set of parties, enabling only predefined subsets of parties to reconstruct the secret from
their shares. These subsets are called authorized, and the family of authorized subsets is called the access
structure of the scheme. The original motivation for defining secret-sharing was robust key management
schemes for cryptographic systems. Nowadays, they are used in many secure protocols and applications,
such as multiparty computation [16, 26, 28], threshold cryptography [32], access control [48], attribute-
based encryption [39, 55], and oblivious transfer [51, 54].

In this paper we study secret-sharing schemes for forbidden graph access structures, first introduced by
Sun and Shieh [53]. The forbidden graph access structure determined by a graph G = (V,E) is the access
structure whose parties are the vertices of the graph and its authorized sets are all pairs of vertices in E and
all subsets of vertices of size greater than two. Secret-sharing schemes for forbidden graph access structure
determined by bipartite graphs are equivalent to conditional disclosure of secrets protocols. Following [10,
12], we study the complexity of realizing a forbidden graph, and provide efficient constructions for sparse
and dense graphs.

A secret-sharing scheme is linear if each share is a linear combination of the secret and random strings
that are taken from some finite field. Equivalently, a scheme is linear if the reconstruction of the secret from
the shares is a linear mapping. A linear secret-sharing can be constructed from a monotone span program, a
computational model introduced by Karchmer and Wigderson [42], and every linear secret-sharing scheme
defines a monotone span program. See [7] for discussion on equivalent definitions of linear secret-sharing
schemes. In many of the applications of secret-sharing mentioned above, it is required that the scheme is
linear. For example, Cramer, Damgård, and Maurer [28] constructed general secure multiparty computation
protocols, i.e., protocols which are secure against an arbitrary adversarial structure, from any linear secret-
sharing scheme in which a subset of parties is authorized if and only if it is not in the adversarial structure.
Furthermore, it was shown by Attrapadung [6] and Wee [56] that linear secret-sharing schemes realizing
forbidden graph access structures are a central ingredient for constructing public-key (multi-user) attribute-
based encryption. These applications motivate the study of linear secret-sharing schemes for forbidden
graph access structures in this paper.

1.1 Related Work

1.1.1 Secret-Sharing Schemes for Arbitrary Access Structures

Secret-sharing schemes were introduced by Shamir [50] and Blakley [19] for the threshold case, and by Ito,
Saito, and Nishizeki [40] for the general case. Threshold access structures, in which the authorized sets are
all the sets containing at least t parties (for some threshold t), can be realized by secret-sharing schemes in
which the size of each share is the size of the secret [19, 50]. There are other access structures that admit
secret-sharing schemes in which the size of the shares is small, i.e., polynomial (in the number of parties)
share size [17, 18, 22, 42]. In particular, Benaloh and Leichter [17] proved that if an access structure can
be described by a small monotone formula, then it admits an efficient secret-sharing scheme. Improving on
this result, Karchmer and Wigderson [42] showed that if an access structure can be described by a small
monotone span program, then it has an efficient secret-sharing scheme.

The best known secret-sharing schemes for general access structures are highly inefficient, i.e., their
total share size is 20.64n (where n is the number of parties) [43, 4, 5]. The best known lower bound on the
total share size of secret-sharing schemes realizing an access structure is Ω(n2/ log n) [30, 29]; this lower
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bound is very far from the upper bound.

1.1.2 Graph Access Structures

A secret-sharing scheme realizes the graph access structure determined by a given graph if every two vertices
connected by an edge can reconstruct the secret and every independent set in the graph does not get any
information on the secret. The trivial secret-sharing scheme for realizing a graph access structure consists
in sharing the secret independently for each edge; this results in a scheme whose total share size is O(n2)
(times the length of the secret, which will be ignored in the introduction). This can be improved – every
graph access structure can be realized by a linear secret-sharing scheme in which the total size of the shares
is O(n2/ log n) [34, 24]. Graph access structures have been studied in many works, such as [25, 23, 52, 21,
20, 13, 31, 10, 12]. In particular, Beimel, Farràs, and Mintz [10] showed that a graph with n vertices that
contains

(
n
2

)
− n1+β edges for some constant 0 ≤ β < 1 can be realized by a scheme in which the total

share size is Õ(n5/4+3β/4).

1.1.3 Forbidden Graph Access Structures

Secret-sharing schemes for graph access structures and forbidden graph access structures have similar re-
quirements. Indeed, given a secret-sharing scheme for a graph access structure, we can construct a secret-
sharing scheme for the forbidden graph access structure associated to the same graph: We can independently
share the secret using the secret-sharing scheme for the graph access structure and the 3-out-of-n secret-
sharing scheme of Shamir [50]. The total share size of the new scheme is slightly greater than the former.
Therefore, upper bounds on the share size for graph access structures imply the same upper bounds on the
share size for forbidden graph access structures. It is not known how to efficiently construct schemes for
graph access structures from schemes for forbidden graph access structures.

From now on, the secret-sharing schemes considered in this work realize forbidden graph access struc-
tures. In order to simplify the notation, we say that a secret-sharing schemes realizes G, in order to say that
the scheme realizes the forbidden graph access structure determined by G.

Beimel, Ishai, Kumaresan, and Kushilevitz [14] proved that every forbidden graph access structure can
be realized by a secret-sharing scheme in which the total size of the shares is O(n3/2). Gay, Kerenidis, and
Wee [37] proved that the same total share size ofO(n3/2) can be achieved by a linear secret-sharing scheme.
Liu, Vaikuntanathan, and Wee [44] showed that every forbidden graph access structure can be realized by a
non-linear secret-sharing scheme in which the total share size is n1+o(1).

Beimel, Farràs, and Peter [12] showed that any forbidden graph with n vertices and with at least
(
n
2

)
−

n1+β edges (for some constant 0 ≤ β < 1
2 ) can be realized by a linear secret-sharing scheme with total

share size O(n7/6+2β/3). They also showed that if a forbidden graph G can be realized by a secret-sharing
scheme with total share size m, and at most n1+β edges are removed from G, then the resulting forbidden
graph can be realized by a secret-sharing scheme whose total share size is O(m+n7/6+2β/3). These results
are improved in this paper.

1.1.4 Conditional Disclosure of Secrets

Gertner et al. [38] defined conditional disclosure of secrets (CDS) protocols. In 2-party CDS protocols, two
parties Alice and Bob want to disclose a secret to a referee if and only if their inputs (strings ofN bits) satisfy
some predicate (e.g., if their inputs are equal). To achieve this goal, each party computes one message based
on its input, the secret, and a common random string, and sends the message to the referee. If the predicate
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holds, then the referee, which knows the two inputs, can reconstruct the secret from the messages it received.
CDS protocols can be used to efficiently realize symmetrically-private information retrieval protocols [38],
and to construct attribute-based encryption protocols [37], a cryptographic primitive that was introduced
in [39, 49].

There is a correspondence between CDS protocols in which the size of the input of the parties is N and
secret-sharing schemes for bipartite graphs with n = 2N vertices in each part as we next explain. Every
predicate defines a bipartite graph, where every input of Alice is a vertex in the first part of the graph and
every input of Bob is a vertex in the second part of the graph, and there is an edge between two vertices from
different parts if and only if the two corresponding inputs satisfy the predicate. Given a CDS protocol for
a predicate, we can construct a secret-sharing scheme realizing the bipartite graph defined by the predicate
in which the share of a party z is the message sent in the CDS protocol to the referee by Alice or Bob
(depending on z’s part of the graph) when they hold the input z. Conversely, given a secret-sharing scheme
for the bipartite graph we can construct a CDS protocol in which the messages are the corresponding shares.

Gertner et al. [38] proved that if a predicate f has a (possibly non-monotone) formula of size S, then
there is a CDS protocol for f in which the length of the messages is S. A similar result holds if the predicate
has a (possibly non-monotone) span program. This result provides a rich class of predicates for which there
are efficient CDS protocols, and thus a rich class of forbidden graph access structures that can be realized
by efficient secret-sharing schemes.

A CDS protocol is linear over a field F if the domain of secrets is F, the randomness is a vector over
F, and when the predicate holds, the reconstruction function of the referee is linear. It was shown in [37]
that for every predicate there exists a linear CDS protocol such that the size of each of the messages sent by
the two parties to the referee is 2N/2. This implies that for every bipartite graph there exists a linear secret-
sharing scheme realizing its forbidden graph access structure in which the size of each share is O(n1/2)
(where n is the number of the parties); in particular, the total share size of this scheme is O(n3/2).

Liu et al. [44] have shown that every predicate has a non-linear CDS protocol in which the size of the
messages the parties send to the referee is 2O(

√
N logN). As a corollary, we get a non-linear secret-sharing

scheme realizing the forbidden graph access structure for every bipartite graph with n vertices, in which
the size of each share is nO(

√
log logn/ logn) = no(1); in particular, the total share size of this scheme is

n1+O(
√

log logn/ logn) = n1+o(1). By a transformation of [14, 12], the above two results hold for every graph
(not necessarily bipartite).

Applebaum et al. [3] and Ambrona et al. [1] have shown that if there is a linear CDS protocol for some
predicate f with message length c and shared random string length r, then there is a linear CDS protocol
for the complement predicate f in which the message length and the shared random string length is linear
in c and r. Translated to secret-sharing, it implied that if we have a linear secret-sharing scheme that uses r
random field elements in the generation of the shares and realizes the forbidden graph access structure of a
bipartite graph G, then we can realize its complement bipartite graph G with a linear scheme in which the
size of each share is O(r).

Applebaum and Arkis [2] (improving on [3]) have proved that for every predicate there exists a mul-
tilinear CDS protocol1 for k-bit secrets, where k is double-exponential in N , such that the size of each of
the messages sent by the two parties to the referee is O(k). This gives us an amortized share size of O(1)
bits per each bit of the secret, much better than the message size of 2N/2 in the linear CDS protocol for
one-bit secret [37] and even much better than the message size of 2

√
N logN in the CDS protocol for one-bit

secret [44]. When considering forbidden graph access structures, we get that for every forbidden bipartite
1A multilinear CDS protocol is similar to linear CDS protocol, except that the secret is a vector over the field (and not one field

element as in linear schemes).

4



graph access structure with n vertices there exists a multilinear secret-sharing scheme with secrets of length
k and total share size of O(kn), provided that k is exponential in n (more precisely, k ≥ 2n

2
).

1.2 Our Results

The main result we show in this paper is the construction of linear secret-sharing schemes realizing forbidden
graph access structures for sparse graphs and dense graphs. We also prove tight lower bounds on the share
size of linear secret-sharing schemes realizing forbidden graph access structures.

1.2.1 Constructions

Our main constructions of linear secret-sharing schemes are the following ones:

• Given a sparse graph with n vertices and at most n1+β edges, for some 0 ≤ β < 1, we construct a
linear secret-sharing scheme realizing it with total share size Õ(n1+β/2). The best previously known
linear secret-sharing scheme for such graphs is the trivial scheme that independently shares the secret
for each edge; the total share size of this scheme is O(n1+β).

• Given a dense graph with n vertices and at least
(
n
2

)
− n1+β edges, for some 0 ≤ β < 1, we con-

struct a linear secret-sharing scheme realizing it with total share size Õ(n1+β/2). The best previously
known linear secret-sharing scheme for such graphs is the scheme of [12], which has total share size
O(n7/6+2β/3).

• Given a sparse graph with n vertices and at most n1+β edges, for some 0 ≤ β < 1, we construct
a linear secret-sharing scheme realizing it where the size of the share of each party is Õ(n1/4+β/4).
The same results holds for graphs with at least

(
n
2

)
− n1+β edges. The best previously known linear

secret-sharing scheme for such forbidden graphs is the scheme of [37], which has no restrictions on
the number of edges; the share size of each party in this scheme is O(n1/2 log n).

In the above scheme, the max share size is Õ(n5/4+β/4). We construct a secret-sharing scheme which
gives a trade-off between the max share size and total share size. Specifically, for every 0 ≤ γ ≤
1/4 − β/4, there is a linear secret-sharing scheme realizing G in which the share size of each vertex
is Õ(n1/4+β/4+γ) and the total share size of this scheme is Õ(n5/4+β/4−γ).

• Let Σ be a secret-sharing scheme realizing a forbidden graph G where the size of each share is `
the total share size of Σ is m, and let G′ be a graph that is obtained from G by changing (adding
or removing) at most n1+β edges for some 0 ≤ β < 1. We construct two secret-sharing schemes
realizing G′: One with total share size m + Õ(n1+β/2), and another one in which the size of each
share is `+ Õ(n1/4+β/4). If Σ is linear, then the resulting schemes are also linear.

Taking into account the connection described above between CDS protocols and secret-sharing schemes
for forbidden graph access structures, our constructions imply linear CDS protocols with message size
Õ(N1/4+β/4) for two families of predicates f : [N ] × [N ] → {0, 1}: Predicates f with a few zero’s,
i.e., | {(x, y) : f(x, y) = 0} | ≤ N1+β (for some 0 ≤ β < 1) and predicates f with a few one’s, i.e.,
| {(x, y) : f(x, y) = 1} | ≤ N1+β .
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1.2.2 Overview of Our Constructions

We construct secret-sharing schemes realizing sparse graphs in four stages. We start by realizing fairly
simple bipartite graphs, and in each stage we realize a wider class of graphs using the schemes constructed
in previous stages.

Our basic construction, described in Lemma 3.2, is a linear secret-sharing scheme realizing a bipartite
graph G = (A,B,E), where A is small and the degree of each vertex in B is at most d, for some d < n. To
create this scheme, we construct a linear subspace Va for each vertex a ∈ A, and a vector zb for every vertex
b ∈ B, such that zb ∈ Va if and only if (a, b) ∈ E. This construction implies a monotone span program for
the access structure, hence a linear secret-sharing scheme realizing the access structure. The total share size
of this scheme is O(d|A| + |B|). A naive scheme for this graph, which shares the secret independently for
each edge, has total share size O(d|B|). Our scheme is much more efficient than the naive scheme when A
is small and B is big. This is the scheme that enables us to construct efficient schemes for sparse forbidden
graph access structures.

In the second stage, we construct, in Lemma 4.1, a secret-sharing scheme realizing a bipartite graph
G = (A,B,E), where the degree of every vertex in B is at most d (and there is no restriction on the size
of A). Then, we construct, in Lemma 4.2, a secret-sharing scheme with total share size O(n

√
d log n) for

bipartite graphs with |A| = |B| = n, where the vertices in B have degree at most d. The idea of this
construction is to randomly partition the set A to ` = O(

√
d lnn) = Õ(

√
d) “small” subsets A1, . . . , A`.

We prove that with high probability, for every 1 ≤ i ≤ `, the degree of every vertex b ∈ B in the bipartite
graph Gi = (Ai, B,E ∩ (Ai × B)) is at most O(

√
d) (which is smaller than its degree in G, which can be

at most d). Then, we realize each sparse graph Gi using the basic scheme.
In the third stage, we construct, in Theorem 4.3, a secret-sharing scheme for a bipartite graph G =

(A,B,E), where |E| ≤ n1+β for some 0 ≤ β < 1 (where |A| = |B| = n). That is, we realize forbidden
graph access structures for bipartite graphs where the average degree of each vertex in B is at most nβ . To
this purpose, we use an idea from [10] (also used in [12]). For some degree d, let Bbig be the vertices in B
whose degree is at least d and let Bsmall = B \ Bbig. Since the number of edges in G is at most n1+β , the
size of Bbig is at most n1+β/d. Using the fact that Bbig is small (however, the degree of each vertex in Bbig

can be n), the secret-sharing scheme of [37] (alternatively, the scheme of Lemma 4.1) realizes the graph
Gbig = (A,Bbig, E ∩ (A × Bbig)) with “quite small” shares. Using the fact that the degree of each vertex
in Bsmall is small, the secret-sharing scheme of Lemma 4.1 realizes Gsmall = (A,Bsmall, E ∩ (A×Bsmall))
with total share size O(n

√
d log n). By taking the appropriate value for d, we get a secret-sharing scheme

realizing G in which (for small enough values of β) the total share size is o(n1+β), but still larger than
the promised total share size. To get a secret-sharing scheme realizing G with total share size Õ(n1+β/2),
we group the vertices in B into O(log n) sets according to their degree, where the ith set Bi contains the
vertices whose degree is between n/2i+1 and n/2i. We realize each graph Gi = (A,Bi, E ∩ (A × Bi))
independently using the secret-sharing scheme of Lemma 4.1.

In the last stage, we construct, in Theorem 4.4, a secret-sharing scheme for any forbidden graph access
structure with the promised total share size. That is, if the number of edges in G is at most n1+β for some
0 ≤ β < 1 (where |V | = n), then the total share size is Õ(n1+β/2). We use a generic transformation
from [14, 12], which constructs a secret-sharing scheme for any graph from secret-sharing schemes for
bipartite graphs.

To summarize, there are 4 stages in our construction for sparse graphs. The first two stages are the major
new steps in our construction. The third stage uses ideas from [10], and the last stage uses a transformation
of [14, 12] as a black-box. The construction for dense graphs is similar, but we construct a different scheme
in the first stage.
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In addition, we construct linear secret-sharing schemes that minimize the size of each share. We con-
struct a linear secret-sharing scheme realizing bipartite graphs G = (A,B,E), where |A| = |B| = n
and the number of edges in G is at most n1+β , for some 0 ≤ β < 1, in which the share size of each
vertex is O(n1/4+β/4 log n). This construction is similar to the one of presented in the third stage. Let
d = n1/2+β/2, let Abig (respectively, Bbig) be the vertices in A (respectively, B) whose degree is at
least d, and let Asmall = A \ Abig (respectively, Bsmall = B \ Bbig). Since the number of edges in
G is at most n1+β , the size of Abig (respectively, Bbig) is at most n1+β/d = n1/2+β/2. Thus, we can
realize the graph (Abig, Bbig, E ∩ (Abig × Bbig)) using the scheme of [37] in which the share size of
each vertex is O((n1/2+β/2)1/2) = O(n1/4+β/4). Next, since the degree of each vertex in Asmall (re-
spectively, Bsmall) is at most d, we can realize each of the graphs (A,Bsmall, E ∩ (A × Bsmall)) and
(Asmall, B,E ∩ (Asmall × B)) by using our scheme of the second stage in which the share size of each
vertex is O(

√
d log n) = O(n1/4+β/4 log n), and get the desired share size.

Given a secret-sharing scheme Σ realizing G, we use ideas from [12] to construct a scheme realizing a
graph G′, obtained by changing a few edges from G. First, we share the secret s using the secret-sharing
scheme realizing the sparse graph containing all edges added to G (we add at most n1+β edges to G). In
addition, we share the secret s using a 2-out-of-2 secret-sharing scheme. That is, we choose two random
elements s1 and s2 such that s = s1⊕ s2. We share s1 using Σ and share s2 using the secret-sharing scheme
realizing the dense graph containing all possible edges except for the edges removed from G (this graph is
a dense graph with at least

(
n
2

)
− n1+β edges, since we remove at most n1+β edges from G).

1.2.3 Lower Bounds

We prove that for almost all forbidden graph access structures, the total share size required by any linear
secret-sharing scheme with a one-bit secret realizing these access structures is Ω(n3/2), which shows that
the construction of Gay et al. [37] is optimal. This also shows a separation between the total share size in
non-linear secret-sharing schemes realizing forbidden graph access structures, which is n1+o(1) by [44], and
the total share size required in linear secret-sharing schemes realizing forbidden graph access structures.
This lower bound implies that, for almost all predicates f : [N ] × [N ] → {0, 1}, in every linear CDS
protocol for f the length of the messages is Ω(

√
N).

The technique we developed for proving lower bounds for almost all forbidden graph access structures
is also applied to other families of access structures. In particular, we apply it to access structures of rank
r, i.e., access structures whose minimal authorized sets are of size at most r. We show that almost all rank
r access structures with n parties, the total share size in every linear secret-sharing scheme with a one-bit
secret is Ω(n(r+1)/2).

Furthermore, we show that for every 0 ≤ β < 1 there exist a graph with at most n1+β edges and a graph
with at least

(
n
2

)
− n1+β edges, such that the total share size in any linear secret-sharing scheme realizing

their forbidden graph access structures is Ω(n1+β/2). Finally, we show that for every 0 ≤ β < 1 there exist
a graph with at most n1+β edges and a graph with at least

(
n
2

)
−n1+β edges, such that the size of the share of

at least one party in any linear secret-sharing scheme realizing it is Ω(n1/4+β/4). These lower bounds show
that our constructions are optimal (up to poly-logarithmic factors). Our lower bounds are existential and use
counting arguments. They previously appeared (in a somewhat less general form) in the master thesis of the
third author of this paper [46].
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1.3 Paper Organization

The rest of the paper is organized as follows. In Section 2, we review the definition of secret-sharing schemes
and other primitives. In Section 3, we present a basic secret-sharing scheme realizing graphs of low degree;
this scheme is used later in different constructions. In Section 4, we construct secret-sharing schemes
realizing sparse graphs and dense graphs. In Section 5, we construct secret-sharing schemes providing
trade-offs between the total share size and the max share size for sparse and dense graphs. In particular, we
present secret-sharing schemes with small max share size. Finally, in Section 6, we present lower bounds
on the total share size and the max share size for linear secret-sharing schemes.

2 Preliminaries

In this section we define secret-sharing schemes, monotone span programs, forbidden graph access struc-
tures, and conditional disclosure of secrets protocols.

Notation. We denote the logarithmic function with base 2 and base e by log and ln, respectively. We
denote vectors by bold letters, e.g., v.

2.1 Secret-Sharing Schemes

We present the definition of secret-sharing scheme as given in [27, 9]. For more information about this
definition and secret-sharing in general, see [8].

Definition 2.1 (Secret-Sharing Schemes). Let P = {p1, . . . , pn} be a set of parties. A collection Γ ⊆ 2P

is monotone if B ∈ Γ and B ⊆ C imply that C ∈ Γ. An access structure is a monotone collection Γ ⊆ 2P

of non-empty subsets of P . Sets in Γ are called authorized, and sets not in Γ are called unauthorized. The
family of minimal authorized sets is denoted by min Γ.

A distribution scheme Σ = 〈Π, µ〉 with domain of secrets K is a pair, where µ is a probability distri-
bution on some finite set R called the set of random strings and Π is a mapping from K × R to a set of
n-tuples K1 ×K2 × · · · ×Kn, where Kj is called the domain of shares of pj . A dealer distributes a secret
k ∈ K according to Σ by first sampling a random string r ∈ R according to µ, computing a vector of
shares Π(k, r) = (s1, . . . , sn), and privately communicating each share sj to party pj . For a set A ⊆ P ,
we denote ΠA(k, r) as the restriction of Π(k, r) to its A-entries (i.e., the shares of the parties in A).

Given a distribution scheme, we define the size of the secret as log |K|, the (normalized) share size
of party pj as log |Kj |/ log |K|, the (normalized) max share size as max1≤j≤n log |Kj |/ log |K|, and the
(normalized) total share size of the distribution scheme as

∑
1≤j≤n log |Kj |/ log |K|.

Let K be a finite set of secrets, where |K| ≥ 2. A distribution scheme 〈Π, µ〉 with domain of secrets K
is a secret-sharing scheme realizing an access structure Γ if the following two requirements hold:

CORRECTNESS. The secret k can be reconstructed by any authorized set of parties. That is, for any set
B = {pi1 , . . . , pi|B|} ∈ Γ, there exists a reconstruction function ReconB : Ki1 × . . . × Ki|B| → K such
that for every secret k ∈ K and every random string r ∈ R,

ReconB

(
ΠB(k, r)

)
= k.

PRIVACY. Every unauthorized set cannot learn anything about the secret (in the information theoretic sense)
from their shares. Formally, for any set T /∈ Γ, every two secrets a, b ∈ K, and every possible vector of
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shares 〈sj〉pj∈T ,
Pr[ ΠT (a, r) = 〈sj〉pj∈T ] = Pr[ ΠT (b, r) = 〈sj〉pj∈T ],

when the probability is over the choice of r from R at random according to µ.

Definition 2.2 (Linear Secret-Sharing Scheme). Let Σ = 〈Π, µ〉 be a secret-sharing scheme with domain of
secretsK, where µ is a probability distribution on a setR and Π is a mapping fromK×R toK1×K2×· · ·×
Kn. We say that Σ is a linear secret-sharing scheme over a finite field F if K = F, the sets R,K1, . . . ,Kn

are vector spaces over F, Π is a F-linear mapping, and µ is the uniform probability distribution over R.

2.2 Monotone Span Programs

Monotone span programs (abbreviated MSPs) are a linear-algebraic model of computation introduced by
Karchmer and Wigderson [42]. As explained below in Claim 2.4, MSPs over finite fields are equivalent to
linear secret-sharing schemes.

Definition 2.3 (Monotone Span Programs [42]). A monotone span program is a quadruple M̂ =
〈F,M, δ,v〉, where F is a field, M is an a × b matrix over F, δ : {1, . . . , a} → P (where P is a set of
parties) is a mapping labeling each row of M by a party,2 and v is a non-zero vector in Fb, called the target
vector. The size of M̂ is the number of rows of M (i.e., a). For any set A ⊆ P , let MA denote the sub-matrix
obtained by restricting M to the rows labeled by parties in A. We say that M̂ accepts a set B ⊆ P if the
rows of MB span the vector v. We say that M̂ accepts an access structure Γ if M̂ accepts a set B if and
only if B ∈ Γ.

By applying a linear transformation to the rows of M , the target vector can be changed to any non-zero
vector without changing the size of the MSP. The default value for the target vector is e1 = (1, 0, . . . , 0),
but in this work we also use other vectors, e.g., 1 (the all one’s vector).

Claim 2.4 ([42, 7]). Let F be a finite field. There exists a linear secret-sharing scheme over F realizing Γ
with total share size a if and only if there exists an MSP over F of size a accepting Γ.

For the sake of completeness, we explain how to construct a linear secret-sharing scheme from an MSP.
Given an MSP M̂ = 〈F,M, δ, e1〉 accepting Γ, where M is an a × b matrix over F, define a linear secret-
sharing scheme as follows:

• Input: a secret k ∈ F.

• Choose b− 1 random elements r2, . . . , rb independently with uniform distribution from F and define
r = (k, r2, . . . , rb).

• Evaluate (s1, . . . , sa) = MrT , and distribute to each party p ∈ P the entries corresponding to rows
labeled by p.

In this linear secret-sharing scheme, every set in Γ can reconstruct the secret: Let B ∈ Γ and N = MB ,
thus, the rows of N span e1, and there exists some vector v such that e1 = vN . Notice that the shares of
the parties in B are NrT . The parties in B can reconstruct the secret by computing v(NrT ), since

v(NrT ) = (vN)rT = e1 · rT = k.

The privacy proof of this scheme can be found in [42, 8].
2We label a row by a party rather than by a variable xj as done in [42].
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2.3 Forbidden Graph Access Structures

Recall that a bipartite graph G = (A,B,E) is a graph where the vertices are A ∪ B (A and B are called
the parts of G) and E ⊆ A×B. A bipartite graph is complete if E = A×B.

Definition 2.5 (The Bipartite Complement). Let G = (A,B,E) be a bipartite graph. The bipartite com-
plement of G is the bipartite graph G = (A,B,E), where every a ∈ A and b ∈ B satisfy (a, b) ∈ E if and
only if (a, b) /∈ E.

Definition 2.6 (Forbidden Graph Access Structures). Let G = (V,E) be a graph. The forbidden graph
access structure defined by G is the collection of all pairs of vertices in E and all subsets of vertices of size
greater than two. 3

Remark 2.7. As mentioned above, when we say that a secret-sharing scheme realizes a graph G, we mean
that the scheme realizes the forbidden graph access structure of the graph G.

Next, we show how to realize the forbidden graph access structure of the union or the intersection of
two graphs. This construction will be used later in the paper.

Claim 2.8. Let Σ1 and Σ2 be two secret-sharing schemes with the same domain of secrets that realizeG1 =
(V,E1) and G2 = (V,E2), respectively. Let `1 and `2 be the max share size of Σ1 and Σ2, respectively, and
let m1 and m2 be the total share size of Σ1 and Σ2, respectively. Then, the graphs G′ = (V,E1 ∪E2) and
G′′ = (V,E1 ∩E2) can be realized by secret-sharing schemes with max share size smaller than or equal to
`1 + `2 and total share size m1 +m2.

Proof. LetK be the domain of secrets of Σ1 and Σ2, and letN = |K|. We assume thatK = {0, . . . , N−1}.
Let s ∈ K be the secret to be shared.

First, observe that the intersection of the forbidden graph access structures ofG1 andG2 is the forbidden
graph access structure of G′, and that the union of the forbidden graph access structures of G1 and G2 is the
forbidden graph access structure of G′′.

For G′, we share s using Σ1, and independently share s using Σ2. The access structure of this new
scheme is the union of the access structures of Σ1 and Σ2, which coincides with the forbidden graph access
structure of G′.

For G′′, we share the secret s using a 2-out-of-2 secret-sharing scheme. That is, we choose an element
s1 ∈ K at random, and take s2 = (s − s1) mod N . Then, we independently share s1 using Σ1 and share
s2 using Σ2. The access structure of this new scheme is the intersection of the access structures of Σ1 and
Σ2, which coincides with the forbidden graph access structure of G′′.

In both cases, the max share size of the resulting scheme is at most `1 + `2, and the total share size is
m1 +m2.

2.4 Conditional Disclosure of Secrets

For the sake of completeness, we present the definition of conditional disclosure of secrets, originally defined
in [38].

3In [53], the access structure is specified by the complement graph, i.e., by the edges that are forbidden from learning information
on the secret.
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Definition 2.9 (Conditional Disclosure of Secrets). Let f : {0, 1}N × {0, 1}N → {0, 1} be some function
(also called predicate), and let ENCA : {0, 1}N × S × R → MA, ENCB : {0, 1}N × S × R → MB be
deterministic functions, where S is the domain of secrets and R is the domain of common random strings,
and DEC : {0, 1}N ×{0, 1}N ×MA×MB → S be a deterministic function. Then, (ENCA, ENCB,DEC) is
a conditional disclosure of secrets (CDS) protocol for the function f if the following two requirements hold:

CORRECTNESS. For every x, y ∈ {0, 1}N with f(x, y) = 1, every secret s ∈ S, and every common random
string r ∈ R,

DEC(x, y, ENCA(x, s, r), ENCB(y, s, r)) = s.

PRIVACY. For every x, y ∈ {0, 1}N with f(x, y) = 0, every two secrets s1, s2 ∈ S, and every messages
mA ∈MA,mB ∈MB:

Pr[ ENCA(x, s1, r) = mA and ENCB(y, s1, r) = mB ]

= Pr[ ENCA(x, s2, r) = mA and ENCB(y, s2, r) = mB ],

when the probability is over the choice of r from R at random with uniform distribution.

Remark 2.10. When using a secret-sharing scheme to construct a CDS protocol (as explained in Sec-
tion 1.1.4), the only requirement is that pairs of vertices can reconstruct the secret if and only if they are
connected by an edge. Hence, there may be subsets of vertices of size greater than two for which there
are no requirements. In particular, it is enough to restrict the study to forbidden graph access structures, in
which all sets of 3 or more vertices are authorized. This additional requirement increases only slightly the
total share size required to realize forbidden graph access structures, since we can independently share the
secret using the 3-out-of-n scheme of Shamir [50], in which the size of the share of every party is the size
of the secret (when the size of the secret is at least log n). To simplify the description of our schemes, in
all our constructions we implicitly assume that we share the secret using Shamir’s 3-out-of-n secret-sharing
scheme.

3 The Basic Constructions for Graphs of Low Degree

Our basic construction for graphs of low degree is presented in Lemma 3.2. It requires the following con-
struction of linear spaces, which will also be used for dense graphs.

Claim 3.1. Let G = (A,B,E) be a bipartite graph with A = {a1, . . . , am}, B = {b1, . . . , bn} such that
the degree of every vertex in B is at most d and let F be a finite field with |F| ≥ m. Then, there are m linear
subspaces V1, . . . , Vm ⊆ Fd+1 of dimension d and n+ 1 vectors z1, . . . , zn,w ∈ Fd+1 such that

zj ∈ Vi if and only if (ai, bj) ∈ E,

and w /∈ Vi for every 1 ≤ i ≤ m.

Proof. We identify vectors in Fd+1 with polynomials of degree at most d in the indeterminate X . That is,
for a vector v ∈ Fd+1 we consider a polynomial v(X) ∈ F[X] of degree d in which the coefficient of degree
i is the (i+ 1)-th coordinate of v.

For each vertex ai ∈ A, we associate a distinct element αi ∈ F. We define the subspace Vi ⊆ Fd+1

of dimension d as the one associated to the space of polynomials P (X) of degree at most d such that
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P (αi) = 0, i.e., the space of polynomials spanned by
{

(X − αi), (X2 − αi ·X), . . . , (Xd − αi ·Xd−1)
}

.
Since these d polynomials are linearly independent, the dimension of each Vi is d. Furthermore, for a vertex
bj ∈ B, whose neighbors are ai1 , ai2 , . . . , aid′ (for some d′ ≤ d), we define

zj(X) = (X − αi1) · (X − αi2) · . . . · (X − αid′ ).

Note that zj ∈ Vi if and only if zj(αi) = 0 if and only if αi ∈
{
αi1 , αi2 , . . . , αid′

}
if and only if (ai, bj) ∈ E.

Finally, define w(X) = 1. For every 1 ≤ i ≤ m, the vector w is not in Vi because w(αi) 6= 0.

Lemma 3.2. Let G = (A,B,E) be a bipartite graph with |A| = m, |B| = n, such that the degree of every
vertex in B is at most d. Then, there is a linear secret-sharing scheme realizing G with total share size
n+ (d+ 1)m.

Proof. DenoteA = {a1, . . . , am} andB = {b1, . . . , bn}. We construct a monotone span program accepting
G, where there are d + 1 rows labeled by ai for every 1 ≤ i ≤ m and one row labeled by bj for every
1 ≤ j ≤ n. By Claim 2.4, this implies the desired linear secret-sharing scheme.

Let V1, . . . , Vm and z1, . . . , zn be the linear subspaces and the vectors guaranteed by Claim 3.1. For
every 1 ≤ i ≤ m, let {vi,1, . . . ,vi,d} be a basis of Vi. Define v′i,` = (0, 0,vi,`) for every 1 ≤ i ≤ m and
1 ≤ ` ≤ d (that is, v′i,` is the vector in Fd+3 whose first two coordinates are 0 followed by the vector vi,`).

We consider the monotone span program with target vector is (1, 1, 0, . . . , 0) in which the rows labeled
by ai are v′i,1, . . . ,v

′
i,d and (0, 1, 0, . . . , 0), and the row labeled by bj is z′j = (1, 0, zj).

The monotone span program accepts (ai, bj) ∈ A×B if and only if

(1, 1, 0, . . . , 0) ∈ span
{
z′j,v

′
i,1, . . . ,v

′
i,d, (0, 1, 0, . . . , 0)

}
.

This condition is satisfied if and only if zj ∈ span {vi,1, . . . ,vi,d}, that is, if and only if zj ∈ Vi. Hence,
by Claim 3.1, the monotone span program accepts (ai, bj) if and only if (ai, bj) ∈ E. Furthermore, two
vertices from the same part do not span (1, 1, 0, . . . , 0): For two vertices in A, this follows since the first
coordinate in all vectors they label is 0. For two vertices in B, this follows since the second coordinate in
the vectors they label is 0. Therefore, the monotone span program accepts G.

Remark 3.3. The construction of Lemma 3.2 can be slightly improved by replacing the rows labeled by
every vertex ai ∈ A with degree less than d in G, which are v′i,1, . . . ,v

′
i,d and (0, 1, 0, . . . , 0), with the rows

(0, 0, zj) for every bj ∈ B such that (ai, bj) ∈ E and (0, 1, 0, . . . , 0). It is easy to verify that for such ai ∈ A
with degree less than d, the monotone span program accepts (ai, bj) ∈ A×B if and only if (ai, bj) ∈ E.

In this way, the total share size is n + m +
∑m

i=1 min {deg(ai), d}, instead of n + m + dm in the
construction of Lemma 3.2. This improvement guarantees that the total share size of the scheme is at most
n + m + |E|. However, this improvement cannot be used to improve the bounds on the share size of our
constructions in Theorem 3.5 and in Section 4.

In Lemma 3.4 we prove an analogues result for dense graphs.

Lemma 3.4. Let G = (A,B,E) be a bipartite graph with |A| = m, |B| = n, such that the degree of every
vertex in B is at least m− d. Then, there is a linear secret-sharing scheme realizing G with total share size
2n+ (d+ 1)m.

Proof. Denote A = {a1, . . . , am}, B = {b1, . . . , bn}. Let G = (A,B,E) be the bipartite complement of
G, and let V1, . . . , Vm ⊆ Fd+1 be the linear subspaces of dimension d and z1, . . . , zn,w ∈ Fd+1 be the
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vectors guaranteed by Claim 3.1 for the graphG. As proved in Claim 3.1, zj ∈ Vi if and only if (ai, bj) /∈ E
and w /∈ Vi for every 1 ≤ i ≤ m.

Next, we construct a monotone span program where there are d + 1 rows labeled by ai for every 1 ≤
i ≤ m and two rows labeled by bj for every 1 ≤ j ≤ n. Let {vi,1, . . . ,vi,d} be a basis of Vi. The rows
labeled by ai are (0, 0,vi,1), . . . , (0, 0,vi,d), (0, 1, 0, . . . , 0) and the rows labeled by bj are (0, 0, zj) and
(1, 0, . . . , 0). We take (1, 1,w) as the target vector.

We first prove that the span program accepts an edge (ai, bj) ∈ E. Since (ai, bj) ∈ E, it holds
that zj /∈ Vi and so the dimension of span {zj,vi,1, . . . ,vi,d} is 1 plus the dimension of Vi, i.e.,
span {zj,vi,1, . . . ,vi,d} = Fd+1, and in particular,

w ∈ span {zj,vi,1, . . . ,vi,d} .

Thus, (1, 1,w) is in the span of the vectors labeled by ai and bj .
We next prove that this monotone span program does not accept any pair (ai, bj) /∈ E where

ai ∈ A and bj ∈ B. By Claim 3.1, w /∈ Vi. Since (ai, bj) /∈ E, it holds that zj ∈ Vi and so
w /∈ span {zj,vi,1, . . . ,vi,d} = Vi. Thus, (1, 1,w) is not in the span of the vectors labeled by ai and bj .

Furthermore, two vertices from the same part do not span (1, 1,w): For two vertices in A, this follows
since the first coordinate in all vectors they label is 0. For two vertices in B, this follows since the second
coordinate in the vectors they label is 0. Therefore, the monotone span program accepts G.

Next, we show that Lemma 3.2 can be used to realize every bipartite graph by a linear secret-sharing
scheme with total share size O(n3/2). This scheme has the same total share size as the one in [37]. This
construction is presented as a warm-up for our constructions for bipartite graphs with bounded degree.

Theorem 3.5. Let G = (A,B,E) be a bipartite graph such that |A| = |B| = n. Then, there is a linear
secret-sharing scheme realizing G with total share size O(n3/2).

Proof. We arbitrarily partition A into
√
n sets, A1, . . . , A√n, each set of size at most

√
n. By Lemma 3.2,

the bipartite graph (Ai, B,E ∩ (Ai ×B)) can be realized by a linear secret-sharing scheme with total share
size O(n + (

√
n + 1)

√
n) = O(n), because every vertex in B has at most |Ai| ≤

√
n neighbors. We use

this construction for each of the
√
n sets A1, . . . , A√n. Hence, the total share size of the resulting scheme

is O(n3/2).

It can be verified that in the secret-sharing scheme of Theorem 3.5, the size of the share of each vertex
is O(n1/2).

4 Secret-Sharing Schemes for Sparse and Dense Graphs

In this section we present efficient secret-sharing schemes realizing sparse and dense graphs, that is, graphs
with at most n1+β edges or at least

(
n
2

)
−n1+β edges, for some 0 ≤ β < 1. The main result is Theorem 4.4,

where we show that these graphs admit secret-sharing schemes with total share size O(n1+β/2 log3 n).
Its proof is involved, and we use several intermediate results. First, we construct efficient secret-sharing
schemes for sparse and dense bipartite graphs. In the construction for a sparse or a dense bipartite graph
G = (A,B,E) in Theorem 4.3, we partition the vertices in B into O(log n) sets according to their degree:
The vertices in the ith set Bi are the vertices whose degrees are between n/2i+1 and n/2i. We realize each
graph Gi = (A,Bi, E ∩ (A × Bi)) independently using the secret-sharing scheme of Lemma 4.1. This
methodology is the same as in [10, 12]. The main new technical result in this section is Lemma 4.1, and it
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is the basis of this construction. Finally, using a transformation that appeared in [14], we use the schemes
for sparse and dense bipartite graphs to construct a scheme for general sparse and dense graphs.

Lemma 4.1. Let G = (A,B,E) be a bipartite graph with |A| = n, |B| ≤ n, such that the degree of
each vertex in B is at most d or the degree of every vertex in B is at least n − d, for some d ≤ n. If
d|B| ≥ n log2 n, then there is a linear secret-sharing scheme realizing G in which the share size of each
vertex is O(

√
nd/|B| log n). The total share size of this scheme is O(

√
n|B|d log n).

Proof. We first prove the lemma for the case that the degree of every vertex in B is at most d. We define the
parameters δ, γ, α, and ` as δ = logn d (that is, d = nδ), γ = logn |B|,

α =
1

2
+
γ

2
− δ

2
, (1)

and ` = 2n1−α lnn. We first prove that there are sets A1, . . . , A` ⊂ A of size nα that satisfy the following
properties:

(I)
⋃`
i=1Ai = A, and

(II) for every 1 ≤ i ≤ `, the degree of the vertices in B in the graph Gi = (Ai, B,E ∩ (Ai × B)) is at
most 12nα+δ−1.

For each 1 ≤ i ≤ `, we independently choose Ai with uniform distribution among the subsets of A of
size nα. We show that, with positive probability, A1, . . . , A` satisfy properties (I) and (II).

First, we analyze the probability that (I) does not hold.

Pr [A 6= ∪Ai] ≤
∑
a∈A

Pr [a /∈ ∪Ai] =
∑
a∈A

∏̀
i=1

Pr [a /∈ Ai] =
∑
a∈A

(
1− nα

n

)`
≤

∑
a∈A

e−`/n
1−α

= n
1

n2
=

1

n
.

Now we show that the probability that the sets A1, . . . , A` do not satisfy Property (II) is less than 1/4.
Fix an index 1 ≤ i ≤ ` and a vertex b ∈ B. We analyze the probability that the degree of b in Gi is larger
than 12nα+δ−1. We view the choice of the random set Ai as a process of nα steps, where in the jth step
we uniformly choose a vertex aj ∈ A amongst the vertices that have not been chosen in the first j − 1
steps. Using this view of choosing Ai, we define the following binary random variables Z1, . . . , Znα , where
Zj = 1 if (aj , b) is an edge of Gi, and 0 otherwise. Then, we consider Z =

∑nα

j=1 Zj , that is, Z is the
degree of b in Gi.

We would like to apply a Chernoff bound to these variables, however, they are not independent. We
use Z1, . . . , Znα to define new random variables Z ′1, . . . , Z

′
nα that are independent. For every j ∈ [nα] and

every binary vector z = (zt)t∈[j−1], let

pz = Pr[ Zj = 1|Zt = zt for all t ∈ [j − 1] ].

By convention, if Pr[ Zt = zt for all t ∈ [j − 1] ] = 0, then pz = 0. Note that

pz ≤
nδ

n− nα
≤ 2

n1−δ ,
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where d = nδ is an upper bound on the number of vertices connected to b that can be chosen in the jth step,
and n− nα is a lower bound on the number of vertices that can be chosen in the jth step. Observe that the
last inequality follows because n1/2 ≤ nδ/2+γ/2/ log n, so

nα = n1/2+γ/2−δ/2 ≤ n(δ/2+γ/2)+γ/2−δ/2

log n
=

nγ

log n
≤ n

2
,

obtaining that n − nα ≥ n/2. The random variables Z ′1, . . . , Z
′
nα are defined as follows. Let z1, . . . , znα

be the values given to Z1, . . . , Znα . If zj = 1 then Z ′j = 1, and if zj = 0 then Z ′j = 1 with probability
(2/n1−δ − pz)/(1− pz) and Z ′j = 0 otherwise. Thus,

Pr[ Z ′j = 1|Zt = zt for all t ∈ [j − 1] ] =
2

n1−δ .

Thus, Z ′j is independent of (Zt)t∈[j−1], and, hence, independent of (Z ′t)t∈[j−1], for every j ∈ [nα].
Let Z ′ =

∑nα

j=1 Z
′
j . The expected value of Z ′ is nα · 2/n1−δ = 2nα+δ−1. Using a Chernoff bound [47,

Theorem 4.4, (4.3)], we obtain

Pr
[
Z > 12nα+δ−1

]
≤ Pr

[
Z ′ > 12nα+δ−1

]
≤ 2−12nα+δ−1

.

Since nγ+δ ≥ n log2 n, by (1) we obtain nα+δ−1 = nγ/2+δ/2−1/2 ≥ log n. Thus,

Pr
[
Z > 12nα+δ−1

]
≤ 1

n12
≤ 1

4n`
.

Property (II) holds if for every b ∈ B and every 1 ≤ i ≤ `, the degree of b in Gi is at most 12nα+δ−1. By
the union bound, the probability that (II) does not hold is at most 1/4. Thus, again by the union bound, the
probability that random sets A1, . . . , A` satisfy properties (I) and (II) is greater than 1/2, and, in particular,
such sets exist.

Given valid sets A1, . . . , A`, we construct a secret-sharing scheme for each bipartite graph Gi =
(Ai, B,E ∩ (Ai × B)) using Lemma 3.2. In each one of these subgraphs, the degree of each vertex in
B is at most 12nα+δ−1. Hence, the total share size of the resulting scheme is

∑̀
i=1

(
|B|+ |Ai| · (12nα+δ−1 + 1)

)
= O

(
`(nγ + nαnα+δ−1)

)
= O

(
n1−α lnn(nγ + n2α+δ−1)

)
= O

(
log n(n1+γ−α + nα+δ)

)
.

This value is minimized when 1 + γ −α = α+ δ, that is, when α = 1
2 + γ

2 −
δ
2 (this explains our choice of

α). Using this value of α, we obtain total share size of O(n1/2+γ/2+δ/2 log n) = O(
√
n|B|d log n).

Additionally, every vertex in B participates in ` schemes, and gets a share of size one in each of these
schemes. Hence, the share size of every vertex in B is

` = O(n1−α log n) = O(n1/2+δ/2−γ/2 log n) = O(
√
nd/|B| log n).

We can assume that each vertex in A is a member of exactly one set (by removing the vertex from every set
except from one). Every vertex in A participates in one scheme, and gets a share of size

12nα+δ−1 + 1 = O(nγ/2+δ/2−1/2) = O(
√
|B|d/n)
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in this scheme. Overall, the share size of each vertex in the resulting scheme is O(
√
nd/|B| log n).

To prove the lemma for the case that the degree of every vertex inB is at least n−d, we take the bipartite
complement G = (A,B,E), in which the degree of every vertex in B is at most d. We follow the same
steps of the above proof with G, except that we use the scheme of Lemma 3.4 to realize each bipartite graph
Gi, instead of the scheme of Lemma 3.2.

Lemma 4.2 is a special case of the Lemma 4.1 for |A| = |B|. In the proof of Lemma 4.2, we also take
care of the case that d is small (in Lemma 4.1 we require that d|B| > n log2 n).

Lemma 4.2. Let G = (A,B,E) be a bipartite graph such that |A| = |B| = n and the degree of every
vertex in B is at most d or the degree of every vertex in B is at least n− d, for some d ≤ n. Then, there is a
linear secret-sharing scheme realizing G in which the share size of each vertex is O(

√
d log n) and the total

share size of this scheme is O(n
√
d log n).

Proof. If d < log2 n and the degree of every vertex in B is at most d, we use the secret-sharing scheme
of Lemma 3.2; in this scheme the share size of each vertex is O(d) = O(

√
d log n), and the total share size

is O(n
√
d log n).

If d < log2 n and the degree of every vertex in B is at least n − d, we use the construction presented
in [12, Lemma 3.8]; in this scheme the share size of every vertex is O(d) = O(

√
d log n) and the total share

size is O(n
√
d log n).

Otherwise, d ≥ log2 n. In this case, d|B| ≥ n log2 n (since |B| = n), so we get the desired secret-
sharing scheme from Lemma 4.1.

Theorem 4.3. Let G = (A,B,E) be a bipartite graph with |A| = |B| = n such that either |E| ≤ n1+β

or |E| ≥ n2 − n1+β , for some constant 0 ≤ β < 1. Then, there is a linear secret-sharing scheme realizing
G in which the share size of each vertex is O(n1/3+β/6 log2 n), and the total share size of this scheme is
O(n1+β/2 log2 n).

Proof. Suppose that G = (A,B,E) is a bipartite graph with |E| ≤ n1+β . Define Asmall ={
a ∈ A : deg(a) ≤ n1/3+2β/3

}
, Abig = A \ Asmall, Bsmall =

{
b ∈ B : deg(b) ≤ n1/3+2β/3

}
, and

Bbig = B \ Bsmall. Since the number of edges in G is at most n1+β and the degree of every ver-
tex in Abig and Bbig is at least n1/3+2β/3, the number of vertices in Abig and the number of vertices in
Bbig is at most n1+β

n1/3+2β/3 = n2/3+β/3. By [37] (alternatively, by Theorem 3.5), there is a secret-sharing
scheme realizing the forbidden graph access structure of the bipartite graph (Abig, Bbig, E ∩ (Abig×Bbig))
in which the share size of each vertex is O((n2/3+β/3)1/2) = O(n1/3+β/6), and the total share size is
O((n2/3+β/3)3/2) = O(n1+β/2).

Next, we share the secret for the edges between Bsmall and A. We partition the vertices in Bsmall

according to their degree, that is, for i = 0, . . . , (1/3− β/3) log n− 1, define

Bi =

{
b ∈ Bsmall :

n1/3+2β/3

2i+1
< deg(b) ≤ n1/3+2β/3

2i

}

and Blast =
{
b ∈ Bsmall : deg(b) ≤ nβ

}
. Additionally, let Gi = (A,Bi, E ∩ (A × Bi)) and Glast =

(A,Blast, E ∩ (A×Blast)).
For i = 0, . . . , (1/3 − β/3) log n − 1, we realize the graph Gi using Lemma 4.1. Since the number

of edges in G is at most n1+β and the degree of every vertex in Bi is at least n1/3+2β/3/2i+1, the number
of vertices in Bi is at most n1+β

n1/3+2β/3/2i+1 = 2i+1n2/3+β/3. By taking all the remaining vertices with the
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highest degree to Bi, we can assume that |Bi| = 2i+1n2/3+β/3. By Lemma 4.1, there is a secret-sharing
scheme realizing the forbidden graph access structure of Gi, in which the share size of each vertex is

O

(n · n1/3+2β/3/2i

2i+1n2/3+β/3

)1/2

log n

 = O(n1/3+β/6 log n),

and the total share size is

O

((
n · n1/3+2β/3/2i · 2i+1n2/3+β/3

)1/2
log n

)
= O(n1+β/2 log n).

Finally, we realize Glast using the secret-sharing scheme of Lemma 4.2, in which the share size of
each vertex is O(nβ/2 log n) = O(n1/3+β/6 log n), and the total share size is O(n1+β/2 log n). Notice that
nβ/2 < n1/3+β/6 because β < 1.

Since we use 1 + (1/3 − β/3) log n schemes, the share size of each vertex in the resulting scheme is
O(n1/3+β/6 log2 n), and the total share size is O(n1+β/2 log2 n).

Finally, we share the secret for the edges between Asmall and B (it would suffice to consider the edges
between Asmall and Bbig, however, this optimization does not reduce the share size). We do the same for
Asmall, i.e., we partition the vertices inAsmall according to their degree, that is, for i = 0, . . . , (1−β) log n−
1, define

Ai =

{
a ∈ Asmall :

n1/3+2β/3

2i+1
< deg(a) ≤ n1/3+2β/3

2i

}
andAlast =

{
a ∈ Asmall : deg(a) ≤ nβ

}
, and the graphs (Ai, B,E∩(Ai×B)) and (Alast, B,E∩(Alast×

B)). As before, we get a scheme in which the share size of each vertex is O(n1/3+β/6 log2 n), and the total
share size is O(n1+β/2 log2 n).

Now suppose that G = (A,B,E) is a bipartite graph with |E| ≥ n2 − n1+β . Observe that the bipartite
complement G = (A,B,E) has at most n1+β edges. Hence, in this case, the proof is analogous.

Theorem 4.4. LetG = (V,E) be a graph with n vertices such that either |E| ≤ n1+β or |E| ≥
(
n
2

)
−n1+β ,

for some constant 0 ≤ β < 1. Then, there is a linear secret-sharing scheme realizing G in which the share
size of each vertex is O(n1/3+β/6 log3 n), and the total share size of this scheme is O(n1+β/2 log3 n).

Proof. To simplify notation, assume that n is a power of 2. As in [14], we coverG by log n bipartite graphs,
each graph having at most n1+β edges or at least

(
n
2

)
−n1+β edges. We assume that V = {v1, . . . , vn}, and

for a vertex vi we consider i as a binary log n string i = (i1, . . . , ilogn). For every 1 ≤ t ≤ log n, we define
the bipartite graph Ht = (At, Bt, Ft) as the subgraph of G in which At is the set of vertices whose t-th bit
is 0, Bt is the set of vertices whose t-th bit is 1, and Ft = E ∩ (At × Bt), i.e., Ft is the set of edges in E
between the vertices of At and Bt.

To share a secret s, for every 1 ≤ t ≤ log n, we share s independently using the secret-sharing scheme
of Theorem 4.3 realizing the bipartite graph Ht with total share size O(n1+β/2 log2 n). Since we use log n
schemes, the total share size in the scheme realizing G is O(n1+β/2 log3 n).

For an edge (vi, vj) ∈ E, where i = (i1, . . . , ilogn) and j = (j1, . . . , jlogn), there is at least one
1 ≤ t ≤ log n such that it 6= jt, thus, (vi, vj) ∈ Ft and {vi, vj} can reconstruct the secret using the shares
of the scheme realizing Ht. If (vi, vj) /∈ E, then (vi, vj) /∈ Ft for every 1 ≤ t ≤ log n, and, hence, {vi, vj}
have no information on the secret.
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5 Trade-offs Between the Max Share Size and the Total Share Size

In Section 4, we presented secret-sharing schemes with optimal total share size (up to polylogarithmic
factors) and small max share size, however, the max share size is not optimal. Now, we present secret-
sharing schemes achieving a trade-off between the total share size and the max share size. As a special case,
we construct secret-sharing schemes realizing sparse graphs with at most n1+β edges and dense graphs
with at least

(
n
2

)
− n1+β edges, for some constant 0 ≤ β < 1, in which the share size of every vertex is

O(n1/4+β/4 log2 n). By Corollary 6.10, the constructions with max share O(n1/4+β/4 log2 n) are optimal
(up to a small polylogarithmic factor).

Lemma 5.1. Let G = (A,B,E) be a bipartite graph with |A| = |B| = n such that either |E| ≤ n1+β or
|E| ≥ n2 − n1+β , for some constant 0 ≤ β < 1. Then, for every 0 ≤ γ ≤ 1/4 − β/4, there is a linear
secret-sharing scheme realizing G in which the share size of each vertex is O(n1/4+β/4+γ log2 n), and the
total share size of this scheme is O(n5/4+β/4−γ log2 n).

Proof. Suppose that G = (A,B,E) is a bipartite graph with |E| ≤ n1+β . First, define Abig ={
a ∈ A : deg(a) ≥ n1/2+β/2

}
and Bbig =

{
b ∈ B : deg(b) ≥ n1/2+β/2

}
. Since the number of edges in

G is at most n1+β and the degree of every vertex in Abig and Bbig is at least n1/2+β/2, the number of
vertices in Abig and the number of vertices in Bbig is at most n1+β

n1/2+β/2 = n1/2+β/2. By [37], there is a
secret-sharing scheme realizing the bipartite graph (Abig, Bbig, E ∩ (Abig × Bbig)) in which the share size
of each vertex is

O((n1/2+β/2)1/2) = O(n1/4+β/4) = O(n1/4+β/4+γ),

and the total share size is

O((n1/2+β/2)3/2) = O(n3/4+3β/4) = O(n5/4+β/4−γ),

where the last equality follows from the fact that 5/4 + β/4 − γ − (3/4 + 3β/4) = 1/2 − β/2 − γ >
1/4− β/4 > 0, since γ ≤ 1/4− β/4 and β < 1.

Second, define Bmed =
{
b ∈ B : nβ+2γ < deg(b) ≤ n1/2+β/2

}
. Since the number of edges in G is at

most n1+β and the degree of every vertex in Bmed is at least nβ+2γ , the number of vertices in Bmed is at
most n1+β

nβ+2γ = n1−2γ . By taking all the remaining vertices with the higher degree to Bmed, we can assume
that |Bmed| = n1−2γ . By Lemma 4.1, there is a secret-sharing scheme realizing the forbidden graph access
structure of Gmed = (A,Bmed, E ∩ (A×Bmed)), in which the share size of each vertex is

O

(n · n1/2+β/2

n1−2γ

)1/2

log n

 = O(n1/4+β/4+γ log n),

and the total share size is

O

((
n · n1/2+β/2 · n1−2γ

)1/2
log n

)
= O(n5/4+β/4−γ log n).

Next, define Bsmall =
{
b ∈ B : deg(b) ≤ nβ+2γ

}
. We partition the vertices in Bsmall according to their

degree, that is, for i = 0, . . . , 2γ log n− 1, define

Bi =

{
b ∈ Bsmall :

nβ+2γ

2i+1
< deg(b) ≤ nβ+2γ

2i

}
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and Blast =
{
b ∈ Bsmall : deg(b) ≤ nβ

}
. Additionally, let Gi = (A,Bi, E ∩ (A × Bi)) and Glast =

(A,Blast, E ∩ (A×Blast)).
We realize each graph Gi, for i = 0, . . . , 2γ log n− 1, using Lemma 4.1. Since the number of edges in

G is at most n1+β and the degree of every vertex in Bi is at least nβ+2γ/2i+1, the number of vertices in Bi
is at most n1+β

nβ+2γ/2i+1 = 2i+1n1−2γ . By taking all the remaining vertices with the higher degree to Bi, we

can assume that |Bi| = 2i+1n1−2γ . By Lemma 4.1, there is a secret-sharing scheme realizing the forbidden
graph access structure of Gi, in which the share size of each vertex is

O

((
n · nβ+2γ/2i

2i+1n1−2γ

)1/2

log n

)
= O(nβ/2+2γ log n) = O(n1/4+β/4+γ log n),

and the total share size is

O

((
n
nβ+2γ

2i
2i+1n1−2γ

)1/2

log n

)
= O(n1+β/2 log n) = O(n5/4+β/4−γ log n).

In the computation of these upper bounds, we use the fact that 1/4+β/4+γ−(β/2+2γ) = 1/4−β/4−γ >
0 and that 5/4 + β/4− γ − (1 + β/2) = 1/4− β/4− γ > 0.

Finally, we realize Glast using the secret-sharing scheme of Lemma 4.2, in which the share size of
each vertex is O(nβ/2 log n) = O(n1/4+β/4+γ log n), and the total share size is O(n1+β/2 log n) =
O(n5/4+β/4−γ log n). Since we use 1 + 2γ log n schemes, the share size of each vertex in the resulting
scheme is O(n1/4+β/4+γ log2 n), and the total share size is O(n5/4+β/4−γ log2 n).

We do the same for A, and as before, we get a scheme in which the share size of each vertex is
O(n1/4+β/4+γ log2 n), and the total share size is O(n5/4+β/4−γ log2 n).

The proof of the following theorem is similar to the proof of Theorem 4.4, except that we use the secret-
sharing scheme of Lemma 5.1 to realize each of the log n bipartite graphs, instead of the secret-sharing
scheme of Theorem 4.3.

Theorem 5.2. LetG = (V,E) be a graph with n vertices such that either |E| ≤ n1+β or |E| ≥
(
n
2

)
−n1+β ,

for some constant 0 ≤ β < 1. Then, for every 0 ≤ γ ≤ 1/4− β/4, there is a linear secret-sharing scheme
realizing G in which the share size of each vertex is O(n1/4+β/4+γ log3 n), and the total share size of this
scheme is O(n5/4+β/4−γ log3 n).

By taking the above construction with γ = 0, we obtain the following secret-sharing schemes for sparse
and dense graphs, in which the max share size is optimal (up to a small polylogarithmic factor).

Corollary 5.3. LetG = (V,E) be a graph with n vertices such that either |E| ≤ n1+β or |E| ≥
(
n
2

)
−n1+β ,

for some constant 0 ≤ β < 1. Then, there is a linear secret-sharing scheme realizing G in which the share
size of each vertex is O(n1/4+β/4 log3 n).

Remark 5.4. We can reduce the share size of the secret-sharing schemes of Corollary 5.3 by a factor of
log n using a simpler constructions, in which Abig and Bbig are defined as in Lemma 5.1, and let Asmall =
A \ Abig and Bsmall = B \ Bbig. We realize the bipartite graph with parts Abig and Bbig as in Lemma 5.1
using Theorem 3.5, and realize the bipartite graphs with parts A and Bsmall and with parts B and Asmall,
which have bounded degree for one part, using Lemma 4.2.
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5.1 Adding or Removing Few Edges from Forbidden Graph Access Structures

In the last construction in this paper, we analyze the size of the shares of secret-sharing schemes realizing
graphs that differ in few edges.

Corollary 5.5. Let G = (V,E) be a graph with n vertices that can be realized by a secret-sharing scheme
in which the max share size is `, and the total share size is m, and let G′ be a graph obtained from G by
adding and removing at most n1+β edges, for some constant 0 ≤ β < 1. Then, there exist secret-sharing
schemes realizing G′ with the following properties:

• a scheme with total share size m+O(n1+β/2 log3 n) and max share size `+O(n1/3+β/6 log3 n), and

• a scheme with max share size `+O(n1/4+β/4 log3 n).

If the scheme that realizes G is linear, then these schemes are also linear.

Proof. First, we prove the existence of the first scheme. Let s be the secret, E′ ⊂ E be the set of edges
removed from G, and E′′ (where E′′ ∩ E = ∅) be the set of edges added to G. Note that G′ = (V, (E \
E′) ∪ E′′) = (V, (E ∩ E′) ∪ E′′) and |E′|, |E′′| ≤ n1+β . Since |E′| ≥

(
n
2

)
− n1+β , by Theorem 4.4

the graph (V,E′) can be realized by a scheme with total share size O(n1+β/2 log3 n) and max share size
O(n1/3+β/6 log3 n). Thus, by Claim 2.8, we can realize the graph (V,E ∩ E′) by a secret-sharing scheme
in which the total share size is m+O(n1+β/2 log3 n) and the max share size is `+O(n1/3+β/6 log3 n).

By Theorem 4.4, the graph (V,E′′) can be realized a secret-sharing scheme with total share size
O(n1+β/2 log3 n) and max share size O(n1/3+β/6 log3 n). Thus, again by Claim 2.8, we can real-
ize the graph G′ = (V, (E ∩ E′) ∪ E′′) by a secret-sharing scheme in which the total share size is
m+O(n1+β/2 log3 n) and the max share size is `+O(n1/3+β/6 log3 n).

The existence of the second scheme is a consequence of Corollary 5.3.

6 Lower Bounds for Linear Secret-Sharing Schemes

In this section, we prove that for almost all forbidden graph access structures with n parties, the total share
size required by any linear secret-sharing scheme realizing these access structures, with a one-bit secret, is
Ω(n3/2). We then use this result to prove that for almost all forbidden graph access structures with n parties
and at most n1+β edges, the total share size required by any linear secret-sharing scheme realizing these
access structures, with a one-bit secret, is Ω(n1+β/2). As we have shown in this paper, this bound is tight
up to a poly-logarithmic factor. Furthermore, we bound the share size of families of access structures whose
size of minimal authorized sets is small. Since linear secret-sharing schemes are equivalent to monotone
span programs (see Claim 2.4), we prove the lower bounds using MSP terminology.

The section is organized as follows: We start with some definitions, then in Section 6.1 we discuss dual
access structures and the dual of MSPs. In Section 6.2, we prove lower bounds for MSPs in which each party
labels a bounded number of rows; this implies lower bounds for the max share size in linear secret-sharing
schemes. In Section 6.3, we prove a stronger result – the same lower bounds hold for the size of MSPs; this
implies lower bounds for the total share size in linear secret-sharing schemes (this result uses the results of
Section 6.2).

Definition 6.1. Let M̂ = 〈F,M, δ,1〉 be an MSP accepting an access structure Γ. Define ρi(M̂) as the
number of rows labeled by i, and define ρ(M̂) as the maximal number of rows labeled by a single label:
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ρ(M̂)
def
= maxi∈P ρi(M̂). Define ρq(Γ) as the minimum ρ(M̂) over all MSPs accepting the access structure

Γ over Fq.
Define size(M̂) as the number of rows in the matrix M and sizeq(Γ) as the minimum size(M̂) over all

MSPs accepting the access structure Γ over Fq.

Notice that ρq(Γ) is the minimal max share size of all linear secret-sharing schemes accepting Γ over
Fq, and sizeq(Γ) is the minimal total share size of all linear secret-sharing schemes accepting Γ over Fq.

Definition 6.2. We say that an access structure Γ has rank r if the size of every minimal authorized set in Γ
is at most r.

By counting arguments it is possible to prove lower bounds on the monotone span program size for
almost all access structures: Assume that every access structure can be accepted by an MSP of size S. The
number of MSPs with n parties over Fq whose size is at most S is at most nSqS

2
(as proved in Proposition 6.6

below, we can consider MSPs in which the number of columns in the matrix of the MSP is at most S, thus,
there are qS

2
possible matrices and nS possible ways to label the rows, where n is the number of parties).

Since the number of monotone access structures is at least 22n/
√
n and every MSP accepts one monotone

access structure, it must be that nSqS
2 ≥ 22n/

√
n, i.e., S log n + S2 log q ≥ 2n/

√
n, which implies that

S log q > S
√

log q = Ω(2n/2/n1/4) (where S log q is the non-normalized total share size of the scheme).
It is not clear how to use direct counting arguments to prove lower bounds on the size of MSPs accepting

forbidden graph access structures: the number of graphs is 2O(n2), thus, we get that nSqS
2 ≥ 2O(n2), which

only implies the trivial lower bound S log q > S
√

log q = Ω(n).

6.1 Dual of Monotone Span Programs

We use the notion of dual access structures and dual MSPs, since their properties enable us to use a counting
argument that will yield tight lower bounds on the size of MSPs accepting forbidden graph access structures.
Such duals were studied in previous papers, e.g., [41, 36, 33, 35].

Definition 6.3 (Dual Access Structure). Given an access structure Γ ⊆ 2P , its dual access structure Γ⊥ is
defined as

Γ⊥
def
= {B ⊆ P : P \B /∈ Γ}.

For example, for the t-out-of-n access structure Γt = {B ⊆ P : |B| ≥ t} (where |P | = n),

Γ⊥t =
{
B ⊆ P :

∣∣P \B∣∣ < t
}

= {B ⊆ P : |B| > n− t} = Γn−t+1.

Given an MSP, we can define its dual MSP. For this construction, recall that given an MSP 〈F,M, δ,1〉
accepting Γ, for every authorized set A ∈ Γ there exists a reconstruction vector rA such that rAM = 1,
and (rA)T is non-zero only in rows labeled by A.

Construction 6.4 (Dual MSP). Given an MSP M̂ = 〈F,M, δ,1〉 accepting Γ over F, construct an MSP
M̂⊥ = 〈F,M⊥, δ,1〉 in which for every minimal authorized set A ∈ min Γ there exists a column (rA)T

in M⊥, where rA is a reconstruction vector for A in M . The MSP M̂⊥ = 〈F,M⊥, δ,1〉 is called the dual
MSP.

The following claim can be found in [36]. For completeness, we include its proof.
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Claim 6.5. Let M̂ = 〈F,M, δ,1〉 be an MSP accepting an access structure Γ ⊆ 2P . The dual MSP
M̂⊥ = 〈F,M⊥, δ,1〉, as defined in Construction 6.4, is an MSP accepting the dual access structure Γ⊥.
The sizes of M̂ = 〈F,M, δ,1〉 and M̂⊥ = 〈F,M⊥, δ,1〉 are the same.

Proof. We begin by proving that for every authorized set A ∈ Γ, the set B = P \ A is rejected by M̂⊥. It
suffices to consider only minimal authorized setsA ∈ min Γ. The reconstruction vector rA ofA is a column
of M⊥, and has non-zero entries only in rows labeled by A. The rows labeled by B = P \ A cannot span
1, since in the column (rA)T all entries labeled by B are zero.

Now, assume that A /∈ Γ. In this case, the rows of M labeled by elements from A do not linearly span
1. By orthogonality arguments, there is a column vector v such that 1 · v = 1 and MAv = 0, where MA

are the rows of M labeled by elements from A. Denote w = (Mv)T . We prove that wM⊥ = 1, i.e., w is
a reconstruction vector of B = P \A in M̂⊥. For every column rC of M⊥ the following is true:

w · (rC)T = (Mv)T · (rC)T = vTMT (rC)T = vT (rCM)T = vT · 1T = 1.

This implies that w ·M⊥ = 1. Furthermore, the vector wT is non-zero only in rows labeled by B = P \A
(since MAv = 0). Thus, the set B has a reconstruction vector for the MSP M̂⊥, and, therefore, is accepted
by M̂⊥.

Since the MSP and its dual MSP have the same labeling, the size of the MSP and the dual MSP are the
same.

Claim 6.5 implies that lower bounds on the size of the dual MSPs over F for forbidden graph access
structures yield lower bounds on the total share size of linear secret-sharing schemes over F for forbidden
graph access structures. The following simple proposition bounds the number of columns of an MSP.

Proposition 6.6. For every non-empty access structure Γ and every prime-power q, there is an MSP
M̂ = 〈Fq,M, δ,1〉 accepting Γ such that size(M̂) = sizeq(Γ) and the number of columns in M is at
most size(M̂).

Proof. Let M̂ ′ = 〈Fq,M ′, δ,1〉 be an MSP accepting Γ such that size(M̂ ′) = sizeq(Γ). We remove all
dependent columns from the MSP M̂ ′; this does not change the sets accepted by the MSP. We obtain an
MSP M̂ = 〈Fq,M, δ,1〉 accepting Γ such that all columns of M are linearly independent. Since column
rank equals row rank, the number of columns inM is at most the number of rows inM , which is the number
of rows in M ′.4

Given an access structure Γ of rank r and an MSP M̂ = 〈F,M, δ,1〉 accepting Γ, we consider its dual
M̂⊥ = 〈F,M⊥, δ,1〉, which accepts Γ⊥. We can assume that M⊥ has at most S independent columns that
form a basis spanning all reconstruction vectors {rA}A∈min Γ (where S is the size of the MSPs M̂ and M̂⊥).
In particular, for every column in M⊥ there is a set of parties A of size at most r such that the non-zero
elements in the column are only in rows labeled by A.

4Notice that the rows are not necessarily linearly independent (since rows labeled by different parties can be dependent). There-
fore, the number of columns can actually be smaller than the number of rows.
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6.2 Lower Bounds on the Max Share Size

Next, we compute the number of access structures of rank r that have an MSP such that each party labels
at most s rows, and we show in Theorem 6.7 that there are at most 2O(rns2 log q) such access structures.
Using this result, we show in Corollary 6.9 that for almost all forbidden graph access structures, the max
share size for sharing a one-bit secret in a linear secret-sharing scheme is Ω(

√
n). As a corollary, we

obtain in Corollary 6.13 a lower bound on the communication complexity of CDS protocols. Additionally,
in Corollary 6.10 we show lower bounds on the max share size in sharing a one-bit secret by linear secret-
sharing schemes for forbidden graph access structures of sparse and dense graphs.

Theorem 6.7. Let q be a prime power and s, r, n be integers such that s > log n. The number of access
structures Γ with n parties, rank r, and ρq(Γ) ≤ s is at most 22rns2 log q.

Proof. If ρq(Γ) ≤ s, then, as explained above, there is an MSP M̂⊥ = 〈F,M⊥, δ,1〉 accepting Γ⊥ of the
following form:

• M⊥ is an ns × ns matrix (this can be achieved without changing the validity of the MSP by adding
zero rows or duplicating columns).

• δ is fixed and δ(i) = d ise, i.e., the first s rows are labeled by the first party, the next s rows are labeled
by the second party, and so on.

• Every column of M⊥ is a reconstruction vector of some minimal authorized set A ∈ min Γ (by
Claim 6.5).

Every dual of a rank r access structure has an MSP of this form, and the number of these MSPs is bounded
by the number of possible matrices. Every matrix has ns columns, each is a reconstruction vector of some
A ∈ min Γ. By the definition of reconstruction vectors, the columns can have non-zero values only in
entries labeled by some i ∈ A, that is, at most rs entries can be non-zero. Therefore, the number of possible
column vectors for a given minimal authorized set A ∈ min Γ is at most |Fq|rs = qrs. Since we allow the
entries in rows labeled by A to be zero, we can assume that the size of A is exactly r. The number of sets
of size r that can label a column is

(
n
r

)
< nr < 2rs (since s > log n). Thus, since the number of columns is

ns, the number of such matrices is at most

(2rsqrs)ns < 22rns2 log q.

Theorem 6.8. Let L be a family of access structures with rank at most r. Then, for almost all ac-
cess structures in L, the max share size for sharing a one-bit secret in a linear secret-sharing scheme is
Ω(
√

log |L|/rn).

Proof. Let ` = log |L|. If we share a one-bit secret using an MSP M̂ over Fq with ρ(M̂) = s, then the size
of the share of at least one party is s log q. For the max share size to be less than

√
`/rn, it must be that

s log q ≤
√
`/rn, and, in particular, q ≤ 2

√
`/rn.

We next bound the number of access structures in L that can be realized by a secret-sharing scheme
with max share size at most θ. By Theorem 6.7, the number of access structures in L, each one of them has
rank at most r, with n parties and ρq(Γ) ≤ θ/ log q, is at most 22rn(θ/ log q)2 log q < 22rnθ2 . Since we are
counting linear schemes, we need to sum the number of the MSPs for every possible finite field (there are
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at most 2
√
`/rn such fields, because q ≤ 2

√
`/rn). Consider the MSPs for which the max share size in the

secret-sharing schemes defined by the MSPs is at most θ <
√
`/rn. The number of such MSPs is at most

2
√
`/rn · 22rnθ2 < 2

√
`+2rnθ2 .

Thus, if almost all access structures in L have a linear secret-sharing scheme with max share size θ, then

2
√
`+2rnθ2 > (1− o(1))2`,

i.e., θ2 > (`−
√
`)/2rn, so θ = Ω(

√
`/rn).

Corollary 6.9. For almost all forbidden graph access structures, the max share size for sharing a one-bit
secret in a linear secret-sharing scheme is Ω(

√
n).

Proof. Let L be the family of forbidden graph access structures. Then, the rank of each access structure in
L at most r = 3, and the number of forbidden graph access structures over a set of n parties is the number
of graphs with n vertices, which is |L| = 2`, where ` =

(
n
2

)
≈ n2/2. Thus, by Theorem 6.8, we get that

for almost all forbidden graph access structures, the max share size for sharing a one-bit secret in a linear
secret-sharing scheme is Ω(

√
`/rn) = Ω(

√
n).

The same lower bound holds for graph access structures. Furthermore, if we take sparse forbidden
graphs with at most n1+β edges for some constant 0 ≤ β < 1, then the number of such graphs is at least(

n2/2

n1+β

)
≥
(
n2/2

n1+β

)n1+β

= 2Ω(n1+β logn).

Thus, the max share size of almost all sparse and dense forbidden graph access is Ω(
√
n1+β log n/n) =

Ω(nβ/2
√

log n). We next prove that there exist a sparse and a dense forbidden graph access structures whose
total share size is Ω(n1/4+β/4).

Corollary 6.10. Let 0 ≤ β < 1 be a constant. There exists a forbidden graph access structure with at most
n1+β edges such that the max share size for sharing a one-bit secret in a linear secret-sharing scheme is
Ω(n1/4+β/4). Furthermore, there exists a forbidden graph access structure with at least

(
n
2

)
− n1+β edges

such that the max share size for sharing a one-bit secret in a linear secret-sharing scheme is Ω(n1/4+β/4).

Proof. By Corollary 6.9, for every n there exists a graph Gn with n vertices such that the max share size
in any linear secret-sharing scheme realizing its forbidden graph access structure is Ω(

√
n). We use this

graph (with fewer vertices) to construct a sparse graph G = (V,E) with n vertices. We fix an arbitrary set
of vertices V ′ ⊂ V of size n′ = n1/2+β/2, and consider the graph Gn′ = (V ′, E′) with the set of vertices
V ′. Let G = (V,E′), that is, the vertices in V ′ are connected according to E′ and the vertices in V \ V ′ are
isolated.

Since all edges in G are between vertices in V ′, the number of edges is at most
(
n1/2+β/2

2

)
< n1+β .

By Corollary 6.9, the max share size of any linear secret-sharing scheme realizing G is Ω(
√
n′) =

Ω((n1/2+β/2)1/2) = Ω(n1/4+β/4). Thus, the max share size of any linear secret-sharing scheme realiz-
ing G is Ω(n1/4+β/4).

To construct a dense graph with at least
(
n
2

)
− n1+β edges that requires large max share size in every

linear scheme realizing its forbidden graph access structure, we use a similar construction, however, we add
all edges incident to vertices in V \V ′. Similar analysis implies that the resulting graph has at least

(
n
2

)
−n1+β

edges and the max share size of any linear secret-sharing scheme realizing the graph is Ω(n1/4+β/4).
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Implications to uniform access structures and CDS protocols. Using the above result we can prove a
lower bound of Ω(k−3/4n−1/22(h(k/n)/2)n) on the max share size for sharing a one-bit secret in every linear
secret-sharing scheme that realizes k-uniform access structures. In k-uniform access structures, which are a
generalization of forbidden graph access structures, all subsets of size more than k are authorized, all subsets
of size less than k are unauthorized, and subsets of size exactly k can be either authorized or unauthorized.
By the linear construction of [4] for k-uniform access structures with max share size O(n2(h(k/n)/2)n), this
bound is tight (up to a small polynomial factor).

Theorem 6.11. For almost all k-uniform access structures, the max share size for sharing a one-bit secret
in a linear secret-sharing scheme is Ω(k−3/4n−1/22(h(k/n)/2)n).

Proof. Let L be the family of k-uniform access structures. Then, the rank of each access structure in
L at most r = k + 1, and the number of k-uniform access structures is |L| = 2`, where ` =

(
n
k

)
=

Θ(k−1/22h(k/n)n). Thus, by Theorem 6.8, for almost all k-uniform access structures, the max share size for
sharing a one-bit secret in a linear secret-sharing scheme is Ω(

√
`/rn) = Ω(k−3/4n−1/22(h(k/n)/2)n).

Moreover, using the above result we can prove lower bounds on the max share size for sharing a one-bit
secret in every linear secret-sharing scheme realizing k-partite k-uniform access structures. A k-uniform
access structure is k-partite if the parties can be partitioned into k sets, such that every authorized set of size
k contains exactly one party from each set of the partition.

Theorem 6.12. For almost all k-partite k-uniform access structures, where the size of each part is N , the
max share size for sharing a one-bit secret in a linear secret-sharing scheme is Ω(k−1N (k−1)/2).

Proof. Let L be the family of k-partite k-uniform access structures, where the size of each part is N . Then,
the rank of each access structure in L at most r = k+1, the number of parties is n = kN , and the number of
k-partite k-uniform access structures, where the size of each part isN , is |L| = 2N

k
. Thus, by Theorem 6.8,

for almost all k-partite k-uniform access structures, the max share size for sharing a one-bit secret in a linear
secret-sharing scheme is Ω(

√
log |L|/rn) = Ω(k−1N (k−1)/2).

Since CDS protocols are equivalent to secret-sharing schemes for multi-partite uniform access struc-
tures, we get the following corollary. By the linear construction of [15, 45] of k-server CDS protocol with
message size O(N (k−1)/2), this bound is tight (up to a factor of k).

Corollary 6.13. For almost all k-input functions f : [N ]k → {0, 1}, the message size of every linear
k-server CDS protocol for f with one-bit secret is Ω(k−1N (k−1)/2).

6.3 Lower Bounds on the Total Share Size

In this section we present lower bounds on the total share size for forbidden graph access structures and rank
r access structures. In Theorem 6.14, we count the number of forbidden graph access structures with MSPs
of size at most S. Using this result, we show in Corollary 6.15 that for almost all forbidden graph access
structures, the total share size for sharing a one-bit secret in a linear secret-sharing scheme is Ω(n3/2). This
result is stronger than Corollary 6.9. Then, we present in Corollary 6.16 lower bounds on the total share
size for forbidden graph access structures of dense and sparse graphs. Finally, in Corollary 6.18 we count
the number rank r access structures with MSPs of size at most S and prove that for almost all rank r access
structures with n parties, the total size of the shares in every linear secret-sharing scheme with a one-bit
secret realizing these access structures is Ω(n(r+1)/2).
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Theorem 6.14. Let q be a prime power and S, n be integers such that S > n log n. The number of forbidden
graph access structures Γ with n parties and sizeq(Γ) ≤ S is at most 2n

2/3+(72S2 log q)/n.

Proof. Let M̂ = 〈F,M, δ,1〉 be a monotone span program accepting a forbidden graph access structure Γ

of a graph G = (V,E) with n parties V = {v1, . . . , vn} such that size(M̂) ≤ S. Let B ⊆ V be the set
of parties such that each one of the parties in B labels more than 4S/n rows in M̂ . The size of B must be
at most n/4. Let M̂ ′ = 〈F,M ′, δ′,1〉 be the monotone span program obtained from M̂ by removing the
rows of M labeled by parties in B. Notice that ρ(M̂ ′) ≤ 4S/n. Furthermore, M̂ ′ accepts the forbidden
graph access structure Γ′ obtained from Γ by removing all the authorized sets containing parties from B.
That is, Γ′ is the forbidden graph access structure of the graph G′ obtained by removing B from G, i.e.,
G′ = (V \B,E ∩ (V \B)× (V \B)).

We say that a forbidden graph access structure Γ is efficient if sizeq(Γ) ≤ S. For every efficient for-
bidden graph access structure Γ of a graph G with n parties, arbitrarily choose an MSP M̂G accepting it
whose size is exactly S,5 choose a set BG of size exactly n/4 such that each party in V \BG labels at most
4S/n rows in M̂G, and let HG be the graph obtained by removing BG from G. As explained above, if Γ is
efficient then ρ(M̂ ′) ≤ 4S/n.

Fix a setB ⊂ V of size n/4 and a graphH = (VH , EH) such that VH ⊂ {v1, . . . , vn} and |VH | = 3n/4.
We next give an upper-bound on the number of efficient forbidden graph access structures Γ such that
BG = B and HG = H . The number of graphs G = (V,E) such that H is obtained by removing B from G
is at most

2(n/42 ) · 2
n
4
· 3n
4 ≤ 2n

2/4,

where the first term corresponds to possible edges between vertices in B and the second term corresponds
to possible edges between a vertex in B and a vertex in V \B.

To conclude, the number of efficient forbidden graph access structures over Fq is at most(
n

n/4

)
· 2n2/4 · 26(3n/4)(4S/n)2 log q ≤ 2n

2/3+72(S2/n) log q,

where the first term is the number of possible choices ofB, the second term is an upper bound on the number
of graphs such that the graph obtained by removing B from these graph is the same, and the third term is
an upper bound on the number of forbidden graph access structures Γ′ whose set of parties is V \ B and
ρq(Γ

′) ≤ 4S/n.

Corollary 6.15. For almost all forbidden graph access structures, the total share size for sharing a one-bit
secret in a linear secret-sharing scheme is Ω(n3/2).

Proof. If we share a one-bit secret using an MSP M̂ over Fq with sizeq(M̂) = S, then the total share size is
S log q. For the total share size to be less than n3/2, it must be that q ≤ 2

√
n (otherwise, each share contains

more than
√
n bits, and, in total, the share size is more than n3/2), and, furthermore, S log q ≤ n3/2.

On one hand, by Theorem 6.14, the number of forbidden graph access structures Γ with n parties and
sizeq(Γ) ≤ Θ/ log q is at most

2n
2/3+(72(Θ/ log q)2 log q)/n < 2n

2/3+72Θ2/n.

5By adding all-zero rows we can assume that the size is exactly S.
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Since we are counting linear schemes, we need to sum the number of the MSPs for every possible finite field
(there are at most 2

√
n such fields, because q ≤ 2

√
n). Consider the MSPs for which the total share size in

the secret-sharing schemes defined by the MSPs is at most Θ < n3/2. The number of such MSPs is at most

2
√
n · 2n2/3+72Θ2/n.

On the other hand, the number of graphs is 2(n2) ≈ 2n
2/2. Thus, if almost all the forbidden graph access

structures have a linear secret-sharing scheme with total share size Θ, then
√
n+n2/3+72Θ2/n > n2/2−1,

i.e., Θ = Ω(n3/2).

We cannot apply Theorem 6.14 directly to prove lower bounds on the total share size of linear schemes
for sparse or dense forbidden graph access structures, since the term of 2n

2/3 in Theorem 6.14 dominates
the number of sparse graphs. To prove lower bounds for sparse forbidden graph access structures, we use an
idea from [10].

Corollary 6.16. Let 0 ≤ β < 1 be a constant. There exists a forbidden graph access structure with at most
n1+β edges such that the total share size for sharing a one-bit secret in a linear secret-sharing scheme is
Ω(n1+β/2). Furthermore, there exists a forbidden graph access structure with at least

(
n
2

)
− n1+β edges

such that the total share size for sharing a one-bit secret in a linear secret-sharing scheme is Ω(n1+β/2).

Proof. By Corollary 6.15, for every n there exists a graph with n vertices such that the total share size in
any linear secret-sharing scheme realizing its forbidden graph access structure is Ω(n3/2). We use such a
graph (with fewer vertices) to construct a sparse graphG = (V,E) with n vertices. We partition the vertices
of G into n1−β disjoint sets of vertices V1, . . . , Vn1−β , where |Vi| = nβ for 1 ≤ i ≤ n1−β . We construct the
edges as follows: For every i (where 1 ≤ i ≤ n1−β), we construct a copy of a graph from Corollary 6.15
with nβ vertices among the vertices of Vi. We denote this graph by Gi. There are no edges between vertices
in different sets.

Since all edges in the above construction are between vertices in the same set, the number of edges
is at most

(
nβ

2

)
n1−β < n1+β . The total share size of any linear secret-sharing scheme realizing Gi (for

1 ≤ i ≤ n1−β) is Ω((nβ)3/2) = Ω(n3β/2). Thus, the total share size of any linear secret-sharing scheme
realizing G is Ω(n1−βn3β/2) = Ω(n1+β/2).

To construct a dense graph with at least
(
n
2

)
− n1+β edges that requires large shares in every linear

scheme realizing its forbidden graph access structure, we use a similar construction, however, we add all
edges between different sets. Similar analysis implies that the resulting graph has at least

(
n
2

)
− n1+β edges

and the total share size of any linear secret-sharing scheme realizing the graph is Ω(n1+β/2).

Theorem 6.17. Let q be a prime power and S, n, r be integers such that S > n log n. The number of rank
r access structures with n parties and sizeq(Γ) ≤ S is at most

exp

(
O
(

(1− (3/4)r)

(
n

r

)
+
rS2 log q

n

))
.

Proof. The proof is similar to the proof of Theorem 6.14 as we next explain. Given an MSP of size S, we
find a set B of size n/4 containing all parties such that each party not in B labels at most 4S/n rows. Let Γ′

be an access structure over 3n/4 parties such that each one of them label at most 4S/n rows. To complete
the proof, we need to upper bound the number of rank r access structures with n parties whose restriction
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to 3n/4 parties is Γ′. The number of sets of size r that intersect B is the number of sets of size r minus the
number of sets of size r contained in P \B i.e.,(

n

r

)
−
(

3n/4

r

)
> (1− (3/4)r)

(
n

r

)
,

which holds since(
3n/4

r

)
=

(3n
4 )(3n

4 − 1) . . . (3n
4 − (r − 1))

r!
<

(3
4n)(3

4n−
3
4) . . . (3

4n−
3
4(r − 1))

r!
=

(
3

4

)r (n
r

)
.

Thus, the number of rank r access structures with an MSP over Fq of size at most S is at most(
n

n/4

)
· 2(1−(3/4)r)(nr) · 22r(3n/4)(4S/n)2 log q = exp

(
O
(

(1− (3/4)r)

(
n

r

)
+
rS2 log q

n

))
.

The following result can be proved by using the bound in Theorem 6.17 and the counting argument used
in the proof of Corollary 6.15.

Corollary 6.18. For almost all rank r access structures with n parties, the total share size in every linear
secret-sharing scheme with a one-bit secret realizing these access structures is Ω(n(r+1)/2).
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[10] Amos Beimel, Oriol Farràs, and Yuval Mintz. Secret-sharing schemes for very dense graphs. J. of
Cryptology, 29(2):336–362, 2016.
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