ON THE SECURITY OF THE WOTS-PRF SIGNATURE SCHEME

PHILIP LAFRANCE AND ALFRED MENEZES

ABSTRACT. We identify a flaw in the security proof and a flaw in the concrete security
analysis of the WOTS-PRF variant of the Winternitz one-time signature scheme, and
discuss the implications to its concrete security.

1. INTRODUCTION

The Winternitz one-time signature (WOTS) scheme (see [22, 8]) is an optimization of
a one-time signature scheme first described by Lamport [20]; the latter is now called the
Lamport-Diffie one-time signature scheme. The WOTS scheme is widely believed to be
resistant to attacks by large-scale quantum computers, and therefore is a prime candidate
for inclusion in emerging standards for post-quantum cryptography.

Several variants of WOTS have been proposed and studied in the literature. The
original WOT'S scheme used a one-way function and was analyzed by Dods et al. [6]. The
Leighton and Micali scheme WOTS-LM is described in an IETF Internet-Draft [21], and
has been analyzed in the random oracle model [17] and the quantum random oracle model
[7]. Buchmann et al. [4] (see also [3, 11]) proposed a variant, called WOTS-PRF, that
uses a pseudorandom function (PRF) instead of a hash function. Another hash-based
WOTS variant, called WOTS™, was proposed by Hiilsing [12] and has been included in
an IETF standard [14]. In [16], a modification of WOTS™ specifically designed to resist
multi-target attacks was studied.

The practicality of a one-time signature scheme is enhanced by using a Merkle tree
[22] to simultaneously authenticate many public keys for the one-time signature scheme.
Merkle tree-based signature schemes that use a WOTS variant as the underlying one-time
signature scheme include the eXtended Merkle Signature Scheme (XMSS) [5], XMSS™
[13], XMSSMT [15], and XMSS-T [16].

The most attractive feature of WOTS-PRF is that it has a reductionist security proof
with minimal assumptions [4], namely the existence of a secure PRF whose existence
in turn is guaranteed by the existence of one-way functions [9, 10]. This is unlike, say,
WOTS-LM whose only known security proof assumes that the underlying hash function
is a purely random function [17], or WOTS™ whose security proof assumes the existence
of a one-way function that is also second-preimage resistant and ‘undetectable’ [12].

In this paper, we show that the security proof for WOTS-PRF in [4] is flawed. Further-
more, we show that even if the flaw can be repaired, the concrete security analysis in [4]
is incorrect since it underestimates the possible number of “key collisions” for the PRF by
using an unconstructible reductionist argument to relate this number to PRF security. We
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show that this underestimation leads to a drastic overestimation of the concrete security
of WOTS-PRF and the Merkle signature schemes that employ it including XMSS and
XMSS*.

The remainder of the paper is organized as follows. The WOTS-PRF signature scheme
is described in §2. In §3 we identify a flaw in the reductionist security proof. The flaw
in the concrete security analysis and its implications are presented in §4. We make some
concluding remarks in §5.

2. THE WOTS-PRF SIGNATURE SCHEME

The WOTS-PRF signature scheme [4] has the following ingredients:

(1) A security parameter n € N.

(2) The bitlength m of messages.

(3) A Winternitz parameter w € N, which for simplicity we will take to be a power of
two: w = 2°.

(4) A pseudorandom function f : {0,1}" x {0,1}" — {0,1}". For (k,z) € {0,1}" x
{0,1}", we will denote f(k,z) by fr(z). The iterates of f are defined as follows.
For (k,z) € {0,1}"™ x {0,1}",

f(z) =k and fi(z)= ff;;—l(x)(iﬁ) for i > 1.

Thus, f}(x) = (@), J2() = f1,()(@). and so on.
(5) A checksum C' on messages defined as follows: set

0= [T] = rogﬂl(“’ - 1))J +1, L=01 + 0o
(&

e

Define C' : {0,1}™ — {0,1}°2 as follows. Let M € {0,1}. Obtain M° by
prepending M with 0’s until the bitlength of MY is ef;, and then write M°? =
My ||Mz]| - - - || My, where each M; has bitlength e. Interpret each M; as a non-
negative integer and compute ¢(M) = Eflzl(w — 1 — M;). The checksum C(M)
is obtained by converting ¢(M) to a binary string and then prepending 0’s as
necessary to obtain a binary string of bitlength exactly els.
We next present the WOTS-PRF signature scheme.
Key generation. Each user A does the following:
(1) Select x € {0,1}™.
(2) Select ski,ska,...,sky €r {0,1}".
(3) Compute pk; = ;7%_1(3:) for i = 1,2,...,¢ (ski,f;ki(m),ffki(x),..., ;‘,’gl_l(x)) is
called the i-th Winternitz hash chain.
(4) A’s public signature verification key is pk = (pko, pki1, . . ., pk¢) where pky = x.
A’s secret signature generation key is sk = (sky, ska, ..., sky).
Signature generation. To sign a message M € {0,1}", A does the following;:
(1) Compute the checksum C' = C(M), and let B = M°||C = by||ba]| - - - ||bs where
each b; has bitlength e.
(2) Compute o; = fé’,ii (x) fori=1,2,...,¢.
(3) A’s signature on M is 0 = (01,09, ...,0).
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Signature verification. To verify A’s signed message (M, o), the verifier does the fol-
lowing;:
(1) Compute the checksum C' = C(M), and let B = M°||C = by||ba]| - - - ||bs where
each b; has bitlength e.
(2) Compute pk] = f2=17% (pko) for i = 1,2,..., 4.
(3) Accept the signature if and only if pk, = pk; for all i =1,2,...,¢.

3. THE WOTS-PRF SECURITY PROOF

This section presents the WOTS-PRF reductionist security proof from [4] and the flaw
we observed in the analysis of its success probability. We begin with the definitions of
a secure one-time signature scheme, a secure pseudorandom function, and the maximum
and minimum number of key collisions.

Definition 1. A one-time signature scheme S is said to be (¢, €)-secure if all adversaries
Ag whose running times are bounded by ¢ have success probability less than e in the
following game: Ag is given a public key pk for S and can query a signing oracle (with
respect to pk) for the signature o of one message M of its choosing; Ag’s challenge is
to generate a valid signed message (M*,0*) with M* # M. The security level of S is
logy(t/€) bits.

Definition 2. A function f : {0,1}" x{0,1}" — {0,1}" is said to be a (¢, ¢)-secure PRF if
all adversaries A; whose running times are bounded by ¢ have advantage less than € in the
following game: Ay is given blackbox access to an oracle O(-) that with equal probability
is either fi(-) for hidden key k €r {0,1}" or else a random function R : {0,1}" — {0,1}";
Ay¢’s challenge is to determine which it is. (Aj’s advantage is the absolute value of the
differences in probabilities that A; declares that O(-) is fi(-) in the case where O(:) is
fx(+) and the case where O(+) is R(:).) The security level of f is logy(t/€) bits.

Definition 3. Consider the function f : {0,1}" x {0,1}" — {0,1}". For each pair
(k,z) € {0,1}™ x {0,1}™, let

Nipo = #{K € {0,1}" : fu(z) = fr(2)},

and
T, = m]?X {Nkz} and S, = mkin {Nkz}

Then the maximum number x and minimum number &’ of key collisions are

k=max{T;} and £ =min{S,}.

incorrect, as are the definitions of £ and «’ in [3]. Our definitions of x and " are equivalent
to those given in [11].
In [4], the following notion of a key one-way (KOW) function is introduced.

Definition 4. A function f : {0,1}" x {0,1}" — {0,1}" is said to be (t,¢)-KOW if all
adversaries Axgow whose running times are bounded by ¢ have advantage less than € in
the following game: Agow is given (z,y), where z, k €p {0,1}" and y = fx(x); Akow’s
challenge is to find some k' € {0,1}" with fi/(z) = .

Observe that Nj, > 1, and so 1 < k' < k. We note that the definition of &’ in [4] is
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Proposition 2.7 in [4] shows that a (¢, €)-secure PRF is a (t —2,¢/(1/k — 1/2™))-KOW.
The following is the main security claim in [4]. We include a summary of the proof from
[4].

Theorem 1 (Theorem 2.8 in [4]). Let f: {0,1}" x {0,1}"™ — {0,1}" be a (t',€)-secure
PRF. Then WOTS-PRF is a (t,€)-secure one-time signature scheme with

(1) t = t'—tgg —tve — 2,

v

1/k—1/27"

where txg and tyy denotes the running times of the WOTS-PRF key generation and veri-
fication algorithms, respectively.

(2) e < drPuwikv!

Summary of proof from [4]. Suppose that Awors is a forger that runs in time ¢ and pro-
duces a WOTS-PRF forgery with probability at least e. We construct an adversary Axow
that uses Awors to solve the KOW challenge.

The adversary Axow is given a KOW challenge (z,y). It begins by generating a
WOTS-PRF key pair as specified in §2 with one exception. It selects random indices
a €r [1,¢] and B €r [1,w — 1]. Instead of selecting the secret key component sk, and
computing pko, = f;‘,;;l(:c), Axow sets pko = ;”_l_ﬁ(x); i.e., it inserts y at position S in
the Winternitz hash chain that an honest execution of the key generation algorithm would
have produced to determine pk.

Next, Axow invokes Awors with public key pk and answers its signing oracle query M
as follows. If b, < 3, then Akxow terminates the experiment since it doesn’t know the first
[ entries of the ’th Winternitz hash chain. Otherwise, if b, > 3, then AwoTrs produces
the required signature o on M as specified in §2 except that it sets o, = fy‘rﬁ (x). If
Awors produces a valid forgery (M’,o’) within its allotted time, and if b, < 3, then

Awors computes k' = ff,fl*b; () and outputs k' if fi(z) = y; otherwise Awors termi-
nates with failure. See Figure 1.

(ska) oo Y Oa pka
@ e @ @ L L L L L L L L L L ]
0 b, B ba w—1

FIGURE 1. The incomplete o’th Winternitz hash chain in Axow’s experiment.

Axow’s success probability e xow is assessed as follows. The probability that b, > 8 is
at least (fw)~!. The probability that Awors succeeds is at least € subject to the condition
that pk is a valid public key, i.e., there exists sk, € {0,1}" such that ffka () = y. This
happens with probability at least 1/x? according to Definition 3. The probability that
b, < B is at least (fw)~!. The probability that y = fi(x) holds where k' = fft,:l_b:1 (x) is
at least 1/x® 178, This is because there exists at most £~ keys mapping x to pk, after
w — 1 iterations of f and only x? of these keys maps x to y after 3 iterations.

In summary we have exow > €/ (Pw?k’k*~1=8) and txow = t+tkg+tye. This yields a
PRF forger Aprr with eprp > €(1/k—1/2")/(FPw?k%~1) and tprp = t+tkg+tye+2. O
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We observe a flaw in the proof of Theorem 1, which pertains to the probability analysis
of the reduction. To aid in our explanations, we introduce the notion of a keychain.

Definition 5. Let f: {0,1}" x {0,1}" — {0,1}" be a PRF, and fix x € {0,1}". For any
v € Nand y € {0,1}", a y-keychain to y is an ordered tuple (ki, ko, ..., k) of n-bit keys
such that ki1 = fi,(x) fori=1,2,...,v—1and k, = y.

The flaw is in the claim that the probability that y = fi () holds is at least 1/x% =15,
Consider the tree of all w-keychains to pk,; see Figure 2. By definition of x, there exist at

} S K/wfl
w-keychains to pkq

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, } < Kw—1-8
(w—pB)-keychains to pka

pka

FIGURE 2. The tree of w-keychains to pk,.

most K ~1=# (w — B)-keychains to pk,. Note that y is the first coordinate of one of these
keychains. Now, since b, < 3, the (w — b.,)-keychain to pk, beginning at o/, must connect
with one of the (w — f8)-keychains to pk,. If the connecting keychain is selected uniformly
at random, then the probability that the connecting keychain begins with y (and thus
y = fr(z)) is indeed at least 1/x*~1=8. However, there is no justification for assuming
that Awors selects a connecting chain uniformly at random. Indeed, since Awors knows
0a, it is conceivable that it always selects o/, so that the (w — b, )-keychain beginning at o7,
does not pass through o, and thus never connects with y; in this event, the probability
that y = fir(x) holds is zero.

4. CONCRETE SECURITY OF WOTS-PRF

In [4], the following relationship between the security level of the PRF f and the max-
imum number of key collisions « for f is proven.

Lemma 2. Let f: {0,1}" x {0,1}" — {0,1}" be a (t,€)-secure PRF with security level
b=logy(t/€). Then k <27 b +1.

Proof, paraphrased from [4]. Suppose that k > 2" 7?41 and let (x,y) € {0,1}" x{0,1}" be
a pair for which there exist x keys k for which fx(x) = y. We construct a PRF-adversary
Ay as follows. Ay queries its oracle O(-) with x. If O(z) = y then Ay declares that
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O(:) is f(-); otherwise it declares that O(-) is R(-). Clearly Ay’s runs in time t’ = 1.
Furthermore,
K~

o > 2=b 4 9—m

Pr[Ay declares that O(-) is fx(-) | O(-) is indeed fi(-)] =

and
Pr[Af declares that O(-) is fi(-) | O(-) is indeed R(-)] =27".

Hence Ay’s advantage is € > 2% which contradicts the assumed PRF security level of b
for f. O

Since the only way for the adversary of a good PRF f to gain an advantage is to guess
the hidden key, the authors of [4] conclude that f can be expected to have security level
b =n, whence k < 2. However, we will argue that k = 2 is a severe underestimation of the
maximum number of key collisions for f. The problem with the proof of Lemma 2 is that
the adversary A; described is non-constructive since no efficient method for determining
the pair (z,y) for f may be known. On the other hand, the security level b of the PRF f
is usually assessed by considering all known constructible algorithms for the PRF security
game in Definition 2. Thus, A¢’s advantage € > 2% in the proof does not contradict the
assumed security level of f.

We show in §4.1 that « can be expected to be considerably larger than 2 even for ‘good’
PRFs. The implications of the underestimation of x to the concrete security guarantees
for WOTS-PRF are explored in §4.2.

Remark 1. As argued in [18, 19] (see also [2]), the security level of a PRF f against
attacks that might be unconstructible is expected to be significantly lower that when only
constructible attacks are considered. In particular, if f is a good PRF with security level
n against constructible attacks, then f can be expected to have security level no more
than n/2 against unconstructible attacks. Furthermore, determining the exact security
level of f against unconstructible attacks is expected to be a very challenging undertaking.
The significance of the difference in the constructible and unconstructible security levels
of f to the concrete security guarantees of Bellare’s security proof [1] for the HMAC
authentication scheme is discussed in [18, 19].

Remark 2. A one-time signature scheme S is said to be (¢, €)-strongly secure if, in addition
to satisfying Definition 1, it is required that the signed message (M*, c*) produced by the
adversary Ag satisfies (M*,0*) # (M, o). Theorem 3.5 of [4] proves that WOTS-PRF
is strongly secure assuming that the underlying PRF f is second-key resistant (SKR) or
key-collision resistant (KCR). Furthermore, it is assumed that the minimum number of
key collisions ' for f (see Definition 3) satisfies k¥’ > 2. However, since

! .
= min { Ny},
it is highly unlikely that x’ # 1 for PRFs f used in practice. Indeed, one would expect
with overwhelming probability that Ny, = 1 for at least one pair (k,z) for a function
f selected uniformly at random from the space of all functions from {0,1}" x {0,1}" to
{0,1}". Thus, the claim that WOTS-PRF is strongly secure if k' > 2 is vacuous for
common constructions of PRFs.



ON THE SECURITY OF THE WOTS-PRF SIGNATURE SCHEME 7

4.1. Balls and bins. Consider an experiment wherein N balls are thrown, independently
and uniformly at random, into N bins. Of interest is the expected maximum number of
balls in any bin. This study is analogous to the determination of the expected value of
T, for a fixed z € {0,1}" (cf. Definition 3) for a uniform random function f : {0,1}" x
{0,1}™ — {0,1}". Here, the balls are the keys k € {0,1}" (so N = 2"), the bins are the
elements of the codomain {0,1}", and ball & is placed in bin fi(x). Then the expected
maximum number M of balls in a bin is equal to the expected value of T}, which in turn
is at most the expected value of k.

Theorem 3 ([23]). Consider an experiment wherein N balls are randomly assigned to N
bins. Let M be the random wvariable that counts the maximum number of balls in a bin.

Then
In N

= N

E[M (14 o(1)) with probability 1 — o(1).

Moreover,

Pr[ there is at least one bin with > «

n N [ 1-0(1), f0<a<l,
Inln N balls ] = { (1), otherwise.

Clearly the value In N/Inln N can be made arbitrarily large. Hence, for any ¢ € N one
can produce values 0 < @ < 1 and N € N such that aln N/Inln N > ¢. Thus, even though
the PRF f is not uniformly random, this gives strong evidence that x < 2 is in general

false.

4.2. Concrete security assurances of WOTS-PRF and XMSS. Theorem 1 states
that if f is a (¢, €)-secure PRF, then WOTS-PRF is a (t,¢€)-secure one-time signature
scheme with t ~ t' and ¢ < f2w?k¥~1/(1/k — 1/2"). The tightness gap in the security
reduction of Theorem 1 is

which is sensitive to the value to k. For example, suppose that the PRF f is instantiated
using AES with 128-bit keys, whereby it is reasonable to assume that it has a security
level of 128 bits. The authors of [4], take k = 2, m = 128, w = 16 and conclude that
Theorem 1 guarantees a security level of at least 91 bits for WOTS-PRF. However, since
one expects that
11,1(2128)
"= Tn(In(2128))

Theorem 1 can guarantee a security level of at most 39 bits for WOTS-PRF, which is
insufficient in practice.

As a second example, consider XMSS when instantiated with WOTS-PRF. The security
proof in [11] yields an XMSS security level of

(3) b>n—h—3—max{h+ 1,wlogy(r) + logy(fw)},

where h is the height of the XMSS tree. Taking n = m = 256, w = 64, xk = 2 and h = 16,
Table 7.1 concludes that XMSS has a security level of at least 161 bits. However, since
one expects that

~ 20,

> —— 7 =~ 34,
F 2 (i (@e)) ~ 3
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the security bound (3) can at best guarantee that b > —100, which is vacuous.
Similar conclusions can be drawn about the concrete security levels given for XMSS in
[5] and XMSS™ in [13].

5. CONCLUDING REMARKS

We emphasize that our observations on the WOTS-PRF security proof have no bearing
on the security proofs for other variants of WOTS such as WOTS-LM and WOTS™.
Furthermore, our remarks in §4.2 on the concrete security bounds for XMSS and XMSS™
only apply when these signature schemes are instantiated with WOTS-PRF. In particular,
they are not applicable to XMSS as described in the IETF RFC [14] where WOTS™ is
the underlying one-time signature scheme.

An open problem is to devise a (tight) reductionist security proof for WOTS-PRF (or
a variant of it) under the sole assumption that f is a secure PRF.
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