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André Chailloux2 and Thomas Debris-Alazard1,2

1 Sorbonne Universités, UPMC Univ Paris 06
2 Inria, Paris

{andre.chailloux,thomas.debris}@inria.fr

Abstract. Quantum secure signature schemes have a lot of attention recently, in partic-
ular because of the NIST call to standardize quantum safe cryptography. However, only
few signature schemes can have concrete quantum security because of technical difficulties
associated with the Quantum Random Oracle Model (QROM). In this paper, we show that
code-based signature schemes based on the full domain hash paradigm can behave very well
in the QROM i.e. that we can have tight security reductions. We also study quantum al-
gorithms related to the underlying code-based assumption. Finally, we apply our reduction
to a concrete example: the SURF signature scheme. We provide parameters for 128 bits of
quantum security in the QROM and show that the obtained parameters are competitive
compared to other similar quantum secure signature schemes.
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1 Introduction

Quantum computers are a potential big threat for many public-key cryptosystems. Every crypto-
graphic application based on the hardness of factoring or the discrete logarithm (in a finite field
or on elliptic curves) can be broken using Shor’s quantum algorithm [Sho94]. Even if the future
existence of such quantum hardware is still in question, there is a rapidly increasing interest in
building cryptosystems which are secure against quantum computers, field sometimes referred to
as post-quantum cryptography, or quantum-safe cryptography.

There are at least a couple of reasons why we should care and develop this line of research.
First, sensitive data is now stored online and we want to guarantee long-term security. Indeed, we
do not want current medical, political or other sensitive data to be stored today and decrypted in
let’s say 20 to 30 years from now, so cryptographic applications should try to find a way to prevent
this kind of attacks. Quantum-safe cryptography would prevent a potential quantum computer to
break today’s schemes. Moreover, creating alternatives to RSA-based schemes could also be useful
if another (non quantum) attack is found on factoring or the discrete log. While this doesn’t seem
to be the most probable, there has been for example big improvements on the discrete logarithm
problem [BGGM15] so such a scenario is not totally out of the question. Those concerns are
strong and initiated a NIST call to standardize quantum-safe cryptography [NIS16], and also lead
to industrial interest [Goo16].

In this paper, we study (classical) signature schemes secure against quantum adversaries. Dig-
ital signature schemes allow to authenticate messages and documents and are a crucial element
of many cryptographic applications such as software certification. There are several proposals
for quantum-safe signatures based mostly on the hardness of lattice problems, such as BLISS
[DDLL13], GPV [EBB14] or TESLA [ABB+17]. There are also other quantum-safe assumptions
that can be used such as the hardness of code-based problems, multivariate polynomial problems
[DS05] or the quantum security of hash functions [BHH+15]. All of those quantum-secure signa-
ture schemes have different merits and imperfections. Some have good time and size parameters
but use a very structured lattice-based assumption. Others have large key and/or signature sizes
and can have large running times.
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Code based cryptography is among the oldest proposals for modern cryptography but suffered
historically from the difficulty to construct a good signature scheme. The underlying computational
assumption was actually one of the first proposed computational assumption [Mc 78] and still
resists to known classical and quantum attacks. Until recently, there were very few proposals that
were able to perform a code-based digital signature, the most notable being the CFS signature
scheme [CFS01]. However, a very recent proposal, the SURF signature scheme (see [DST17]),
presents competitive parameters (comparable to TESLA) but the security was shown only against
classical adversaries.

Actually, most of signature schemes listed above - even though they use a quantum-safe com-
putational assumption - can only prove security against classical adversaries. In fact, as of today
only SPHINCS and TESLA-2 have full security reductions which claim 128 bits of quantum secu-
rity. This small amount of signature schemes comes from the difficulties to deal with the quantum
random oracle model (QROM). In most of the security proofs used, we are in the random ora-
cle model meaning that we use a hash function that behaves as a random function. A quantum
attacker could still perform superposition attacks on this hash function and this creates many dif-
ficulties in the security reductions. There has already been a extensive amount of work to provide
security reduction in the QROM[BDF+11, Zha12]. However, most of them are not tight and there
are significant losses in the parameters that can be used. TESLA recently managed to overcome
those problems in the QROM while SPHINCS does not require the random oracle all together.

One of the most standard constructions for signature schemes is the Full Domain Hash (FDH)
paradigm. In its most basic form, the idea is to use a trapdoor one-way function f , informally a
function that can be efficiently inverted only with some secret key but that can be computed with
the public key available. The signature of a message m is a string x such that f(x) = H(m) where
H is a hash function, modeled in the ROM as a random function. Such a signature for m can be
done only by a signer which has access to the secret key.

There are many constructions for signature schemes which use the FDH paradigm [BR96,
CFS01, BLS04]. Some of them can be proved secure even against quantum adversaries in the
QROM, for example when the security reduction is history free [BDF+11]. However, those reduc-
tions are, in many case, not tight. Indeed, one usually needs to reprogram the random oracle in
the security proof and this is usually costly - especially in the quantum setting. This is one of
the reasons why there are so few signature schemes with concrete quantum security parameters
with a quantum reduction. However, as the NIST competition arrives, it becomes increasingly
important to develop signature schemes, and associated security proofs, in order to provide fully
quantum-safe cryptography.

Contributions

In this work we study code-based signatures in the Full Domain Hash (FDH) paradigm. We will
show under which conditions we can perform a quantum security reduction in the QROM for such
schemes. While our work was strongly motivated by a recent construction of the SURF signature
scheme, it can apply to different constructions, in particular to a different choice of codes and
metrics like the rank metric.

We start from a family of error correcting codes F from which we can construct a trapdoor
one way function f . The FDH paradigm then allows us to construct a signature scheme (for more
details, see Section 3). We show the following results on this signature scheme:

1. We show conditions on the code family F used such that the resulting signature scheme is
secure against quantum adversaries in the QROM. Under these conditions, we present tight
security reductions to the DOOM∞ problem [JJ02, Sen11] (the Decode One Out of Many
problem), which is an already used and studied variant of the standard syndrome decoding
problem, where we have the choice between many words to decode instead of a single word
(the ∞ subscript indicates that we do not limit this number).

2. We perform a complete analysis of quantum algorithms for the DOOM∞ problem, which can
serve a reference for future work. The main idea here is to use the best known quantum
algorithms for the 4-Sum problem and reduce DOOM∞ to this problem.
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3. We apply our security reduction to a specific signature scheme: SURF (see [DST17]). In this
scheme, the family of codes F used there satisfies all the requirements of point 1. Thanks to
our reduction, we can provide a full quantum security proof of this scheme. We get concrete
parameters for which we have 128 bits of security in the QROM. We also compare the parame-
ters of SURF with the ones of other schemes and show that it is competitive as a quantum-safe
signature scheme.

In our first contribution, the security reduction, we actually manage to avoid most of the
problems of the QROM. In particular, we do not reprogram the random oracle by injecting an
instance of a hard problem. From a purely abstract way, this is done by considering in the FDH
paradigm a one-way trapdoor function for which it is essentially as hard to find one out of many
preimages. This already appeared implicitly in security reduction for FDH-like signature schemes
but was handled with challenge injection and resulted in a non-tight security proof. More precisely,
we will consider in this paper a one-way function f such that, for a set of random and independent
elements {y1, · · · ,yq} where we have the choice of the q we consider, it stays hard to find (x, i)
such that f(x) = yi. This One Out of Many problem is clearly easier that the problem of inversion
(q = 1) but in this new paradigm we have seen a drastic advantage by considering it instead of
performing instance injection in order to have a security proof in the QROM. Quantum security
proofs seem more natural and flexible with this approach and could be used outside of code-based
cryptography.

Why is it that in code-based signatures, we can afford to work on a ‘One Out of
Many’ variant of Syndrome Decoding?

The most standard problem in code-based cryptography is the syndrome decoding (SD) prob-
lem:

Problem 1. [Syndrome Decoding - SD]

Instance: H ∈ F(n−k)×n
2 , s ∈ Fn−k2 , w integer

Output: e ∈ Fn2 such that |e| = w and HeT = sT

We instead rely on the DOOM∞ problem:

Problem 2. [DOOM∞]

Instance: H ∈ F(n−k)×n
2 ; H a hash function in the QROM which takes its

values in Fn−k2

Output: e ∈ Fn2 of Hamming weight w, a ∈ F∗2 such that, HeT = H(a)T

Here, we do not have a single input s but we can generate as many inputs H(a) as we want
and we only need to solve the SD problem on one of the inputs. In the quantum setting, we even
have access to a quantum oracle version of H. It seems at first sight that this second problem is
substantially easier than the first one. For example, when performing a brute force algorithm for
SD, then this algorithm can be used to solve DOOM∞ q times faster if we add q queries to H.
However, the best classical and quantum algorithms for SD are much better than the brute force
algorithm. What actually happens is that the best known classical algorithms for DOOM∞ are
not that much faster than those for SD. This running time difference decreases even more when
looking at parameters used in the SURF signature scheme. Moreover, the quantum setting does
not offer in the state-of-the-art a fully quadratic advantage compared to classical case for solving
DOOM∞ as we will see below. This, combined with our tight security reduction, will allow us to
give parameters for the SURF signature scheme for a quantum security of 128 which correspond
to a classical security smaller than 256 bits.

In our second contribution, we make the above explicit for quantum algorithms as well. The
SD problem has been widely studied both classically and quantumly [KT17]. There is - for most
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parameters - an algorithmic technique that does significantly better than others for this problem:
the information set decoding technique first presented by Prange [Pra62] and then improved several
times [Ste88, Dum91, MMT11, BJMM12, MO15]. Similarly, the best DOOM∞ algorithms use the
same method and the current state-of-the-art can be found in [Sen11].

The best asymptotic exponent among all those decoding techniques are [MO15, BJMM12] for
SD. However, algorithm [MO15] is penalized by a big polynomial overhead which makes it more
expensive that [BJMM12]. It is why in the following table we will consider asymptotic exponents
given by [BJMM12]. We give in Table 1 classical exponents in base 2 of the Prange algorithm
(which was the first algorithm proposed to solve syndrome decoding problem), [BJMM12] and the
state-of-the-art to solve DOOM∞ (see [Sen11]). We present the running times for k = n/2 and for
two error weights w: namely w ≈ 0.11n which corresponds to the Gilbert-Varshamov weight and
is the weight around which those problems are the hardest; and w ≈ 0.191n which corresponds to
the weight used in the SURF signature scheme.

Classical asymptotic exponent in base 2 (divided by n)

w/n SD (Prange) SD ([BJMM12]) DOOM∞ [Sen11]

0.11 0.1199 0.1000 0.0872
0.191 0.02029 0.01687 0.01654

Table 1: Asymptotic exponent for classically solving SD and DOOM∞ for k/n = 0.5

The above table contains classical asymptotic exponent in base 2 (divided by n). This means
for example that the Prange algorithm for SD with w = 0.11n runs in time 20.1199n.

We extend in this paper the best DOOM∞ algorithms to the quantum setting. We first present
an overview of existing algorithms and we then show that the best known quantum algorithms
for DOOM∞ are very close, in complexity to the best known quantum algorithms for SD. Table 2
compares our algorithm to the current quantum knowledge for the same range of parameters. We
will come back to these tables in §6.

Quantum asymptotic exponent in base 2 (divided by n)

w/n SD (Prange) SD [KT17] DOOM∞(this work)

0.11 0.059958 0.058434 0.056683
0.191 0.010139 0.009218 0.009159

Table 2: Asymptotic exponent for quantumly solving SD and DOOM∞ for k/n = 0.5

As we can see, the best asymptotic exponents between the SD problem and the DOOM∞ prob-
lem are very close, especially for w ≈ 0, 191 which corresponds to the parameters of the SURF
signature scheme. This allows us to greatly improve the security reduction in the QROM compared
to the case where we would have used SD as a hard problem and performed challenge injection.

In our third contribution, we use the results presented above on the SURF signature scheme.
As we said, there are very few signature schemes that claim quantum security. We present in table
3 security parameters for known quantum-safe (with a quantum security reduction) signature
schemes. This data is taken from [ABB+17], where we added parameters for the SURF scheme
obtained here.
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Table 3: Security parameters for signature schemes with quantum security claims

Scheme Quantum security Public key size Private key size Signature size
(in bits) (in kBytes) (in kBytes) (in kBytes)

SPHINCS 128 1 1 41
GPV-poly 59 55 26 32

GPV 59 27840 12064 30
TESLA-2 128 21799 7700 4

SURF 128 5960 3170 1.7

We only presented here signature schemes for which quantum security is provided. There
are many other signature that rely on a quantum-secure computational assumption but the full
parameter analysis is not provided. We refer to [ABB+17] for further details on this topic.

There is also another important metric that we do not discuss here: the running time of the
different signature schemes. We did not add them here since both TESLA-2 and SURF do not
have those available yet. Also the main contribution of our paper is to present an efficient security
reduction, and not to compare in detail existing signature schemes.

Organisation of the paper

After presenting some notations, we provide in Section 2 a description of the quantum random
oracle model. In Section 3, we present the general construction of code-based FDH signatures
schemes and code-based problems. In Section 4, we present some general preliminaries as well as
security notions for signature schemes. In Section 5, we present the quantum security proof in the
QROM. In Section 6, we study quantum algorithms for the DOOM∞ problem. In Section 7 we
apply our security reduction to the SURF signature scheme and show concrete parameters that
achieve 128 bits of quantum security. Finally in Section 8, we perform a small discussion about
the obtained results, and present directions for future research.

Notations

We provide here some notation that will be used throughout the paper. Vectors will be written
with bold letters (such as e) and uppercase bold letters are used to denote matrices (such as
H). Vectors are in row notation. Let x and y be two vectors, we will write (x|y) to denote their
concatenation. The Hamming weight of x is denoted by |x|. By some abuse of notation, we will use
the same notation to denote the size of a finite set: |S| stands for the size of the finite set S. It will
be clear from the context whether |x| means the Hamming weight or the size of a finite set. The

notation x
4
= y means that x is defined to be equal to y. We denote by Fn2 the set of binary vectors

of length n and Sw is its subset of words of weight w. Let S be a finite set, then x ←↩ S means
that x is assigned to be a random element chosen uniformly at random in S. For a distribution D
we write ξ ∼ D to indicate that the random variable ξ is chosen according to D.

2 The quantum random oracle model

2.1 The random oracle model - ROM.

In many signature schemes we need a function that behaves like a random function. We typically
use hash functions to mimic such random functions. The random oracle model (or ROM) is an
idealized model that assumes that the hash function used behaves exactly like a random function.
This model is appealing as it allows simpler security proofs. There are some specific cases where
the ROM is not adapted [CGH04, LN09]. Despite those examples, this model is fairly standard and
accepted in the cryptographic community. Particularly, there have been no successful real-world
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attacks specifically because of the ROM. Additionally, schemes that are proven secure in the ROM
are usually efficient.

More precisely, consider a hash functionH : {0, 1}n → {0, 1}m used in a cryptographic protocol.
An adversary would perform an attack by applying H many times. Suppose the adversary makes
q calls to H on inputs x1, . . . ,xq and get answers H(x1), . . . ,H(xq). In the ROM, this function
H is replaced by a function f uniformly chosen from the set of functions from {0, 1}n to {0, 1}m.
This means that f outputs a random output yi for every input xi.

Describing a random function from {0, 1}n to {0, 1}m requires m2n bits and cannot be hence
realistically full described. Fortunately, one can emulate queries to a random function f without
describing it entirely. We use the following procedure:

On input x, we distinguish 2 cases: if x was queried before then give the same answer, otherwise
pick a random y ∈ {0, 1}m and output y = f(x).

We keep a table of the inputs that were already queried to perform the above procedure, which is
efficient. This procedure is especially useful when we want to slightly modify the function f , for
example by injecting the input of a computational problem as an output of f , or more generally
to give a special property to f .

2.2 The quantum random oracle model - QROM.

Since we have hash functions that are believed to be secure against quantum adversaries, it is
natural to extend the ROM to the quantum setting. Here again, we assume that we replace the
hash function H : {0, 1}n → {0, 1}m by a function f uniformly chosen from the set of functions
from {0, 1}n to {0, 1}m.

What will change compared to the classical setting is the way those functions are queried.
Indeed, from the circuit H, it is always possible to construct the unitary OH acting on n + m
qubits satisfying

∀x ∈ {0, 1}n,∀y ∈ {0, 1}m, OH(|x〉|y〉) = |x〉|H(x) + y〉.
When replacing H with a random function f , queries to OH are replaced with queries to Of where

∀x ∈ {0, 1}n,∀y ∈ {0, 1}m, Of (|x〉|y〉) = |x〉|f(x) + y〉.
Again, a random function f , and the associated unitary Of is fully determined by m2n bits
corresponding to all the outcomes f(x) for x ∈ {0, 1}n. Unlike the classical case, there is no
known procedure to efficiently produce answer to queries. Suppose for example that you want
to emulate a query to Of on input 1

2n/2

∑
x∈{0,1}n |x〉|0〉. In order to emulate this, and generate

1
2n/2

∑
x∈{0,1}n |x〉|f(x)〉 we would need to generate some randomness r for each x ∈ {0, 1}n.

Another way of seeing this difficulty is that the procedure that generates a random number cannot
be represented as a circuit and therefore cannot be quantized by the usual procedure.

2.3 Tweaking the QROM.

As we mentioned, it is often useful to modify the random function and to give it extra properties
in order to prove the security of the underlying cryptographic scheme. The fact that we need to
emulate Of makes it much harder to include those changes in an efficient way. There are several
known techniques, such as rewinding, reprogramming or challenge injection that can be done in
some cases, often with a polynomial loss in the number of challenges.

Our goal was to limit as much as possible the use of those techniques in order to have the
quantum security as tight as possible. The only result we will use is the following from [Zha12]:

Proposition 1. Say A is a quantum algorithm that makes q quantum oracle queries. Suppose
further that we draw the oracle O from two distributions. The first is the random oracle distribution.
The second is the distribution of oracles where the value of the oracle at each input x is identically
and independently distributed by some distribution D whose variational distance is within ε from
uniform. Then the variational distance between the distributions of outputs of A with each oracle
is at most 8π√

3
q

3
2
√
ε.
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3 Code-based Full Domain Hash signature schemes

We give in this section the code-based signatures schemes we will consider in our security proof
in the QROM and in §3.2 code-based problems that will be involved.

3.1 Description of the scheme

Let us first recall the concept of signature schemes.

Definition 1 (Signature Scheme). A signature scheme S is a triple of algorithms Gen, Sgn,
and Vrfy which are defined as:

– The key generation algorithm Gen is a probabilistic algorithm which given 1λ, where λ is the
security parameter, outputs a pair of matching public and private keys (pk, sk);

– The signing algorithm is probabilistic and takes as input a message m ∈ {0, 1}∗ to be signed
and returns a signature σ = Sgnsk(m);

– The verification algorithm takes as input a message m and a signature σ. It returns Vrfypk(m, σ)
which is 1 if the signature is accepted and 0 otherwise. It is required that Vrfypk(m, σ) = 1 if
σ = Sgnsk(m).

We briefly present now the code-based signatures scheme we consider. A binary linear code C
of length n and dimension k (that we denote by [n, k]-code) is a subspace of Fn2 of dimension k

and is usually defined by a parity-check matrix H ∈ F(n−k)×n
2 of full rank as:

C = {x ∈ Fn2 : HxT = 0}

Code-based signatures schemes we consider are FDH-like in which the following one way function
is used:

fH,w : Sw −→ Fn−k2

e 7−→ eHT

where H ∈ F(n−k)×n
2 is a parity-check matrix of a [n, k]-code. Inverting this function means on an

input s (usually called a syndrome) to find an error e of Hamming weight w such that HeT = sT .
The general scheme is then defined as follows. We first suppose that we have a family of [n, k]-codes
defined by a set of parity-check matrices F of size (n − k) × n such that for all H ∈ F we have
an algorithm DH,w which on input s computes e ∈ f−1H,w(s). Then we pick uniformly at random

Hsec ∈ F , an n× n permutation matrix P, a non-singular matrix S ∈ F(n−k)×(n−k)
2 which define

the secret and public key as:

sk ← (Hsec,P,S) ; pk ← Hpub where Hpub
4
= SHsecP

This construction of Hpub is the standard method to scramble a code and originates from the
original work of McEliece [Mc 78].

Remark 1. Let Csec be the code defined by Hsec. Then the parity-check matrix Hpub represents

the code Cpub
4
={cP : c ∈ Csec} with a basis picked uniformly at random thanks to S.

Then, we select a cryptographic hash function H : {0, 1}∗ → Fn−k2 and a parameter λ0 which
lead to define algorithms Sgnsk and Vrfypk as follows

Sgnsk(m): Vrfypk(m, (e′, r)):
r←↩ {0, 1}λ0 s← H(m|r)
s← H(m|r) w0 ← |e′|
e← DHsec,w(S−1sT ) if Hpube′T = sT and w0 = w return 1
return(eP, r) else return 0

To summarize, a signature of a message m with the public key (Hpub, w) is a pair (e, r) such
that HpubeT = H(m|r)T with |e| = w

Remark 2. The use of a salt r ∈ {0, 1}λ0 in algorithm Sgnsk is made in order to have a tight
security proof. In particular, this allows two signatures of a message m to be different with high
probability.
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3.2 Code-Based Problems and computational assumtpions

We introduce in this subsection the code-based problems on which our security reduction in the
QROM will stand. The first is Decoding One Out of Many (DOOM). Its classical version was
first considered in [JJ02] and later analyzed in [Sen11]. We will come back to its analysis in the
quantum case in §6. As we are going to see, the best known algorithms to solve this problem are
functions of the distance w. Let us first consider the basic problem upon which all code-based
cryptography relies.

Problem 1. [Syndrome Decoding - SD]

Instance: H ∈ F(n−k)×n
2 , s ∈ Fn−k2 , w integer

Output: e ∈ Fn2 such that |e| = w and HeT = sT

This problem has been studied for a long time and despite many efforts on this issue [Pra62,
Ste88, Dum91, MMT11, BJMM12, MO15, DT17] the best known algorithms for solving this
problem [BJMM12, MO15] are exponential in the weight w of e as long as w = (1 − ε)(n − k)/2
for any ε > 0. Furthermore when w is sublinear in n, the exponent of the best known algorithms
has not changed [CTS16] since the Prange algorithm [Pra62] dating back to the early sixties.
Moreover, it seems very difficult to lower this exponent by a multiplicative factor smaller than 1

2
in the quantum computation model as illustrated by [KT17].

However, in a context of code-based signatures an attacker may produce, say q, favorable
messages and hash them to obtain s1, · · · , sq syndromes on which he tries to solve one of the
q instances associated to Problem 1. This brings us to introduce a different version of the SD
problem.

Problem 3 (DOOMq – Decoding One Out of Many).

Instance: H ∈ F(n−k)×n
2 ; s1, · · · , sq ∈ Fn−k2 ; w ∈ {0, · · · , n}

Output: (e, i) ∈ Fn2 × J1, qK of Hamming weight w such that HeT = sTi .

The above problem can be defined for any q ∈ N∗. This problem is of course easier than SD but
can not be solved at most q times faster than the SD problem. As it happens best algorithm gain
much less than this q factor. Also using the hardness of DOOMq is appealing when performing
security proofs in the QROM as it allows to avoid instance injection.

Moreover, an interesting feature of the above problem is that known algorithms to solve it fail
to take advantage of very large values of q. Actually, depending on the parameters, there is a limit
after which increasing q does n’ot decrease the time. Therefore, it is natural to define a variant
where we do not limit a priori q. We also require the inputs si to be the output of a random
function instead of requiring to write them all. This allows to have a compact description of the
inputs. This will also simplify the quantum security proof.

Problem 2. [DOOM∞]

Instance: H ∈ F(n−k)×n
2 ; H a hash function in the QROM which takes its

values in Fn−k2

Output: e ∈ Fn2 of Hamming weight w, a ∈ F∗2 such that, HeT = H(a)T

We study those problems in §6. In the classical setting, we can easily see that those problems
are equivalent for sufficiently large values of q. We also present there the best known quantum
algorithms for DOOM∞.

Definition 2 (One-Wayness of DOOM∞). We define the quantum success of an algorithm A
against DOOM∞ with the parameters n, k, w as:

QSuccn,k,wDOOM∞
(A) = P

(
A (H,H) solution

)
.

where H is chosen uniformly at random in F(n−k)×n
2 , H a hash function in the QROM which takes

its values in Fn−k2 and the probability is taken over these choices of H and internal coins of A.
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The quantum computational success in time t of breaking DOOM∞ with the parameters n, k, w
is then defined as:

QSuccn,k,wDOOM∞
(t) = max

|A|≤t

{
QSuccn,k,wDOOM∞

(A)
}

As we discussed in the introduction, it is appealing to consider the DOOM∞ problem as it will
greatly improve our security reduction on the one side, but on the other side remains almost as
hard as the SD problem.

4 Basic security definitions

4.1 Basic definitions

A function f(n) is said to be negligible if for all polynomials p(n), |f(n)| < p(n)−1 for all sufficiently
large n. We will denote negl(n) the set of negligible functions. The statistical distance between
two discrete probability distributions over a same space E is defined as:

ρ(D0,D1)
4
=

1

2

∑
x∈E
|D0(x)−D1(x)|.

The following classical proposition on the statistical distance will be useful:

Proposition 2. Let (D0
1, . . . ,D0

n) and (D1
1, . . . ,D1

n) be two n-tuples of discrete probability distri-
butions where D0

i and D1
i are distributed over a same space Ei. For a ∈ {0, 1}, let us denote by

Da1⊗· · ·⊗Dan the product probability distribution of Da1 , . . . ,Dan, that is Da1⊗· · ·⊗Dan(x1, . . . , xn) =
Da1(x1) . . .Dan(xn) with xi ∈ Ei for i ∈ {1, . . . , n}. In such a case we have

ρ
(
D0

1 ⊗ · · · ⊗ D0
n,D1

1 ⊗ · · · ⊗ D1
n

)
≤

n∑
i=1

ρ(D0
i ,D1

i ).

A distinguisher between two distributions D0 and D1 over the same space E is a randomized
algorithm A which takes as input an element of E that follows the distribution D0 or D1 outputs
b ∈ {0, 1}. Such an A is characterized by its advantage:

AdvD
0,D1

(A)
4
=Pξ∼D0 (A(ξ) outputs 1)− Pξ∼D1 (A(ξ) outputs 1)

where Pξ∼Di (A(ξ) outputs 1) is the probability that A(ξ) outputs 1 when its inputs are picked
according to the distribution Di and for each executions its internal coins are picked uniformly at
random. We call this quantity the advantage of A against D0 and D1.

Definition 3 (Quantum Computational Distance and Indistinguishability). The quan-
tum computational distance between two distributions D0 and D1 in time t is:

ρQc
(
D0,D1

)
(t)
4
= max
|A|≤t

{
AdvD

0,D1

(A)
}

where |A| denotes the running time of A on its inputs.
The ensembles D0 = (D0

n) and D1 = (D1
n) are computationally indistinguishable in time (tn)

if their computational distance in time (tn) is negligible in n.

4.2 Digital signature security and games.

For signature schemes one of the strongest security notion is Quantum Existential Unforgeability
under an adaptive Chosen Message Attack (QEUF-CMA). In other words, a quantum adversary
has access to any signatures of its choice and its goal is to produce a valid forgery. A valid forgery
is a message/signature pair (m, σ) such that Vrfypk(m, σ) = 1 whereas the signature of m has
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never been requested by the forger. Moreover the forger has access to quantum hash queries. By
quantum hash queries we mean that adversaries can make a superposition of queries. In other
words, a quantum access to a hash function H is an access to the following oracle:

OH : |m, z〉 7→ |m, z⊕H(m)〉

Let us now define the QEUF-CMA security of a signature scheme:

Definition 4 (QEUF-CMA Security). Let S be a signature scheme.
A forger A is a (t, qhash, qsign, ε)-adversary in QEUF-CMA against S if after at most qhash quantum-
queries to the hash oracle, qsign classical-queries to signing oracle and t working time, it outputs
a valid forgery with probability at least ε. We define the QEUF-CMA success probability against
S as:

QSuccQEUF-CMA
S (t, qhash, qsign)

4
= max (ε|it exists a (t, qhash, qsign, ε)-adversary) .

The signature scheme S is said to be (t, qhash, qsign)-secure in QEUF-CMA if the above success
probability is a negligible function of the security parameter λ.

In order to prove that a signature scheme is QEUF-CMA under some assumptions we will use
the paradigm of games. A good reference of this topic can be found in [Sho04]. The following game
gives the QEUF-CMA security:

Definition 5 (challenger procedures in the QEUF-CMA Game). Challenger procedures
for the QEUF-CMA Game corresponding to a signature scheme S are defined as:

proc Initialize(λ) proc Hash(m, r) proc Sign(m) proc Finalize(m, σ)

(pk, sk)← Gen(1λ) return H(m) return Sgnsk(m) return (Vrfypk(m, σ) = 1)
return pk

5 Quantum security of FDH-like code-base signature schemes

In this section, we show that code-based signature schemes we defined in §3 are QEUF-CMA in
the QROM against quantum adversaries. We redescribe the most important aspects of the scheme
Scode defined in §3 so that the proof is easier to follow.

We have a family of [n, k]-codes defined by a set of parity-check matrices F of size (n− k)× n
such that for all H ∈ F we have an algorithm DH,w which on input s computes e ∈ f−1H,w(s) where

fH,w is the function such that fH,w(e) = eHT . Then we pick uniformly at random Hsec ∈ F , an

n× n permutation matrix P, a non-singular matrix S ∈ F(n−k)×(n−k)
2 . The secret and public key

are:

sk ← (Hsec,P,S) ; pk ← Hpub where Hpub
4
= SHsecP

The signing and verification procedures are then the following

Sgnsk(m): Vrfypk(m, (e′, r)):
r←↩ {0, 1}λ0 s← H(m|r)
s← H(m|r) w0 ← |e′|
e← DHsec,w(S−1sT ) if Hpube′T = sT and w0 = w return 1
return(eP, r) else return 0

Let us first recall and give definitions of distributions that will be used:

– Uw is the uniform distribution over Sw (words of weight w).
– Un−k is the uniform distribution over Fn−k2 .
– Dw is the distribution of DHsec,w(S−1sT ) when s ←↩ Fn−k2 where DHsec,w(·) is the algorithm

used in Scode to invert e ∈ Sw 7→ eHT
sec.
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– DHpub
w is the distribution of the syndrome HpubeT where e is drawn uniformly at random in

Sw
– Dpub is the distribution of public keys Hpub.
– Drand is the uniform distribution over parity-check matrices of size (n− k)× n.

Our main security statement is the following

Theorem 1 (Security Reduction). Let Scode be the signature scheme defined in §3 with security
parameter λ. Let qhash (resp. qsign) be the number of queries to the hash (resp. signing) oracle. We
also take λ0 = λ+ 2 log2(qsign). For any running time t we have

QSuccQEUF-CMA
Scode (t, qhash, qsign) ≤ 2 ·QSuccn,k,wDOOM∞

(2t)+

ρQc (Dpub,Drand) (2t) +
8π√

3
q

3
2

hash

√
EHpub

(
ρ(DHpub

w ,Un−k)
)

+ qsignρ (Uw,Dw) +
1

2λ

In other words, signature schemes we introduced in §3 can be reduced to the hardness of
DOOM∞ in the QROM if the family F and the signature scheme satisfy the following conditions:

Condition 1

1. 8π√
3
q

3
2

hash

√
EHpub

(
ρ(DHpub

w ,Un−k)
)

) ∈ negl(λ)

2. qsignρ (Uw,Dw) ∈ negl(λ)
3. ρQc (Dpub,Drand) (t) = o( t

2λ
).

The two first properties are properties of the code family F used while the third property
is a property on the signing algorithms used: we require that signatures which are produced are
indistinguishable from words uniformly and independently picked in Sw.

Notice that our security reduction is almost tight if the above holds. Indeed, we double the
running and lose a factor 2 in front of QSuccQEUF-CMA

DOOM∞
(t, qhash, qsign). This makes us lose 2 bits

of security. Actually, we could have a really tight reduction but it would involve a huge amount
of quantum memory and access to quantum RAM. We wanted to construct an algorithm in our
reduction in the most efficient way so we avoided this solution. We discuss this more at the end
of the section.

The goal of what follows is to prove Theorem 1. Our security reduction will go as follows: let
A be a (t, qsign, qhash, ε)-quantum adversary in the QEUF-CMA model against Scode. Recall that
in the QEUF-CMA model, we have a benign challenger and the following procedures

proc Initialize(λ) proc Hash(m, r) proc Sign(m) proc Finalize(m, e, r)

(pk, sk, λ0)← Gen(1λ) return H(m|r) r←↩ {0, 1}λ0 s← Hash(m, r)
sk ← (P,S,Hsec) s← Hash(m, r) return

pk ← (Hpub
4
=SHsecP e← DHsec,w(S−1sT ) Hpube

T = sT ∧ |e| = w
return (Hpub, w) return (eP, r)

In this model, A performs the following actions, that we model by a game:

Game 0

1. A makes a call to Initialize(λ) and receives Hpub.
2. A performs qsign calls to the Sign procedure. Let mi the message that A wants to sign at query
i and let σi the corresponding signature answered by the challenger.

3. A performs an algorithm that makes qhash calls to Hash and outputs m′, e′, r′

4. A wins if ∀i, mi 6= m′ and Finalize(m′, e′, r′) = 1. This happens with probability ε and the
whole running time is t.
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Recall that procedure Sign is done by the challenger and A queries the challenger. A does not
have access to the secret key and cannot run Sign by himself. Procedure Hash is public, efficient
and is used both by the challenger and the adversary A.

Our security reduction will go as follows: from the adversary A, we will construct an algorithm
B to solve the DOOM∞ problem. The main part of the proof will be to replace the hash function
H (modeled by a random function from the QROM) by another hash function that we call Z. In
Subsection 5.1 we show how to construct this function and in Subsection 5.2 we prove our main
security statement.

5.1 Constructing the hash function Z

Informally, we want the following properties for Z:

1. Z is statistically close to a random function in the QROM.
2. Z and OZ can be computed efficiently
3. For any message m, there is an efficient algorithm to construct r ∈ Fλ0

2 and e ∈ Sw such that
Z(m, r) = HpubeT without knowing the secret key S,P,Hsec.

4. With constant probability, Z(m, r) = H(m, r).

The first two properties will allow us to replace calls to OH with calls to OZ in A without changing
much the statistical distance of the output. The third property will then allow to change the signing
oracle into one that can be done locally without knowing the secret key. The final property will
still enforce that the algorithm B we construct indeed solves the DOOM∞ problem.

Construction of Z. Let J be a cryptographic hash function that takes its values in F2 × Sw. In
particular, the first bit of J(m, r) is a random element of F2. From the functions J and H we can
build the function Z : F∗2 → Fn2 as follows: fix an input (m, r) and let (b, e) = J(m, r). If b = 0
then Z(m, r) = H(m, r) else Z(m, r) = HpubeT . We can easily construct an efficient quantum
circuit for OZ using OH and OJ . For the running time of OZ , we assume that the running time
of H is roughly equivalent to the computing time of (HpubeT ) (if this is not the case, we can use
a slower hash function H to match those 2 times).

Proposition 3. For any Hpub, outputs of Z are at most at statistical distance ρ(DHpub
w ,Un−k) to

outputs of a random function in the QROM .

Proof. It directly follows from the definition of Z and DHpub
w given above. Indeed, for any input

(m, r), if J(m, r) = (0, e) then the output distribution is totally random and equal to Un−k.

Otherwise, it follows the distribution of DHpub
w . Each of these events happens with probability 1

2
which concludes the proof.

Moreover, for any message m, we can find r ∈ Fλ0
2 and e ∈ Sw such that Z(m, r) = HpubeT

with the following procedure: find r0 such that J(m, r0) = (b, e0) with b = 1. This means that
the running time of OZ is twice the running time of OH. This can be done with 2 calls to J on
average. Output r0, e0 and notice that e0 = Z(m, r0).

5.2 Proof of Theorem 1

Proof. We present a sequence of games which initiates with Game 0 presented at the beginning
of this section and ends with an quantum algorithm solving the DOOM∞ problem. Let (H0,H)
be an instance of the DOOM∞-problem for parameters n, k, w given by Scode. We will denote by
P (Si) the probability of success of the game i.
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Game 1 is identical to Game 0 except that we change the winning condition. Let F be the
following failing event: there is a collision in a signature query (i.e. two signatures queries for
a same message m lead to the same salt r). The adversary wins Game 1 only if F does not
occur additionally to the other requirements. A direct application of the birthday paradox gives
P (F ) ≤ 1

2λ
and

P (S0) ≤ P (S1)− P (F ) ≤ P (S1)− 1

2λ
.

Game 2. Here, we consider Game 1 but both the adversary and the challenger use a different
procedure Hash. The Hash(m, r) procedure hence becomes: return Z(m, r). A call to OHash(|ψ〉)
returns similarly OZ(|ψ〉) for all |ψ〉. We can relate this game to the previous one through the
following lemma.

Lemma 1.

P(S1) ≤ P(S2) +
8π√

3
q

3
2

hash

√
EHpub

(
ρ(DHpub

w ,Un−k)
)

Proof. It is clear that P(S1) − P(S2) = EHpub
(P (S1|Hpub)− P (S2|Hpub)). Moreover if we fix

Hpub, we know from Proposition 3 that in the QROM , outputs of Z are at most at distance

ρ(DHpub
w ,Un−k) from uniform. Game 2 differs from game 1 by replacing each call to Hash (resp.

OHash) by a call to Z (resp. OZ). Using Proposition 1, the output state after game 2 differs (in

statistical distance) from the output state after game 1 by at most 8π√
3
q

3
2

hash

√
ρ(DHpub

w ,Uw) which

leads to:

P (S1|Hpub)− P (S2|Hpub) ≤ 8π√
3
q

3
2

hash

√
ρ(DHpub

w ,Uw)

Then by concavity of the root function and Jensen’s inequality we get:

P(S1)− P(S2) ≤ 8π√
3
q

3
2

hash

√
EHpub

(
ρ(DHpub

w ,Uw)
)

Game 3 differs from Game 2 by changing in proc Sign. When it is queried m, the procedure
“e← DHsec,w(S−1sT ), return (eP, r)” is replaced by “find (e, r) such that J(m, r) = (1, e), return
(e, r)”.

Any signature (e, r) produced by proc Sign is valid. J is modeled as a random function so the
error e is drawn according to the uniform distribution Uw while previously it was drawn according
to the output distribution of DHsec,w. We therefore have thanks to Proposition 2

P (S2)− P (S3) ≤ qsignρ(Uw,Dw)

Moreover, to find r such that J(m, r) = (1, ·) we pick uniformly at random r until finding it. As
outputs of J are uniformly distributed, we find such a r in a constant time.

Game 4 is the game where in the initialize procedure, we replace the public matrix Hpub

by H0, which is a totally random matrix in F(n−k)×n
2 . In this way we will force the adversary to

build a solution of the DOOM∞ problem. Here if a difference is detected between games it gives
a distinguisher between the distribution Drand and Dpub:

P (S3) ≤ P (S4) + ρQc (Dpub,Drand) (2t) .

Game 5 differs in the finalize procedure as follows:

proc Finalize(m, e, r)

s← Hash(m, r)
b← HpubeT = sT = 0 ∧ |e| = w
(b′, e) = J(m, r)
return b ∧ (b′ == 0)
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We assume the forger outputs a valid signature (e, r) for the message m. The probability of
success of Game 5 is the probability of the event “S4 ∧ (J(m, r) = (0, e))”.

If the forgery is valid, the message m has never been queried by Sign, and the adversary never
had access to any output of J(m, ·). This way, the two events are independent and we get:

P (S5) = Pm,r (J(m, r) = (0, e)) · P (S4) =
1

2
P (S4) .

The probability P (S5) is then exactly the probability for A to output m, r and e ∈ Sw such that
H0e

T = H(m, r)T which gives

P (S5) ≤ QSuccn,k,wDOOM∞
(2t).

as we know thanks to the output a preimage (m, r) of the solution of the decoding problem. This
concludes the proof of Theorem 1 by combining this together with all the bounds obtained for
each of the previous games.

Why do use the random function Z to reprogram our random oracle?

We just want to briefly mention why we use an extra function J to reprogram our (quantum)
random oracle. We could have just, for the q values we use, reprogram the function H accordingly,
as it is done for example in [ABB+17]. However, this actually requires q extra quantum bits of
memory (recall that q = 2λ and can be very large) as well as an efficient quantum data structure
that would act as a quantum RAM. However, we do not have yet efficient models of quantum
RAM, as shown in [AGJO+15]. We do not want to go to deep in the discussion whether such
data structures in the quantum model should be allowed or not, this is work for future research.
However, we want to be in the safe side of things by not allowing here this kind of data structures.
This means in particular that our reduction from the adversary A that breaks the signature scheme
to the algorithm B that solves the DOOM∞ problem not only preserves essentially the quantum
time but also more generally the quantum resources used, in particular quantum memory.

6 DOOM∞ Study

We study here the best known quantum algorithms to solve DOOM∞. They all come from an old
algorithm due to Prange [Pra62] and are known as Information Set Decoding (ISD). These kind
of algorithms were first thought to solve the SD problem. The current state-of-the-art to solve the
DOOMq and DOOM∞ slightly adapt them. In this way we are first going to describe general a
skeleton of ISDs and quantum algorithms in this setting. Moreover, during our discussion we will
give several reasons on why we think it is difficult to improve significantly quantum algorithms
using ISDs.

Notations We provide here some notations that will be used throughout this section. Let H be
a matrix of size (n − k) × n in F2 and I = {i1, · · · , ip} ⊆ {1, · · · , n}. We define the permutation
πI as:

πI(ij) = j for 1 ≤ j ≤ p and πI(j) = j otherwise

and PπI its associated matrix. Then HπI will denote HPπI . All quantities we are interested in
are functions of the code-length n and we will write f(n) = Õ(g(n)) when there exists a constant

C such that f(n) = O
(

logC2 (g(n)) · g(n)
)

and f(n) = Θ (g(n)) when there exists two constants

m,M such that mg(n) ≤ f(n) ≤Mg(n).
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6.1 Information Set Decoding - ISD

Let us first recall that algorithms we will study were thought to solve the following problem:

Problem 1. [Syndrome Decoding - SD]

Instance: H ∈ F(n−k)×n
2 , s ∈ Fn−k2 , w integer

Output: e ∈ Fn2 such that |e| = w and HeT = sT

Existing literature in the study of algorithms solving SD usually assumes that there is a unique
solution as for instance in a context of encryption the ciphertext of e is HeT (see [Nie86]) which
imposes to have an injective construction. In the case of code-based signature schemes we in-
troduced in §3.1, the weight w is chosen greater than the Gilbert-Varshamov bound, namely

dGV(n, k)
4
=nh−1(1− k/n) where h(x)

4
=−x log2(x)− (1−x) log2(1−x) and h−1(x) is the inverse

function defined for x in [0, 12 ] and ranging over [0, 1]. It represents the weight w for which we
can typically expect that SD admits one solution, beyond it there typically exits an exponential
number of solutions and below it no solution. We need to choose w greater than this bound in
order to be able to invert the function e ∈ Sw 7→ eHT on all words of Fn−k2 . More precisely, the
following proposition gives the number of solutions which are expected:

Proposition 4. Let w be an integer and s ∈ Fn−k2 , then there exists in average Mn,k,w
4
=

(nw)
2n−k

so-

lutions to SD where probabilities are taken by picking matrices H uniformly at random in F(n−k)×n
2 .

Remark 3. Asymptotically
(
n
w

)
= Õ

(
2n·h(w/n)

)
, then Gilbert-Varshamov’s bound easily gives the

weight for which we expect in average one solution to SD.

In the following we will consider weights w greater than dGV(n, k) and we will have to take
into account Mn,k,w in our study.

The Prange Algorithm. Let us first consider a [n, k]-code C with parity-check matrix H ∈
F(n−k)×n
2 and a syndrome s ∈ Fn−k2 . The matrix H is a full-rank, therefore we can choose uniformly

at random a set I ⊆ {1, · · · , n} of size n− k, usually called an information set, such that, with a
high probability, H restricted to these positions is an invertible matrix. In other words we have

HπI = [A|B] where A ∈ F(n−k)×(n−k)
2 is non-singular. We look now for e of the form eπI = (e′|0k).

We should therefore have sT = HeT = Ae′T . Then thanks to Gaussian elimination, which is done
in polynomial time, we compute e′T = A−1sT . In this way, if the weight of e = (e′,0k)π−1

I
is w,

we just found a solution, otherwise we pick an other set I of n− k positions. Thus, the hard part
of this algorithm consists of finding the good set of positions. It can be shown that the probability

to find a fixed error of weight w during an iteration is given by pprange
4
=

(n−kw )
(nw)

(it relies among

other things on a counting argument over information sets). As it is explained above there is an
exponential number Mk,n,w (see Proposition 4) errors e of weight w such that HeT = sT . In this
way, under the assumption (which is a classical one in the study of ISDs) that solutions to SD
behave independently of the set I we pick, the average probability (on matrices H) to not find any
solution during an iteration is (1 − pprange)Mk,n,w which implies a probability of succeed during
one iteration:

Pprange
4
= 1− (1− pprange)Mk,n,w = Θ

(
min (1,Mn,k,w · pprange)

)
where Mn,k,w · pprange =

(n−kw )
2n−k

. Thus, Prange’s algorithm will make on average Õ (1/Pprange)
samples which gives its complexity as the Gaussian elimination is polynomial and it is easily
verified that for all w such that dGV(n, k) ≤ w < (n− k)/2, 1/Pprange is exponential in the code
length.

Quantum quadratic speedup of the Prange algorithm. There is a direct quantum quadratic
speedup which consists to apply Grover’s algorithm to find the right information set. It leads to
a quantum complexity of Õ

(
1/
√
Pprange

)
.
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Generalized information set decoding. The Prange algorithm has been improved in [Ste88,
Dum91] by relaxing a little bit the constraint on the set of columns we pick: it allows to have
a little bit more than 0 errors in the complementary of the information set I. To perform this
task, the algorithm introduces two new parameters p, l and looks for an error of the form (e′|e′′)
where the right side has size k+ l, |e′| = w− p, |e′′| = p with e′ uniquely determined by e′′. More
precisely, the improved algorithm first picks a set I ⊆ {1, · · · , n} of size n− k − l, then performs
a Gaussian elimination on lines of HπI which gives a non-singular matrix U, as well as matrices

H′I ∈ F(n−k−l)×(k+l)
2 and H′′I ∈ Fl×(k+l)2 such that

UHπI =

(
Idn−k−l H′I

0 H′′I

)
(1)

and
UsT = (s′I |s′′I )T where s′I ∈ Fn−k−l2 and s′′I ∈ Fl2. (2)

Then if e is a vector such that eπI = (e′|e′′) we have:

HeT = sT ⇐⇒ UHeT = UsT

⇐⇒
(

Idn−k−l H′

0 H′′

)
eTπI =

(
s′T

s′′T

)
⇐⇒

(
e′T + H′e′′T

H′′e′′T

)
=

(
s′T

s′′T

)
⇐⇒ e′T = H′e′′T + s′T and H′′e′′T = s′′T

In this way, we compute all errors e′′ of weight p such that H′′e′T = s′′T , for all vectors we get,

we consider es
4
=(e′′H′T + s′|e′′)π−1

I
and if one of them has a Hamming weight of w then it is a

solution, otherwise we pick another set of size n − k − l. Let us introduce now, for each subset I
we picked and syndrome s we look to decode, the set:

SI = {e′′ ∈ Fk+l2 of Hamming weight p : H′′Ie
′′T = s′′TI } (3)

fI : e′′ ∈ Fk+l2 7→ e′′H′′TI ∈ Fl2 (4)

zsI : e′′ ∈ Fk+l2 7→ (e′′H′TI + s′I |e′′)π−1 ∈ Fn2 (5)

Thanks to equations (1),(2),(3),(4),(5) we are able to formalize generalizes ISDs in Algorithm 1.

Algorithm 1 (generalized) ISD

1: input: H ∈ F(n−k)×n
2 , s ∈ F(n−k)

2 , l, p, w integers
2: loop
3: pick a set I ⊆ {1, · · · , n} of size n− k − l
4: compute H′I ,H

′′
I , s′I , s

′′
I

5: compute SI
6: for all e′′ ∈ SI do
7: e← hI(e

′′)
8: if |e| = w then output e

Remark 4. From each information set I we can build matrices H′I , H′′I , sI and s′′I in polynomial
time thanks to Gaussian elimination.

This new algorithm leads to a probability pp,l
4
=

(k+lp )(n−k−lw−p )
(nw)

(≥ pprange for a set of parameters

p, l) of finding a fixed solution.
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Remark 5. We stress that to have this probability the algorithm has to consider all errors e′′ of
weight p such that H′′e′′T = s′′T .

In a same fashion as before this algorithm will succeed with probability:

Pp,l
4
= 1− (1− pp,l)Mk,n,w = θ

(
min (1,Mn,k,w · pp,l)

)
and if we denote by Tclass the time complexity to compute SI , which is exponential as the size of
SI is exponential, Algorithm 1 has a complexity given by:

Õ

(
Tclass
Pp,l

)
Many classical algorithms have been proposed to solve Instruction 5 (see [Ste88, Dum91,

MMT11, BJMM12, MO15]). They all rely on splitting the matrices even more and finding el-
ements SI via multi-collision algorithms. In the case of DOOM∞, similar ideas are applied. We
generate several syndromes s1, . . . , sq. When performing the generalized ISD algorithm, we now
have one set SI for each syndrome sq. The multi-collision algorithms used in the ISD can take
advantage of this in order to find all elements of all the SI (for different syndromes) in a reduced
amortized cost. In this case, as we consider more good events, we obtain

Pp,l = 1− (1− pp,l)Mk,n,w = θ
(

min (1, q ·Mn,k,w · pp,l)
)

Of course, in this case, the computing Tclass changes and new optimizations have to be done. We
will not go into the details of these algorithms and optimizations (see [Sen11] for more details).

The best asymptotic exponent among all those decoding techniques are [MO15, BJMM12] for
SD. However, algorithm [MO15] is penalized by a big polynomial overhead which makes it more
expensive that [BJMM12]. It is why in the following table we will consider asymptotic exponents
given by [BJMM12]. We give in Table 1 classical exponents in base 2 of the Prange algorithm
(which was the first algorithm proposed to solve syndrome decoding problem), [BJMM12] and the
state-of-the-art to solve DOOM∞ (see [Sen11]). We present the running times for k = n/2 and for
two error weights w: namely w ≈ 0.11n which corresponds to the Gilbert-Varshamov weight and
is the weight around which those problems are the hardest; and w ≈ 0.191n which corresponds to
the weight used in the SURF signature scheme.

Classical asymptotic exponent in base 2 (divided by n)

w/n SD (Prange) SD ([BJMM12]) DOOM∞ [Sen11]

0.11 0.1199 0.1000 0.0872
0.191 0.02029 0.01687 0.01654

Table 1: Asymptotic exponent for classically solving SD and DOOM∞ for k/n = 0.5

The above table contains classical asymptotic exponent in base 2 (divided by n). This means
for example that the Prange algorithm for SD with w = 0.11n runs in time 20.1199n.

In the quantum setting, things become trickier. While Instruction 3 can be Groverized, it
seems hard to get a full quadratic speedup for Instruction 5, because multi-collision problems
have a less than quadratic speedup in the quantum setting. If Tquant is the quantum running time

of Instruction 5 then the total running time becomes Õ

(
Tquant√
Pp,l

)
. Moreover, any improvement

we do in Instruction 5 seems to augment Pp,l and therefore reduce the Grover advantage we
have from Instruction 3. There seems to be very little place for improvement. In [KT17], authors
still managed to find a quantum improvement over the simple quantum Prange algorithm using
quantum random walks, even though the advantage is small.
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6.2 Quantum Algorithm for solving DOOM∞

We will focus on Instruction 5 and find the best tradeoffs for our quantum algorithm for DOOM∞.
Similarly as in classical algorithms for SD, we will reduce our problem to a k-sum problem (actually
a 4-sum problem). Then by considering known results on quantum walks developed in [KT17], we
will be able to give a running time for our quantum algorithm. Let us first introduce the following
classical problem.

Problem 4 (Generalized k-sum Problem).
Let G be an Abelian group, E be an arbitrary set, k subsets V1, · · · ,Vk of E , k + 1 arbitrary

maps:
∀i ∈ J1, kK, fi : E → G ; g : Ek → {0, 1}

and an arbitrary S ∈ G. A solution is a tuple (v1, · · · , vk) ∈ V1 × · · · × Vk such that:

– f1(v1) + · · ·+ fk(vk) = S (subset-sum condition).
– g(v1, · · · , vk) = 1.

We now show this reduction. Let H,H be an instance of DOOM∞ and Hl will denote the
projection of H’s outputs onto their last l coordinates. We first pick an information set I ⊆
{1, · · · , n} of size n− k − l, then we build matrices H′I and H′′I as in (1).

Associated 4-sum problem. We introduce the following sets and functions (see Equations
(3),(4) and (5)):

G = Fl/22 × Fl/22 ; E = Fk+l2 ;S = 0

∀i ∈ J1, 3K, fi : e′′ ∈ Fk+l2 7→ H′′Ie
′′T ; f4 = Hl

with

V1
4
={(e1,02(k+l)/3) ∈ Fk+l2 : e1 ∈ F(k+l)/3

2 , |e1| = p/3}

V2
4
={(0(k+l)/3, e2,0(k+l)/3) ∈ Fk+l2 : e2 ∈ F(k+l)/3

2 , |e2| = p/3}

V3
4
={(02(k+l)/3, e3) ∈ Fk+l2 : e3 ∈ F(k+l)/3

2 , |e3| = p/3}

V4 be an arbitrary set of size

(
(k + l)/3

p/3

)
and

g(v1, v2, v3, v4) = 1 ⇐⇒ |zH(v4)
I (v1 + v2 + v3)| = w

Proposition 5. If (v1, v2, v3, v4) is a solution of the above problem then
(v1 + v2 + v3, v4) is a solution of the DOOM∞ problem on inputs (H,H).

Proof. Let (v1, v2, v3, v4) a solution of the associated 4-sum problem. We have

f1(v1) + f2(v2) + f3(v3) + f4(v4) = 0 ⇐⇒ H′′I (v1 + v2 + v3)T = Hl(v4)

⇐⇒ v1 + v2 + v3 ∈ SI for the syndrome H(v4)

This means that |v1+v2+v3| = p. We also g(v1, v2, v3, v4) = 1 which implies |zH(v4)
I (v1+v2+v3)| =

w. By definition of zI , this shows that

H(z
H(v4)
I (v1 + v2 + v3)) = H(v4)

which concludes the proof.

All the above discussion was for a fixed information set I so our goal is to use a quantum
algorithm for the 4-sum problem to solve instruction 5. Fortunately, there already exists a quantum
study of this problem using quantum walks [KT17, Proposition 2].
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Proposition 6. Consider the generalized 4-sum problem defined in Problem 4 with sets Vi of the
same size V . Assume that G can be decomposed as G = G0 × G1 with |G0|, |G1| = Θ(V 4/5). There
is a quantum algorithm (using a random walk) for solving the 4-sum problem in running time
Õ
(
V 6/5

)
.

We now put everything together and present the running time of this quantum algorithm for
DOOM∞.

Theorem 2. We can solve DOOM∞ for parameters n, k and w ≥ dGV (n, k) in time:

Õ

(
min

0≤l≤n−k

(
Tquant(p, l)√

Pp,l

))

where:

Pp,l = Θ

(
min

(
1,

(
k+l
p

)(
n−k−l
w−p

)(
(k+l)/3
p/3

)
2n−k

))
and

Tquant(p, l) =

(
(k + l)/3

p/3

)6/5

with p chosen such that:

2l/2 = Θ

(
(k + l)/3

p/3

)4/5

The value of Tquant is obtained from Proposition 6. The other parameters are obtained from the

classical analysis in the case where we consider
(
(k+l)/3
p/3

)
syndromes. We present below quantum

asymptotic exponents for SD and for DOOM∞. Again, we consider k = n/2 and for error weights
w ≈ 0.11n and w ≈ 0.191n which corresponds to the weight used in the SURF signature scheme.

Quantum asymptotic exponent in base 2 (divided by n)

w/n SD (Prange) SD [KT17] DOOM∞(this work)

0.11 0.059958 0.058434 0.056683
0.191 0.010139 0.009218 0.009159

Table 2: Asymptotic exponent for quantumly solving SD and DOOM∞ for k/n = 0.5

7 Quantum security of the SURF signature scheme

We apply in this section our results to the SURF signature scheme presented in [DST17]. Let us
recall the condition upon which stands our security reduction in the QROM:

Condition 1

1. 8π√
3
q

3
2

hash

√
EHpub

(
ρ(DHpub

w ,Un−k)
)

) ∈ negl(λ)

2. qsignρ (Uw,Dw) ∈ negl(λ)
3. ρQc (Dpub,Drand) (t) = o( t

2λ
).

where λ is the security parameters. Authors of [DST17] proposed to use the family of (U |U+V )-
codes as the secret key, namely:
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Definition 6 ((U,U + V )-Codes). Let U , V be linear binary codes of length n/2 and dimension
kU , kV . We define the subset of Fn2 :

(U,U + V )
4
={(u,u + v) such that u ∈ U and v ∈ V }

which is a linear code of length n and dimension k = kU + kV .

We choose parameters of public keys as:

n = 13976 ; k = 6988 ; kU = 4320 ; kV = 2668 ; w = 2668.

The value n was chosen to get 128 bits of security for the DOOM∞ problem and the other
parameters were already constrained (given n) from the specifications of SURF. We can now check
the 3 conditions.

1. Using the results of [DST17, Proposition 4], we get for our parameters

EHpub

(
ρ(DHpub

w ,Un−k)
)

= 2−0.06n which gives if we choose a conservative qhash = 2128:

q
3
2

hash

√
EHpub

(
ρ(DHpub

w ,Un−k)
)

=
1

2235
.

2. SURF performs a rejection sampling (see [DST17, Section 5]) algorithm that achieves ρ(Uw,Dw) =
0.

3. While the authors of [DST17] do not formally study quantum distinguishers for their code
family, the best known classical algorithms not only also use multi-collision techniques and are
hard even to Groverize. Also, for our parameters the classical advantage (see [DST17, Section
7]) is of the order of 2−500. Any quantum distinguisher for those codes would have to find
radically new quantum algorithmic techniques way beyond the state of the art.

Finally, with parameters and using the analysis of [DST17], we obtain the following parameters
(we also include the parameters of the other quantum-safe signature schemes)

Table 3: Security parameters for signature schemes with quantum security claims

Scheme Quantum security Public key size Private key size Signature size
(in bits) (in kBytes) (in kBytes) (in kBytes)

SPHINCS 128 1 1 41
GPV-poly 59 55 26 32

GPV 59 27840 12064 30
TESLA-2 128 21799 7700 4

SURF 128 5960 3170 1.7

Moreover, for this choice of parameters the SURF signature scheme achieves a classical security
of 231 bits.

8 Conclusion

In this paper, we presented a method to perform tight security reductions for FDH-like signature
schemes using code-based computational assumptions, more precisely on the DOOM∞ problem.
We also analyzed the best known quantum algorithm for this problem. Finally, we applied our
security reduction to the SURF signature scheme, presenting parameters for 128 bits of concrete
quantum security and think this scheme will play an important role in the future standardization
attempts from NIST. We finally list several open questions and perspectives that come out of this
work:
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– Our security reduction can be applied to only one signature scheme now. Are there other
constructions that could benefit from this reduction? The SURF signature scheme uses a code
family which has very little structure. This strengthens the security but increases the key sizes.
Can we use another code family that would stay secure with smaller key sizes?

– More generally, our techniques show that it is much better in the code-based setting to consider
a computational assumption which starts from many instances of a problem and where we need
to solve one of them. This One Out of Many approach appears implicitly when performing
instance injection but doesn’t appear explicitly in other signature schemes. For example, it
would be very interesting to consider a One Out of Many equivalent for lattice schemes, and
could be a way to reduce losses resulting from the quantum security reduction.

– Finally, since the security rely on the quantum hardness of the DOOM∞ problem, it is impor-
tant to continue to study it - similarly as other quantum-safe computational assumptions - in
order to increase our trust in quantum secure schemes.
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