
Adaptively Indistinguishable Garbled Circuits

Zahra Jafargholi∗ Alessandra Scafuro † Daniel Wichs‡

Abstract

A garbling scheme is used to garble a circuit C and an input x in a way that reveals the output C(x)
but hides everything else. An adaptively secure scheme allows the adversary to specify the input x after
seeing the garbled circuit. Applebaum et al. (CRYPTO ’13) showed that in any garbling scheme with
adaptive simulation-based security, the size of the garbled input must exceed the output size of the circuit.
Here we show how to circumvent this lower bound and achieve significantly better efficiency under the
minimal assumption that one-way functions exist by relaxing the security notion from simulation-based
to indistinguishability-based.

We rely on the recent work of Hemenway et al. (CRYPTO ’16) which constructed an adaptive
simulation-based garbling scheme under one-way functions. The size of the garbled input in their scheme
is as large as the output size of the circuit plus a certain pebble complexity of the circuit, where the latter
is (e.g.,) bounded by the space complexity of the computation. By building on top of their construction
and adapting their proof technique, we show how to remove the output size dependence in their result
when considering indistinguishability-based security.

As an application of the above result, we get a symmetric-key functional encryption based on one-way
functions, with indistinguishability-based security where the adversary can obtain an unbounded number
of function secret keys and then adaptively a single challenge ciphertext. The size of the ciphertext only
depends on the maximal pebble complexity of each of the functions but not on the number of functions
or their circuit size.

∗Aarhus University, Denmark. zahra@cs.au.dk
†North Carolina State University, USA. ascafur@ncsu.edu
‡Northeastern University, USA. wichs@ccs.neu.edu

zahra@cs.au.dk
ascafur@ncsu.edu
wichs@ccs.neu.edu

1 Introduction

Garbled Circuits. A garbling scheme [Yao82, Yao86] can be used to garble a circuit C and an input x to

derive a garbled circuit C̃ and a garbled input x̃. It’s possible to evaluate C̃ on x̃ and get the correct output
C(x). However, the garbled values C̃, x̃ should not reveal anything else beyond this. In many applications,

the garbled circuit C̃ can be computed in an off-line pre-processing phase before the input is known and
therefore we are not overly concerned with the efficiency of this procedure. On the other hand, once the
input x becomes available in the on-line phase, creating the garbled input x̃ should be extremely efficient.
Therefore, the main efficiency measure that we consider here is the on-line complexity of a garbling scheme,
which is the time it takes to garble an input x, and hence also a bound on the size of x̃.

Security of Garbled Circuits. There are several natural notions of garbled circuit security that one can
consider.

Firstly, we can consider either selective or adaptive security. For selective security, we consider a scenario
where the adversary chooses the circuit C and the input x first and only then gets the garbled versions C̃, x̃.
For adaptive security, we consider a scenario where the adversary first gets the garbled circuit C̃ and can then
adaptively chooses the input x to be garbled. Adaptive security is the natural notion in the on-line/off-line
setting where we envision the garbled circuit to be created first in an earlier stage before the input is selected.

Secondly, we can consider either simulation-based or indistinguishability-based definitions of security. In
the simulation-based setting, we require that the garbled circuit and the garbled input can be simulated
given only the output of the computation and the topology of the circuit. In the indistinguishability-based
setting, we require that the adversary cannot distinguish between a garbling of C0, x0 or C1, x1 as long as
C0(x0) = C1(x1) and C0, C1 have the same topology.

Prior Work. Yao’s construction of garbled circuits under one-way functions already achieves essentially
optimal on-line complexity, where the time to garble an input x and the size of x̃ are only linear in the input
size |x|, independent of the circuit size.1 However, it was only shown to satisfy selective simulation-based
security [LP09].

Recently, the work of Hemenway et al. [HJO+16] showed how to modify Yao’s construction and get
adaptive simulation-based security under one-way functions. The on-line complexity of their scheme depends
linearly on a certain “pebble complexity” t of the circuit, its input size n and output size m. Furthermore,
they showed that the pebble complexity t is upper bounded by the circuit width which is in turn bounded
by the space complexity of the computation. The work of [JW16] (see also [JKK+17]) shows that even Yao’s
original garbled circuit construction already achieves adaptive simulation-based security via reduction with
a 2t security loss as long as the mapping between output labels and the bits they represent is only given in
the garbled input.

In both of the above works, the online complexity is always at least as large as the output size m. The
work of Applebaum et al. [AIKW13] (see also [HW15]) gives a lower bound showing that this is inherent for
adaptive simulation-secure garbled circuits.

Our Results. In this work, we show how to construct adaptively secure garbling schemes based on one-way
functions, where the on-line complexity of our scheme can be smaller than the output size of the circuit. This
necessarily requires us to give up on simulation-based security and instead we achieve indistinguishability-
based security. In more detail, we propose a new garbling scheme which builds on top of the ideas of [HJO+16]
but essentially removes the output size dependence in their construction, making the on-line complexity only
linear in the pebble complexity t and the input size n, but independent of the output size m.

As an application of the above result, we consider the scenario where we garble a circuit C which consists
of many disjoint boolean sub-circuits C1, . . . , C` which all take the same input x but do not share any other
wires/gates except for the input wires. In that case, although the output size of C is ` (which we think
of as large) the pebble complexity of C is just t = max{ti} where ti denote the pebble complexities of the

1More precisely, in Yao’s garbled circuits, the garbled input is of size |x| · poly(λ) where λ is the security parameter. The
work of Applebaum et al. [AIKW13] shows how to reduce this to |x| + poly(λ) assuming stronger assumptions such as DDH,
RSA or LWE.

1

individual circuits Ci, and therefore is independent of the number of circuits `. We can also think of the
above as allowing us to construct an adaptively indistinguishable private-key functional encryption (FE)
scheme by thinking of the garbled versions of the circuits Ci as function secret keys and the garbled input as
a ciphertext. The size of the ciphertext is linear in the size of the input x and the maximal pebble complexity
of the individual functions, which we can bound by their space complexity, but is independent of the number
of function secret keys ` or even their circuit size.

Finally it bears mentioning that an adaptively indistinguishable scheme is also adaptively secure under
the simulation-based security definition for any efficiently invertible function.2 Therefore for this class
of functions our construction provides a simulation-based adaptively secure garbling scheme with online
complexity independent of the output size.

1.1 Our Techniques

Before we can explain our techniques, we first review Yao’s garbled circuit construction, the issue with
adaptive security and the technique of [HJO+16]. The discussion below is adapted from [HJO+16].

Yao’s Scheme. First, let’s start by recalling Yao’s garbled circuits. For each wire w in the circuit, we pick
two keys k0

w, k
1
w for a symmetric-key encryption scheme. For each gate in the circuit computing a function

g : {0, 1}2 → {0, 1} and having input wires a, b and output wire c we create a garbled gate consisting of 4
randomly ordered ciphertexts created as:

c0,0 = Enck0a(Enck0b (k
g(0,0)
c)) c1,0 = Enck1a(Enck0b (k

g(1,0)
c)),

c0,1 = Enck0a(Enck1b (k
g(0,1)
c)) c1,1 = Enck1a(Enck1b (k

g(1,1)
c))

(1)

where (Enc,Dec) is a CPA-secure encryption scheme. The garbled circuit C̃ consists of all of the gabled
gates, along with an output map

{k0
w → 0, k1

w → 1}

which maps the keys to the bits they represent for each output wire w. To garble an n-bit value x =
x1x2 · · ·xn, the garbled input x̃ consists of the keys kxiwi for the n input wires wi.

To evaluate the garbled circuit on the garbled input, it’s possible to decrypt exactly one ciphertext in

each garbled gate and get the key k
v(w)
w corresponding to the bit v(w) going over the wire w during the

computation C(x). Once the keys for the output wires are computed, it’s possible to recover the actual
output bits by looking them up in the output map.

To prove the selective simulation-based security of Yao’s scheme, we have a simulator that gets the output
y = y1y2 · · · ym = C(x) and must produce C̃, x̃. The simulator picks random keys k0

1, k
1
w for each wire w

just like the real scheme, but it creates the garbled gates as follows:

c0,0 = Enck0a(Enck0b (k
0
c)) c1,0 = Enck1a(Enck0b (k

0
c)),

c0,1 = Enck0a(Enck1b (k
0
c)) c1,1 = Enck1a(Enck1b (k

0
c))

(2)

where all four ciphertext encrypt the same key k0
c . It then sets the output map as {k0

w → yw, k
1
w → 1− yw}

by “programming it” so that the key k0
w corresponds to the correct output bit yw for each output wire w.

This defines the simulated garbled circuit C̃. To create the simulated garbled input x̃ the simulator simply
gives out the keys k0

w for each input wire w. Note that, when evaluating the simulated garbled circuit on
the simulated garbled input, the adversary only sees the keys k0

w for every wire w.

Proof of Security and Issues with Adaptivity. There are two main issues with proving adaptive
security of Yao’s construction.

The first issue is that, in the simulation-based security setting, the simulator now cannot “program” the
output map since it is given as part of the garbled circuit before the output y1, . . . , ym is defined. This can
be fixed by modifying the construction and moving the output map from the garbled circuit to the garbled

2More generally, any function f for which, given any image element y it is possible to efficiently find a canonical pre-image
x.

2

input, at the cost of raising the on-line complexity to depend on the output size. In the simulation-based
setting we know this to be inherent, but one could hope to avoid this in the indistinguishability-based setting.

The second and more serious issue is the sequence of hybrids used to prove security. At a high level,
the selective proof proceeds via a series of carefully defined hybrid games that switch the distribution of
one garbled gate at a time, starting with the input level and proceeding up the circuit level by level. In
addition to the two modes of creating garbled gates defined above, we also define an additional mode where
the garbled gate is set to:

c0,0 = Enck0a(Enck0b (k
v(c)
c)) c1,0 = Enck1a(Enck0b (k

v(c)
c)),

c0,1 = Enck0a(Enck1b (k
v(c)
c)) c1,1 = Enck1a(Enck1b (k

v(c)
c))

(3)

where v(c) is the correct value of the bit going over the wire c during the computation of C(x). Let us give
names to the three modes for creating garbled gates that we defined above: (1) is called RealGate mode, (2)
is called SimGate mode, and (3) is called InputDepSimGate mode, since the way that it is defined depends
adaptively on the choice of the input x. The proof of selective security of Yao’s garbled circuits proceeds in
a sequence of hybrids where the way we garble a gate goes from RealGate mode to InputDepSimGate mode
to SimGate mode in some carefully chosen order. The problem with adapting this technique to the adaptive
setting is that the InputDepSimGate mode is not (even syntactically) well defined; in this mode the way that
we garble the gate depends on the value that the output wire takes on during the computation C(x) but in
the adaptive setting the input x is not yet defined when we create the garbled circuit.

The Technique of [HJO+16]. Essentially, the work of [HJO+16] proves adaptive security by leveraging
two ideas.

Firstly, they encrypt the entire Yao garbled circuit under an additional layer of encryption using a special
“somewhere equivocal encryption scheme”, and give the decryption key as part of the garbled input. Such
a scheme can be used to create a simulated ciphertext given only some but not all of the plaintext blocks
(think of the unknown blocks as “holes”) and later create a secret key that decrypts all the known blocks
correctly but “plugs the holes” with arbitrarily specified values. The size of the secret key only depends on
the number of holes and not the entire size of the plaintext. By leveraging this type of encryption, they can
define hybrid games where some of the gates are in InputDepSimGate mode (which is not well defined when
the circuit is created) by putting “holes” in place of all such gates when creating the garbled circuit and
then coming up with a decryption key that opens the holes to the correct value when creating the garbled
input (at which point InputDepSimGate is well defined).

Secondly, the above idea requires the number of holes (and therefore the size of the garbled input) to scale
with the number of gates in InputDepSimGate mode in any hybrid. Therefore, to get a non-trivial result, we
need a sequence of hybrids that minimizes the number of gates in InputDepSimGate mode at any point in
time. Recall that we start with all gates in RealGate mode and want to end with all gates in SimGate mode.
We are allowed to make the following changes:

• We can change a gate from RealGate to InputDepSimGate (and back) as long as its predecessors are in
InputDepSimGate mode (or it is at the input level). This is because, in this case, only one of the keys
for each input wire appears in the game.

• We can change a gate from InputDepSimGate to SimGate (and back) as long as all of its successors are
in SimGate mode (or it is at the output level). This is because the two keys associated with the output
wire are used interchangeably in the game.

The work of [HJO+16] connects the above with a pebbling game over the circuit, where the goal is to change
all the gates from RealGate to SimGate subject to the above rules while minimizing the number of gates in
InputDepSimGate mode at any point in time: this latter number is defined to be the pebble complexity of the
circuit. For example, they show that the pebble complexity of a circuit is bounded by its width which in
turn corresponds to the space complexity of the computation. The size of the garbled input in their scheme
is the maximum of the pebble complexity of the circuit and the input/output size.

3

Our Construction and Proof Technique. One could hope to get rid of output dependence in the
construction of [HJO+16] by simply sending the output map (the mapping between the keys of the output
wires and the bits they represent) with the garbled circuit rather than with the garbled input. Although we
know that such a construction cannot achieve adaptive simulation security, one could conjecture it to achieve
adaptive indistinguishability security. Unfortunately, we do not know how to prove such a construction
secure. Essentially, the issue is that the only reason we can change output gates from InputDepSimGate to
SimGate in the proof of [HJO+16] is that we can “program” the output map after the actual output of the
computation is known; if the output map is sent with the garbled circuit this is no longer possible. Instead,
we come up with a modified construction which we are able to prove secure.

Our new garbling construction leverages that of [HJO+16] and proceeds as follows. To garble a circuit C
we use the scheme of [HJO+16] and garble two copies of C completely independently: we call the resulting
garbled circuits CL,CR. These are just Yao garbled circuits (without an output map) encrypted under an
additional layer of somewhere equivocal encryption. We choose one of the two garbled circuits at random
to be the “active” one: active ← {L,R}. Then we merge the two garbled circuits by creating a layer of
garbled “selection gates” (s-gates): for each output bit i ∈ [m] we create an s-gate that takes the i’th
output wire from both garbled circuits, and outputs the value on the wire coming from the active circuit
(the output of the garbled s-gate is a bit in the clear rather than a wire key). The garbled circuit consists

of C̃ = (CL,CR, s̃gate). To garbled an input x we use the scheme of [HJO+16] to garble two copies of it
for the left and right garbled circuit. The evaluation procedure does the natural thing by evaluating both
CL,CR respectively, and using the output wire keys on the garbled s-gates to recover the output bits in the
clear. Ideas similar to the use of two circuits along with a selection layer have appeared in prior works, e.g.,
[PST14].

To prove security, we consider an adversary that chooses C0, C1, gets a garbled version of Cb, then
adaptively chooses x0, x1 such that C0(x0) = C1(x1), and gets a garbled version of xb. We want to show
that the adversary cannot distinguish between b = 0 and b = 1. We show security via the following sequence
of hybrids.

1. We start with the security game where the challenge bit is b = 0. In this case, both CL,CR garble C0

and both garbled inputs correspond to x0. Let active ∈ {L,R} be the identity of the active circuit. We
use the notation Cactive,Cpassive to denote the active and passive garbled circuits respectively.

2. We change the passive garbled circuit Cpassive and the garbled input for it to be simulated. This change
essentially follows the proof of [HJO+16]. In particular, we rely on the fact that the keys associated
with the bits 0 and 1 for the output wires of Cpassive are used symmetrically by the s-gates (since the
s-gates are ignoring the output of the passive circuit) and therefore we can safely change the garbled
output gates of Cpassive from InputDepSimGate to SimGate.

3. We change the passive garbled circuit Cpassive and the garbled input for it from being simulated to
being a garbling of C1, x1. This follows from the same argument as the previous step.

4. We now modify the s-gates one-by-one to output the value of the passive circuit instead of the active
circuit. This is the most delicate part of the proof. It essentially follows via a sequence of steps where,
for each output i ∈ [m], we use the proof strategy of [HJO+16] to change the i’th output gate of both
Cactive,Cpassive to be in InputDepSimGate mode. This means that these garbled gates aren’t really created
until the on-line phase when the garbled input is given out. Furthermore, when they are created in the
on-line phase, each of these garbled gates only contains one key for the output wire corresponding to
the correct bit going over that wire during the computation (either both corresponding to 0 or both to
1 since C0(x0) = C1(x1)). This allows us to change the encrypted value in 2 out 4 of the ciphertexts
in the garbled s-gate so as to switch it from outputting the value of the active circuit to the one of the
passive circuit.

5. We now repeat steps 2 and 3 for Cactive to switch it from a garbling C0, x0, to simulated, to a garbling
of C1, x1. Finally, we are left with the original security game with the challenge bit b = 1.

The above steps – except for step 4 – rely on the adaptive security of the underlying garbling scheme in a
blackbox manner. It remains an open problem whether it is possible to show a more general transformation

4

from garbled circuits with adaptive security (and maybe other natural properties) to garbled circuits with
indistinguishability based adaptive security and online complexity independent of the output size.

2 Preliminaries

General Notation. For a positive integer n, we define the set [n] := {1, . . . , n}. We use the notation x←
X for the process of sampling a value x according to the distribution X. For a vector m = (m1,m2, · · · ,mn),
and a subset P ⊂ [n], we use (mi)i∈P to denote a vector containing only the values mi in positions i ∈ P
and ⊥ symbols in all other positions. We use (mi)i/∈P as shorthand for (mi)i∈[n]\P .

Circuit Notation. A boolean circuit C consists of gates gate1, . . . , gateq and wires w1, w2, . . . , wp. A gate
is defined by the tuple gatei = (g, wa, wb, wc) where g : {0, 1}2 → {0, 1} is the function computed by the
gate, wa, wb are the incoming wires, and wc is the outgoing wire. Although each gate has a unique outgoing
wire wc, this wire can be used as an incoming wire to several different gates and therefore this models a
circuit with fan-in 2 and unbounded fan-out. We let q denote the number of gates in the circuit, n denotes
the number of input wires and m denote the number of output wires. The total number of wires is p = n+ q
(since each wire can either be input wire or an outgoing wire of some gate). For convenience, we denote the
n input wires by in1, . . . , inn and the m output wires by out1, . . . , outm. For x ∈ {0, 1}n we write C(x) to
denote the output of evaluating the circuit C on input x.

Definition 1. Two distributions X and Y are (T, ε)-indistinguishable, denote DT [X,Y] = ε if for any
probabilistic algorithm A, running in time T ,

|Pr [A(X) = 1]− Pr [A(Y) = 1]| ≤ ε.

For two games Game and Game′ we say they are (T (λ), ε(λ))- indistinguishable, DT (λ)

[
Game,Game′

]
=

ε(λ), if for any adversary A running in time T (λ),∣∣Pr [GameA = 1]− Pr
[
Game′A = 1

]∣∣ ≤ ε(λ).

Let games Game(λ) and Game′(λ) be parametrized by the security parameter λ. If for any polynomial
function T (λ), there exists a negligible function ε(λ), such that for all λ, DT (λ)

[
Game(λ),Game′(λ)

]
≤ ε(λ),

we say the two games are computationally indistinguishable and denote this by Game(λ)
comp
≈ Game′(λ).

We say C is leveled, if each gate has an associated level and any gate at level l has incoming wires only
from gates at level l−1 and outgoing wires only to gates at level l+1. We let the depth d denote the number
of levels and the width w denote the maximum number of gates in any level.

A circuit C is fully specified by a list of gate tuples gatei = (g, wa, wb, wc). We use Φ(C) to refer to the
topology of a circuit– which indicates how gates are connected, without specifying the function implement
by each gate. In other words, Φ(C) is the list of sanitized gate tuples ĝatei = (⊥, wa, wb, wc) where the
function g that the gate implements is removed from the tuple.

3 Definitions

The bulk of this section defining what garbled circuits are and presenting Yao’s construction, is taken
verbatim from [HJO+16]. We now give a formal definition of a garbling scheme. There are many variants of
such definitions in the literature, and we refer the reader to [BHR12] for a comprehensive treatment.

Definition 2. A Garbling Scheme is a tuple of PPT algorithms GC = (GCircuit, GInput,Eval) such that:

• (C̃, k)
$← GCircuit(1λ, C): takes as input a security parameter λ, a circuit C : {0, 1}n → {0, 1}m, and

outputs the garbled circuit C̃, and key k.

• x̃← GInput(k, x): takes as input, x ∈ {0, 1}n, and key k and outputs x̃.

5

• y = Eval(C̃, x̃): given a garbled circuit C̃ and a garbled input x̃ output y ∈ {0, 1}m.

Correctness There is a negligible function ν such that for any λ ∈ N, any circuit C and input x it holds
that Pr[C(x) = Eval(C̃, x̃)] = 1− ν(λ), where (C̃, k)← GCircuit(1λ, C), x̃← GInput(k, x).

Adaptive Security (Based on Simulation). There exists a PPT simulator Sim = (SimC,SimIn) such
that, for any PPT adversary A, there exists a negligible function ε such that:

Pr[Expadaptive
A,GC,Sim(λ, 0) = 1]− Pr[Expadaptive

A,GC,Sim(λ, 1) = 1] ≤ ε(λ)

where the experiment Expadaptive
A,GC,Sim(λ, b) is defined as follows:

1. The adversary A specifies C and gets C̃ where C̃ is created as follows:

• if b = 0: (C̃, k)← GCircuit(1λ, C),

• if b = 1: (C̃, state)← SimC(1λ,Φ(C)),

2. The adversary A specifies x and gets x̃ created as follows:

• if b = 0, x̃← GInput(k, x),

• if b = 1, x̃← SimIn(C(x), state).

3. Finally, the adversary outputs a bit b′, which is the output of the experiment.

In other words, we say GC is adaptively secure if

DT (λ)

[
Expadaptive

GC,Sim (λ, 0),Expadaptive
GC,Sim (λ, 1)

]
= ε(λ).

Adaptive Security (Based on Indistinguishability). For any PPT adversary A, there exists a negli-
gible function ε such that:

Pr[Expadaptive
A,GC,Ind(λ, 0) = 1]− Pr[Expadaptive

A,GC,Ind(λ, 1) = 1] ≤ ε(λ)

where the experiment Expadaptive
A,Π,Ind(λ, b) is defined as follows:

1. A specifies two circuits C0, C1 of the same topology, and gets back C̃b ← GCircuit(1λ, Cb).

2. A specifies x0, x1 such that C0(x0) = C1(x1) and gets x̃b ← GInput(k, xb).

3. Finally, the adversary outputs a bit b′, which is the output of the experiment.

In other words, we say GC is adaptively indistinguishable if

DT (λ)

[
Expadaptive

GC,Ind (λ, 0),Expadaptive
GC,Ind (λ, 1)

]
= ε(λ).

On-line Complexity. The time it takes to garble an input x, (i.e., time complexity of GInput(·, ·)) is the
on-line complexity of the scheme. Clearly the on-line complexity of the scheme gives a bound on the size of
the garbled input x̃. Ideally, the on-line complexity should be much smaller than the circuit size |C|.

Projective Scheme. We say a garbling scheme is projective if each bit of the garbled input x̃ only depends
on one bit of the actual input x. In other words, each bit of the input, is garbled independently of other
bits of the input. Projective schemes are essential for two-party computation where the garbled input is
transmitted using an oblivious transfer (OT) protocol. Our constructions will be projective.

6

Hiding Topology. A garbling scheme that satisfies the above security definition may reveal the topology
of the circuit C. However, there is a way to transform any such garbling scheme into one that hides
everything, including the topology of the circuit, without a significant asymptotic efficiency loss. More
precisely, we rely on the fact that there is a function HideTopo(·)that takes a circuit C as input and outputs
a functionally equivalent circuit C ′, such that for any two circuits C1, C2 of equal size, if C ′1 = HideTopo(C1)
and C ′2 = HideTopo(C2), then Φ(C ′1) = Φ(C ′2). An easy way to construct such function HideTopo is by
setting C ′ to be a universal circuit, with a hard-coded description of the actual circuit C. Therefore, to get
a topology-hiding garbling scheme, we can simply use a topology-revealing scheme but instead of garbling
the circuit C directly, we garble the circuit HideTopo(C).

4 Construction of [HJO+16]

In our construction (presented in the following section), we will use the construction of [HJO+16], as a
building block. Furthermore we will need the details of this construction in order to proceed with the proof
of security of our construction. Therefore in this section we present the construction of [HJO+16] which
consists of two simple steps: (1) garble the circuit using Yao’s garbling scheme; (2) hide the garbled circuit
(without the output tables) under an outer layer of encryption instantiated with a somewhere-equivocal
encryption scheme. In the on-line phase, the garbled input consists of Yao’s garbled input plus the output
tables. Next we provide the formal description of the scheme of [HJO+16] which contains the details of Yao’s
garbling scheme.

Let C be a leveled boolean circuit with fan-in 2 and unbounded fan-out, with inputs size n, output size
m, depth d and width w. Let q denote the number of gates in C. Recall that wires are uniquely identified
with labels w1, w2, . . . , wp, and a circuit C is specified by a list of gate tuples gate = (g, wa, wb, wc). The
topology of the circuit Φ(C) consists of the sanitized gate tuples ĝatei = (⊥, wa, wb, wc). For simplicity, we
implicitly assume that Φ(C) is public and known to the circuit evaluator without explicitly including it as

part of the garbled circuit C̃. To simplify the description of our construction, we first describe the procedure
for garbling a single gate, that we denote by GarbleGate.

Let Γ = (Gen,Enc,Dec) be a CPA-secure symmetric-key encryption scheme satisfying the special correct-
ness property defined in Appendix A. GarbleGate is defined as follows.

• g̃ ← GarbleGate(g, {kσa , kσb , kσc }σ∈{0,1}): This function computes 4 ciphertexts cσ0,σ1
: σ0, σ1 ∈ {0, 1}

as defined below and outputs them in a random order as g̃ = [c1, c2, c3, c4].

c0,0 ← Enck0a(Enck0b (k
g(0,0)
c)) c0,1 ← Enck0a(Enck1b (k

g(0,1)
c))

c1,0 ← Enck1a(Enck0b (k
g(1,0)
c)) c1,1 ← Enck1a(Enck0b (k

g(1,1)
c))

Let Π = (seKeyGen, seEnc, seDec, SimEnc, SimKey) be a somewhere-equivocal symmetric-encryption
scheme as defined in Appendix B. Recall that in this primitive the plaintext is a vector of n blocks, each
of which has s bits. In this construction the following parameters are used: the vector size n = q is the
number of gates and the block size s = |g̃| is the size of a single garbled gate. The equivocation parameter
t is defined by the strategy used in the security proof and will be specified later. The garbling scheme is
formally described in Fig. 1.

4.1 Adaptive Simulator

The adaptive security simulator for [HJO+16] is essentially the same as the selective security simulator for
Yao’s scheme (as in [LP09]), with the only difference that the output table is sent in the on-line phase, and is
computed adaptively to map to the correct output. Note that the garbled circuit simulator does not rely on
the simulation properties of the somewhere equivocal encryption scheme - these are only used in the proof
of indistinguishability.

More specifically, the adaptive simulator (SimC,SimIn) works as follows. In the off-line phase, SimC
computes the garbled gates using procedure GarbleSimGate, that generates 4 ciphertexts that encrypt the
same output key.

7

GCircuit(1λ, C)

1. Garble Circuit (Yao’s scheme)

• (Wires) kσwi ← Gen(1λ) for i ∈ [p], σ ∈ {0, 1}.
(Input wires) K =

(
k0

ini
, k1

ini

)
i∈[n]

.

• (Gates) For each gatei = (g, wa, wb, wc) in C:

g̃i ← GarbleGate
(
g,
{
kσwa , k

σ
wb
, kσwc

}
σ∈{0,1}

)
.

• (Output tables) For each output j ∈ [m]:

d̃j :=
[(
k0

outj → 0
)
,
(
k1

outj → 1
)]

.

2. Outer Encryption

• key
$← seKeyGen(1λ).

• C̃ ← seEnc (key, (g̃1, . . . , g̃q)).

Output C̃, k =
(
K, key, (d̃j)j∈[m]

)
.

GInput(x, k)

• (Select input keys) Kx =
(
kx1

in1
, . . . , kxninn

)
.

• Output x̃ =
(
Kx, key, (d̃j)j∈[m]

)
.

Eval(C̃, x̃)

1. Parse x̃ =
(
K, key, (d̃j)j∈[m]

)
.

2. Decrypt Outer Encryption

(g̃i)i∈q ← seDec
(

key, C̃
)

.

3. Evaluate Circuit.

• Parse K = (kin1
, . . . , kinn).

• For each level j = 1, . . . , d and

for each ĝatei = (⊥, wa, wb, wc) at level j:

– Let g̃i = [c1, c2, c3, c4];

– For δ ∈ [4] let k′wc ← Deckwa

(
Deckwb (cδ)

)
If k′wc 6= ⊥ then set kwc := k′wc .

4. Decrypt output.

For j ∈ [m]:

• Parse d̃j = [(k0
outj → 0), (k1

outj → 1)].

• Set yj = b iff koutj = kboutj .

Output y1, . . . , ym.

Figure 1: Adaptively-secure Garbling Scheme.

More precisely,

• GarbleSimGate({kσwa , k
σ
wb
}σ∈{0,1}, k′wc) takes both keys for input wires wa, wb and a single key for the

output wire wc, that we denote by k′wc . It then output g̃c = [c1, c2, c3, c4] where the ciphertexts,
arranged in random order, are computed as follows.

c0,0 ← Enck0a(Enck0b (k
′
c)) c1,0 ← Enck1a(Enck0b (k

′
c))

c0,1 ← Enck0a(Enck1b (k
′
c)) c1,1 ← Enck1a(Enck0b (k

′
c))

The simulator invokes GarbleSimGate on input k′c = k0
c . It then encrypts the garbled gates so obtained by

using the honest procedure for the somewhere equivocal encryption.

In the on-line phase, SimIn, on input y = C(x) adaptively computes the output tables so that the
evaluator obtains the correct output. This is easily achieved by associating each bit of the output, yj , to the
only key encrypted in the output gate goutj , which is k0

outj . For the input keys, SimIn just sends keys k0
ini

for
each i ∈ [n]. The detailed definition of (SimC,SimIn) is provided in Fig. 3.

5 Our Construction

Let cGC = (cGCircuit, cGInput, cEval) be the adaptive garbling scheme of [HJO+16], with simulator cSim =
(cSimC, cSimIn). In this section we construct a new garbling scheme, using cGC as a building block. See
Figure 5 for a formal description of our construction. The new garbling scheme creates two copies of the
garbled circuit (called CL,CR). It chooses one at random to be the “active” one (active = R or active = L).
Then for each output bit i ∈ [m], it creates a selection gate that takes the output wire i from both garbled
circuits, and selects the value on the wire coming from the active circuit. We call these selection gates,

8

Simulator

SimC(1λ,Φ(C))

• (Wires) kσwi ← Gen(1λ) for i ∈ [p], σ ∈ {0, 1}.

• (Garbled gates) For each gate g̃atei = (⊥, wa, wb, wc)) in Φ(C):
g̃i ← GarbleSimGate

(
kσwa , k

σ
wb
}σ∈{0,1}, k0

wc

)
.

• (Outer Encryption): key
$← seKeyGen(1λ), C̃ ← seEnc

(
key, g̃1, . . . , g̃q

)
.

• Output C̃, state =
(
{kσwi}, key

)
.

SimIn(y, state)

• Generate output table: s̃dj ←
[(
k
yj
outj → 0

)
,
(
k

1−yj
outj → 1

)]
j∈[m]

. // ensures k0
outj → yj

• Output x̃ =

((
k0

ini

)
i∈[n]

, key,
(
s̃dj

)
j∈[m]

)
.

Figure 2: Simulator for Adaptive Security.

sgateR sgateL
Enc`0(Encr1(1)) Enc`0(Encr1(0))
Enc`0(Encr0(0)) Enc`0(Encr0(0))
Enc`1(Encr1(1)) Enc`1(Encr1(1))
Enc`1(Encr0(0)) Enc`1(Encr0(1))

Figure 3: s-gates. sgateL(sgateR) outputs the value associated with the wire coming form CL, (CR).

s-gates, to distinguish them from the output gates of the two original garbled circuits. Let `b and rb be the
output wires of CL and CR, then s-gate (for each output bit) is defined as in Figure 4.

Note that Cactive and Cpassive are encrypted Yao garbled circuits. But the output wires and the output
map are not encrypted and are part of the key k which is an output of cGCircuit(·, ·).

6 Hybrid Games

Overview. We need to prove that Game0 = Expadaptive
A,NGC,Ind(λ, 0) and Game1 = Expadaptive

A,NGC,Ind(λ, 1) are indis-
tinguishable. Namely, we need to show a strategy to move from Game0, where (Cpassive, Cactive) are both
garbling of C0 and (xactive, xpassive) are garblings of x0; to Game1 where (Cpassive, Cactive) are garbling of C1

and (xactive, xpassive) are garblings of x1.
At high-level, the proof strategy is the following: starting from Game0, (1) first we change Cpassive, xpassive

to be the garbling of C1, x1, (2) then we change the selection gates so that they select outputs from Cpassive,
(3) finally we change Cactive, xactive to be the garbling of C1, x1.

For step (1) and (3), we switch from garbling C0, x0 to garbling C1, x1 by using simulated circuits,
namely first we change Cpassive into a simulated circuit, and then we switch it into a real garbling of C1.
Indistinguishability of this steps follows directly from the adaptive simulation-based security of the underlying
garbling scheme in a black-box manner (we discuss this next in Sec. 6.1). Changing the selection gates (Step
2) instead requires a surgical proof, where we selective simulate one output gate of Cpassive,Cactive at the time,
and this enable us to change (switch) the content of the selection gates, from selecting the output of Cpassive

instead of Cactive (or viceversa). Following the language of [HJO+16], this means that we need to place black
pebbles on the output gates of circuits Cpassive,Cactive. We discuss this in details in Lemma 3.

9

N Garbling Scheme
NGCircuit(1λ, C).

1. active← {L,R}. If active = L then passive = R else passive = L.

2. (CL, kL)← cGCircuit(1λ, C) and (CR, kR)← cGCircuit(1λ, C)

3. Parse kα into
(
Kα, keyα, (c̃dα,i)i∈[m]

)
for α ∈ {L,R}

4. For i ∈ [m] let sgatei computed as sgateactive (Figure 4) with the ith output wire of
CR and CL as input. Let s̃gate = (sgate1, . . . , sgatem)

5. C̃ :=
(

CL,CR, s̃gate
)

.

6. kL := (KL, keyL) , kR := (KR, keyR) , k := (kL, kR).

7. Output C̃, k.

NGInput(x, k)

1. (select keys) Kx
L = SelGInput (x,KL) and Kx

R = SelGInput (x,KR).

2. x̃L = (Kx
L, keyL) , x̃R = (Kx

R, keyR)

3. Output x̃ = (x̃L, x̃R)

NEval(C̃, x̃)

1. {wα,i}i∈[m] := cEval (Cα, x̃α), for α ∈ {L,R}

2. Parse sgate1, . . . , sgatem ← s̃gate.

3. Use keys {wα,i}i∈[m] to evaluate gates sgate1, . . . , sgatem and obtain y.

4. Output y.

Figure 4: New garbling scheme

6.1 Hybrid Games Template

The hybrid games are parameterized by the distributions of Cactive, Cpassive, their respective inputs xactive, xpassive

and a flag α ∈ {active, passive} denoting the fact that s-gates are selecting the ouput of Cα
For example the original Gameb is described as:

- Game0 =
((

cGCircuit(1λ, C0), x0),
(
cGCircuit(1λ, C0), x0

))
, active

)
- Game1 =

((
cGCircuit(1λ, C1), x1),

(
cGCircuit(1λ, C1), x1

))
, active

)
Note that when the active and passive garbled circuit distributions are the same, it does not make a difference
whether α = active or α = passive. However in our hybrid argument we will sometimes set α = passive when
these distributions are different. We use cSimC(1λ,Φ(C)) to denote a simulated circuit. Since the simulated
garbling of any circuit only depends on its topology and not the function it computes, the output of the
simulation has the same distribution for C0 and C1, thus for simplicity we write cSimC(1λ,Φ(C)).

Using this template we define 4 new hybrid games: HybA through HybD. See Figure 6. The changes in
these hybrids follow a two-step simulate and switch approach. In HybA the passive circuit is simulated. Note
that the garbled input to a simulated circuit is created independent of the input, therefore its distribution does
not change whether it’s x0 that is garbled or x1. In HybB the passive circuit is switched from simulation to real

10

garbling of C1. Now with both active and passive circuits outputing the same value y = C0(x0) = C1(x1),
we go to the next hybrid. In HybC we change the content of the s-gates to output the passive circuit.
Then we turn the active circuit into a garbling of C1 with input x1, by first simulating it (HybD) and then
changing it to a garbling of C1 with input x1 (Game1). The transitions from Game0 to HybA then to HybB
are identical to the ones going from Game1 to HybD and then to HybC. Thus we only prove it once for

Game0

comp
≈ HybA

comp
≈ HybB.

Hybrids

Cactive, xactive

Cpassive, xpassive

sgate outputs

Hybrids

Cactive, xactive

Cpassive, xpassive

sgate outputs

Game0

cGCircuit(1λ, C0), x0

cGCircuit(1λ, C0), x0

active

HybC

cGCircuit(1λ, C0), x0

cGCircuit(1λ, C1), x1

passive

HybA

cGCircuit(1λ, C0), x0

cSimC(1λ,Φ(C)), x1

active

HybD

cSimC(1λ,Φ(C)),x1

cGCircuit(1λ, C1),x1

passive

HybB

cGCircuit(1λ, C0), x0

cGCircuit(1λ, C1), x1

active

Game1

cGCircuit(1λ, C1),x1

cGCircuit(1λ, C1),x1

passive

Figure 5: Hybrids.

6.1.1 From Game0 to HybA.

To prove this, we are going to need a special property that is enjoyed by the garbling scheme cGC. We define
the special property below.

Definition 3 (Output-key Security). We say that an adaptively simulation-secure garbling scheme is
output-key secure if it is adaptively secure even when the output keys (e.g., {wα,i}i∈[m]) –without the output

mapping– are sent together with the garbled circuit C̃.

Proposition 1. Under the same assumptions as [HJO+16], the garbling scheme cGC is adaptively secure
and output-key secure.

[Proof Sketch]. Intuitively this is true because throughout the proof of security for cGC we rely on the
CPA security of the encryption scheme used to garble the gates, to prove the adversary does not learn the
content of any gates, before getting the garbled input, and even after seeing the garbled input he can only
decipher one ciphertext from each garbled gate. During these reductions, we can even let the adversary
choose the keys encrypted in a garbled output gate (as in the game for the CPA security, the adversary
can choose any message to be encrypted). Furthermore the output keys are not used as an encryption
key somewhere else in the same garbled circuit, therefore revealing the output key does not jeopardize the
adaptive security of cGC.

Now that we have defined the property above, we can prove the following Lemma.

Lemma 1. If cGC is adaptively secure and output-key secure, then Game0 and HybA are computationally
indistinguishable.

Proof. If a PPT adversary A distinguishes Game0 and HybA with advantage ε, we construct adversary B
that breaks the adaptive security of cGC with the same advantage ε. B will receive C0, C1 from A, and
sends C0 to its challenger, and gets back C̃∗, which is (C̃∗, k)← cGCircuit(1λ, C0) if b = 0 and(C̃∗, state)←
cSimC(1λ,Φ(C)) if b = 1. B then sets (Cactive, k0)← cGCircuit(1λ, C0) and Cpassive = C̃∗. Next, B creates the

s-gates so that they would reveal the output of Cactive. Note that B does not need the output map of C̃∗

to create s-gates, it only needs the keys encrypted in the output level gates of C̃∗. Which we assume are
given as part of the garbled circuit, without jeopardizing the security of cGC (due to output-key security).

11

Finally B sends C̃ =
(

CL,CR, s̃gate
)

to A and gets back x0, x1. B sends x0 to the challenger and gets

back x̃∗ which is x̃∗ ← cGInput(x0, k) if b = 0 and x̃∗ ← SimIn(C0(x0), state) if b = 1. The reduction
will set x̃active ← cGInput(x0, kactive), x̃passive = x̃∗ and sends (x̃L, x̃R) to A and outputs A’s final output,
b′. Note, since SimIn does not even take in the input x1 or x0, it only gets the output of the computation
in order to create the appropriate output map. And in this application, the output wires are treated the
same way, regardless of whether they are mapped to 0 or 1, it doesn’t matter which input is garbled by the
simulator.

Reduction B

1. Receive C0, C1 from A.

2. active← {L,R}. If active = L then passive = R else passive = L.

3. Send C0 to the challenger and get back C̃∗.

4. Follow the steps for creating NGCircuit(1λ, C0) with one exception; use C̃∗ as Cpassive.

5. Send C̃ :=
(

CL,CR, s̃gate
)

to A and receive x0, x1 .

6. Send x0 to the challenger and get back x̃∗.

7. (select keys) Kx0 = SelGInput(x0,Kactive).

8. x̃active = (Kx0 , keyactive) , x̃passive = x̃∗

9. Send x̃ = (x̃L, x̃R) to A and receive b′ from A

10. Output b′

Figure 6: Reduction of Lemma 1

Lemma 2. If cGC is adaptively secure and output-key secure, then HybA and HybB are computationally
indistinguishable.

Proof. It follows from a similar reduction to the one used in the proof of Lemma 1, with the difference that
C1, x1 are sent to the challenger instead of C0, x0.

Lemma 1 and Lemma 2 prove that:

Game0

comp
≈ HybA

comp
≈ HybB and HybC

comp
≈ HybD

comp
≈ Game1.

6.1.2 From HybB to HybC

Recall the distribution of hybrid HybB and HybC

- HybB =
((

cGCircuit(1λ, C0), x0),
(
cGCircuit(1λ, C1), x1

))
, active

)
- HybC =

((
cGCircuit(1λ, C0), x0),

(
cGCircuit(1λ, C1), x1

))
, passive

)
The difference between these two hybrids is only in the s-gates: instead of selecting the output from

Cactive (in HybB), now s-gates will select the output from Cpassive (in HybC). Recall the description of s-gate
in Fig. 4. Changing the s-gates from active to passive entails changing 2 of the encryptions. In order to argue
that these changes are indistinguishable, we must rely on the CPA security of the encryption. However the
keys used to create these ciphertexts are not independent, since they are used in the garbling of the output
gates of CL and CR. Therefore, if we want to change even one encryption, we need to remove those keys from

12

the correspondent gates in CL and CR. In other words, those two gates need to be simulated. Now, in order
to change one gate at the time from real to simulated, we need to leverage the details of the proof provided
in [HJO+16].

Proof Strategy in [HJO+16]. We now give an overview of the proof strategy of [HJO+16]; we rely on
specific components of the strategy in our proof. For more details see Appendix C. In [HJO+16] hybrid
games are parametrized by a circuit configuration, that is, a vector indicating the way the gates are garbled.
There are three modes for how each gate can be garbled: RealGate, InputDepSimGate, SimGate. There are also
rules that allow one to indistinguishably move from one configuration to another. These configurations/rules
are summarized via a pebbling game where we associate RealGate mode to a gate not having a pebble on
it, InputDepSimGate mode is associated with a gate having a black pebble, and SimGate mode is associated
with a gate having a grey pebble. The indistinguishability rules are then translated to rules for the pebbling
game:

Pebbling Rule A. We can place or remove a black pebble on a gate as long as both predecessors of that
gate have black pebbles on them (or the gate is an input gate).

Pebbling Rule B. We can replace a black pebble with a grey pebble on a gate as long as all successors of
that gate have black or grey pebbles on them (or the gate is an output gate).

We can follow the same rules for the two garbled circuits Cactive, Cpassive with one major difference: we
cannot replace a black pebble with a grey pebble on the output gates (this part relied on the fact that the
output map, which specified the correspondence between wire keys at the output level and the bits they
correspond to, was only sent in the on-line phase; in our case this correspondence is needed to create the
s-gates in the off-line phase, at least for the active circuit).

We rely on one more property (*): if a gate has an output wire w which is associated with keys k0
w, k

1
w

and we garble the gate in InputDepSimGate mode then we only use one key (kbw where b is the bit that the
wire takes on during the computation C(x)) when creating this garbled gate in the on-line phase.

Let us define C [γ, t] to be the class of circuits C such that we can place a black pebble on any single
output gate of C in γ pebbling steps and using at most t black pebbles at each step. For the following
lemma, theorem and corollaries, assume:

1. The adversary selects C0, C1 ∈ C [γ, t].

2. Π = (seKeyGen, seEnc, seDec, SimEnc, SimKey) is a somewhere equivocal encryption scheme with
equivocation parameter t.

3. Γ = (Gen,Enc,Dec) is an encryption scheme secure under chosen double encryption.

Lemma 3. HybB and HybC are computationally indistinguishable.

Proof. Let m be the output size of the circuits C0, C1 selected by the adversary. For i = 1, . . . ,m, we rely
on the following sequence of sub-hybrids:

1. Via a sequence of sub-sub-hybrids, change the configurations of both Cactive and Cpassive so that the
i’th output gate is in InputDepSimGate mode (has a black pebble on it). This follows using the same
argument as in [HJO+16].

2. Change the i’th s-gate from sgateactive to sgatepassive (see Figure 4). This change relies on property
(*) and the CPA-security of the encryption scheme Γ used to garble the gates. In particular, this
change requires changing the contents of the ciphertexts Enc`0(Encr1(?)) and Enc`1(Encr0(?)) in s-gate.
However, since C0(x0) = C1(x1) by property (*) the only keys that are used as plaintexts in other
garbled gates in this hybrid are either (`0, r1) or (`1, r0). In either case, we can rely on encryption
security to change the contents of the above two ciphertexts.

3. Via a sequence of sub-sub-hybrids, change the configurations of both Cactive and Cpassive back so that
all gates are in RealGate mode (no pebbles). This is the same as step 1 in reverse.

13

From lemmas 1,2, 3, it follows that Game0 and Game1 are computationally indistinguishable which
proves our main result, summarized in the following theorem.

Theorem 1. Assuming the existence of one-way functions, NGC is adaptively indistinguishable with online
complexity (n+ t)poly(λ) for all circuits in C [poly(λ), t].

Using the pebbling strategies from [HJO+16] summarized in Appendix D we get the following bounds.

Lemma 4. Any circuit C of depth d, width w, with input size n and output size m, is in the class C [γ, t]
with either of the following two settings of γ, t:

◦ γ = 2(2d+1)m steps using t = 2d black pebbles.

◦ γ = 4 |C| steps using t = 2w black pebbles.

Plugging the above lemma into Theorem 1 we get the following corollary.

Corollary 1. Assuming the existence of one-way functions, NGC is adaptively indistinguishable with online
complexity n · poly(λ) for all circuits with either linear width w = O(n) or logarithmic depth d = O(log n).

Note that any computation which can be performed in linear space can be represented by a circuit with
linear width. Therefore the above covers all linear space computations.

7 Application: Private-key Adaptively Secure Functional Encryp-
tion

Overview. Our new garbling scheme can be used to implement a private-key functional encryption ([SW05,
BSW11]) based on one-way functions, with indistinguishability based security where the adversary can obtain
an unbounded number of function secret keys and then adaptively a single challenge ciphertext (the formal
definition is provided in Sec. 7.1).

In our scheme (described in Fig. 8), the functional keys are garbled circuits computed according to (a
slightly modified version of) NGCircuit, and the ciphertext for a message m corresponds to the garbling of
the input m. Since a single garbled input should be used to evaluate multiple garbled circuits, we slightly
tweak the construction of our garbling scheme so to allow an initial state that is used upon each invocation
of the garbling function. We explain this modification in greater length in Sec. 7.2.

7.1 Definition

A private-key functional encryption scheme Π, over a message space M = {Mλ}λ and a circuit space
C = {Cλ}λ is a tuple of PPT algorithms (Π.FE.Setup, Π.FE.KeyGen, Π.FE.Enc, FE.Dec) defined as follows:

• Π.FE.Setup(1λ): The setup algorithm takes as input the unary representation of the security parameter,
and outputs a secret key MSK.

• Π.FE.KeyGen(MSK, C): The key-generation algorithm takes as input a secret key MSK and a circuit
C ∈ Cλ and outputs a functional key skC .

• Π.FE.Enc(MSK,m): The encryption algorithm takes as input a secret key MSK and a message m ∈Mλ

and outputs a ciphertext CT.

• Π.FE.Dec(skC ,CT) The decryption algorithm takes as input a functional key skC and a ciphertext CT,
and outputs m ∈Mλ ∪ {⊥}.

The correctness property requires that there exists a negligible function negl(·) such that for all sufficiently
large λ ∈ N , for every message m ∈Mλ, and for every circuit C ∈ Cλ it holds that:

Pr[FE.Dec(Π.FE.KeyGen(MSK, C),FE.Enc(MSK,m)) = C(m)] ≥ 1− negl(λ)

where MSK = FE.Setup(1λ) and the probability is taken over the random choices of all algorithms.

14

Many Functions Single Message Adaptive Security. For any PPT adversary A, there exists a neg-
ligible function ε such that:

Pr[ExpPrivate−FE
A,Π,Ind (λ, 0) = 1]− Pr[ExpPrivate−FE

A,Π,Ind (λ, 1) = 1] ≤ ε(λ)

where the experiment ExpPrivate−FE
A, Ind (λ, b) is defined as follows:

1. Query. The adversary A specifies circuits C1, C2, It then obtain functional keys sk1, sk2, . . . which
are created as follow:

• Run MSK = Π.FE.Setup(1λ).

• Let q be the number of queries. ∀i ∈ [q], ski = Π.FE.KeyGen(MSK, Ci).

2. Challenge. The adversary A specifies messages m0,m1, such that for all i ∈ [q], Ci(m0) = Ci(m1)
and obtains CT, which is created as follows:

• CT = Π.FE.Enc(MSK,mb)

3. Output. Finally, the adversary outputs a bit b′, which is the output of the experiment.

7.2 Construction

Our private-key functional encryption scheme is depicted in Figure 8. The FE.Setup algorithm generates the
keys that need to be shared by all garbled circuits. Such keys are: (1) the keys for the input wires (i.e.,
KL,KR) (2) the keys for the outer somewhere-equivocal encryption seEnc (i.e., keyL, keyR). The FE.Setup
also sets the flag active.

The FE.KeyGen algorithm generates a garbled circuit according to procedure NGCircuit? which is a slight
modification of NGCircuit (shown in Figure 4) that enables to use a single garbled input to evaluate many
garbled circuits generated at different times. The modifications are: (1) instead of running procedure
GCircuit(1λ, C) (described in Figure 1) – which would select fresh keys for the input wires and for the outer
encryption – it runs a slightly modified procedure GCircuit?(1λ, C, Input keys) which takes such keys as
an external input; (2) the encryption algorithm seEnc used in GCircuit, is also slightly modified so that it
allows blocks to be encrypted in a streaming fashion (that is, instead of having a one-time encryption of n
blocks, we allow for many encryptions, where the total number of encrypted blocks is overall ≤ N where N
is an upperbound (e.g., 2λ)). In Appendix B we discuss why this modification (that we call seEnc?) follows
naturally from the implementation of seEnc provided in [HJO+16].

The FE.Enc algorithm takes in input a message m and simply runs the procedure GInput(m, Input keys)
to select the keys for m. The ciphertext then consists of the keys for the garbled inputs, and the keys for the
outer encryption keyR, keyL. Note that the size of the ciphertex depends on the length of the input and the
length of the keys keyR, keyL for somewhere-equivocal encryption. Finally the decryption algorithm simply
consists of the evaluation of the garbled circuits.

7.3 Security Proof

In this section we show that protocol in Figure 8 is a private-key functional encryption scheme that is
adaptively secure for many function queries and a single message query (according to Definition 7.1).

Let Game0, be the experiment ExpPrivate−FE
A,Π,Ind (λ, 0) where the adversary receives encryption of m0, and

let Game1 be the experiment ExpPrivate−FE
A,Π,Ind (λ, 1). The proof of security consists of a sequence of hybrid

games from Game0 to Game1, and each hybrid is computational indistinguishable. We now argue that this
sequence of hybrids follows exactly the hybrids provided in the proof of Theorem 1.

Recall that in the security experiment ExpPrivate−FE
A,Π,Ind (λ, b), A sends all function queries C1, C2, . . . , Cq at

the beginning in one-shot. Concretely, by instantiating the experiment with Π, when A sends functional
queries C1, C2, . . . , Cq, she obtains:

Functional Keys:
(
[CL

1,CR
1,SG1], . . . , [CL

q,CR
q,SGq]

)
where SGj is the selection circuit s̃gate associated to CL

j ,CR
j .

15

Private-Key Functional Encryption

Π.FE.Setup(λ).

1. Select active garbled circuit.
active← {L,R}. If active = L then passive = R else passive = L.

2. Select keys for input wires:

(left circuits) KL =
(
k0,a

ini
, k1,a

ini

)
i∈[n]

. (rigth circuits) KR =
(
k0,p

ini
, k1,p

ini

)
i∈[n]

.

with kσ,αwi ← Gen(λ) for i ∈ [n], σ ∈ {0, 1}, α ∈ {L,R}.

3. Select keys for outer encryption:

(left/right circuits) keyL, keyR; where keyα
$← seKeyGen(λ), α ∈ {L,R}.

4. Output MSK := {KL, keyL,KR, keyR, active}

Π.FE.KeyGen(MSK, C).

1. C̃ := NGCircuit?(C,MSK)

2. Ouput skC = C̃b.

Π.FE.Enc(MSK,m).

1. x̃ = NGInput(m,MSK).

2. Output CT = x̃ = (Kx
L, keyL,K

x
R, keyR)

FE.Dec(skC ,CT).

1. Output m = NEval (skC ,CT).

Figure 7: Private-Key FE

In the challenge phase, A receives the garbling of message mb. Specifically:

Ciphertext: x̃ = (KL, keyL,KR, keyR)

Now, note that, because the functional keys (i.e., the garbled circuits) are sent all at once, and they
will be evaluated with the same garbled input x̃, we can conceptually think of C1, C2, . . . , Cq as disjoint
sub-circuits (which have no wires in common) of one big circuit C. Let us define C = [C1, C2, . . . , Cq].

Next, we observe that the garbling function NGCircuit? is such that garbling circuits (C1, C2, . . . , Cq)
one at the time will generate a garbled circuit which is equivalent to the one obtained by garbling C as a
single circuit. To see why, note that the garbling function NGCircuit? operates by encrypting one gate at the
time, and only connected gates have correlated keys. As (C1, C2, . . . , Cq) are disjoint, they are encrypted
separately regardless of whether they are presented as a single circuit C or as many independent circuits.
Therefore, we can group the view of adversary as follows:

C̃L = (CL
1, . . . ,CL

q)

C̃R = (CR
1, . . . ,CR

q)

SL = (SG1, . . . ,SGq)
x̃ = (KL, keyL,KR, keyR)

Finally, recall that the flag active is set once and for all in FE.Setup (Fig. 8) That is, either L = active
and R = passive, or viceversa. Therefore, we can further represent the view of the adversary as follows:

16

C̃active, x̃active

C̃passive, x̃passive

S
This view fits the template of high-level hybrids shown in Figure 6. The exact same arguments then

follow to show that Game0 and Game1 are indistinguishable. In Gameb , x̃active and , x̃passive are both
garbling of mb.

Following the same template, the proof strategy is to move from Game0, where x̃active and x̃passive are
garbling of m0, to intermediate games where x̃passive is a garbling of m1 and finally change x̃active into garbling
of m1 and thus reaching Game1.

Theorem 2. Assuming the existence of one-way functions, Π is a many functions single message adaptive
secure private-key functional encryption, for all circuits in C [poly(λ), t], with ciphertext size (n+ t)poly(λ),
where n is the length of the plaintext.

Proof. It follows from the proof of Theorem 2 applied to the circuit C defined above.

7.4 Extensions

We leave as an extension to consider a full adaptive security definition for functional encryption where the
adversary can choose the functional queries adaptively [ABSV15]. Concretely, this means that the adversary
can choose functions adaptively based on the garbled circuits received so far.

To prove security of our construction in this setting, one needs to prove that the underlying garbling
scheme (NGCircuit?,NGInput,NEval) satisfies a stronger adaptivity property that we call many-time adaptive
security. That is, in the security experiment the adversary is allowed to adaptively ask for many garbled
circuits and then choose an single input to evaluate all of them.

Showing that (NGCircuit?,NGInput,NEval) achieves this stronger property amounts to show that the
underlying new somewhere-equivocal encryption scheme (Definition B) achieves a stronger security property
where the adversary can choose the plaintexts adaptively on the ciphertexts received so far.

References

[ABSV15] Prabhanjan Ananth, Zvika Brakerski, Gil Segev, and Vinod Vaikuntanathan. From selective to
adaptive security in functional encryption. In Rosario Gennaro and Matthew J. B. Robshaw,
editors, Advances in Cryptology – CRYPTO 2015, Part II, volume 9216 of Lecture Notes in
Computer Science, pages 657–677, Santa Barbara, CA, USA, August 16–20, 2015. Springer,
Heidelberg, Germany.

[AIKW13] Benny Applebaum, Yuval Ishai, Eyal Kushilevitz, and Brent Waters. Encoding functions with
constant online rate or how to compress garbled circuits keys. In Ran Canetti and Juan A.
Garay, editors, Advances in Cryptology – CRYPTO 2013, Part II, volume 8043 of Lecture Notes
in Computer Science, pages 166–184, Santa Barbara, CA, USA, August 18–22, 2013. Springer,
Heidelberg, Germany.

[BHR12] Mihir Bellare, Viet Tung Hoang, and Phillip Rogaway. Foundations of garbled circuits. In Ting
Yu, George Danezis, and Virgil D. Gligor, editors, ACM CCS 12: 19th Conference on Computer
and Communications Security, pages 784–796, Raleigh, NC, USA, October 16–18, 2012. ACM
Press.

[BSW11] Dan Boneh, Amit Sahai, and Brent Waters. Functional encryption: Definitions and challenges. In
Yuval Ishai, editor, TCC 2011: 8th Theory of Cryptography Conference, volume 6597 of Lecture
Notes in Computer Science, pages 253–273, Providence, RI, USA, March 28–30, 2011. Springer,
Heidelberg, Germany.

[HJO+16] Brett Hemenway, Zahra Jafargholi, Rafail Ostrovsky, Alessandra Scafuro, and Daniel Wichs.
Adaptively secure garbled circuits from one-way functions. In Matthew Robshaw and Jonathan

17

Katz, editors, Advances in Cryptology – CRYPTO 2016, Part III, volume 9816 of Lecture Notes
in Computer Science, pages 149–178, Santa Barbara, CA, USA, August 14–18, 2016. Springer,
Heidelberg, Germany.

[HW15] Pavel Hubacek and Daniel Wichs. On the communication complexity of secure function evaluation
with long output. In Tim Roughgarden, editor, ITCS 2015: 6th Innovations in Theoretical Com-
puter Science, pages 163–172, Rehovot, Israel, January 11–13, 2015. Association for Computing
Machinery.

[JKK+17] Zahra Jafargholi, Chethan Kamath, Karen Klein, Ilan Komargodski, Krzysztof Pietrzak, and
Daniel Wichs. Be adaptive, avoid overcommitting. Lecture Notes in Computer Science, pages
133–163, Santa Barbara, CA, USA, 2017. Springer, Heidelberg, Germany.

[JW16] Zahra Jafargholi and Daniel Wichs. Adaptive security of Yao’s garbled circuits. In Martin Hirt
and Adam D. Smith, editors, TCC 2016-B: 14th Theory of Cryptography Conference, Part I,
volume 9985 of Lecture Notes in Computer Science, pages 433–458, Beijing, China, October 31 –
November 3, 2016. Springer, Heidelberg, Germany.

[LP09] Yehuda Lindell and Benny Pinkas. A proof of security of Yao’s protocol for two-party computa-
tion. Journal of Cryptology, 22(2):161–188, April 2009.

[PST14] Rafael Pass, Karn Seth, and Sidharth Telang. Indistinguishability obfuscation from semantically-
secure multilinear encodings. In Juan A. Garay and Rosario Gennaro, editors, Advances in
Cryptology – CRYPTO 2014, Part I, volume 8616 of Lecture Notes in Computer Science, pages
500–517, Santa Barbara, CA, USA, August 17–21, 2014. Springer, Heidelberg, Germany.

[SW05] Amit Sahai and Brent R. Waters. Fuzzy identity-based encryption. In Ronald Cramer, edi-
tor, Advances in Cryptology – EUROCRYPT 2005, volume 3494 of Lecture Notes in Computer
Science, pages 457–473, Aarhus, Denmark, May 22–26, 2005. Springer, Heidelberg, Germany.

[Yao82] Andrew Chi-Chih Yao. Protocols for secure computations (extended abstract). In 23rd Annual
Symposium on Foundations of Computer Science, pages 160–164, Chicago, Illinois, November 3–
5, 1982. IEEE Computer Society Press.

[Yao86] Andrew Chi-Chih Yao. How to generate and exchange secrets (extended abstract). In 27th Annual
Symposium on Foundations of Computer Science, pages 162–167, Toronto, Ontario, Canada,
October 27–29, 1986. IEEE Computer Society Press.

A Symmetric-Key Encryption with Special Correctness [LP09]

In our construction of the garbling scheme, we use a symmetric-key encryption scheme Γ = (Gen,Enc,Dec)
which satisfies the standard definition of CPA security and an additional special correctness property below
(this is a simplified and sufficient variant of the property described in from [LP09]). We need this property
to ensure the correctness of our garbled circuit construction.

Definition 4 (Special Correctness). A CPA-secure symmetric-key encryption Γ = (Gen,Enc,Dec) satisfies
special correctness if there is some negligible function ε such that for any message m we have:

Pr[Deck2(Enck1(m)) 6= ⊥ : k1, k2 ← Gen(1λ)] ≤ ε(λ).

Construction. Let F = {fk} be a family of pseudorandom functions where fk : {0, 1}λ → {0, 1}λ+s, for
k ∈ {0, 1}λ and s is a parameter denoting the message length. Define Enck(m) = (r, fk(r) ⊕ m0λ) where

m ∈ {0, 1}s, r $← {0, 1}λ and m0λ denotes the concatenation of m with a string of 0s of length λ. Define
Deck(c) which parses c = (r, z), computes w = z⊕ fk(r) and if the last λ bits of w are 0’s it outputs the first
s bits of w, else it outputs ⊥.

It’s easy to see that this scheme is CPA secure and that it satisfies the special correctness property.

18

Double Encryption Encryption Security. For convenience, we define a notion of double encryption
security, following [LP09]. This notion is implied by standard CPA security but is more convenient to use
in our security proof of garbled circuit security.

Definition 5 (Double-encryption security). An encryption scheme Γ = (Gen,Enc,Dec)

• is (T (λ), ε(λ))-secure under chosen double encryption if

DT (λ)

[
Expdouble(λ, 0),Expdouble(λ, 1)

]
= ε(λ).

• is secure under chosen double encryption if

Expdouble(λ, 0)
comp
≈ Expdouble(λ, 1).

• is sub-exponentially secure if

∃ ν > 0,∀ T (λ) ∈ poly(λ) DT (λ)

[
Expdouble(λ, 1),Expdouble(λ, 0)

]
≤ ε(λ) = 1/2λ

ν

.

where the experiment Expdouble
A is defined as follows.

Experiment Expdouble
A (λ, b)

1. The adversary A on input 1λ outputs two keys ka and kb of length λ and two triples of messages
(x0, y0, z0) and (x1, y1, z1) where all messages are of the same length.

2. Two keys k′a, k
′
b

$← Gen(1λ) are chosen.

3. AEnck′a
(·),Enck′

b
(·)

is given the challenge ciphertexts cx ← Encka(Enck′b(xb)), cy ← Enck′a(Enckb(yb)),
cz ← Enck′a(Enck′b(zb)) as well as oracle access to Enck′a(·) and Enck′b(·).

4. A outputs b′ which is the output of the experiment.

The following lemma is essentially immediate - see [LP09] for a formal proof.

Lemma 5. If (Gen,Enc,Dec) is CPA-secure then it is secure under chosen double encryption with the same
security parameter.

B Somewhere Equivocal Symmetric-Key Encryption [HJO+16]

Definition 6. A somewhere equivocal encryption scheme with block-length s, message-length n (in blocks),
and equivocation-parameter t (all polynomials in the security parameter) is a tuple of probabilistic polynomial
algorithms Π = (seKeyGen, seEnc, seDec, SimEnc, SimKey) such that:

• The key generation algorithm seKeyGen takes as input the security parameter 1λ and outputs a key:
key← seKeyGen(1λ).

• The encryption algorithm seEnc takes as input a vector of n messages m = m1, . . . ,mn, with mi ∈
{0, 1}s, and a key key, and outputs ciphertext c← seEnc(key,m).

• The decryption algorithm seDec takes as input ciphertext c and a key key and outputs a vector of
messages m = m1, . . . ,mn. Namely, m← seDec(key, c).

• The simulated encryption algorithm SimEnc takes as input a set of indexes I ⊂ [n], such that |I| ≤
t, and a vector of n − |I| messages (mi)i/∈I and outputs ciphertext c, and a state state. Namely,
(state, c)← SimEnc((mi)i/∈I , I).

19

• The simulated key algorithm SimKey, takes as input the variable state and messages (mi)i∈I and
outputs a key key′. Namely, key′ ← SimKey(state, (mi)i∈I).

and satisfies the following properties:

Correctness. For every key← seKeyGen(1λ), for every m ∈ {0, 1}s×n it holds that:

seDec(key, (seEnc(key,m)) = m

Simulation with No Holes. We require that the distribution of (c, key) computed via (c, state)← SimEnc(m, ∅)
and key ← SimKey(state, ∅) to be identical to key ← seKeyGen(1λ) and c ← seEnc(key,m). In other
words, simulation when there are no holes (i.e., I = ∅) is identical to honest key generation and
encryption.

Security. For any PPT adversary A, there exists a negligible function ν = ν(λ) such that:

Pr[Expsimenc
A,Π (1λ, 0) = 1]− Pr[Expsimenc

A,Π (1λ, 1) = 1] ≤ ν(λ)

where the experiment Expsimenc
A,Π is defined as follows:

Experiment Expsimenc
A,Π (1λ, b)

1. The adversary A on input 1λ outputs a set I ⊆ [n] s.t. |I| < t, vector (mi)i/∈I , and a challenge
index j ∈ [n] \ I. Let I ′ = I ∪ j.

2. – If b = 0, compute c as follows: (state, c)← SimEnc((mi)i/∈I , I).

– If b = 1, compute c as follows: (state, c)← SimEnc((mi)i/∈I′ , I
′).

3. Send c to the adversary A.

4. The adversary A outputs the set of remaining messages (mi)i∈I .

– If b = 0, compute key as follows: key← SimKey(state, (mi)i∈I).

– If b = 1, compute key as follows: key← SimKey(state, (mi)i∈I′).

5. Send key to the adversary A.

6. A outputs b′ which is the output of the experiment.

In [HJO+16], a somewhere equivocal encryption is constructed from one-way functions, proving the
following theorem.

Theorem 3. Assuming the existence of one-way functions, there exists a somewhere equivocal encryption
scheme for any polynomial message-length n, block-length s, and equivocation parameter t, having key size
t · s · poly(λ) and ciphertext of size n · s bits.

Extension. Such construction naturally extends to a modified encryption algorithm seEnc?, that instead
of taking in input the entire vector m = m1, . . . ,mn, it takes in input a few blocks that arrive in a streaming
fashion. Namely, seEnc? takes as input an upperbound N , a vector of j ≥ 1 messages m = m1, . . . ,mj , and
a key key and it outputs j encryptions, while keeping a counter on the number of encryptions computed so
far. The messages are encrypted as long as the counter is less than the upper bound N .

To see why the implementation provided in [HJO+16]also supports the modified version seEnc?, note
that their encryption is performed by xoring the output of a special pseudo-random function (PRF) with the
plaintext. To encrypt n blocks, one evaluates the PRF on inputs 1, 2, . . . , n and then xor the result with the
blocks. Naturally, one can encrypt any number of blocks at different times. The construction will still work
provided that the algorithm is stateful and remembers the last index on which the PRF has been evaluated
on (so that the same PRF evaluation is not used twice).

Concering security, for our application it suffices that seEnc? satisfies the same “non-adaptive” definition
of security as in experiment Expsimenc where the adversary needs to commit to the entire vector (mi)i/∈I in
advance.

20

C Hybrid Games of [HJO+16]

Gate/Circuit Configuration. We start by defining a gate configuration. A gate configuration is a pair
(outer mode, garbling mode) indicating the way a gate is computed. The outer encryption mode can be
{EquivEnc,BindEnc} depending on whether the outer encryption contains a “hole” in place of that gate or
whether it is binding on that gate. The garbling mode can be {RealGate, SimGate, InputDepSimGate} which
corresponds to the distributions outlined in Figure 9. We stress that, if the garbling mode of a gate is
InputDepSimGate then we require that the outer encryption mode is EquivEnc. This means that there are 5
valid gate configurations for each gate.

RealGate

c0,0 ← Enck0a
(Enck0

b
(k
g(0,0)
c))

c0,1 ← Enck0a
(Enck1

b
(k
g(0,1)
c))

c1,0 ← Enck1a
(Enck0

b
(k
g(1,0)
c))

c1,1 ← Enck1a
(Enck1

b
(k
g(1,1)
c))

SimGate

c0,0 ← Enck0a
(Enck0

b
(k0c))

c0,1 ← Enck0a
(Enck1

b
(k0c))

c1,0 ← Enck1a
(Enck0

b
(k0c))

c1,1 ← Enck1a
(Enck1

b
(k0c))

InputDepSimGate

c0,0 ← Enck0a
(Enck0

b
(k
v(c)
c))

c0,1 ← Enck0a
(Enck1

b
(k
v(c)
c))

c1,0 ← Enck1a
(Enck0

b
(k
v(c)
c))

c1,1 ← Enck1a
(Enck1

b
(k
v(c)
c))

Figure 8: Garbling Gate modes: RealGate (left), SimGate (center), InputDepSimGate (right). The value v(c)
depends on the input x and corresponds to the bit going over the wire c in the computation C(x).

A circuit configuration simply consists of the gate configuration for each gate in the circuit. More
specifically, we represent a circuit configuration by a tuple (I, (modei)i∈[q]) where

• Set I ⊆ [q] contains the indices of the gates i whose outer mode is EquivEnc.

• The value modei ∈ {RealGate,SimGate, InputDepSimGate} describes the garbling mode of gate i.

A valid circuit configuration is one where all indexes i such that modei = InputDepSimGate satisfy i ∈ I.

Game Hyb(I, (modei)i∈[q])

Garble Circuit C:

– Garble Gates
(Wires) kσwi ← Gen(1λ) for i ∈ [p], σ ∈ {0, 1}.
(Gates) For each gatei = (g, wa, wb, wc) in C.

– If modei = RealGate: run g̃i ← GarbleGate(g, {kσwa , k
σ
wb
, kσwc}σ∈{0,1}).

– if modei = SimGate: run g̃i ← GarbleSimGate({kσwa , k
σ
wb
}σ∈{0,1}, k0wc).

– Outer Encryption.
1. (state, C̃)← SimEnc((g̃i)i/∈I , I).

2. Output C̃.

Garble Input x:

(Compute adaptive gates)
For each i ∈ I s.t. modei = InputDepSimGate:

Let gatei = (gi, wa, wb, wc), and let v(c)
be the bit on the wire wc during the computation C(x).

Set g̃i ← GarbleSimGate((kσwa , k
σ
wb

)σ∈{0,1}, k
v(c)
wc).

(Decryption key) key′ ← SimKey(state, (g̃i)i∈I)
(Output tables) Let y = C(x). For j = 1, . . . ,m:
Let i be the index of the gate with output wire outj .

– If modei 6= SimGate, set d̃j := [(k0outj
→ 0), (k1outj

→ 1)],

– else, set d̃j := [(k
yj
outj
→ 0), (k

1−yj
outj

→ 1)].
(Select input keys) For j = 1, . . . , n:

– If all gates i having inj as an input wire satisfy modei = SimGate, then set K[i] := k0ini ,

– else set K[i] := k
xi
ini

.

Output x̃ := (K, key′, {d̃j}j∈[m]).

Figure 9: The Hybrid Game.

21

The Hybrid Game Hyb(I, (modei)i∈[q]). Every valid circuit configuration I, (modei)i∈[q] defines a hybrid
game Hyb(I, (modei)i∈[q]) as specified formally Figure 10 and described informally below. The hybrid game

consists of two procedures: GCircuit′ for creating the garbled circuit C̃ and GInput′ for creating the garbled
input x̃ respectively. The garbled circuit is created by picking random keys kσwj for each wire wj . For each
gate i, such that modei ∈ {RealGate,SimGate} it creates a garbled gate g̃i using the corresponding distribution

as described in Figure 9. The garbled circuit C̃ is then created by simulating the outer encryption using
the values g̃i in locations i 6∈ I and “holes” in the locations I. The garbled input is created by first sampling
the garbled gates g̃i for each i such that modei = InputDepSimGate using the corresponding distribution in
Figure 9 and using knowledge of the input x. Then the decryption key key is simulated by plugging in the
holes in locations I with the correctly sampled garbled gates g̃i. There is some subtlety about how the input
labels K[i] and the output label maps d̃j are created when computing x̃:

• If all of the gates having ini as an input wire are in SimGate mode, then K[i] := k0
ini

else K[i] := kxiini
.

• If the unique gate having outj as an output wire is in SimGate mode, then we give the simulated output

map d̃j := [(k
yj
outj → 0), (k

1−yj
outj → 1)] else the real one d̃j := [(k0

outj → 0), (k1
outj → 1)].

Real game and Simulated Game. By definition of adaptively secure garbled circuits (Definition 2), the

real game Expadaptive
A,GC,Sim(1λ, 0) is equivalent to Hyb(I = ∅, (modei = RealGate)i∈[q]) and the simulated game

Expadaptive
A,GC,Sim(1λ, 1) is equivalent to Hyb(I = ∅, (modei = SimGate)i∈[q]). Therefore, the main aim is to show

that these hybrids are indistinguishable.3

C.1 Rules for Indistinguishable Hybrids

Next, we provide rules that allow us to move from one configuration to another and prove that the cor-
responding hybrid games are indistinguishable. We define three rules that allow us to do this. We define

mode
def
= (modei)i∈[q].

C.1.1 Indistinguishability Rule 1: Changing the Outer Encryption Mode BindEnc↔ EquivEnc.

This rule allows to change the outer encryption of a single gate. It says that one can move from a valid
circuit configuration (I,mode) to a circuit configuration (I ′,mode) where I ′ = I ∪ j. Thus one more gate is
now computed equivocally (and vice versa).

Lemma 6. Let (I,mode) be any valid circuit configuration, let j ∈ [q] \ I and let I ′ = I ∪ j. Then

Hyb(I,mode)
comp
≈ Hyb(I ′,mode) are computationally indistinguishable as long as Π = (seKeyGen, seEnc, seDec,

SimEnc, SimKey) is a somewhere equivocal encryption scheme with equivocation parameter t such that
|I ′| ≤ t.

Definition 7 (Predecessor/Successor/Sibling Gates [HJO+16]). Given a circuit C and a gate j ∈ [q] of the
form gatej = (g, wa, wb, wc) with incoming wires wa, wb and outgoing wire wc:

• We define the predecessors of j, denoted by Pred(j), to be the set of gates whose outgoing wires are
either wa or wb. If wa, wb are input wires then Pred(j) = ∅, else |Pred(j)| = 2.

• We define the successors of j, denoted by Succ(j) to be the set of gates that contain wc as an incoming
wire. If wc is an output wires then Succ(j) = ∅.

• We define the siblings of j, denoted by Siblings(j) to be the set of gates that contain either wa or wb
as an incoming wire.

3Note that, the games Hyb(· · ·) use the simulated encryption and key generation procedures of the somewhere equivocal

encryption, while the games Expadaptive
A,GC,Sim(1λ, b) only use the real key generation and encryption procedures. However, by

definition, these are equivalent when I = ∅ (no “holes”).

22

C.1.2 Indistinguishability Rule 2. Changing the Garbling Mode RealGate↔ InputDepSimGate

This rule allows us to change the mode of a gate j from RealGate to InputDepSimGate as long as j ∈ I and
that gatej = (g, wa, wb, wc) has incoming wires wa, wb that are either input wires or are the outgoing wires
of some predecessor gates both of which are in InputDepSimGate mode.

Lemma 7. Let (I,mode = (modei)i∈[q]) be a valid circuit configuration and let j ∈ I be an index such that
modej = RealGate and for all i ∈ Pred(j): modei = InputDepSimGate. Let mode′ = (mode′i)i∈[q] be defined by

mode′i = modei for all i 6= j and mode′j = InputDepSimGate. Then the games Hyb(I,mode)
comp
≈ Hyb(I,mode′)

are computationally indistinguishable as long as Γ = (Gen,Enc,Dec) is an encryption scheme secure under
chosen double encryption.

C.1.3 Indistinguishability Rule 3. Changing the Garbling Mode:
InputDepSimGate↔ SimGate.

This rule allows us to change the mode of a gate j from InputDepSimGate to SimGate under the condition
that all successor gates i ∈ Succ(j) satisfy that modei ∈ {InputDepSimGate,SimGate}.

Lemma 8. Let (I,mode = (modei)i∈[q]) be a valid circuit configuration and let j ∈ I be an index such
that modej = InputDepSimGate and for all i ∈ Succ(j) we have modei ∈ {SimGate, InputDepSimGate}. Let
mode′ = (mode′i)i∈[q] be defined by mode′i = modei for all i 6= j and mode′j = SimGate. Then the games

Hyb(I,mode) ≡ Hyb(I,mode′) are identically distributed.

C.2 Pebbling and Sequences of Hybrid Games

In the last section we defined hybrid games parameterized by a configuration (I,mode). We also gave 3 rules,
which describe ways that allow us to indistinguishably move from one configuration to another. Now our
goal is to use the given rules so as to define a sequence of indistinguishable hybrid games that takes us from
the real game Hyb(I = ∅, (modei = RealGate)i∈[q]) to the simulation Hyb(I = ∅, (modei = SimGate)i∈[q]).

Pebbling Game. We show that the problem of finding such sequences of hybrid games can be captured
by a certain type of pebbling game on the circuit C. Each gate can either have no pebble, a black pebble,
or a gray pebble on it (this will correspond to RealGate, InputDepSimGate and SimGate modes respectively).
Initially, the circuit starts out with no pebbles on any gate. The game consist of the following possible moves:

Rule A. We can place or remove a black pebble on a gate as long as both predecessors of that gate have
black pebbles (or the gate is an input gate).

Rule B. We can replace a black pebble with a gray one, only if successors of that gate have black or gray
pebbles on them (or the gate is an output gate).

A pebbling of a circuit C is a sequence of γ moves that follow rules A and B and that end up with a gray
pebble on every gate. We say that a pebbling uses t black pebbles if this is the maximal number of black
pebbles on the circuit at any point in time during the game.

From Pebbling to Sequence of Hybrids. In next theorem we prove that any pebbling of a circuit
C results in a sequence of hybrids that shows indistinguishability of the real and simulated games. The
number of hybrids is proportional to the number of moves in the pebbling and the equivocation parameter
is proportional to the number of black pebbles it uses.

Theorem 4. Assume that there is a pebbling of the circuit C in γ moves. Then there is a sequence of
2 · γ + 1 hybrid games, starting with the real game Hyb(I = ∅, (modei = RealGate)i∈[q]) and ending with the
simulated game Hyb(I = ∅, (modei = SimGate)i∈[q]) such that any two adjacent hybrid games in the sequence
are indistinguishable by rules 1,2 or 3 from the previous section. Furthermore if pebbling uses t∗ black pebbles
then every hybrid Hyb(I,mode) in the sequence satisfies |I| ≤ t∗. In particular, indistinguishability holds as
long as the equivocation parameter is at least t∗.

23

D Pebbling Strategies [HJO+16]

In this section we give two pebbling strategies for arbitrary circuit with width w, depth d, and q gates. The
first strategy uses O(q) moves and O(w) black pebbles. The second strategy uses O(q2d) moves and O(d)
black pebbles.

D.0.1 Strategy 1

To pebble the circuit proceed as follows:

Pebble(C):

1. Put a black pebble on each gate at the input level (level 1).

2. For i = 1 to d− 1, repeat:

(a) Put a black pebble on each gate at level i+ 1.

(b) For each gate at level i, replace the black pebble with a gray pebble.

(c) i← i+ 1

3. For each gate at level d, replace the black pebble with a gray pebble.

This strategy uses γ = 2q moves and t∗ = 2w black pebbles.

D.0.2 Strategy 2

This is a recursive strategy defined as follows.

• Pebble(C):
For each gate i in C starting with the gates at the top level moving to the bottom level:

1. RecPutBlack(C, i)

2. Replace the black pebble on gate i with a gray pebble.

• RecPutBlack(C, i): // Let LeftPred(C, i) and RightPred(C, i) be the two predecessors of gate i in C.

1. If gate i is an input gate, put a black pebble on i and return.

2. Run RecPutBlack(C, LeftPred(C, i)), RecPutBlack(C,RightPred(C, i))

3. Put a black pebble on gate i.

4. Run RecRemoveBlack(C, LeftPred(C, i)) and
RecRemoveBlack(C,RightPred(C, i)),

• RecRemoveBlack(C, i): This is the same as RecPutBlack, except that instead of putting a black pebble
on gate i, in steps 1 and 3, we remove it.

The above gives us a strategy to pebble any circuit with at most γ = q4d moves and t = 2d black pebbles.

24

	Adaptively Indistinguishable Garbled Circuits

