
Delayed-Input Non-Malleable Zero Knowledge and

Multi-Party Coin Tossing in Four Rounds

Michele Ciampi
DIEM

Università di Salerno
ITALY

mciampi@unisa.it

Rafail Ostrovsky
UCLA

Los Angeles
rafail@cs.ucla.edu

Luisa Siniscalchi
DIEM

Università di Salerno
ITALY

lsiniscalchi@unisa.it

Ivan Visconti
DIEM

Università di Salerno
ITALY

visconti@unisa.it

Abstract

In this work we start from the following two results in the state-of-the art:
1. 4-round non-malleable zero knowledge (NMZK): Goyal et al. in FOCS 2014 showed the first 4-round

one-one NMZK argument from one-way functions (OWFs). Their construction requires the prover
to know the instance and the witness already at the 2nd round.

2. 4-round multi-party coin tossing (MPCT): Garg et al. in Eurocrypt 2016 showed the first 4-round
protocol for MPCT. Their result crucially relies on 3-round 3-robust parallel non-malleable com-
mitments. So far there is no candidate construction for such a commitment scheme under standard
polynomial-time hardness assumptions.

We improve the state-of-the art on NMZK and MPCT by presenting the following two results:
1. a delayed-input 4-round one-many NMZK argument ΠNMZK from OWFs; moreover ΠNMZK is also a

delayed-input many-many synchronous NMZK argument.
2. a 4-round MPCT protocol ΠMPCT from one-to-one OWFs; ΠMPCT uses ΠNMZK as subprotocol and

exploits the special properties (e.g., delayed input, many-many synchronous) of ΠNMZK.
ΠMPCT makes use of a special proof of knowledge that offers additional security guarantees when played
in parallel with other protocols. The new technique behind such a proof of knowledge is an additional
contribution of this work and is of independent interest.

1 Introduction

Non-malleable zero-knowledge (NMZK) and secure multi-party computation (MPC) are fundamental prim-
itives in Cryptography. In this work we will study these two primitives and for the case of MPC we will
focus on the coin-tossing functionality that is among the most studied functionalities.

NMZK. The first construction of NMZK was given by Dolev at at. in [DDN91]. Later on, Barak in [Bar02]
showed the first constant-round construction. An improved construction was then given by Pass and Rosen
in [PR05, PR08]. The work of Goyal et al. [GRRV14] obtained the first round-optimal construction requiring
only 4 rounds and one-way functions (OWFs). Their construction requires the instance and the witness to
be known already when the prover plays his first round. Their definition is the standard one-one definition
where the adversary opens two sessions, one with a prover and one with a verifier.

1

The fact that the instance and the witness need to be known already at the second round is an important
limitation when NMZK is used as subprotocol to prove statements about another subprotocol played in
parallel. Moreover the one-one security is an important limitation when NMZK is used in a multi-party
scenario where several of such argument systems are played in parallel.

The above two limitations clearly raise the following natural and interesting open questions:

Open Question 1: is there a 4-round delayed-input NMZK argument system?

Open Question 2: is there a 4-round many-many synchronous NMZK argument system?

Multi-party coin-flipping (MPCT). In [KOS03], Katz et al. obtained a constant-round secure MPC
protocol using sub-exponential hardness assumptions. This result was then improved by Pass in [Pas04]
that showed how to get bounded-concurrent secure MPC for any functionality with standard assumptions.
Further results of Goyal [Goy11] and Goyal et al. [GLOV12] relied on better assumptions but with a round
complexity still far from optimal.

A very recent work of Garg et al. [GMPP16b] makes a long jump ahead towards fully understanding
the round complexity of secure MPCT. They show that the existence of a 3-round 3-robust parallel non-
malleable commitment scheme implies a 4-round protocol for secure MPCT for polynomially many coins
with black-box simulation. Some candidate instantiations of such special commitment scheme are the one
of Pass et al. [PPV08] based on non-falsifiable assumptions, or the one of Ciampi et al. [COSV16] based
on sub-exponentially strong one-to-one one-way functions (see [GMPP16a, Pol16] for more details). The
achieved round complexity (i.e., 4 rounds) is proven optimal in [GMPP16b] when simulation is black box
and the number of bits in the output of the functionality is superlogarithmic.

A very recent result of Ananth et al. [ACJ17] constructs a 4-round MPC protocol for any functionality
assuming DDH w.r.t. superpolynomial-time adversaries. The above state-of-the art leaves open the following
question.

Open Question 3: is there a 4-round secure MPCT protocol under standard assumptions?

1.1 Our Contribution

In this paper we solve the above 3 open problems. More precisely we present the following results:
1. a delayed-input 4-round one-many NMZK argument ΠNMZK from OWFs, therefore solving Open Ques-

tion 1; moreover ΠNMZK is also a delayed-input many-many synchronous NMZK argument, therefore
solving Open Question 2;

2. a 4-round MPCT protocol ΠMPCT from one-to-one OWFs, therefore solving Open Question 31.
The two constructions are not uncorrelated. Indeed ΠMPCT uses ΠNMZK as subprotocol and exploits

the special properties (e.g., delayed input, many-many synchronous) of ΠNMZK. Moreover, ΠMPCT makes
use of a special proof of knowledge that offers additional security guarantees when played in parallel with
other protocols. Designing such a proof of knowledge is an additional contribution of this work and is of
independent interest.

Interestingly, several years after the 4-round zero knowledge argument system from OWFs of [BJY97],
the same optimal round complexity and optimal complexity assumptions have been shown sufficient in this
work for delayed-input NMZK and in [COP+14] for resettably sound zero knowledge.

More details on our two new constructions follow below.

1.2 MPCT from NMZK

A first main idea that allows us to bypass the strong requirements of the construction of [GMPP16b] is that
we avoid robust/non-malleable commitments and instead focus on non-malleable zero knowledge. Since we

1An unpublished prior work of Goyal et al. [GKP+17] achieves a similar result on MPCT using completely different techniques.

2

want a 4-round MPCT protocol, we need to rely on 4-round NMZK. The only known construction is the one
of [GRRV14]. Unfortunately their NMZK argument system seems to be problematic to use in our design of a
4-round MPCT protocol. There are two main reasons. The first reason is that the construction of [GRRV14]
uses the technique of secure computation in the head and therefore requires the instance already in the second
round. This is often a problem when the NMZK argument is played in parallel with other subprotocols as
in our construction. Indeed these additional subprotocols end in the 3rd or 4th round and typically2 need
to be strengthened by a zero-knowledge proof of correctness. The second reason is that in the setting of
4-round MPCT the adversary can play as a many-many synchronous man-in-the-middle (MiM), while the
construction of [GRRV14] is proved one-one non-malleable only.

We therefore improve the state-of-the-art on NMZK constructing a delayed-input NMZK argument
system. Our construction only needs one-way functions and is secure even when a) there are polynomially
many verifiers (i.e., it is a one-many NMZK argument), and b) there are polynomially many provers and
they are played in parallel. We will crucially use both the delayed-input property and security with multiple
parallelized provers and verifiers in our secure MPCT construction. Our NMZK argument is also crucially
used in [COSV17c].

1.3 Overview of Our Delayed-Input Parallel NMZK Argument from OWFs

Issues in natural constructions. A natural construction of a NMZK argument consists of having: 1)
a subprotocol (usually a witness-indistinguishable proof of knowledge) useful to extract a trapdoor from
the verifier; 2) a non-malleable commitment of the witness for the statement to be proved; 3) a witness-
indistinguishable proof of knowledge (WIPoK) to prove that either the committed message is a witness or
the trapdoor is known. Combining the above 3 tools in parallel is necessary to obtain a 4-round construction.

The simulator for such a scheme would complete the transcript for the WIPoK by extracting the trapdoor
form the verifier and committing to 0 in the non-malleable commitment.

Unfortunately it is not clear how to prove the security of this scheme when all subprotocols are squeezed
into 4 rounds. The problem arises from the interactivity nature of the primitives involved, that are: a 3-round
non-malleable commitment and two instantiations of a 3-round WIPoK. More precisely the non-malleable
commitment is executed in parallel with a 3-round WIPoK Π. When in the security proof the trapdoor is
used as witness of Π, the MiM could do the same and also commit to the message 0 in the non-malleable
commitment. To detect this behaviour, in order to break the WI of Π, the reduction should extract the
message committed in the non-malleable commitment by rewinding it. This implies that also the WIPoK
involved in the reduction must be rewound (we recall that these two subprotocols are executed in parallel).
It is important to observe that if we allow the MiM to commit to the message 0 then the simulator has no
way to extract a witness from the MiM (extraction is required by the definition of NMZK).

A different approach. To overcome this problem we follow the approach proposed in [COSV17b] relying
on non-interactive primitives instead of 3-rounds WIPoK. In this way, in every security reduction to such
primitives, it will be always possible to extract the message committed in the non-malleable commitment
without interfering with the reduction. Therefore, similarly to [COSV17b], we construct this WIPoK relying
on: statistically binding commitment, instance-dependent trapdoor commitments (IDTCom) and special
honest-verifier zero knowledge (HVZK).

More in details, let (π1, π2, π3, π4) be the transcript of a 4-round Special HVZK delayed-input3 proof
of knowledge (PoK) for the NP-language L. We require the prover to send an IDTCom tcom0 of π2 that
is opened only in the last round, when π4 is sent. The instance used for the IDTCom is the pair (com, 0)

2Indeed, even the construction of [GMPP16b] that makes use of a special non-malleable commitments requires also a delayed-
input zero-knowledge argument.

3By delayed-input we mean that the witness and the instance are needed only to play the last round.

3

where com is a statistically binding commitment. This means that the commitment tcom0 (computed using
IDTCom) can be opened to any value if com is a valid commitment of the message 0 and the decommitment
information of com is known4 (tcom0 is binding otherwise).

The actual transcript for such protocol therefore can be denoted by (π1, (tcom0, com), π3, (π2, tdec0, π4))
where com is a valid commitment of the message 0 but the IDTCom is honestly computed (without using
the decommitment information of com in order to open a message different from π2).

Consider now an experiment where com is still a commitment of the message 0, but π2 can be opened
arbitrarily using the trapdoor procedure. If the output of this new experiment deviates from the previous
one, we will have a reduction to the trapdoorness of the IDTCom. The reduction is not problematic since
the challenger of the trapdoorness is non-interactive and just sends a pair (commitment, decommitment)
that is either computed using the regular procedure or through the use of the trapdoor. Next, in another
experiment we can replace the prover of the adaptive-input PoK with the special HVZK simulator that will
compute π2 and π4 after having as input π1 and π3. Again, the output of this experiment will not deviate
from the previous one otherwise we can show an adversary for the Special HVZK property. The reduction
again is not problematic since the challenger of Special HVZK is non-interactive.

We observe that if the instance used to compute the IDTCom is false (i.e., the instance used is (com, 0)
but com is not a commitment of 0) then the protocol described so far is a 3-round adaptive-input PoK for
the language L.

We consider now two instantiations of the protocol described above: Π0 and Π1. The instance used
to run the IDTCom used in Π0 is (com, 0) and the instance used to execute Π1 is (com, 1). Basically, the
instances used by Π0 and Π1 share the same value com. We observe that com is a statistically binding
commitment, therefore it could contain only one message out of 0 and 1. This means that the execution of
both Π0 and Π1 represents an adaptive-input PoK for the language LOR = L0 OR L1. Indeed given that
com is statistically binding, at least one out of the two IDTCom is binding too. Therefore rewinding our
protocol using different challenges π0

3 and π1
3 yields the extraction of a least one witness. Let’s call this

protocol (i.e, Π0 and Π1 along with a shared com) ΠWI . We observe that ΠWI is still interactive like Π0

and Π1. However, if executed in parallel with an interactive protocol, the rewinds made to this protocol do
not interfere with the security of ΠWI . More precisely, it is possible to do all the reductions described above
even though the third and the second rounds are rewound. Intuitively, this is true because all the primitive
involved in the reductions are non-interactive, and so it is possible to rely on their security even in the case
that some rewinds occur.

A NMZK argument system: NMZK. We run ΠWI in parallel with a 4-round public-coin honest-
extractable one-one non-malleable commitment scheme Πnm. The prover now runs ΠWI in order to prove
either the validity of some NP-statement, or that the non-malleable commitment computed using Πnm

contains a trapdoor. The simulator for NMZK works by extracting the trapdoor, then committing to it
using the non-malleable commitment, and finally using the knowledge of both the trapdoor and the opening
information used to compute the non-malleable commitment, as a witness for ΠWI . The subprotocol for the
trapdoor extraction follows also [COSV17b]. More precisely, the trapdoor is represented by the knowledge of
two signatures under a verification key sent by the verifier in the 1st round. In order to allow the extraction
of the trapdoor, we consider a verifier that sends a signature for a message chosen in the 2nd round by the
prover.

On the limited non-malleability of the commitment that is needed in NMZK. For our construction
we use a 4-round public-coin one-one honest-extractable synchronous non-malleable commitment Πnm. The
public-coin requirement is due to the security reduction since we will have to simulate the last round of

4The decommitment information of com represents the trapdoor of the IDTCom.

4

the receiver without knowing the randomness used to compute the previous round. Of course the public-
coin property allows such a simulation. Just for simplicity we state our theorems requiring the public-coin
property even though our approach can make use of a broader class of protocols. Moreover, we require the
existence of a public-coin commitment scheme that is non-malleable only w.r.t. a specific limited adversary:
one-one (that opens only one left and one right session) and synchronous (that she aligns the messages of
the left sessions with the messages of the right sessions).

Defeating the issues. Using such limited non-malleable commitment we are able to prove that our
protocol NMZK is one-many NMZK (synchronous many-many NMZK). This is done following the approach
provided in [COSV16] where a one-one non-malleable commitment Πnm is used in order to construct a
one-many (and then a many-many) non-malleable commitment. Indeed, in our protocol the simulator
extracts the trapdoor5, and commits to it using the non-malleable commitment scheme. We need to prove
that the MiM adversary does not do the same. Roughly, we are requiring only a specific, weaker form of
non-malleability just in order to prevent such attack. Therefore, the reduction to the non-malleability of
the underling commitment scheme isolates one right session and checks if the MiM has committed to the
trapdoor or not. The distinguisher for the non-malleable commitment takes as input the committed message
an checks if it corresponds to two signatures of two different messages for a given signature key.

The above approach works only with synchronous sessions. Indeed the non-malleable commitment that
we use is secure only in the synchronous case. In order to deal with the asynchronous case we rely on
the honest-extractability of Πnm. An honest-extractable commitment scheme is a commitment scheme that
guarantees the extraction only from honest senders. We recall that ΠWI is executed in parallel with Πnm in
order to ensure that the MiM either knows a witness for an NP-statement x ∈ L or the trapdoor has been
correctly committed using Πnm. For our propose we only need to ensure that the MiM never commits to
the trapdoor and uses it as a witness to execute ΠWI in the right sessions. In this way we can rely on the
adaptive-input PoK property of ΠWI in order to extract a witness for x even when the simulator is executed.
We observe that if by contradiction the MiM (with non-negligible probability) is not using the witness for x
to execute ΠWI , we have that he honestly computes a commitment to the signatures using Πnm. Therefore,
we can extract the message committed by the MiM in order to break the hiding of Πnm

6.

From one-many NMZK to parallel many-many NMZK. Fortunately, our scheme is also many-
many NMZK when the sessions are parallelized. Indeed, the simulator can extract (simultaneously) the
trapdoor from the right sessions, playing as described previously. The only substantial difference is that
we need to use a many-one non-malleable commitment with all the properties listed above. Following the
approach proposed in the security proof of Proposition 1 provided in [LPV08], it is possible to claim that a
synchronous (one-one) non-malleable commitment is also synchronous many-one non-malleable.

We end this section by observing that a non-malleable commitment scheme that enjoys all the properties
that we require is provided in [GPR16]7 and relies on OWFs. Also the IDTCom, the Special HVZK adaptive-
input PoK and the statistically binding commitment can be constructed assuming OWFs only.

A special WIPoK ΠOR. In order to construct our MPC coin-tossing protocol ΠMPCT, we also propose a
generic approach for a special WIPoK ΠOR that can be nicely composed with other protocols in parallel in

5The trapdoor for our protocol is represented by two signatures for a verification key chosen by the verifier.
6A rewind made in an asynchronous session does not interfere with (i.e., does not rewind) the challenger of the hiding of

Πnm. This part of the proof actually deals with more interesting subtleties. We refer the reader to the formal proof for more
details.

7In order to ensure non-malleability against a non-synchronous adversary the construction of Goyal et al. modifies Π and
uses assumptions w.r.t. a quasi-polynomial-time adversary. For our propose we just need to use the basic protocol Π of [GPR16]
that relies on assumptions w.r.t. polynomial-time adversaries.

5

the same spirit of ΠWI . The main difference with ΠWI is that our special WIPoK ΠOR can be used only
when the theorem to be proved is known in the beginning of the protocol (which is sufficient for our MPC
application).

In a nutshell, ΠOR takes two instantiations of the three-move Special HVZK PoK (like as in Blum’s
protocol [Blu86a]) and composes them via the OR composition proposed in [CDS94] thus obtaining a WIPoK.
Using this WIPoK a reduction can be successfully completed even when there are rewinds due to another
protocols played in parallel.

In more details, we combine together two executions of Blum’s protocol by using the trick for composing
two three-move Special HVZK PoKs Σ0,Σ1 to construct a three-move Special HVZK PoK for the NP-
language L0 OR L1 [CDS94]. Let (x0, x1) be the compound statement to be proved, with x0 ∈ L0 and
x1 ∈ L1, and let wb be the witness for xb. The protocol ΠOR proposed in [CDS94] executes Σ0 and Σ1

(respectively for L0 and L1) in parallel, but after receiving the challenge c from the verifier, the prover can
use as challenges for Σ0 and Σ1 every pair (c0, c1) s.t. c0 ⊕ c1 = c. Therefore the prover could choose in
advance one of the challenge to be used (e.g., c1−b), and compute the other one by setting cb = c⊕ c1−b. In
this way the transcript for Σ1−b can be computed using the Special HVZK simulator while the transcript
for Σb is computed using the witness wb. Thus the prover has the “freedom” of picking one out of two
challenges before seeing c, but still being able to complete the executions of both Σ0 and Σ1 for every c. We
will show that this “freedom” is sufficient to switch from the use of w0 to the use of w1 (in order to prove
WI) even when it is required to answer to additional (and different) challenges c1, . . . , cpoly(λ) (i.e., when
some rewinds occur). Indeed it is possible to switch the witness used (from w0 to w1) in two steps relying
first on the Special HVZK of Σ1, and then on the Special HVZK of Σ0. More precisely we consider the
hybrid experiment Hw0 as the experiment where in ΠOR the witness w0 is used (analogously we define Hw1).
We now consider Hw0,w1 that differs from Hw0 because both the witnesses w0 and w1 are used. We prove
that Hw0 and Hw0,w1 are indistinguishable due to the Special HVZK of Σ1 even though ΠOR is rewound
polynomially many times. The reduction works as follows. A challenge c1 is chosen before the protocol ΠOR

starts and the Special HVZK challenger is invoked thus obtaining (a1, z1). The transcript for Σ0 is computed
by the reduction using the witness w0 in order to answer to the challenge ci0 = ci ⊕ c1 for i = 1, . . . , poly(λ).
We recall the we are in a setting where ΠOR could be rewound, and therefore the reduction needs to answer
to multiple challenges. We observe that the reduction to the Special HVZK is not disturbed by these rewinds
because c1 can be kept fixed. The same arguments can be used to prove that Hw0,w1 is computationally
indistinguishable from Hw1 . We also notice that ΠOR remains a PoK [CDS94].

1.4 4-Round Secure Multi-Party Coin Tossing

Our MPCT protocol will critically make use of our delayed-input synchronous many-many NMZK from
OWFs, and of a special WIPoK ΠOR. Similarly to [GMPP16b] our protocol consists of each party committing
to a random string r, that is then sent in the clear in the last round. Moreover there will be a simulatable
proof of correctness of the above commitment w.r.t. r, that is given to all parties independently. The output
consists of the

⊕
of all opened strings. We now discuss in more details the construction of a the special

WIPoK ΠOR and the messages exchanged by a pair of parties P1 and P2 in our multi-party coin tossing
protocol ΠMPCT. The generalization to n players is straight-forward and discussed in Section 4.1.

Informal description of the protocol. P1, using a perfectly binding computationally hiding commit-
ment scheme, commits in the first round to a random string r1 two times thus obtaining com0, com1. Moreover
P1 runs ΠOR in order to prove knowledge of either the message committed in com0 or the message committed
in com1. In the last (fourth) round P1 sends r1. In parallel, an execution of a NMZK ensures that both com0

and com1 contain the same message r1 (that is sent in the fourth round)8. When P1 receives the last round

8Notice here how crucial is the delayed-input property of the synchronous many-many NMZK.

6

that contains r2, P1 computes and outputs r1⊕ r2. P2 symmetrically executes the same steps using as input
r2.

The simulator for ΠMPCT runs the simulator of NMZK and extracts the input r? from the malicious
party using the PoK extractor of ΠOR. At this point the simulator invokes the functionality thus obtaining
r and plays in the last round rs = r⊕ r?. Note that the values that the simulator commits in com0 and com1

are unrelated to rs and this is possible because the NMZK is simulated. The extraction of the input from
the adversary made by the simulator needs more attention. Indeed the security of NMZK will ensure that,
even though the simulator cheats (he commits to a random string in both com0 and com1) the adversary can
not do the same. Therefore the only way he can complete an execution of ΠMPCT consists of committing
two times to r? in the first round, and of sending the same value in the fourth round. This means that the
value extracted (in the third round) from the PoK extractor of ΠOR is the input of the malicious party.

Our security proof consists of showing the indistinguishability of a sequence hybrid experiments where
the firs hybrid corresponds to the real world experiment, and the last hybrid corresponds to the simulated
experiment. The second hybrid experiment differs from the real game because the simulator of NMZK is
used (instead of the honest prover). The simulator, in order to extract the trapdoor from the adversary,
rewinds from the third to the second round, thus rewinding also ΠOR. Indeed the adversary, for every
different second round of the NMZK could sent a different second round for ΠOR. This becomes a problem
when we consider the hybrid experiment Hi where the witness for ΠOR changes. Due to the rewinds made
by the simulator of the NMZK it is not clear how to rely on the security of the WI property of ΠOR (the
challenger of WI would be rewound). This is the reason why we need to consider an intermediate hybrid
experiment Hw0,w1 where both witnesses of ΠOR can be used. Then we can prove the indistinguishability
between Hw0,w1 and Hi still relying on the Special HVZK of the sub-protocol used in ΠOR (which is Blum’s
protocol).

2 Definitions and Tools

Preliminaries. We denote the security parameter by λ and use “||” as concatenation operator (i.e., if a and
b are two strings then by a||b we denote the concatenation of a and b). For a finite set Q, x← Q sampling
of x from Q with uniform distribution. We use the abbreviation ppt that stays for probabilistic polynomial
time. We use poly(·) to indicate a generic polynomial function. A polynomial-time relation Rel (or polynomial
relation, in short) is a subset of {0, 1}∗ × {0, 1}∗ such that membership of (x,w) in Rel can be decided in
time polynomial in |x|. For (x,w) ∈ Rel, we call x the instance and w a witness for x. For a polynomial-time
relation Rel, we define the NP-language LRel as LRel = {x|∃ w : (x,w) ∈ Rel}. Analogously, unless otherwise
specified, for an NP-language L we denote by RelL the corresponding polynomial-time relation (that is, RelL
is such that L = LRelL). We also use L̂ to denotes the language that includes L and all well formed instances
that are not in L. Let A and B be two interactive probabilistic algorithms. We denote by 〈A(α), B(β)〉(γ)
the distribution of B’s output after running on private input β with A using private input α, both running
on common input γ. A transcript of 〈A(α), B(β)〉(γ) consists of the messages exchanged during an execution
where A receives a private input α, B receives a private input β and both A and B receive a common input
γ. Moreover, we will refer to the view of A (resp. B) as the messages it received during the execution of
〈A(α), B(β)〉(γ), along with its randomness and its input. We denote by Ar an algorithm A that receives
as randomness r.

2.1 (Delayed-Input) Proof/Argument Systems

Definition 1 (Proof/argument system). A pair of ppt interactive algorithms Π = (P,V) constitute a proof
system (resp., an argument system) for an NP-language L, if the following conditions hold:

Completeness: For every x ∈ L and w such that (x,w) ∈ RelL, it holds that:

7

Prob [〈P(w),V〉(x) = 1] = 1.
Soundness: For every interactive (resp., ppt interactive) algorithm P?, there exists a negligible function

ν such that for every x /∈ L and every z:
Prob [〈P?(z),V〉(x) = 1] < ν(|x|).

A proof/argument system Π = (P,V) for an NP-language L, enjoys delayed-input completeness if P
needs x and w only to compute the last round and V needs x only to compute the output. Before that,
P and V run having as input only the size of x. The notion of delayed-input completeness was defined
in [CPS+16a]. For a protocol that enjoys delayed-input completeness we consider also the notion of adaptive-
input arguments/proof system. That is, the soundness holds against a stronger adversary P∗ that can choose
the statement to be proved in the last round of the interaction with V. Analogously we also consider the
notion of adaptive-input arguments/proof of knowledge (see App. A for more details).

We say that an interactive protocol Π = (P,V) is public coin if, at every round, V simply tosses a
predetermined number of coins (random challenge) and sends the outcome to the P. Moreover we say that
the transcript τ of an execution b = 〈P(z),V〉(x) is accepting if b = 1.

3 4-Round Delayed-Input NMZK from OWFs

3.1 Notation, Non-Malleability Definitions and Tools

Delayed-Input non-malleable zero knowledge. Following [LP11a] we use a definition that gives to
the adversary the power of adaptive-input selection. More precisely, in [LP11a] the adversary selects the
instance and a Turing machine outputs the witness in exponential time. Here we slightly deviate (similarly
to [SCO+01]) by 1) requiring the adversary to output also the witness and 2) allowing the adversary to make
this choice at the last round. This choice is due to our application where delayed-input non-malleable zero
knowledge is used. Indeed we will show that this definition is enough for our propose.

Let Π = (P,V) be a delayed-input interactive argument system for a NP-language L with witness
relation RelL. Consider a ppt MiM adversary A that is simultaneously participating in one left session
and poly(λ) right sessions. Before the execution starts, P,V and A receive as a common input the security
parameter in unary 1λ. Additionally A receives as auxiliary input z ∈ {0, 1}?9. In the left session A
verifies the validity of a statement x (chosen adaptively in the last round of Π) by interacting with P using
identity id of his choice. In the right sessions A proves the validity of the statements x̃1 . . . , x̃poly(λ) (chosen
adaptively in the last round of Π) to the honest verifiers V1, . . . ,Vpoly(λ), using identities ĩd1, . . . , ĩdpoly(λ) of
his choice.

More precisely in the left session A, before the last round of Π is executed, adaptively selects the
statement x to be proved and the witness w, s.t. (x,w) ∈ RelL, and sends them to P10.

Let ViewA(1λ, z) denote a random variable that describes the view of A in the above experiment.

Definition 2 (Delayed-input NMZK). A delayed-input argument system Π = (P,V) for an NP-language L
with witness relation RelL is delayed-input non-malleable zero knowledge (NMZK) if for any MiM adversary
A that participates in one left session and poly(λ) right sessions, there exists a expected ppt machine S(1λ, z)
such that:

1. The probability ensembles {S1(1λ, z)}λ∈N,z∈{0,1}? and {ViewA(1λ, z)}λ∈N,z∈{0,1}? are computationally

indistinguishable over λ, where S1(1λ, z) denotes the first output of S(1λ, z).
2. Let (View, w1, . . . , wpoly(λ)) denote the output of S(1λ, z), for some z ∈ {0, 1}?. Let x̃1, . . . , x̃poly(λ)

be the right-session statements appearing in View and let id and ĩd1, . . . , ĩdpoly(λ) be respectively the

9We denote (here and in the rest of the paper) by δ̃ a value associated with the right session where δ is the corresponding
value in the left session.

10The witness w sent by A will be just ignored by the simulator.

8

identities used in the left and right sessions appearing in View. Then for every i ∈ {1, . . . , poly(λ)}, if
the i-th right session is accepting and id 6= ĩdi, then w̃i is s.t. (x̃i, w̃i) ∈ RelL.

The above definition of NMZK allows the adversary to select statements adaptively in the last round
both in left and in the right sessions. Therefore any argument system that is NMZK according to the above
definition enjoys also adaptive-input argument of knowledge. In our paper we also consider the notion of
many-many synchronous delayed-input NMZK, that is equal to the notion of delayed-input NMZK except
that polynomially many left and right sessions are played in parallel.

In the rest of the paper, following [GRRV14], we assume that identities are known before the protocol
begins, though strictly speaking this is not necessary, as the identities do not appear in the protocol until
after the first prover message. The MiM can choose his identity adversarially as long as it differs from the
identities used by honest senders. As already observed in previous work, when the identity is selected by the
sender the id-based definitions guarantee non-malleability as long as the MiM does not behave like a proxy
(an unavoidable attack). Indeed the sender can pick as id the public key of a signature scheme signing the
transcript. The MiM will have to use a different id or to break the signature scheme.

3.2 Non-Malleable Commitments

A commitment scheme involves two players: sender and receiver. Informally, it consists of two phases, a
commitment phase and a decommitment phase. In the commitment phase the sender, with a secret input
m, interacts with the receiver. In the end of this interaction we say that a commitment of the message m
has been computed. Moreover the receiver still does not know what m is (i.e. m is hidden) and at the same
time the sender can subsequently (i.e., during the decommitment phase) open this commitment only to m
(see Def. 13 for a formal definition of commitment scheme).

In order to define a non-malleable commitment we follow [LPV08, LPV09]. Let Π = (Sen,Rec) be a
statistically binding commitment scheme. And let λ be the security parameter. Consider a MiM adversary
A that, on auxiliary input z participates in a left and a right session. In the left sessions the MiM adversary
A interacts with Sen receiving commitment to value m using an identity id of its choice. In the right session
A interacts with Rec attempting to commit to a related value m̃ again using identity of its choice ĩd. If
the right commitment is invalid, or undefined, its value is set to ⊥. Furthermore, if ĩd = id then m̃ is also
set to ⊥ (i.e., a commitment where the adversary uses the same identity of the honest senders is considered
invalid). Let mimA,mΠ (z) denote a random variable that describes the values m̃ and the view of A in the
above experiment.

Definition 3 (Non-malleable commitment scheme [LPV08, LPV09]). A commitment scheme is non-malleable
with respect to commitment if, for every ppt MiM adversary A, for every m0 ∈ {0, 1}poly(λ) and m1 ∈
{0, 1}poly(λ) the following holds

{mimA,m0

Π (z)}z∈{0,1}? ≈ {mimA,m1

Π (z)}z∈{0,1}? .

We say that a commitment is valid or well formed if it admits a decommitment to a message m 6= ⊥.
For our propose we use a 4-round synchronous honest-extractable non-malleable commitment. That is, a

commitment scheme that enjoys 1) non-malleability only against synchronous adversaries, 2) is extractable
w.r.t. honest sender (honest-extractable) and 3) is public-coin. The non-malleable commitment Π provided
in Figure 2 of [GPR16] enjoys non-malleability against synchronous adversary (as proved in Theorem 1 of
[GPR16]), is public coin and can be instantiated in 4 rounds relying on OWFs (the protocol can be squeezed
to 3 rounds using one-to-one OWFs).

Also, as stated in Section 5 of [GPR16], given a commitment computed by the sender of Π one can
rewind the sender in order to obtain a new accepting transcript with the same first round (resp., first two
rounds if we consider the instantiation that relies on OWFs) in order to extract a message m. Moreover, if

9

the sender is honest, then it is possible to claim that m is the actual message committed by the sender. We
remark that we do not require any form of extractability against malicious senders.

3.2.1 2-Round Instance-Dependent Trapdoor Commitments.

Here we define a special commitment scheme based on an NP-language L where the sender and receiver
also receive as input an instance x. While correctness and computational hiding hold for any x, we require
that statistical binding holds for x 6∈ L and moreover knowledge of a witness for x ∈ L allows to equivocate.
Finally, we require that a commitment along with two valid openings to different messages allows to compute
the witness for x ∈ L. We recall that L̂ denotes the language that includes L and all well formed instances
that are not in L.

Definition 4. Let 1λ be the security parameter, L be an NP-language and RelL be the corresponding NP-
relation. A triple of ppt algorithms TC = (Sen,Rec,TFake) is a 2-Round Instance-Dependent Trapdoor
Commitment scheme if the following properties hold.

Correctness. In the 1st round, Rec on input 1λ and x ∈ L̂ outputs ρ. In the 2nd round Sen on input the
message m, 1λ, ρ and x ∈ L outputs (com, dec). We will refer to the pair (ρ, com) as the commitment
of m. Moreover we will refer to the execution of the above two rounds including the exchange of the
corresponding two messages as the commitment phase. Then Rec on input m, x, com, dec and the
private coins used to generate ρ in the commitment phase outputs 1. We will refer to the execution of
this last round including the exchange of dec as the decommitment phase. Notice that an adversarial
sender Sen? could deviate from the behavior of Sen when computing and sending com and dec for an
instance x ∈ L̂. As a consequence Rec could output 0 in the decommitment phase. We will say that
dec is a valid decommitment of (ρ, com) to m for an instance x ∈ L̂, if Rec outputs 1.

Hiding. Given a ppt adversary A, consider the following hiding experiment ExpHidingbA,TC(λ, x) for

b = 0, 1 and x ∈ L̂R:

• On input 1λ and x, A outputs a message m, along with ρ.
• The challenger on input x,m, ρ, b works as follows: if b = 0 then it runs Sen on input m, x and ρ,

obtaining a pair (com, dec), otherwise it runs TFake on input x and ρ, obtaining a pair (com, aux).
The challenger outputs com.

• A on input com outputs a bit b′ and this is the output of the experiment.

We say that hiding holds if for any ppt adversary A there exist a negligible function ν, s.t.:∣∣∣Prob
[

ExpHiding0
A,TC(λ, x) = 1

]
− Prob

[
ExpHiding1

A,TC(λ, x) = 1
] ∣∣∣ < ν(λ).

Special Binding. There exists a ppt algorithm that on input a commitment (ρ, com), the private coins used
by Rec to compute ρ, and two valid decommitments (dec, dec′) of (ρ, com) to two different messages m
and m′, outputs w s.t. (x,w) ∈ RelL with overwhelming probability.

Instance-Dependent Binding. For every malicious unbounded sender Sen? there exists a negligible func-
tion ν s.t. for a commitment (ρ, com) Sen?, with probability at most ν(λ), outputs two decommitments
(m0, d0) and (m1, d1) with m0 6= m1 s.t. Rec on input the private coins used to compute ρ and x /∈ L
accepts both decommitments.

Trapdoorness. For any ppt adversary A there exist a negligible function ν, s.t. for all x ∈ L it holds that:∣∣∣Prob
[

ExpComA,TC(λ, x) = 1
]
− Prob

[
ExpTrapdoorA,TC(λ, x) = 1

] ∣∣∣ < ν(λ)

where ExpComA,TC(λ, x) and ExpTrapdoorA,TC(λ, x) are defined below11.

11We assume wlog that A is stateful.

10

ExpComA,TC(λ, x): ExpTrapdoorA,TC(λ, x):

-On input 1λ and x, A outputs (ρ,m). -On input 1λ and x, A outputs (ρ,m).
-Sen on input 1λ, x, m and ρ, outputs
(com, dec).

-TFake on input 1λ, x and ρ, outputs
(com, aux).
-TFake on input tk s.t. (x, tk) ∈ RelL, x,
ρ, com, aux and m outputs dec.

-A on input (com, dec) outputs a bit b and
this is the output of the experiment.

-A on input (com, dec) outputs a bit b and
this is the output of the experiment.

3.3 Overview of Our Protocol

For our construction of a 4-round delayed-input non-malleable zero knowledge NMZK = (PNMZK,VNMZK) we
use the following tools.

1. A signature scheme Σ = (Gen,Sign,Ver);
2. A 2-round statistically binding, computationally hiding commitment scheme PBCOM = (Com,Dec).
3. A 4-round public-coin synchronous honest-extractable one-one non-malleable commitment scheme

NM = (S,R) that fixes the opening information in the second round.
4. A 2-round IDTC scheme TC0 = (Sen0,Rec0,TFake0) for the NP-language
L0 = {(com, 0) : ∃ dec s.t. Dec accepts dec as a decommitment of com to 0}.

5. A 2-round IDTC scheme TC1 = (Sen1,Rec1,TFake1) for the NP-language
L1 = {(com, 1) : ∃ dec s.t. Dec accepts dec as a decommitment of com to 1}.

6. A 4-round delayed-input public-coin Special HVZK LSL = (PL,VL) for the NP-language L that is
adaptive-input PoK for the corresponding relation RelL.

7. A 4-round delayed-input public-coin Special HVZK LSnm = (Pnm,Vnm) for the following NP-language

Lnm = {(vk, τ = (id, nm1, nm2, nm3, nm4), s1 : ∃(decnm, s0, σ1, msg1, σ2, msg2) s.t.

Ver(vk, msg1, σ1) = 1 AND Ver(vk, msg2, σ2) = 1 AND msg1 6= msg2 AND

R accepts (id, s0, decnm) as a valid decommitment of τ AND s0 ⊕ s1 = σ1||σ2}

that is adaptive-input PoK for the corresponding relation RelLnm .
Informally by running LSnm one can prove that s0 is committed using a non-malleable commitment
and s0 ⊕ s1 = σ1||σ2. Moreover σ1 and σ2 are two signatures for two different messages w.r.t. the
verification key vk.

3.3.1 Our protocol: NMZK.

We now give an high-level description of our delayed-input non-malleable ZK protocol depicted in Fig. 1.
For a formal description see Fig. 2.

In the first round VNMZK computes a signature-verification key pair (sk, vk) and sends vk to PNMZK.
VNMZK computes and sends a (public coin) first rounds ls1

L of LSL and the first round ls1
nm of LSnm. VNMZK

computes and sends a first rounds nm1 of NM. Finally, VNMZK computes and sends fresh first round of Naor’s
commitment for the remain tools listed above involved in the construction. To not overburden the notation
we omit these additional messages.

In the second round PNMZK runs Com on input the bit 1 thus obtaining com, dec (where com represents
the statistically binding commitment of the bit 1). PNMZK sends com, computes ls2

L by running PL on input
ls1
L and commits to it using the 2-round IDTC scheme TC0. More precisely, PNMZK runs Sen0 on input

the instance (com, 0) and the message to be committed ls2
L in order to compute the pair (tcom0, tdec0)

and sends tcom0. We observe that the commitment tcom0 is binding because of the Instance-Dependent
Binding property enjoyed by the IDTC scheme (the instance used to compute tcom0 is false, indeed com

11

is a commitment of the bit 1). PNMZK now runs the trapdoor procedure of the IDTC scheme TC1. More
precisely, PNMZK runs TFake1 on input the instance (com, 1) to compute the pair (tcom1, aux) and then sends
tcom1 to VNMZK. In this case tcom1 can be equivocated to any message using the trapdoor (the opening
information of com) due to the trapdoorness of the IDTC scheme. PNMZK now starts the procedure to
commit to a random message s0 using the non-malleable commitment NM. So, he runs S on input s0, the
identity id and nm1 thus obtaining (nm2, decnm) and then sends nm2.12 In addition, PNMZK sends a random
message msg.

In the third round of the protocol VNMZK, upon receiving msg, computes and sends a signature σ of
msg by running Sign(sk, msg). Also, VNMZK computes and sends all the (public coin) second rounds ls3

L, ls3
nm,

nm3 for the respective protocols LSL, LSnm and NM.
In the fourth round PNMZK checks whether or not σ is a valid signature for msg w.r.t. the verification

key vk. In the negative case PNMZK aborts, otherwise he continues with the following steps. Upon receiving
the instance x to be proven and the witness w s.t. (x,w) ∈ RelL, PNMZK completes the transcript for LSL
thus obtaining ls4

L by running the prover procedure PL on input x, w and ls3
L. At this point PNMZK can

send the opening (tdec0, ls
2
L) for the commitment tcom0 computed in the second round, and completes an

accepting transcript for LSL for the instance x by sending ls4
L.

PNMZK completes the commitment of s0 by running S on input nm3 thus obtaining nm4 and sends nm4.
PNMZK picks a random string s1, sets xnm = (vk, id, (nm1, nm2, nm3, nm4), s1) and runs the Special HVZK
simulator of LSnm on input (xnm, ls

1
nm, ls

3
nm) thus obtaining (ls2

nm, ls
4
nm). Now PNMZK opens the trapdoor

commitment tcom1 to ls2
nm. More precisely he runs TFake1 on input tk = (dec), tcom1, aux and ls2

nm

in order to compute tdec1 and sends ((tdec1, ls
2
nm), ls4

nm, xnm) to VNMZK. We recall that tcom1 has been
computed in trapdoor mode in the second round of the protocol using the instance (com, 1), where com is a
valid commitment of the bit 1.
The verifier VNMZK accepts x iff the following conditions are satisfied.

1. Rec0 on input (com, 0), tcom0, (tdec0, ls
2
L) accepts (ls2

L, tdec0) as a decommitment of tcom0 (we recall
that (com, 0) is the instance used to run the algorithms of the IDTC scheme TC0).

2. Rec1 on input (com, 1), tcom1, (tdec1, ls
2
nm) accepts (ls2

nm, tdec1) as a decommitment of tcom1 (we recall
that (com, 1) is the instance used to run the algorithms of the IDTC scheme TC1).

3. (ls1
L, ls

2
L, ls

3
L, ls

4
L) is accepting for VL with respect to the instance x.

4. (ls1
nm, ls

2
nm, ls

3
nm, ls

4
nm) is accepting for Vnm with respect to the instance xnm.

The simulator extractor. Informally, the simulator SimNMZK of our protocol interacts with the ad-
versary ANMZK by emulating both the prover in the left session and polynomially many verifiers in the right
sessions. In the left sessions SimNMZK interacts with ANMZK as the honest verifiers do. While, in the right
session for an instance x ∈ L chosen adaptively by ANMZK, SimNMZK equivocates the commitment computed
using TC0, and runs the SHVZK simulator of LSL to completes the transcript for LSL w.r.t. the instance
x. In order to use the trapdoor procedure of TC0 the simulator has to commit to 0 in com. In this way the
commitment computed using TC1 becomes statistically binding, therefore the transcript for LSnm needs to
be computed using the honest prover procedure. We recall that the transcript for LSnm proves (in the sense
of knowledge of a witness) that the message committed in NM contains a value s0

13 such s0⊕s1 corresponds
to two signatures (σ1, σ2)14 of two different messages w.r.t. the verification key vk (s1 is sent in clear in
the fourth round). In order to compute these s0 and s1, SimNMZK extracts two signatures for two different
messages rewinding ANMZK from the third to the second round. We use this trick following [COSV16] in
order to avoid any additional requirement. Indeed if the sender of NM is delayed-input (i.e. the message to
be committed can be decided in the last round), then SimNMZK can simply compute the first round of NM,

12We recall that the decommitment information of the non-malleable commitment scheme can be computed together with
the second (the first in this informal description) round of the protocol.

13For ease of exposition we will simply say that ANMZK commits to two signatures using NM.
14W.l.o.g. we assume that the signatures σ1, σ2 include the signed messages.

12

PNMZK(id)

vk

Upon receiving x,w
s.t. (x,w) ∈ RelL

com(1) msg

σ

tcom0(ls
2

L
)

ls
3

L

(tdec0, ls
2

L
), ls4

L

ls
1

L

VNMZK(id)

tcom1(ls
1

nm)

ls
3

nm

(tdec1, ls
2

nm), ls
4

nm

nm2

nm3

nm4

ls
1

nm nm1

- com is the commitment of the bit 1 computed using PBCOM.
- vk is a a verification key of a signature scheme and σ is a valid signature of the message msg.
- τL = (ls1

L, ls
2
L, ls

3
L, ls

4
L) is the transcript output from the honest prover procedure of LSL proving

knowledge of the witness for x ∈ L.
- tcom0 is the commitment of ls2

L computed using the honest sender procedure of the IDTC TC0.
tdec0 represents the decommitment information of tcom0.

- tcom1 is computed using the trapdoor procedure of TC1. tdec1 represents the decommitment
information (computed using the trapdoor procedure of TC1) of tcom1 w.r.t. the message
ls2

nm.
- s0, s1 are random strings.
- τ = (id, nm1, nm2, nm3, nm4) represents the transcript of 〈S(s0),R〉(id) that is, a commitment

of the message s0 computed using the synchronous honest-extractable one-one non-malleable
commitment scheme NM.

- τnm = (ls1
nm, ls

2
nm, ls

3
nm, ls

4
nm) is the transcript output of a Special HVZK simulator of LSnm

proving knowledge of a decommitment of τ to the message s0 s.t. s0 ⊕ s1 = σ1||σ2 where
σ1, σ2 are two signatures of two different messages w.r.t vk.

Figure 1: Our 4-round delayed-input NMZK AoK

extract the signatures, and compute the last round of NM committing to the signatures. It is important
to observe that even though the non-malleable commitment scheme of [GPR16] fixes the message to be
committed in the third round, there is no guarantee that the scheme is secure against an adversary that
adaptively chooses the challenge messages in the last round of the non-malleability security game. Therefore,
even though the completeness of our scheme would work without using the trick of [COSV16], it would be
unclear, in this case, how to prove the security of our scheme. A formal description of SimNMZK can be found
in the proof of Theorem 1.

3.4 Construction of Delayed-Input NMZK from OWFs

The formal construction of our delayed-input NMZK AoK NMZK = (PNMZK,VNMZK) is showed in Fig. 2.
The security proof of our protocol follows below.

Theorem 1. If OWFs exist, then NMZK is a delayed-input NMZK AoK for NP.

Proof. We divide the security proof in two parts, proving that NMZK enjoys delayed-input completeness and
non-malleable ZK; the proof of NMZK is divided in two additional lemmas, one for each of the two properties

13

of Def. 2. Before that, we recall that LSnm and LSL can be constructed from OWFs (see App. A) as well
as Σ using [Rom90]. The 4-round public-coin synchronous honest-extractable non-malleable commitment
scheme NM can be instantiated from OWFs (see Sec. 3.1), as well as PBCOM [Nao91]. We also observe that
if PBCOM relies on OWFs, then also TC0 and TC1 can be constructed from OWFs (see [COSV17b]).

(Delayed-Input) Completeness. The completeness follows directly from the completeness of LSnm

and LSL, the correctness of PBCOM, NM, TC0, TC1 and the validity of Σ. We observe that, due to the
delayed-input property of LSL, the statement x and the respective witness w are needed by PNMZK only to
compute the last round; therefore NMZK enjoys delayed-input completeness as well.

(Delayed-Input) NMZK. Following Definition 2 we start by describing how the simulator SimNMZK

for NMZK works. In the left session SimNMZK interacts with the MiM adversary ANMZK in the following
way. Upon receiving the first round, vk, ls1

L, ls1
nm, nm1, ρ0, ρ1, ρ, from ANMZK, SimNMZK runs Com on input

ρ and the message 0 in order to obtain com, dec. Furthermore, SimNMZK on input ls1
nm computes ls2

nm by
running Pnm and commits to it using the IDTC scheme TC1. More precisely, SimNMZK runs Sen1 on input
the instance ((ρ, com), 0), ρ1 and message to be committed ls2

nm thus obtaining the pair (tcom1, tdec1). Then
SimNMZK runs the trapdoor procedure of the IDTC scheme TC0. That is, SimNMZK runs TFake0 on input
the instance ((ρ, com), 0) and ρ0 thus obtaining the pair (tcom0, aux). SimNMZK, in order to commit to a
random message s0 uses the scheme NM, runs S on input nm1, the identity id and s0 thus obtaining nm2.
SimNMZK sends tcom0, tcom1, nm2, com and a random message msg1 to ANMZK.

Upon receiving the third round (ls3
L, ls3

nm, nm3, σ1) and the instance x to be proved from ANMZK, the
simulator checks whether or not σ1 is a valid signature for msg1 w.r.t. the verification key vk. In the negative
case SimNMZK aborts, otherwise he rewinds ANMZK from the third to the second round in order to obtain a
second signature σ2 for a different message msg2. After the extraction of the signatures SimNMZK returns to
the execution that he started before the rewinding procedure (that we will denote as the main thread) and
computes the fourth round as follows15.

SimNMZK completes the commitment of s0 by running S on input nm3 thus obtaining (nm4, decnm) and
then sending nm4. Furthermore, SimNMZK sets s1 s.t. s1 = (σ1||σ2)⊕s0, xnm = (vk, id, nm1, nm2, nm3, nm4, s1),
wnm = (decnm, s0, σ1, msg1, σ2, msg2) and completes the transcript for LSnm thus obtaining ls4

nm by running
the prover procedure Pnm on input xnm, wnm and ls3

nm. Then the values ((tdec1, ls
2
nm), ls4

nm, xnm) are sent
to ANMZK. At this point SimNMZK runs the SHVZK simulator of LSL on input (x, ls1

L, ls
3
L) thus obtaining

(ls2
L, ls

4
L). Then SimNMZK opens, using the trapdoor procedure, the commitment tcom0 to ls2

L. More precisely,
SimNMZK runs TFake0 on input tk = (dec), ρ0, tcom0, aux and ls2

L in order to compute tdec0 and sends
((tdec0, ls

2
L), ls4

L, x) to ANMZK.
At the end of the execution SimNMZK outputs ANMZK’s view in the main thread. Furthermore, he uses

the extractor of LSL to extract and output, from the poly(λ) right sessions, the witnesses w̃1, . . . , w̃poly(λ)

used by ANMZK to compute the transcript of LSL (the witnesses correspond to statements x̃i proved by
ANMZK in the i-th right session, for i = 1, . . . , poly(λ)).

Lemma 1. {SimNMZK
1(1λ, z)}λ∈N,z∈{0,1}∗ ≈ {ViewANMZK(1λ, z)}λ∈N,z∈{0,1}∗ , where SimNMZK

1(1λ, z) denotes
the 1st output of SimNMZK.

In order to prove the above lemma we consider the series of hybrid experiments described below. In the
proof we denote with {ViewANMZK

Hi
(1λ, z)}λ∈N,z∈{0,1}∗ the random variable that describes the view of ANMZK

in the hybrid Hi(1λ, z). Let p the probability that in the real execution ANMZK completes the left session.

- We start considering the hybrid experiment H0(1λ, z) in which in the left session PNMZK interacts with
ANMZK and in the i-th right session VNMZKi interacts with ANMZK, for i = 1, . . . , poly(λ). Note that
{ViewANMZK

H0
(1λ, z)}λ∈N,z∈{0,1}∗ = {ViewANMZK(1λ, z)}λ∈N,z∈{0,1}∗ .

15Note that it is possible to complete the main thread, due to the delayed-input of LSnm, and to the fact that we do not need
to change the first round of NM (that is, we do not need to change the committed message s0) in order to have xnm ∈ Lnm.

14

- The hybrid experiment H1(1λ, z) differs from H0(1λ, z) only in the fact that in the left session of H1(1λ, z)
ANMZK is rewound from the third to the second round, in order to extract two signatures σ1, σ2 for two
distinct messages (msg1, msg2) w.r.t. a verification key vk. Note that after 1/p rewinds the probability of
not obtaining a valid new signature is less than 1/2. Therefore the probability that ANMZK does not give
a second valid signature for a randomly chosen message after λ/p rewinds is negligible in λ. For the above
reason the procedure of extraction of signatures of different messages in H1(1λ, z) succeeds except with
negligible probability. Observe that the above deviation increases the abort probability of the experiment
only by a negligible amount, therefore {ViewANMZK

H0
(1λ, z)}λ∈N,z∈{0,1}∗ ≡s {ViewANMZK

H1
(1λ, z)}λ∈N,z∈{0,1}∗ .

- The hybrid experiment H2(1λ, z) differs from H1(1λ, z) only in the message committed using NM. Indeed
PNMZK commits using NM to two signatures σ1, σ2 of two distinct messages (msg1, msg2) instead of a random
message. In more details, PNMZK commits to a random string s0 using NM and in the 4th round sets and sends
s1 = (σ1||σ2) ⊕ s0, instead of sending s1 ← {0, 1}λ. Observe that the procedure to extract the signatures
succeeds in H2(1λ, z) with overwhelming probability, because the first three rounds are played exactly
as in H1(1λ, z). Now we can claim that {ViewANMZK

H2
(1λ, z)}λ∈N,z∈{0,1}∗ and {ViewANMZK

H1
(1λ, z)}λ∈N,z∈{0,1}∗

are computationally indistinguishable by using the computational hiding property of NM. Suppose by
contradiction that there exist an adversary ANMZK and a distinguisher DZK such that DZK distinguishes
{ViewANMZK

H1
(1λ, z)}λ∈N,z∈{0,1}∗ from {ViewANMZK

H2
(1λ, z)}λ∈N,z∈{0,1}∗ . Then we can construct an adversary

AHiding that breaks the computational hiding of NM in the following way. AHiding sends to the challenger of
the hiding game CHiding two random messages (m0,m1). Then, in the left session AHiding acts as in H2(1λ, z)
(and H1(1λ, z)) except for messages of NM for which he acts as proxy between CHiding and ANMZK. When
AHiding computes the last round of the left session he sets and sends s1 = σ1||σ2 ⊕m0. In the right sessions
AHiding interacts with AZK acting as VNMZK does. At the end of the execution AHiding runs DZK and outputs
what DZK outputs. It easy to see that if CHiding commits to m1 then, AZK acts as in H1(1λ, z), otherwise he
acts as in H2(1λ, z). Note that the reduction to the hiding property of NM is possible because the rewinds to
extract a second signature do not affect the execution with the challenger of NM that remains straight-line.

- The hybrid experiment H3(1λ, z) differs from H2(1λ, z) in the way the transcript of LSnm is computed.
More precisely, the prover Pnm of LSnm is used to compute the messages ls2

nm and ls4
nm instead of the

Special HVZK simulator. Note that due to the delayed-input property of LSnm the statement xnm =
(vk, nm1, nm2, nm3, nm4, s1) and the witness wnm = (decnm, s0, σ1, msg1, σ2, msg2) are needed by Pnm only
to compute ls4

nm and are not needed to compute ls2
nm. Observe that the procedure of extraction of the sig-

natures succeeds in H3(1λ, z) with overwhelming probability because before that the 4th round of the left
session is played the view of ANMZK is identically distributed to the view of H2(1λ, z). From the Special
HVZK of LSnm it follows that {ViewANMZK

H2
(1λ, z)}λ∈N,z∈{0,1}∗ and {ViewANMZK

H3
(1λ, z)}λ∈N,z∈{0,1}∗ are compu-

tationally indistinguishable.

- The hybrid H4(1λ, z) differs from H3(1λ, z) in the way the commitment (ρ1, com1) of TC1 and the corre-
sponding decommitment information are computed. In more details, the values tcom1, tdec1 are computed
by running Sen1 instead of TFake1. Observe that the procedure of extraction of the signatures succeeds in
H4(1λ, z) with overwhelming probability otherwise we can break the hiding of TC1. From the trapdoorness
of TC1 it follows that {ViewANMZK

H4
(1λ, z)}λ∈N,z∈{0,1}∗ and {ViewANMZK

H3
(1λ, z)}λ∈N,z∈{0,1}∗ are computationally

indistinguishable.

- The hybrid H5(1λ, z) differs from H4(1λ, z) in the message committed using PBCOM. In the left ses-
sion PNMZK commits to 0 using PBCOM, instead of committing to 1. Observe that the procedure of
extraction of the signatures succeeds in H5(1λ, z) with overwhelming probability otherwise we can break
the hiding of PBCOM. From the hiding of PBCOM it also follows that {ViewANMZK

H5
(1λ, z)}λ∈N,z∈{0,1}∗ and

{ViewANMZK
H4

(1λ, z)}λ∈N,z∈{0,1}∗ are computationally indistinguishable.

- The hybrid H6(1λ, z) differs from H5(1λ, z) in the way the commitment (ρ0, com0) of TC0 and the corre-

15

sponding decommitment information are computed. More precisely, TFake0 is run to compute a commitment
(ρ0, tcom0) and the corresponding decommitment information tdec0 with respect to the message ls2

L. Observe
that the procedure of extraction of the signatures succeeds in H6(1λ, z) with overwhelming probability oth-
erwise we can break the hiding of TC0. From the trapdoorness of the 2-round instance-dependent trapdoor
commitment scheme TC0 it follows that {ViewANMZK

H6
(1λ, z)}λ∈N,z∈{0,1}∗ and {ViewANMZK

H5
(1λ, z)}λ∈N,z∈{0,1}∗

are computationally indistinguishable.

- The hybrid H7(1λ, z) differs from H6(1λ, z) in the way the transcript of LSL is computed. More precisely,
the Special HVZK simulator of LSL is used to compute the messages ls2

L and ls4
L instead of the honest

prover procedure. Observe that the procedure of extraction of the signatures succeeds in H7(1λ, z) with
overwhelming probability because before that the 4th round of the left session is played the view of ANMZK

is identically distributed to the view that ANMZK has in H6(1λ, z). From the Special HVZK of LSL it follows
that {ViewANMZK

H6
(1λ, z)}λ∈N,z∈{0,1}∗ and {ViewANMZK

H7
(1λ, z)}λ∈N,z∈{0,1}∗ are computationally indistinguish-

able. Note that H7(1λ, z) corresponds to the simulated experiment, that is {ViewANMZK
H7

(1λ, z)}λ∈N,z∈{0,1}∗ =

{S1(1λ, z)}λ∈N,z∈{0,1}? .

The proof ends with the observation that for all λ ∈ N, z ∈ {0, 1}∗ it holds that: {ViewANMZK(1λ, z)}λ,z =

{ViewANMZK
H0

(1λ, z)}λ,z ≈ · · · ≈ {ViewANMZK
H7

(1λ, z)}λ,z = {S1(1λ, z)}λ,z

Lemma 2. Let x̃1, . . . , x̃poly(λ) be the right-session statements appearing in View = SimNMZK
1(1λ, z) and let

id be the identity of the left session and ĩd1, . . . , ĩdpoly(λ) be the identities of right sessions appearing in
View. If the i-th right session is accepting and id 6= ĩdi for i ∈ {1, . . . , poly(λ)}, then except with negligible
probability, the second output of SimNMZK(1λ, z) is w̃i such that (x̃i, w̃i) ∈ RelL for i ∈ {1, . . . , poly(λ)}.

In order to simplify the security proof, here we actually consider the notion of multi-SHVZK, multi-
trapdoorness and multi-hiding instead of Special HVZK, trapdoorness and hiding. The only difference
between multi-SHVZK and the classical notion of Special HVZK is the following. Let (ls1, ls3, x) be a
challenge of the Special HVZK security game. The challenger of multi-SHVZK picks a random bit b and
computes an accepting transcript t = (ls1, ls2, ls3, ls4) for x. If b = 0 then t has been computed using the
prover procedure, otherwise it has been computed using the Special HVZK simulator. The adversary, upon
receiving t, either outputs his guess b′ ∈ {0, 1}, or asks to receive another transcript t according to a new
possible challenge (ls1′ , ls3′, x′). The adversary can ask a polynomial number of transcripts according to
different challenges before that he outputs b′. The adversary is successful if Prob [b = b′] − 1/2 is non-
negligible in the security parameter. It is easy to see that a protocol is Special HVZK iff it is multi-SHVZK.

Analogously, the only difference with the definition of trapdoorness given in Definition 4 and multi-
trapdoorness is the following. Let (x, ρ,m) and tk s.t. (x, tk) ∈ RelLΣ

be the challenge message used by the
adversary to interact with the challenger. The challenger of multi-trapdoorness picks a random bit b and
computes a commitment com and the corresponding decommitment information (m, dec). If b = 0 then both
com and (m, dec) are computed using the trapdoor procedure TFakeΣ, otherwise they are computed using the
honest procedure SenΣ. The adversary, upon receiving com and (m, dec), either outputs his guess b′ ∈ {0, 1},
or asks to start another interaction against the challenger by using possible different (x′, ρ′,m′) and tk′. Note
that the adversary can start a polynomial number of other interactions using different (x′, ρ′,m′) before he
outputs b′. The adversary is successful if Prob [b = b′]−1/2 is non-negligible in the security parameter. It is
easy to see that a commitment scheme enjoys the multi-trapdoorness property iff it enjoys the trapdoorness
property.

Analogously, we define the notion of multi-hiding. The only difference with the classical definition of
hiding is the following. Let m0 and m1 be the challenge messages. The challenger of multi-hiding picks a
random bit b and computes the commitment of mb. The adversary, upon receiving the commitment, either
outputs his guess b′ ∈ {0, 1}, or sends (m′0,m

′
1) and asks to receive a commitment of m′b where (m′0,m

′
1)

represents a new pair of challenge messages (the latter step can be executed up to a polynomial number of

16

times). The adversary is successful if Prob [b = b′] − 1/2 is non-negligible in the security parameter. It is
easy to see that a commitment scheme is hiding iff it is multi-hiding. Let us now proceed with the security
proof of Lemma 2. We start the proof assuming that the adversary is synchronous. In the end of the security
proof we show how to deal with an asynchronous adversary as well.

We now consider the hybrid experimentsH7, . . . ,H0 described in Lemma 1. We show that if the adversary
completes at least one right session in H7 with non-negligible probability then, for each hybrid experiment
Hi with i = 0, . . . , 7 there exists a procedure that extracts (except with negligible probability) the signatures
for one of the verification keys used in the right sessions, thus reaching a contradiction in H0.16 In the hybrid
experiments H7, . . . ,H0 we denote as the main thread the execution of the hybrid that comes before that
the adversary is rewound.

- The hybrid experiment H7 corresponds to the simulated game. Assume by contradiction that Lemma 2
does not hold, then with non-negligible probability there exists a right session j that is accepting but
the simulator SimNMZK does not output a valid witness w̃j for the statement x̃j proved by the adversary.
Since the probability that the adversary provides an accepting transcript for x̃j is non-negligible then
SimNMZK rewinds the adversary by sending randomly generated third rounds for LSL until another
accepting transcript for NMZK is received17. Given that we are assuming (by contradiction) that
SimNMZK does not extract w̃j , then the accepting transcript for x̃j contains, in the last round, a value

l̃s
2′

L,j 6= l̃s
2
L,j , where l̃s

2
L,j is the second round of LSL that has been sent in the fourth round of NMZK

by the adversary in the main thread. In summary, the expected polynomial-time extraction of w̃j
can fail only when the adversary is able to open ˜tcom0,j to different values. We recall that the only

hope to extract w̃j is to have two accepting transcript for LSL such that (l̃s
1
L,j , l̃s

2
L,j , l̃s

3
L,j , l̃s

4
L,j) and

(l̃s
1
L,j , l̃s

2
L,j , l̃s

3′

L,j , l̃s
4′

L,j) with l̃s
3
L,j 6= l̃s

3′

L,j . If the adversary is able to open to different values of l̃s
2
L,j

during the rewinding procedure then, by the Special Binding property of TC0 it holds that the value
committed in ˜comj is 0. Then, by the Instance-Dependent Binding property of TC1, we obtain that

˜tcom1,j is statistically binding. This chain of implications in turn implies that during the rewinds the
value opened with respect to ˜tcom1,j in the fourth round stays the same.

The crucial observation is that in this right session it is possible to run the adaptive-input PoK extractor

of LSnm thus obtaining two accepting transcripts for LSnm that share the same first two rounds (l̃s
1
nm,j

and l̃s
2
nm,j). Therefore, with non-negligible probability, it is possible to extract the decommitment

information of the non-malleable commitment NM and compute s̃j0 ⊕ s̃
j
1 = σ̃j1||σ̃

j
2, where (σ̃j1, σ̃

j
2) are

two valid signatures with respect to the verification key ṽkj . Thus we can conclude this part of the
security proof claiming that if SimNMZK fails in extracting w̃j then 1) two signatures for ṽkj can be
extracted with non-negligible probability and 2) the non-malleable commitment is well formed.

- In the hybrid experiment H6 the prover procedure is used instead of the Special HVZK simulator to
compute (ls1

L, ls
2
L, ls

3
L, ls

4
L). We observe that, with non-negligible probability, there still exists a right

session j where the signatures for the verification key ṽkj can be extracted using the adaptive-input
PoK extractor of LSnm and moreover the adaptive-PoK extractor of LSL fails, otherwise a reduction
to the multi-SHVZK of LSL can be done.

We now define a different extraction procedure ExtCom that works as follows.

16We recall that we have already proven in Lemma 1 that the probabilities of ANMZK to complete a right session in H0 and
H7 are negligible close.

17We assume that the adaptive-input PoK extractor of LSL works by rewinding the adversary by sending randomly generated
third round ls3L. See the beginning of the security proof (the part referred to (Delayed-Input) NMZK) of Theorem 1 for the
precise description of SimNMZK.

17

- In the right sessions ExtCom runs the adaptive-input PoK extractor for both LSL and LSnm.
More precisely, ExtCom keeps fixed the first two rounds of the main thread and sends multiple

random values l̃s
3
L and l̃s

3
nm.

- In the left session ExtCom acts similarly to SimNMZK differing only in the way ls2
L is computed

during the rewinds. More precisely, for any new message ls3
L received by the adversary, ExtCom

opens tcom0 always to the same ls2
L and provides an accepting transcript (ls1

L, ls
2
L, ls

3
L, ls

4
L) using

the honest prover procedure (as it has been done in the main thread).

We now show that ExtCom is able to extract the decommitment information of the non-malleable
commitment that allows to compute two valid signatures. More precisely, we argue that during the

rewinds the adversary is forced to open ˜tcom1,j always to the same 2nd round of LSnm (l̃s
2
nm,j) in some

right-session j. This holds because of the following chain of implications. In H7 we have showed that
there exists a right session j where, with non-negligible probability, the adaptive-input PoK extractor
for LSnm can compute a valid decommitment information for the non-malleable commitment such that
two valid signatures can be extracted. Moreover, we have proved that in this session j the extractor for
LSL fails. As discussed above this implies that ˜comj contains 0 and that ˜tcom1,j is statistically binding.
Since ExtCom keeps fixed the first two rounds of the main thread during the rewinds, the adversary
has no way to use the trapdoor procedure to compute ˜tcom1,j once that ˜comj contains 0. Moreover,
the adversary cannot selectively abort some of the right sessions since the values (ls1

L, ls
2
L, ls

3
L, ls

4
L) are

identically distributed to values that are sent in the main thread ofH6. These observations make us able
to claim that ExtCom can extract, with non-negligible probability, a valid decommitment information
of the non-malleable commitment that allows to compute two signatures for ṽkj . We observe that
ExtCom could be able to extract w̃j as well in this case, but it would just ignore the problem.

- The next hybrid that we consider is H5. This hybrid experiment is the same as H6 with the difference
that tcom0 is computed using the commitment procedure (and not the trapdoor procedure). We
observe that the transcript for LSL in H6 is computed using the honest prover procedure, therefore
the trapdoor procedure is not needed anymore to provide an accepting transcript with respect to LSL.
We claim that the output of ExtCom for H5 is the same as the output of ExtCom for H6. If this is not
true then a reduction to the trapdoorness of tcom0 can be done.

- The next hybrid that we consider is H4. The difference between H5 and H4 is that the value committed
in com is 1. We observe that also in this case the output of ExtCom stays the same otherwise a reduction
to the hiding of com can be done.

- The next hybrid that we consider is H3. The difference between H4 and H3 is that tcom1 is computed
using the trapdoor procedure. We claim that the output of ExtCom is the same as the output of ExtCom
for H4. If this is not true then a reduction to the trapdoorness of tcom1 can be done.

- The next hybrid that we consider is H2. The difference between H3 and H2 is that the transcript
for LSnm is computed using the Special HVZK simulator instead of the honest prover procedure. We
observe that the simulator of LSnm can be used in H2 because tcom1 is computed using the trapdoor
procedure. So, upon receiving ls3

nm the Special HVZK simulator of LSnm is invoked thus obtaining
(ls2

nm, ls
4
nm), and ls2

nm will be the value to which tcom1 will be opened using the trapdoor procedure.

We now want to prove that there exists a right session j where the adversary is still computing a valid
non-malleable commitment of two signatures for ṽkj . We recall that this statement is true for the
hybrid experiment H3. Suppose by contradiction that this claim does not hold when considering H2,
then we can construct a reduction to the Special HVZK of LSnm. The reduction works as follows. Let
CSHV ZK be the challenger for the Special HVZK of LSnm.

18

1. The reduction interacts with the adversary in the left and in the right sessions according to H3

(and H2).

2. The reduction, upon receiving ls1
nm and ls3

nm in the left session forwards these messages to CSHV ZK
together with (xnm, wnm).

3. The reduction, upon receiving (ls2
nm, ls

4
nm) from CSHV ZK , uses them to complete the left execution

against the adversary.

4. When the adversary stops, the reduction rewinds the adversary in the j-th right session using
the ExtCom’s strategy, and upon receiving ls3′

nm in the left session computes (ls2′
nm, ls

4′
nm) using the

honest prover procedure (so using w′nm). Moreover, during all the rewinds tcom1 is always opened
to the value ls2′

nm.

5. The reduction now uses the output of ExtCom to check whether the non-malleable commitment
computed in the main thread contains a value s̃j0 such that s̃j0⊕ s̃

j
1 represents two signatures with

respect to ṽkj .

6. If the non-malleable commitment of the main thread is well formed and two signatures are ex-
tracted then the reduction outputs 0 (to claim that the challenger has used the honest prover
procedure for LSnm), and a random bit otherwise.

We observe that the extractor will output the decommitment information for the non-malleable com-
mitment computed in one of the rewinds made by ExtCom and not the decommitment information for
the non-malleable commitment received in the main thread. Since we assume that the non-malleable
commitment scheme fixes the decommitment information in the second round, then the decommit-
ment information extracted can be used to check what is committed in the main thread as well. We
recall that the extraction procedure used in the reduction corresponds exactly to the extraction pro-
cedure used in H3. Moreover, when (ls2

nm, ls
4
nm) is computed using the honest prover procedure by the

challenger, the view of the adversary in the main thread and during the rewinds is perfectly indis-
tinguishable. Therefore the probability that the extractor is successful when (ls2

nm, ls
4
nm) is computed

using the honest prover procedure corresponds (except for a negligible difference) to the probability
that the extractor succeeds in H3.

- The next hybrid that we consider is H1. The difference between H2 and H1 is that the non-malleable
commitment contains a value s0 such that s0⊕ s1 is equal to a random string, whereas in the previous
hybrid experiment it holds that s0⊕ s1 = σ1||σ2. Since we are considering a synchronous adversary we
can immediately rely on the security of the one-one synchronous non-malleable commitment NM to
claim that the adversary in some session j, with non-negligible probability, is still computing a valid
non-malleable commitment of a string s̃j0 such that s̃j0 ⊕ s̃

j
1 = σj0||σ

j
1 and σj0||σ

j
1 represents two valid

signatures for ṽkj . We recall that during the reduction to NM two signatures for two messages with
respect to vk need to be extracted in the left session. Since NM is public coin the extraction of the
signatures does not interfere with the reduction to the non-malleable commitment.

- The next hybrid that we consider is H0. The difference between H1 and H0 is that on the left session
the procedure to extract two valid signatures for vk is not run anymore. Moreover, as proved in the
first part of Lemma 1, the adversary aborting probabilities in H0 and H1 are negligibly close. From
previous arguments it follows that in H1 there exists a session j where the adversary computes a
valid commitment of two signatures using NM. Therefore, we can claim that also in H0 there exists
a session j where, with non-negligible probability, the adversary is computing a well-formed non-
malleable commitment such that the value extracted from it allows to compute two signatures for ṽkj .
This implies that using the weak extractability of the non-malleable commitment NM we can extract
from some right session j two signatures for the verification ṽkj reaching a contradiction. Indeed, it

19

is possible to contradict the security of the signature scheme because no more rewinds are needed in
the left session between the third and the second round. We just rewind from the fourth to the third
round in the right session j to extract the signatures and this rewinding procedure does not interfere
with the reduction that breaks the security of the signature scheme.

During the security proof we have assumed that the adversary is synchronous. We now briefly explain
why the lemma holds also against asynchronous adversaries. In all the reductions that we have made for the
synchronous case we have showed that there is always a procedure to extract the signatures from some j-th
right session, thus reaching a contradiction in H0. This part of the proof follows mostly the same arguments
used above for the synchronous case, with the major difference that we cannot rely on the security of the
synchronous non-malleable commitment. In more details, we first argue that in H2 the asynchronous ANMZK

computes a valid commitment of two signatures with respect to the verification key vkj in some j−th right
session, and then we show an extractor for H1 relying on the multi-hiding instead of the non-malleability
property of NM.

In the reductions considered for the synchronous case the adversary is rewound to check the validity
and the content of the non-malleable commitments computed by ANMZK in the right sessions. Any of these
rewinding procedures, when applied to an asynchronous adversary, might completely rewind the left session.
In this case the adversary could send messages in the left session which are different from all the messages
that appeared in the main thread. This is a problem when ANMZK is involved in a security reduction. Indeed,
the reduction might need to ask the challenger to restart the security game from the beginning. This is the
reason why we require the cryptographic primitives involved in our protocol to enjoy this notion of multi
security. Therefore, the reductions described for the hybrids experiments H7, . . . ,H2 work almost as showed
for the synchronous, but they rely on the multi security of the primitives involved in the reductions.

The only thing that is left to argue is the existence of an extraction procedure that outputs two valid
signatures for vkj in H1 and H0 even when ANMZK is asynchronous. Given that NM retains the non-
malleability only against one-one synchronous adversary, we need to use a different strategy to prove the
existence of such an extractor.

Since in H2 the adversary commits to two valid signatures in some session j with non-negligible proba-
bility, we can distinguish two cases: 1) ANMZK commits to those signatures in a synchronous right session of
H2; 2) ANMZK commits to those signatures in an asynchronous right session of H2. If case 1 happens with
non-negligible probability, then the proof is over since this case has been already discussed previously. So
let us assume that only case 2 happens with non-negligible probability. We now prove that if this is the case
then a reduction to the multi-hiding of NM can be done as follows. Let C be the challenger for the multi-
hiding security game. The reduction picks two random challenge messages (m0 ← {0, 1}λ,m1 ← {0, 1}λ)
and sends them to C. The reduction now computes all the messages as in H1 and H2 and acts as a proxy
between C and ANMZK with respect to the left-session messages of NM. Moreover, in the last round of the
left session the reduction sets s1 = m0 ⊕ σ1||σ2. When the execution with ANMZK stops, the reduction runs
the weak-extractor of NM on all the asynchronous right sessions. If there exists a right session j where the
extracted value is a string s̃j0 such that s̃j0 ⊕ s̃

j
1 = σj0||σ

j
1 and σj0||σ

j
1 represents two valid signatures for ṽkj

then the reduction outputs m0, otherwise she outputs mb, with b ∈ {0, 1}.
In this reduction there is an issue that we address by requiring NM to be multi-hiding. Indeed, it could

happen that the weak-extractor completely rewinds the left session. In this case the adversary might start
a new session with C by sending a different first round of NM nm1, and this is the reason why we require
NM to be multi-hiding.

We observe that what we have proved only guarantees that it is possible to extract valid signatures for
vkj for some j-th session of H1 with non-negligible probability. That is, we cannot claim that the non-
malleable commitment computed by ANMZK in the j-th right session of H1 is well formed. Anyway, the
extraction guarantee is sufficient to complete our security proof. Indeed, for the same arguments used for
the synchronous case the probability that ANMZK aborts in H0 is negligibly close to the aborting probability

20

of ANMZK in H1. Therefore the weak-extractor of NM can be used to extract two valid signatures from some
j-th right section of H0 thus reaching a contradiction.

Theorem 2. If OWFs exists, then NMZK is a synchronous delayed-input many-many NMZK AoK for NP.

Proof. The proof proceeds very similarly to the one showed for Theorem 1. The main difference between
these two proofs is that we have to consider also polynomially many synchronous left sessions played in
parallel. Therefore the only difference between this proof and the one of Theorem 1 is that in the reductions
we need to rely on the security of a many-one non-malleable commitment scheme and on the security of the
other primitives under parallel composition. We notice that using the same arguments of the security proof
of Proposition 1 provided in [LPV08], it is possible to claim that a synchronous (one-one) non-malleable
commitment is also synchronous many-one non-malleable. Therefore no additional assumption are required
in order to prove that NMZK is also many-many parallel delayed-input NMZK. Note also that, the simulator
needs to extract the trapdoor (the signatures of two different messages) in all the left (synchronous) sessions
completed in the main thread. The extraction succeeds except with negligible probability for the same
arguments used in the security proof of Theorem 1.

21

Common input: security parameter λ, identity id ∈ {0, 1}λ, lengths for LSL and LSnm: `x, `nm.
Input to PNMZK: (x,w) s.t. (x,w) ∈ RelL, with (x,w) available only in the 4th round.
Commitment phase:

1. VNMZK → PNMZK

1. Run (sk, vk)← Gen(1λ).
2. Run VL on input 1λ and `x thus obtaining the 1st round ls1

L of LSL.
3. Run Vnm on input 1λ and `nm thus obtaining the 1st round ls1

nm of LSnm.
4. Run Dec on input 1λ thus obtaining ρ.
5. Run Rec0 on input 1λ thus obtaining ρ0.
6. Run Rec1 on input 1λ thus obtaining ρ1.
7. Run R on input 1λ and id thus obtaining nm1.
8. Send (vk, ls1

L, ls
1
nm, nm1, ρ, ρ0, ρ1) to PNMZK.

2. PNMZK → VNMZK

1. Run Com on input ρ and message 1 in order to compute the pair (com, dec).
2. Run PL on input 1λ, `x and ls1

L thus obtaining the 2nd round ls2
L of LSL.

3. Run Sen0 on input 1λ, ((ρ, com), 0), ρ0 and message ls2
L to compute the pair

(tcom0, tdec0).
4. Run TFake1 on input 1λ, ((ρ, com), 1), ρ1 to compute the pair (tcom1, aux).
5. Pick s0 ← {0, 1}λ and run S on input 1λ, id, nm1, s0 (in order to commit to the message
s0) thus obtaining nm2.

6. Pick a message msg← {0, 1}λ and send (com, tcom0, tcom1, msg, nm2) to VNMZK.

3. VNMZK → PNMZK

1. Run VL thus obtaining the 3rd round ls3
L of LSL.

2. Run Vnm thus obtaining the 3rd round ls3
nm of LSnm.

3. Run R thus obtaining nm3 of NM.
4. Run Sign(sk, msg) to obtain a signature σ of msg.
5. Send (ls3

L, ls
3
nm, nm3, σ) to PNMZK.

4. PNMZK → VNMZK

1. If Ver(vk, msg, σ) 6= 1 then abort, continue as follows otherwise.
2. Run PL on input x, w and ls3

L thus obtaining the 4th round ls4
L of LSL.

3. Run S on input nm3 thus obtaining (nm4, decnm).
4. Pick s1 ← {0, 1}λ and set xnm = (vk, nm1, nm2, nm3, nm4, s1) and run the Special HVZK

simulator of LSnm on input (xnm, ls
1
nm, ls

3
nm) thus obtaining (ls2

nm, ls
4
nm).

5. Run TFake1 on input tk = (dec), ρ1, tcom1, aux and ls2
nm to compute tdec1.

6. Send ((tdec1, ls
2
nm), ls4

nm, (tdec0, ls
2
L), ls4

L, x, xnm) to VNMZK.

5. VNMZK: output 1 iff the following conditions are satisfied.

1. Rec0 on input (ρ0, (ρ, com), 0), tcom0, tdec0, ls
2
L accepts (ls2

L, tdec0) as a decommitment
of tcom0.

2. Rec1 on input (ρ1, (ρ, com), 1), tcom1, tdec1, ls
2
nm accepts (ls2

nm, tdec1) as a decommit-
ment of tcom1.

3. (ls1
L, ls

2
L, ls

3
L, ls

4
L) is accepting for VL with respect to the instance x.

4. (ls1
nm, ls

2
nm, ls

3
nm, ls

4
nm) is accepting for Vnm with respect to the instance xnm.

Figure 2: Formal construction of our delayed-input NMZK AoK

22

4 Multi-Party Coin-Tossing Protocol

4.1 4-Round Secure Multi-Party Coin Tossing: ΠMPCT

The high-level idea of our protocol ΠMPCT significantly differs from the one of [GMPP16b] (e.g., we use our
4-round delayed-input synchronous many-many NMZK instead of 3-round 3-robust parallel non-malleable
commitment scheme). Our protocol simply consists of each party committing to a random string r, which is
opened in the last round along with a simulatable proof of correct opening given to all parties independently.
The output consists of the ⊕ of all opened strings. Let’s see in more details how our ΠMPCT works. For our
construction we use the following tools.

1. A non-interactive perfectly binding computationally hiding commitment scheme PBCOM = (Com,Dec).
2. A Σ-protocol BLL = (PL,VL) for the NP-language L = {com : ∃ (dec,m) s.t. Dec(com, dec,m) = 1}

with Special HVZK simulator SimL. We uses two instantiations of BLL in order to construct the
protocol for the OR of two statements ΠOR as described in App. C.2. ΠOR is a proof system for theNP-
language Lcom = {(com0, com1) : ∃ (dec,m) s.t. Dec(com0, dec,m) = 1 OR Dec(com1, dec,m) = 1} 18.
Informally, by running ΠOR, one can prove the knowledge of the message committed in com0 or in
com1.

3. A 4-round delayed-input synchronous many-many NMZK NMZK = (PNMZK,VNMZK) for the following
NP-language

LNMZK = {((com0, com1),m) : ∀i ∈ {0, 1} ∃ deci s.t. Dec(comi, deci,m) = 1}.

Informally, by running NMZK, one can prove that 2 commitments contain the same message m.

4.2 ΠMPCT: Informal Description and Security Intuition

The high level description of our protocol between just two parties (A1, A2) is given in Fig. 3. For a formal
description of ΠMPCT we refer the reader to Sec. 4.3. In Fig. 3 we consider an execution of ΠMPCT that
goes from A1 to A2 (the execution from A2 to A1 is symmetric). We recall that the protocol is executed
simultaneously by both A1 and A2. The main idea is the following. Each party commits to his input using
two instantiations of a non-interactive commitment. More precisely we have that A1 computes two non-
interactive commitments com0 and com1 (along with their decommitment information dec0 and dec1) of the
message r1. Each party also runs ΠOR for the NP-language Lcom, from the first to the third round, in order
to prove knowledge of the message committed in com0 or in com1. In the last round each party sends his own
input (i.e. r1 for A1 and r2 for A2) and proves, using a delayed-input synchronous many-many non-malleable
ZK for the NP-language LNMZK, that messages committed using PBCOM were actually equal to that input
(i.e. r1 for A1 and r2 for A2). That is, A1 sends r1 and proves that com0 and com1 are valid commitments
of the message r1.

Intuition about the security of ΠMPCT. Let A∗1 be the corrupted party.
Informally the simulator Sim works as follows. Sim starts an interaction against A∗1 using as input a

random string y until the third round of ΠMPCT is received by A∗1. More precisely, in the first round he
computes two commitments com0 and com1 (along with their decommitment information dec0 and dec1) of
y, and runs POR using as a witness (dec1, y). After the 3rd round Sim extracts the input r∗1 of the corrupted
party A∗1 using the extractor EOR of ΠOR (that exists from the PoK property of ΠOR) and sends r∗1 to the
ideal world functionality. At this point Sim receives r from the ideal-world functionality, and completes the
execution of the 4th round by sending r2 = r ⊕ r∗1. We observe that Sim, in order to send a string r2 that

18We use ΠOR in a non-black box way, but for ease of exposition sometimes we will refer to entire protocol ΠOR in order to
invoke the proof of knowledge property enjoyed by ΠOR.

23

a0, a1 nmzk1

nmzk2

nmzk3

nmzk4

c

c0, z0, c1, z1

A1(r1) A2(r2)

r2
Output r = r1 ⊕ r2

com0, com1

– com0 and com1 are two non-interactive commitments of the message r1 computed using PBCOM.
– (a0, a1, c0, c1, z0, z1) is the transcript generated from an execution of the WIPoK ΠOR in which POR

proves the knowledge of either the message committed in com0 or in com1.
– (nmzk1, nmzk2, nmzk3, nmzk4) in the transcript generated from an execution of the delayed-input syn-

chronous many-many NMZK NMZK in which PNMZK proves that both com0 and com1 are valid
commitments of the message r1.

Figure 3: ΠMPCT: Informal description of the execution from A1 to A2. The execution from A2 to A1 is symmetric.

differs from y in the 4th round, has to cheat in NMZK. This is done by simply running the simulator of
NMZK. To prove the security of our scheme we will go through a sequence of hybrid experiments in order
to show that the output view of the adversary in the real world can be simulated in the ideal world by
Sim. The security proof strongly relies on the non-malleable zero knowledge property of NMZK. Indeed the
aim of NMZK is to ensure that the adversary does not maul the messages received from Sim. That is, the
behavior of A∗1 allows to extract, in every hybrid experiments that we will consider, the correct input of A∗1.
This holds even in case the commitments sent by Sim to A∗1 are commitments of a random string y, and the
value sent in the 4th round is inconsistent with the value committed in the first round.

4.3 Formal Description

Let P = {P1, . . . , Pn} be the set of parties. Furthermore, denote by (id1, . . . , idn)19 the unique identities of
parties {P1, . . . , Pn}, respectively. Let us denote by FMPCT : (1λ)n → {0, 1}λ the function FMPCT(r1, . . . , rn) =
r1⊕· · ·⊕ rn. The protocol starts with each party Pi choosing a random string ri for i = 1, . . . , n. It consists
of four rounds, i.e., all parties send messages in each round and the messages of all executions are seen
by every party. Following [GMPP16b] we describe the protocol between two parties (A1, A2) observing
that the real protocol actually consists of n simultaneous executions of a two-party coin-tossing protocol
ΠMPCT = (A1, A2) between parties (Pi, Pj) where Pi acts as A1 with input ri and Pj acts as A2 with input
rj (both are symmetric). Let the input of A1 be r1, and the input of A2 be r2. The set of messages enabling
A1 to learn the output are denoted by (m1,m2,m3,m4) where (m1,m3) are sent by A1 and (m2,m4) are
sent by A2. Likewise, the set of messages enabling A2 to learn the output are denoted by (m̃1, m̃2, m̃3, m̃4)
where (m̃1, m̃3) are sent by A2 and (m̃2, m̃4) are sent by A1. Therefore, messages (ml, m̃l) are simultaneously
exchanged in the l-th round for l = 1, . . . , 4.

Protocol ΠMPCT. Common input: security parameter λ, instances length: `NMZK, `com.
Round 1. We first describe how A1 constructs m1.

1. Compute (com0, dec0)← Com(r1) and (com1, dec1)← Com(r1).
2. Compute a0 ← PL(1λ, com0, (dec0, r1)).

19As discuss in the Definition 2 the use of the identifiers can be avoid, we use them, to uniformity of notation.

24

3. Pick c1 ← {0, 1}λ and compute (a1, z1)← SimL(1λ, com1, c1).
4. Run VNMZK on input 1λ and `NMZK thus obtaining the 1st round nmzk1 of NMZK.
5. Message m1 is defined to be (com0, com1, a0, a1, nmzk1).

Likewise, A2 performs the same action as A1 in order to construct m̃1 = (˜com0, ˜com1, ã0, ã1, ˜nmzk1).
Round 2. In this round A2 sends message m2 and A1 sends m̃2. We first describe how A2 constructs m2.

1. Run PNMZK on input 1λ, id2, `NMZK and nmzk1 thus obtaining the 2nd round nmzk2 of NMZK.
2. Pick c← {0, 1}λ.
3. Define message m2 = (c, nmzk2).

Likewise, A1 performs the same actions as A2 in the previous step to construct the message m̃2 = (c̃, ˜nmzk2).
Round 3. In this round A1 sends message m3 and A2 sends m̃3. A1 prepares m3 as follows.

1. Compute c0 = c⊕ c1 and z0 ← PL(c0).
2. Run VNMZK on input nmzk2 thus obtaining the 3rd round nmzk3 of NMZK.
3. Define m3 = (nmzk3, c0, c1, z0, z1

)
.

Likewise, A2 performs the same actions asA1 in the previous step to construct the message m̃3 = (˜nmzk3, c̃0, c̃1, z̃0, z̃1).
Round 4. In this round A2 sends message m4 and A1 sends m̃4. A2 prepares m4 as follows.

1. Check that the following conditions are satisfied: a) c = c0⊕ c1; b) the transcript a0, c0, z0 is accepting
w.r.t. the instance com0; c) the transcript a1, c1, z1 is accepting w.r.t. the instance com1. If one of the
check fails then output ⊥, otherwise continue with the following steps.

2. Set xNMZK = (˜com0, ˜com1, r2) and wNMZK = (˜dec0, ˜dec1).
3. Run PNMZK on input nmzk3, the statement to be proved xNMZK and the witness wNMZK s.t. (xNMZK, wNMZK) ∈

RelLNMZK
, thus obtaining the 4th round nmzk4 of NMZK.

4. Define m4 = (r2, xNMZK, nmzk4).
Likewise, A1 performs the same actions asA2 in the previous step to construct the message m̃4 = (r1, x̃NMZK, ˜nmzk4).
Output computation of ΠMPCT. Check, for each party, if (nmzki1, nmzki2, nmzki3, nmzki4) is accepting for
VNMZK with respect to the instance xiNMZK (i = 1, . . . , n) and that all pairs of parties used the same inputs
(r1, . . . , rn). If so, output r = r1 ⊕ · · · ⊕ rn.

Theorem 3. If one-to-one OWFs exist, then the multi-party protocol ΠMPCT securely computes the multi-
party coin-tossing functionality with black-box simulation.

Proof. Let P = {P1, . . . , Pn} be the set of parties participating in the execution of ΠMPCT. Also let P ∗ ⊆ P
be the set of parties corrupted by the adversary A. The simulator Sim only generates messages on behalf of
parties P \ P ∗. In particular, we show that for every adversary A there exists an “ideal” world adversary
Sim such that

REALΠMPCT,A(z)(1
λ) ≈ IDEALFMPCT,Sim(z)(1

λ).

We prove this claim by considering hybrid experiments H1, . . . ,H7 as described below. Without loss of
generality we will assume that party P1 is the only honest party since our protocol is secure against n − 1
corruptions. We denote the output of the parties in the hybrid experiment Hi with {OUTHi,A(z)(1

λ)}.
- The 1st hybrid experiment H1 is identical to the real execution. More specifically, H1 starts A with fresh

randomness and interacts with it as P1 would do using uniform randomness r1 as input. The output
of H1 consists of A’s view. We observe that, by construction, the output of A in the real execution is
identically distributed to H1. Moreover, all the messages generated on the behalf of P ∗ are honestly
computed with overwhelming probability due to the soundness of NMZK.

- The 2nd hybrid experimentH2 is identical toH1 except that this hybrid experiment also extracts the P ∗’s
inputs r∗2, . . . , r

∗
n. In order to obtain r∗2, . . . , r

∗
n, H2 runs the extractor EOR of ΠOR on each execution of

ΠOR made by a malicious party. Note that the existence of EOR is guaranteed from the adaptive-input

25

PoK property of ΠOR. If the extractor fails, then H2 aborts. At this point H2 completes the 4th round
and prepares the output exactly as H1

20.
{OUTH1,A(z)(1

λ)} and {OUTH2,A(z)(1
λ)} are statistically close, and the extraction is successful in

expected polynomial time, both claims follow from the PoK property of ΠOR. Observe that we are
guaranteed that what EOR outputs correspond to the input of the the malicious party, from the fact
that with non-negligible probability A correctly computes all the steps of ΠMPCT. More precisely the
soundness of NMZK ensures that the extracted values correspond to the r∗2, . . . , r

∗
n received in the last

round.
- The 3rd hybrid experimentH3 differs fromH2 in the way the transcript for the delayed-input synchronous

many-many NMZK NMZK is computed. More precisely in this hybrid experiment the simulator
SimNMZK for NMZK is used. Following [GMPP16b, ACJ17] the extraction of NMZK’s trapdoor and
the extraction of P ∗’s input are performed during the same steps. Observe that these two extraction
procedures do not interfere with each other, indeed they just rewind from the third to the second
round by sending a freshly generated second round.

The first property of SimNMZK (see Definition 2) ensures that {OUTH2,A(z)(1
λ)} is computation-

ally indistinguishable from {OUTH3,A(z)(1
λ)}. Moreover the second property enjoyed by SimNMZK

(simulation-extraction) ensures that in H3 the witnesses can be extracted from A (one witness for
every execution of NMZK made by every malicious P ∗i), therefore we are guaranteed that A correctly
computes all the steps of ΠMPCT. That is, the value r∗2, . . . , r

∗
n sent by the malicious party in the

last round are actually committed in the second round sent by A. It is important to observe that
in this hybrid experiment the probability that A completes the third round is negligible close to the
probability of completing the third round in H2 (otherwise the output of the two experiments would be
distinguishable). Therefore the probability that EOR works correctly in this experiment is negligibly
close to the probability that EOR works in H2. This holds because, following the Definition 9, the
probability of EOR to given in output a valid witness for the instance (com0, com1) is negligible close to
the probability that A completes an accepting third round.

- The 4th hybrid experiment H4 differs from H3 in the way com1 is computed. More precisely, instead of a
committing to r1 in com1 a commitment of a random string y is made. We claim that {OUTH3,A(z)(1

λ)}
and {OUTH4,A(z)(1

λ)} are computationally indistinguishable due to the computationally hiding of
PBCOM. We claim also that in H4 A still behaves correctly, indeed we can use the simulator extractor
SimNMZK in order to check whether the theorem proved by every party controlled by A using NMZK
are still true. If it is not the case, then we can make a reduction to the hiding of com1

21.
- The 5th hybrid experiment H5 follows the same steps of H4 except that the honest prover procedure

(PL), instead of the Special HVZK simulator (SimL), is used to compute the prover’s messages a1, z1

of the transcript τ1 = (a1, c1, z1) w.r.t. the instance com1.
Suppose now by contradiction that the output distributions of the hybrid experiments are dis-

tinguishable, then we can show a malicious verifier V? that distinguishes between a transcript τ1 =
(a1, c1, z1) computed using SimL and one computed using the honest prover procedure. In more details,
let CSHVZK be the challenger of the Special HVZK. V? picks c1 ← {0, 1}λ and sends c1 to CSHVZK. Upon
receiving a1, z1 from CSHVZK V? plays all the messages of ΠMPCT as in H4 (H5) except for the messages
of τ1 where he V? acts as a proxy between CSHVZK and P ?. At the end of the execution V? runs the
distinguisher D that distinguishes the output distribution of H4 from the output distribution of H5

and outputs what D outputs. We observe that if CSHVZK sends a simulated transcript then P ?2 acts as
in H4 otherwise he acts as in H5.

20Also in this case we are considering an adversary that completes the execution of ΠMPCT against Sim with non-negligible
probability. In the case that the abort probability of the adversary is overwhelming then the security proof is already over.

21In order to extract the witnesses for the theorems proved by every party controlled by A, SimNMZK needs to rewind also
from the 4th to the 3rd round, but this does not affect the reduction.

26

There is a subtlety in the above reduction V? runs the SimNMZK that rewinds from the third to the
second round. This means that V? has to be able to complete during the rewinds the third round while
receiving different challenges c1, . . . , cpoly(λ) w.r.t. ΠOR. Since we are splitting the challenge c, V? can
just keep fixed the value c1 reusing the same z1 (sent by CSHVZK) and computing an answer to a0 using
the knowledge of the decommitment information of com0. To argue that A correctly computes all the
steps of ΠMPCT, also in this hybrid experiment we can use the simulator-extractor SimNMZK to check
whether the theorem proved by A is still true. If it is not the case we can construct a reduction to the
Special HVZK property of BLL. Note that the rewinds of SimNMZK from the fourth to the third round
do not affect the reduction. Moreover, the fact that SimNMZK extracts the witnesses for the theorems
proved by every party controlled by A still ensures that A behaves honestly.

- H6 proceeds exactly as H5 except that the Special HVZK simulator (SimL), instead of honest procedure
(PL), is used to compute the prover’s messages a0, z0 of the transcript τ0 = (a0, c0, z0) w.r.t. the
instance com0.

We claim that {OUTH5,A(z)(1
λ)} and {OUTH6,A(z)(1

λ)} are computationally indistinguishable due

the same arguments used to prove that {OUTH4,A(z)(1
λ)} ≈ {OUTH5,A(z)(1

λ)}. Furthermore we claim
that A still behaves honestly for the same arguments given in H5.

- The 7th hybrid experiment H7 differs from H6 in the way com0 is computed. More precisely, instead
of committing to r1 in com0, a commitment of a random string y is computed. For the same argu-
ments used to prove that {OUTH3,A(z)(1

λ)} ≈ {OUTH4,A(z)(1
λ)}, we claim that {OUTH6,A(z)(1

λ)} ≈
{OUTH7,A(z)(1

λ)} and that A still behaves honestly. We observe that r1 appears only in the 4th round.
More precisely there is no relation between r1 and the values committed in H1. Therefore the security
proof is almost over. Indeed our simulator Sim proceeds as H7 until the 3rd round, then invokes the
functionality thus obtaining a value r and completes the 4th round of H7 setting r1 = r ⊕ · · · ⊕ r∗n.

5 Acknowledgments

We thank Giuseppe Persiano and Alessandra Scafuro for several discussions on delayed-input protocols. We
also thanks to Shai Halevi, Carmit Hazay, Antigoni Polychroniadou, Akshayaram Srinivasan, Muthuramakr-
ishnan Venkitasubramaniam and Zhenbin Yan for pointing out various issues in the security proof of the
NMZK argument given in the previous version of the paper and appearing in [COSV17a].

Research supported in part by “GNCS - INdAM”, EU COST Action IC1306, NSF grant 1619348,
DARPA, US-Israel BSF grant 2012366, OKAWA Foundation Research Award, IBM Faculty Research
Award, Xerox Faculty Research Award, B. John Garrick Foundation Award, Teradata Research Award,
and Lockheed-Martin Corporation Research Award. The views expressed are those of the authors and do
not reflect position of the Department of Defense or the U.S. Government.

The work of 1st, 3rd and 4th authors has been done in part while visiting UCLA.

References

[ACJ17] P. Ananth, A. R. Choudhuri, and A. Jain. A new approach to round-optimal secure multiparty
computation. In J. Katz and H. Shacham, editors, Advances in Cryptology - CRYPTO 2017
- 37th Annual International Cryptology Conference, Santa Barbara, CA, USA, August 20-24,
2017, Proceedings, Part I, volume 10401 of Lecture Notes in Computer Science, pages 468–499.
Springer, 2017.

27

[Bar02] B. Barak. Constant-round coin-tossing with a man in the middle or realizing the shared random
string model. In 43rd Symposium on Foundations of Computer Science (FOCS 2002), 16-19
November 2002, Vancouver, BC, Canada, Proceedings, pages 345–355, 2002.

[BJY97] M. Bellare, M. Jakobsson, and M. Yung. Round-optimal zero-knowledge arguments based on
any one-way function. In Advances in Cryptology - EUROCRYPT ’97, International Conference
on the Theory and Application of Cryptographic Techniques, Konstanz, Germany, May 11-15,
1997, Proceeding, volume 1233 of Lecture Notes in Computer Science, pages 280–305. Springer,
1997.

[Blu86a] M. Blum. How to prove a theorem so no one else can claim it. In In Proceedings of the
International Congress of Mathematicians, page 444451, 1986.

[Blu86b] M. Blum. How to prove a theorem so no one else can claim it. In In Proceedings of the
International Congress of Mathematicians, pages 1444–1454, 1986.

[CDS94] R. Cramer, I. Damg̊ard, and B. Schoenmakers. Proofs of partial knowledge and simplified design
of witness hiding protocols. In Y. Desmedt, editor, Advances in Cryptology — CRYPTO ’94,
volume 839 of Lecture Notes in Computer Science, pages 174–187. Springer Berlin Heidelberg,
1994.

[COP+14] K. Chung, R. Ostrovsky, R. Pass, M. Venkitasubramaniam, and I. Visconti. 4-round resettably-
sound zero knowledge. In Y. Lindell, editor, Theory of Cryptography - 11th Theory of Cryp-
tography Conference, TCC 2014, San Diego, CA, USA, February 24-26, 2014. Proceedings,
volume 8349 of Lecture Notes in Computer Science, pages 192–216. Springer, 2014.

[COSV16] M. Ciampi, R. Ostrovsky, L. Siniscalchi, and I. Visconti. Concurrent non-malleable commit-
ments (and more) in 3 rounds. In M. Robshaw and J. Katz, editors, Advances in Cryptology -
CRYPTO 2016 - 36th Annual International Cryptology Conference, Santa Barbara, CA, USA,
August 14-18, 2016, Proceedings, Part III, volume 9816 of Lecture Notes in Computer Science,
pages 270–299. Springer, 2016. Full version https://eprint.iacr.org/2016/566.

[COSV17a] M. Ciampi, R. Ostrovsky, L. Siniscalchi, and I. Visconti. Delayed-input non-malleable zero
knowledge and multi-party coin tossing in four rounds. In Y. Kalai and L. Reyzin, editors,
Theory of Cryptography - 15th International Conference, TCC 2017, Baltimore, MD, USA,
November 12-15, 2017, Proceedings, Part I, volume 10677 of Lecture Notes in Computer Science,
pages 711–742. Springer, 2017.

[COSV17b] M. Ciampi, R. Ostrovsky, L. Siniscalchi, and I. Visconti. Four-round concurrent non-malleable
commitments from one-way functions. In J. Katz and H. Shacham, editors, Advances in Cryptol-
ogy - CRYPTO 2017 - 37th Annual International Cryptology Conference, Santa Barbara, CA,
USA, August 20-24, 2017, Proceedings, Part II, volume 10402 of Lecture Notes in Computer
Science, pages 127–157. Springer, 2017. Full version https://eprint.iacr.org/2016/621.

[COSV17c] M. Ciampi, R. Ostrovsky, L. Siniscalchi, and I. Visconti. Round-optimal secure two-party
computation from trapdoor permutations. In Theory of Cryptography, Fifteenth Theory of
Cryptography Conference, TCC 2017, Baltimore, USA, November 12-15, 2017, Proceedings,
Lecture Notes in Computer Science. Springer, 2017.

[CPS13] K. Chung, R. Pass, and K. Seth. Non-black-box simulation from one-way functions and ap-
plications to resettable security. In D. Boneh, T. Roughgarden, and J. Feigenbaum, editors,
Symposium on Theory of Computing Conference, STOC’13, Palo Alto, CA, USA, June 1-4,
2013, pages 231–240. ACM, 2013.

28

https://eprint.iacr.org/2016/566
https://eprint.iacr.org/2016/621

[CPS+16a] M. Ciampi, G. Persiano, A. Scafuro, L. Siniscalchi, and I. Visconti. Improved or-composition
of sigma-protocols. In E. Kushilevitz and T. Malkin, editors, Theory of Cryptography - 13th
International Conference, TCC 2016-A, Tel Aviv, Israel, January 10-13, 2016, Proceedings,
Part II, volume 9563 of Lecture Notes in Computer Science, pages 112–141. Springer, 2016.
Full version http://eprint.iacr.org/2015/810.

[CPS+16b] M. Ciampi, G. Persiano, A. Scafuro, L. Siniscalchi, and I. Visconti. Online/offline OR com-
position of sigma protocols. In M. Fischlin and J. Coron, editors, Advances in Cryptology
- EUROCRYPT 2016 - 35th Annual International Conference on the Theory and Applica-
tions of Cryptographic Techniques, Vienna, Austria, May 8-12, 2016, Proceedings, Part II,
volume 9666 of Lecture Notes in Computer Science, pages 63–92. Springer, 2016. Full version
https://eprint.iacr.org/2016/175.

[Dam10] I. Damg̊ard. On Σ-protocol. http://www.cs.au.dk/~ivan/Sigma.pdf, 2010.

[DDN91] D. Dolev, C. Dwork, and M. Naor. Non-malleable cryptography (extended abstract). In
Proceedings of the 23rd Annual ACM Symposium on Theory of Computing, May 5-8, 1991,
New Orleans, Louisiana, USA, pages 542–552, 1991.

[GKP+17] V. Goyal, A. Kumar, S. Park, S. Richelson, and A. Srinivasan. New constructions of non-
malleable commitments and applications. Private communication, 2017.

[GLOV12] V. Goyal, C. Lee, R. Ostrovsky, and I. Visconti. Constructing non-malleable commitments: A
black-box approach. In 53rd Annual IEEE Symposium on Foundations of Computer Science,
FOCS 2012, New Brunswick, NJ, USA, October 20-23, 2012, pages 51–60, 2012.

[GMPP16a] S. Garg, P. Mukherjee, O. Pandey, and A. Polychroniadou. Personal communication, August
2016.

[GMPP16b] S. Garg, P. Mukherjee, O. Pandey, and A. Polychroniadou. The exact round complexity of se-
cure computation. In M. Fischlin and J. Coron, editors, Advances in Cryptology - EUROCRYPT
2016 - 35th Annual International Conference on the Theory and Applications of Cryptographic
Techniques, Vienna, Austria, May 8-12, 2016, Proceedings, Part II, volume 9666 of Lecture
Notes in Computer Science, pages 448–476. Springer, 2016.

[GMY06] J. A. Garay, P. MacKenzie, and K. Yang. Strengthening zero-knowledge protocols using signa-
tures. Journal of Cryptology, 19(2):169–209, 2006.

[Gol09] O. Goldreich. Foundations of cryptography: volume 2, basic applications. Cambridge university
press, 2009.

[Goy11] V. Goyal. Constant round non-malleable protocols using one way functions. In Proceedings
of the 43rd ACM Symposium on Theory of Computing, STOC 2011, San Jose, CA, USA, 6-8
June 2011, pages 695–704, 2011.

[GPR16] V. Goyal, O. Pandey, and S. Richelson. Textbook non-malleable commitments. In Proceedings of
the 48th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2016, Cambridge,
MA, USA, June 18-21, 2016, pages 1128–1141, 2016. Full version: Cryptology ePrint Archive,
Report 2015/1178.

[GRRV14] V. Goyal, S. Richelson, A. Rosen, and M. Vald. An algebraic approach to non-malleability. In
55th IEEE Annual Symposium on Foundations of Computer Science, FOCS 2014, Philadelphia,
PA, USA, October 18-21, 2014, pages 41–50, 2014. An updated full version is available at
http://eprint.iacr.org/2014/586.

29

http://eprint.iacr.org/2015/810
https://eprint.iacr.org/2016/175
http://www.cs.au.dk/~ivan/Sigma.pdf
http://eprint.iacr.org/2014/586

[KOS03] J. Katz, R. Ostrovsky, and A. D. Smith. Round efficiency of multi-party computation with a
dishonest majority. In E. Biham, editor, Advances in Cryptology - EUROCRYPT 2003, In-
ternational Conference on the Theory and Applications of Cryptographic Techniques, Warsaw,
Poland, May 4-8, 2003, Proceedings, volume 2656 of Lecture Notes in Computer Science, pages
578–595. Springer, 2003.

[Lin10] Y. Lindell. Foundations of cryptography 89-856. http://u.cs.biu.ac.il/~lindell/89-856/
complete-89-856.pdf, 2010.

[LP11a] H. Lin and R. Pass. Concurrent non-malleable zero knowledge with adaptive inputs. In Y. Ishai,
editor, Theory of Cryptography - 8th Theory of Cryptography Conference, TCC 2011, Provi-
dence, RI, USA, March 28-30, 2011. Proceedings, volume 6597 of Lecture Notes in Computer
Science, pages 274–292. Springer, 2011.

[LP11b] H. Lin and R. Pass. Constant-round non-malleable commitments from any one-way function.
In L. Fortnow and S. P. Vadhan, editors, Proceedings of the 43rd ACM Symposium on Theory
of Computing, STOC 2011, San Jose, CA, USA, 6-8 June 2011, pages 705–714. ACM, 2011.

[LPV08] H. Lin, R. Pass, and M. Venkitasubramaniam. Concurrent non-malleable commitments from
any one-way function. In R. Canetti, editor, Theory of Cryptography, Fifth Theory of Cryp-
tography Conference, TCC 2008, New York, USA, March 19-21, 2008., volume 4948 of Lecture
Notes in Computer Science, pages 571–588. Springer, 2008.

[LPV09] H. Lin, R. Pass, and M. Venkitasubramaniam. A unified framework for concurrent security:
universal composability from stand-alone non-malleability. In Proceedings of the 41st Annual
ACM Symposium on Theory of Computing,STOC 2009, Bethesda, MD, USA, May 31 - June
2, 2009, pages 179–188, 2009.

[LS90] D. Lapidot and A. Shamir. Publicly verifiable non-interactive zero-knowledge proofs. In Ad-
vances in Cryptology - CRYPTO, 1990.

[MV16] A. Mittelbach and D. Venturi. Fiat-shamir for highly sound protocols is instantiable. In
V. Zikas and R. D. Prisco, editors, Security and Cryptography for Networks - 10th International
Conference, SCN 2016, Amalfi, Italy, August 31 - September 2, 2016, Proceedings, volume 9841
of Lecture Notes in Computer Science, pages 198–215. Springer, 2016.

[Nao91] M. Naor. Bit commitment using pseudorandomness. J. Cryptology, 4(2):151–158, 1991.

[OV12] R. Ostrovsky and I. Visconti. Simultaneous resettability from collision resistance. Electronic
Colloquium on Computational Complexity (ECCC), 19:164, 2012.

[Pas04] R. Pass. Bounded-concurrent secure multi-party computation with a dishonest majority. In
L. Babai, editor, Proceedings of the 36th Annual ACM Symposium on Theory of Computing,
Chicago, IL, USA, June 13-16, 2004, pages 232–241. ACM, 2004.

[Pol16] A. Polychroniadou. On the Communication and Round Complexity of Secure Computation.
PhD thesis, Aarhus University, December 2016.

[PPV08] O. Pandey, R. Pass, and V. Vaikuntanathan. Adaptive one-way functions and applications. In
Advances in Cryptology - CRYPTO 2008, 28th Annual International Cryptology Conference,
Santa Barbara, CA, USA, August 17-21, 2008. Proceedings, pages 57–74, 2008.

30

http://u.cs.biu.ac.il/~lindell/89-856/complete-89-856.pdf
http://u.cs.biu.ac.il/~lindell/89-856/complete-89-856.pdf

[PR05] R. Pass and A. Rosen. New and improved constructions of non-malleable cryptographic proto-
cols. In Proceedings of the 37th Annual ACM Symposium on Theory of Computing, Baltimore,
MD, USA, May 22-24, 2005, pages 533–542, 2005.

[PR08] R. Pass and A. Rosen. New and improved constructions of nonmalleable cryptographic proto-
cols. SIAM J. Comput., 38(2):702–752, 2008.

[PW09] R. Pass and H. Wee. Black-box constructions of two-party protocols from one-way functions.
In Theory of Cryptography, 6th Theory of Cryptography Conference, TCC 2009, San Francisco,
CA, USA, March 15-17, 2009. Proceedings, pages 403–418, 2009.

[Rom90] J. Rompel. One-way functions are necessary and sufficient for secure signatures. In Proceedings
of the 22nd Annual ACM Symposium on Theory of Computing, May 13-17, 1990, Baltimore,
Maryland, USA, pages 387–394, 1990.

[SCO+01] A. D. Santis, G. D. Crescenzo, R. Ostrovsky, G. Persiano, and A. Sahai. Robust non-interactive
zero knowledge. In J. Kilian, editor, Advances in Cryptology - CRYPTO 2001, 21st Annual
International Cryptology Conference, Santa Barbara, California, USA, August 19-23, 2001,
Proceedings, volume 2139 of Lecture Notes in Computer Science, pages 566–598. Springer, 2001.

A Standard Definitions

Definition 5 (One-way function (OWF)). A function f : {0, 1}? → {0, 1}? is called one way if the following
two conditions hold:

• there exists a deterministic polynomial-time algorithm that on input y in the domain of f outputs f(y);

• for every ppt algorithm A there exists a negligible function ν, such that for every auxiliary input
z ∈ {0, 1}poly(λ):

Prob
[
y←{0, 1}? : A(f(y), z) ∈ f−1(f(y))

]
< ν(λ).

We say that a OWF f is a 1-to-1 OWF if f(x) 6= f(y) ∀(x, y) ∈ {0, 1}?.

Definition 6 (Following the notation of [CPS13]). A triple of ppt algorithms (Gen,Sign,Ver) is called a
signature scheme if it satisfies the following properties.

Validity: For every pair (s, v)← Gen(1λ), and every m ∈ {0, 1}λ, we have that

Ver(v,m,Sign(s,m)) = 1.

Security: For every ppt A, there exists a negligible function ν, such that for all auxiliary input z ∈ {0, 1}?
it holds that:

Pr[(s, v)← Gen(1λ); (m,σ)← ASign(s,·)(z, v) ∧ Ver(v,m, σ) = 1 ∧m /∈ Q] < ν(λ)

where Q denotes the set of messages whose signatures were requested by A to the oracle Sign(s, ·).

Definition 7 (Computational indistinguishability). Let X = {Xλ}λ∈N and Y = {Yλ}λ∈N be ensembles,
where Xλ’s and Yλ’s are probability distribution over {0, 1}l, for same l = poly(λ). We say that X = {Xλ}λ∈N
and Y = {Yλ}λ∈N are computationally indistinguishable, denoted X ≈ Y , if for every ppt distinguisher D
there exists a negligible function ν such that for sufficiently large λ ∈ N,∣∣∣Prob

[
t← Xλ : D(1λ, t) = 1

]
− Prob

[
t← Yλ : D(1λ, t) = 1

] ∣∣∣ < ν(λ).

31

We note that in the usual case where |Xλ| = Ω(λ) and λ can be derived from a sample of Xλ, it is possible
to omit the auxiliary input 1λ. In this paper we also use the definition of Statistical Indistinguishability.
This definition is the same as Definition 7 with the only difference that the distinguisher D is unbounded.
In this case use X ≡s Y to denote that two ensembles are statistically indistinguishable.

Definition 8 (Witness Indistinguishable (WI)). An argument/proof system Π = (P,V), is Witness Indis-
tinguishable (WI) for a relation Rel if, for every malicious ppt verifier V?, there exists a negligible function
ν such that for all x,w,w′ such that (x,w) ∈ Rel and (x,w′) ∈ Rel it holds that:∣∣∣Prob [〈P(w),V?〉(x) = 1]− Prob

[
〈P(w′),V?〉(x) = 1

] ∣∣∣ < ν(|x|).

Obviously one can generalize the above definitions of WI to their natural adaptive-input variants, where
the adversarial verifier can select the statement and the witnesses adaptively, before the prover plays the
last round.

Definition 9 (Proof of Knowledge [LP11b]). A protocol Π = (P,V) that enjoys completeness is a proof
of knowledge (PoK) for the relation RelL if there exists a probabilistic expected polynomial-time machine E,
called the extractor, such that for every algorithm P?, there exists a negligible function ν, every statement
x ∈ {0, 1}λ, every randomness r ∈ {0, 1}? and every auxiliary input z ∈ {0, 1}?,

Prob [〈P?r (z),V〉(x) = 1] ≤ Prob
[
w ← EP

?
r (z)(x) : (x,w) ∈ RelL

]
+ ν(λ).

We also say that an argument system Π is a argument of knowledge (AoK) if the above condition holds
w.r.t. any ppt P?.

In our security proofs we make use of the following observation. An interactive protocol Π that enjoys the
property of completeness and PoK (AoK) is a proof (an argument) system. Indeed suppose by contradiction
that is not. By the definition of PoK (AoK) it is possible to extract the witness for every theorem x ∈ {0, 1}λ
proved by P?r with probability greater than Prob [〈P?r (z),V〉(x) = 1]; contradiction.

In this paper we also consider the adaptive-input PoK/AoK property for all the protocols that enjoy
delayed-input completeness. Adaptive-input PoK/AoK ensures that the PoK/AoK property still holds
when a malicious prover can choose the statement adaptively at the last round.

A 3-round protocol Π = (P,V) for a relation RelL is an interactive protocol played between a prover P
and a verifier V on common input x and private input w of P s.t. (x,w) ∈ RelL. In a 3-round protocol the
first message a and the third message z are sent by P and the second messages c is played by V. At the end
of the protocol V decides to accept or reject based on the data that he has seen, i.e. x, a, c, z.

We usually denote the message c sent by V as a challenge, and as challenge length the number of bit of
c.

Definition 10 (Σ-Protocol). A 3-round public-coin protocol Π = (P,V) for a relation RelL is a Σ-Protocol
if the following properties hold:

• Completeness: if (P,V) follow the protocol on input x and private input w to P s.t. (x,w) ∈ RelL, V
always accepts.

• Special soundness: if there exists a polynomial time algorithm such that, for any pair of accepting
transcripts on input x, (a, c1, z1), (a, c2, z2) where c1 6= c2, outputs witness w such that (x,w) ∈ RelL.

• Special Honest Verifier Zero-knowledge (Special HVZK): there exists a ppt simulator algorithm Sim
that for any x ∈ L, security parameter λ and any challenge c works as follow: (a, z) ← Sim(1λ, x, c).

32

Furthermore, the distribution of the output of Sim is computationally indistinguishable from the distri-
bution of a transcript obtained when V sends c as challenge and P runs on common input x and any
w such that (x,w) ∈ RelL

22.

Definition 11. A delayed-input 3-round protocol Π = (P,V) for relation RelL enjoys adaptive-input special
soundness if there exists a polynomial time algorithm such that, for any pair of accepting transcripts (a, c1, z1)
for input x1 and (a, c2, z2) for input x2 with c1 6= c2, outputs witnesses w1 and w2 such that (x1, w1) ∈ RelL
and (x2, w2) ∈ RelL.

Definition 12. A delayed-input 3-round protocol Π = (P,V) for relation RelL enjoys adaptive-input Special
Honest Verifier Zero-knowledge (adaptive-input Special HVZK) if there exists a two phases ppt simulator
algorithm Sim that works as follow:

1. a← Sim(1λ, c, κ; ρ), where 1λ is the security parameter, c is the challenge κ is the size of the instance
to be proved and the randomness ρ;

2. z← Sim(x, ρ)23, where x is the instance to be proved.
Π is adaptive-input Special HVZK if any x ∈ L and for any c ∈ {0, 1}λ, the distribution of the transcripts
(a, c, z), computed by Sim, is computationally indistinguishable from the distribution of a transcript obtained
when V sends c as challenge and P runs on common input x and any w (available only in the third round)
such that (x,w) ∈ RelL.

A.1 Commitment Schemes

Definition 13 (Commitment Scheme). Given a security parameter 1λ, a commitment scheme CS = (Sen,Rec)
is a two-phase protocol between two ppt interactive algorithms, a sender Sen and a receiver Rec. In the com-
mitment phase Sen on input a message m interacts with Rec to produce a commitment com, and the private
output d of Sen.

In the decommitment phase, Sen sends to Rec a decommitment information (m, d) such that Rec accepts
m as the decommitment of com.

Formally, we say that CS = (Sen,Rec) is a perfectly binding commitment scheme if the following properties
hold:

Correctness:

• Commitment phase. Let com be the commitment of the message m given as output of an execution
of CS = (Sen,Rec) where Sen runs on input a message m. Let d be the private output of Sen in
this phase.

• Decommitment phase24. Rec on input m and d accepts m as decommitment of com.

Statistical (resp. Computational) Hiding([Lin10]): for any adversary (resp. ppt adversary) A
and a randomly chosen bit b ∈ {0, 1}, consider the following hiding experiment ExpHidingbA,CS(λ):

• Upon input 1λ, the adversary A outputs a pair of messages m0,m1 that are of the same length.

• Sen on input the message mb interacts with A to produce a commitment of mb.

• A outputs a bit b′ and this is the output of the experiment.

For any adversary (resp. ppt adversary) A, there exist a negligible function ν, s.t.:∣∣∣Prob
[

ExpHiding0
A,CS(λ) = 1

]
− Prob

[
ExpHiding1

A,CS(λ) = 1
] ∣∣∣ < ν(λ).

22Note that we require that the two transcripts are computationally indistinguishable as in [GMY06], instead of follow-
ing [CDS94] that requires the perfect indistinguishability between the two transcripts.

23To not overburden the notation we omit the randomness when we use the adaptive-input Special HVZK simulator
24In this paper we consider a non-interactive decommitment phase only.

33

Statistical (resp. Computational) Binding: for every commitment com generated during the com-
mitment phase by a possibly malicious unbounded (resp. malicious ppt) sender Sen? there exists a
negligible function ν such that Sen?, with probability at most ν(λ), outputs two decommitments (m0, d0)
and (m1, d1), with m0 6= m1, such that Rec accepts both decommitments.

We also say that a commitment scheme is perfectly binding iff ν(λ) = 0.
When a commitment scheme (Com,Dec) is non-interactive, to not overburden the notation, we use the
following notation.

– Commitment phase. (com, dec) ← Com(m) denotes that com is the commitment of the message m and
dec represents the corresponding decommitment information.

– Decommitment phase. Dec(com, dec,m) = 1.

A.2 3-Round Honest-Extractable Commitment Schemes

Informally, a 3-round commitment scheme is honest-extractable if there exists an efficient extractor that
having black-box access to any efficient honest sender that successfully performs the commitment phase,
outputs the only committed string that can be successfully decommitted. We give now a definition that
follows the one of [PW09].

Definition 14 (Honest-Extractable Commitment Scheme). A perfectly (resp. statistically) binding com-
mitment scheme ExCS = (ExSen,ExRec) is an honest-extractable commitment scheme if there exists an
expected ppt extractor ExtCom that given oracle access to any honest sender ExSen, outputs a pair (τ,m)
such that the following two properties hold:

- Simulatability: τ is identically distributed to the view of ExSen (when interacting with an honest
ExRec) in the commitment phase.

- Extractability: the probability that there exists a decommitment of τ to a message m′, where m′ 6= m
is 0 (resp. negligible).

B Definition of Secure Computation

Here we recall some useful definitions for our application. Our Multi-Party Computation (MPC) protocol
for coin tossing is secure in the same model used in [GMPP16b], therefore some definitions are taken almost
verbatim from [GMPP16b]. Always following Garg et al. we only recall the security definition for the the two
party case. The description naturally extends to multi party case as well (details can be found in [Gol09]).

B.1 Two-Party Computation

A two-party protocol problem is cast by specifying a random process that maps pairs of inputs to pairs of
outputs (one for each party). We refer to such a process as a functionality and denote it F : {0, 1}∗×{0, 1}∗ →
{0, 1}∗ × {0, 1}∗ where F = (F1, F2). That is, for every pair of inputs (x, y), the output-pair is a random
variable (F1(x, y), F2(x, y)) ranging over pairs of strings. The first party (with input x) wishes to obtain
F1(x, y) and the second party (with input y) wishes to obtain F2(x, y).

Adversarial behavior. Loosely speaking, the aim of a secure two-party protocol is to protect an honest
party against dishonest behavior by the other party. In this paper, we consider malicious adversaries who
may arbitrarily deviate from the specified protocol. When considering malicious adversaries, there are certain
undesirable actions that cannot be prevented. Specifically, a party may refuse to participate in the protocol,
may substitute its local input (and use instead a different input) and may abort the protocol prematurely.
One ramification of the adversary’s ability to abort, is that it is impossible to achieve fairness. That is,
the adversary may obtain its output while the honest party does not. In this work we consider a static

34

corruption model, where one of the parties is adversarial and the other is honest, and this is fixed before the
execution begins.

Communication channel. In our result we consider a secure simultaneous message exchange channel in
which all parties can simultaneously send messages over the channel at the same communication round but
allowing a rushing adversary. Moreover, we assume an asynchronous network25 where the communication is
open and delivery of messages is not guaranteed. For simplicity, we assume that the delivered messages are
authenticated. This can be achieved using standard methods.

Execution in the ideal model. An ideal execution proceeds as follows. Each party obtains an input,
denoted w (w = x for P1, and w = y for P2). An honest party always sends w to the trusted party. A
malicious party may, depending on w, either abort or send some w′ ∈ {0, 1}|w| to the trusted party. In case
it has obtained an input pair (x, y), the trusted party first replies to the first party with F1(x, y). Otherwise
(i.e., in case it receives only one valid input), the trusted party replies to both parties with a special symbol
⊥. In case the first party is malicious it may, depending on its input and the trusted party’s answer, decide
to stop the trusted party by sending it ⊥ after receiving its output. In this case the trusted party sends ⊥
to the second party. Otherwise (i.e., if not stopped), the trusted party sends F2(x, y) to the second party.
Outputs: An honest party always outputs the message it has obtained from the trusted party. A malicious
party may output an arbitrary (probabilistic polynomial-time computable) function of its initial input and
the message obtained from the trusted party.

Let F : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}∗ be a functionality where F = (F1, F2) and let S = (S1, S2)
be a pair of non-uniform probabilistic expected polynomial-time machines (representing parties in the ideal
model). Such a pair is admissible if for at least one i ∈ {0, 1} we have that Si is honest (i.e., follows the
honest party instructions in the above-described ideal execution). Then, the joint execution of F under S
in the ideal model (on input pair (x, y) and security parameter λ), denoted IDEALF,S(z)(1

λ, x, y) is defined
as the output pair of S1 and S2 from the above ideal execution.

Execution in the real model. We next consider the real model in which a real (two-party) protocol
is executed (and there exists no trusted third party). In this case, a malicious party may follow an arbi-
trary feasible strategy; that is, any strategy implementable by non-uniform probabilistic polynomial-time
machines. In particular, the malicious party may abort the execution at any point in time (and when this
happens prematurely, the other party is left with no output). Let F be as above and let Π be a two-party
protocol for computing F . Furthermore, let A = (A1, A2) be a pair of non-uniform probabilistic polynomial-
time machines (representing parties in the real model). Such a pair is admissible if for at least one i ∈ {0, 1}
we have that Ai is honest (i.e., follows the strategy specified by Π). Then, the joint execution of Π under
A in the real model, denoted REALΠ,A(z)(1

λ), is defined as the output pair of A1 and A2 resulting from the
protocol interaction.

Definition 15 (secure two-party computation). Let F and Π be as above. Protocol Π is said to securely
compute F (in the malicious model) if for every pair of admissible non-uniform probabilistic polynomial-time
machines A = (A1, A2) that run with auxiliary input z for the real model, there exists a pair of admissible
non-uniform probabilistic expected polynomial-time machines S = (S1, S2) (that use z as auxiliary input) for
the ideal model, such that:

REALΠ,A(z)(1
λ) ≈ IDEALf,S(z)(1

λ).

25The fact that the network is asynchronous means that the messages are not necessarily delivered in the order which they
are sent.

35

C Special WIPoK

C.1 Improving the Soundness of LS

In this section we consider the 3-round WIPoK for the NP-complete language of graph Hamiltonicity (HC),
provided in [LS90], and we will refer to this construction as the LS protocol. An interesting property of this
WIPoK is that only the size of the statement need to be known before the last round by both the prover
and the verifier. We show that the LS protocol does not enjoys special soundness when the statement to be
proved is adaptively chosen by the prover in the last round. That is, if two accepting transcripts (that share
the first round) are provided w.r.t. to two different instances x0 and x1, then only the witness w for xb is
extracted (with b ∈ {0, 1}). More precisely, given the accepting transcript (ls1, ls2

0, ls
3
0) for the statement x0

and (ls1, ls2
1, ls

3
1) for the statement x1 (with ls2

0 6= ls2
1) then it could be that only wb can be extracted. We

provide a construction that overcomes this issue, allowing the extraction of the witnesses for both x0 and x1

thus obtaining a Σ-protocol where the special soundness holds even when the two accepting transcripts refer
to different theorems adaptively chosen in the last round. Following [CPS+16b] we refer to this property as
adaptive-input special soundness (see Definition 11).

Before showing why LS is not already adaptive-input special sound and how our construction works, we
briefly describe the LS protocol with one-bit challenge following [OV12].

Let P be prover and V the verifier. The common input of P and V is κ, that represents the number
of vertexes of the instance G to be proved. The graph G is represented by a κ × κ adjacency matrix MG
where MG[i][j] = 1 if there exists an edge between vertexes i and j in G. A non-edge position i,j is a pair
of vertexes that are not connected in G and for which MG[i][j] = 0.
- P picks a random κ-vertex cycle graph C and commits bit-by-bit to the corresponding adjacency matrix

using a statistically binding commitment scheme.
- V responds with a randomly chosen bit b.
- P on input the graph G and the Hamiltonian cycle w executes the following steps. If b = 0, P opens all

the commitments, showing that the matrix committed in the first round is actually an κ-vertex cycle.
If b = 1, P sends a permutation π mapping the vertex of C in G. Then it opens the commitment of
the adjacency matrix of C corresponding to the non-edges of the graph G.

- V accepts (outputs 1) if what he receives in the third round is consistent with the bit b that he was sent
in the second round.

Getting the answer for both b = 0 and b = 1 (w.r.t. to the same graph G) allows the extraction of the
cycle for G. The reason is the following. For b = 0 one gets the random cycle C. Then for b = 1 one gets
the permutation mapping the random cycle in the actual cycle that is given to P before the last message of
the protocol.

We now observe that a malicious prover P? could gives the answer for b = 0 w.r.t. to the graph G0 and the
answer for b = 1 w.r.t. the graph G1 (due to the delayed-input nature of LS). This means that even knowing
two accepting transcripts that share the first round, the permutation that maps the vertexes of C in G0 it
is not known. Therefore an efficient algorithm can only compute the cycle w1 of G1 and gets no information
about the Hamiltonian cycle of G0. Summing up, given the accepting transcripts (ls1, 0, ls3

0) for the graph G0

and (ls1, 1, ls3
1) for the graph G1, only the Hamiltonian cycle for G1 can be computed. That is, only the cycle

for the graph proved by P? to be Hamiltonian using as a second round the challenge 1 can be efficiently
computed. Starting from this observation, in order to allow an efficient algorithm to compute cycles for
both G0 and G1, we construct an improved version of LS that we denoted with LSimp = (P imp,V imp). LSimp

uses LS in a black-box way. For ease of exposition we use the following notation. ls1 ← P(1λ, κ; ρ) denotes
that P is executed on input the security parameter (in unary) 1λ, κ and the randomness ρ and gives in
output the first round of LS ls1. ls3 ← P(G,w, ls2, ρ) denotes that P has computed the third round of LS by
running on input the graph G, the cycle w for the graph G, the bit ls2 and the randomness used to compute
ls1. V(ls1, ls2, ls3, G) denotes the output of V on input ls1, ls2, ls3 and the graph G. Let κ be the number of

36

vertexes of the graph G to be proved, our LSimp = (P imp,V imp) works as follows.
1. P imp on input the security parameter λ, κ and the randomness ρ0||ρ1 computes ls1

0 ← P(1λ, κ; ρ0),
ls1

1 ← P(1λ, κ; ρ1) and sends (ls0
1, ls

1
1) to V imp.

2. V imp picks and sends a random bit b.
3. P imp, upon receiving b, on input the graph G and the Hamiltonian cycle w for G computes ls3

0 ←
P(G,w, b, ρ0), ls3

1 ← P(G,w, 1− b, ρ1) and sends (ls3
0, ls

3
1).

4. V imp accepts iff V(G, ls1
0, b, ls

3
0) = 1 and V(G, ls1

1, 1− b, ls3
1) = 1.

Theorem 4. Assuming one-to-one OWFs, LSimp is a Σ-protocol with adaptive-input Special HVZK simulator
and adaptive-input special soundness. Moreover LSimp is Zero Knowledge.

Proof. (Delayed-input) Completeness. The (delayed-input) completeness of LSimp comes from the
(delayed-input) completeness of LS.
Adaptive-input special soundness. Let us consider two accepting transcripts that share the first round
for LSimp:

(
(ls0, ls1), 0, (ls3

0, ls
3
1)
)

for the statement G and
(
(ls0, ls1), 1, (ls3

1
′
, ls3

1
′
)
)

for the statement G′. We can

isolate the sub-transcripts (ls0, 0, ls
3
0) and (ls0, 1, ls

3
0
′
) and observe that V(G, ls1

0, 0, ls
3
0) = 1 = V(G′ls1

0, 1, ls
3
0
′
).

From what we discuss before about LS we know that in this case the witness w for G′ can be extracted.
Also let us now consider the two sub-transcripts (ls1, 1, ls

3
1) and (ls1, 0, ls

3
1
′
). Also in this case, by observing

that V(G, ls1, 1, ls
3
1) = 1 = V(G′, ls1, 0, ls

3
1
′
), the cycle for G can be efficiently computed.

Adaptive-input Special HVZK. Following [MV16], we consider an adaptive-input Special HVZK sim-
ulator S associated to the LS’s protocol. This is equal to a Special HVZK simulator with the additional
property that the first round can be simulated without knowing the instance to be proved (see Definition 12).
In more details S works in two phases. In the first phase just 1λ, the challenge ls2, the number of vertexes
κ is used to output the first round ls1. We denote this phase using: ls1 ← S(1λ, ls2, κ). In the second phase
S takes as input the instance and output the third round ls3. We denote this phase using ls3 ← S(G). The
adaptive-input Special HVZK simulator S imp for LSimp just internally runs S two times, once using b and
once using 1− b as a challenge. In more details the two phase of S imp are the following.

1. S imp, on input 1λ, the challenge b, κ and the randomness ρb||ρ1−b, computes ls1
b ← S(1λ, b, κ; ρb),

ls1
1−b ← S(1λ, 1− b, κ; ρ1−b) and outputs (ls1

b , ls
1
1−b).

2. S imp, on input the graph G, ρ0 and ρ1 computes ls3
b ← S(G, ρb), ls3

1−b ← S(G, ρ1−b) and outputs
(ls3
b , ls

3
1−b).

The transcript
(
(ls1
b , ls

1
1−b), b, (ls3

b , ls
3
1−b)

)
output by S imp is is computationally indistinguishable from a

transcript computed by P imp (that uses as input an Hamiltonian cycle w of G) due to the security of the
underlying adaptive-input Special HVZK simulator S.
Zero-Knowledge. The ZK simulator of LSimp just needs to guess the bit b chosen by the adversarial verifier
and runs the adaptive-input Special HVZK simulator.

It is easy to see that (as for LS) if we consider λ parallel executions of LSimp then we obtain a protocol
LSλ that still enjoys adaptive-input completeness, adaptive-input special soundness, adaptive-input Special
HVZK. Moreover LSλ is WI. Formally, we can claim the following theorems.

Theorem 5. Assuming one-to-one OWFs, LSλ is a Σ-protocol with adaptive-input Special HVZK, adaptive-
input special soundness and WI.

Proof. Completeness, adaptive-input special soundness and adaptive-input Special HVZK come immediately
from the adaptive-input special soundness and adaptive-input Special HVZK of LSimp. The WI comes from
the observation that LSimp is WI (due to the zero knowledge property), and that WI is preserved under
parallel (and concurrent) composition.

37

Theorem 6. Assuming OWFs, LSλ is a 4-round public-coin interactive protocol with adaptive-input Special
HVZK, adaptive-input special soundness and WI.

Proof. The proof of this theorem just relies on the observation that in order to instantiate a statistically
binding commitment scheme using OWFs an additional round is required to compute the first round of
Naor’s commitment scheme [Nao91].

Observe that since Hamiltonicity is an NP-complete language, the above constructions work for any NP
language through NP reductions. For simplicity in the rest of the paper we will omit the NP reduction
therefore assuming that the above scheme works directly on a given NP-language L.

C.2 Combining (adaptive-input) Special HVZK PoK Through [CDS94]

In our paper we use the well known technique for composing two Σ-protocols to compute the OR for
compound statement [CDS94, GMY06]. In more details, let Π0 = (P0,V0) and Π1 = (P1,V1) be Σ-
protocols for the respective NP-relation RelL0 (with Special HVZK simulator Sim0) and RelL1 (with Special
HVZK simulator Sim1). Then it is possible to use Π0 and Π1 to construct ΠOR = (POR,VOR) for relation
Rel

OR
= {((x0, x1), w) : ((x0, w) ∈ RelL0) OR ((x1, w) ∈ RelL1)} that works as follows.

Protocol ΠOR = (POR,VOR): Let wb with b ∈ {0, 1} be s.t. (xb, wb) ∈ RelLb
. POR and VOR on common

input (x0, x1) and private input wb compute the following steps.
- POR computes ab ← Pb(1λ, xb, wb). Furthermore he picks c1−b ← {0, 1}λ and computes (a1−b, z1−b) ←

Sim1−b(1
λ, x1−b, c1−b). POR sends a0, a1 to VOR.

- VOR, upon receiving a0, a1 picks c← {0, 1}λ and sends c to POR.
- POR, upon receiving c computes cb = c1−b ⊕ c and computes zb ← Pb(cb). POR sends c0, c1, z0 z1 to VOR.
- VOR checks that the following conditions holds: c = c0⊕ c1, V0(x0, a0, c0, z0) = 1 and V1(x1, a1, c1, z1) = 1.

If all the checks succeed then outputs 1, otherwise outputs 0.

Theorem 7. ([CDS94]) Let Σ0 and Σ1 be two Σ-protocols, then ΠOR = (POR,VOR) is a Σ-protocol for
RelLOR

.

Theorem 8. ([Dam10]) Let Π = (P,V) be a Σ-protocol for relation RelL with negligible soundness error26,
then Π is a proof of knowledge for RelL.

In our work we instantiate ΠOR using as Π0 and Π1 the Blum’s protocol [Blu86b] for the NP-complete
language for graph Hamiltonicity (that also is a Σ-Protocol). Therefore Th. 7 (and Th. 8) can be applied.

We also consider an instantiation of ΠOR using as Π = (P,V) our LSλ. If we instantiate ΠOR using
LSλ and the corresponding adaptive-input Special HVZK simulator LSλ, then ΠOR is adaptive-input special
soundness. More formally we can claim the following theorem.

Theorem 9. If ΠOR is instantiated using LSλ (and the corresponding adaptive-input Special HVZK simulator
Sλ), then ΠOR enjoys the delayed-input completeness and adaptive-input special sound for the NP-relation
RelLOR

.

Proof. The delayed-input completeness follows from the delayed-input completeness of LSλ.
Adaptive-input special soundness. Let us consider two accepting transcripts that share the first

round for ΠOR:
(
(π0, π1), π2, (π2

0, π
3
0, π

2
1, π

3
1)
)

for the statement (x0, x1) and
(
(π0, π1), π2′, (π2

0
′
, π3

0
′
, π2

1
′
π3

1
′
)
)

for the statement (x′0, x
′
1), where π2 6= π2′. We observe that since π2 6= π2′, π2 = π2

0⊕π2
1 and π2′ = π2

0
′⊕π2

1
′

it holds that either π2
0 6= π2

0
′

or π2
1 6= π2

1
′
. Suppose w.l.o.g. that π2

0 6= π2
0
′
. Then we are guaranteed from the

adaptive-input special soundness of LSλ that using the transcripts (π0, π
2
0, π

3
0) and (π0, π

2
0
′
, π3

0
′
) the values

(wa, wb) s.t. (x0, wa) ∈ RelL0 and (x′0, wb) ∈ RelL0 can be extracted in polynomial-time. The same arguments
can be used when π2

1 6= π2
1
′
.

26The soundness error represents the probability of a malicious prover to convince the verifier of a false statement.

38

Using a result of [CPS+16b] we can claim the following theorem.

Theorem 10. ΠOR instantiated using LSλ is adaptive-input PoK for the NP-relation RelLOR
.

It would be easy to prove that ΠOR is also WI, however in this paper we are not going to rely directly
on the WI property of ΠOR, in order to deal with the rewinding issue that we have described earlier. More
precisely, in the two main contributions of this paper we will use ΠOR (the one instantiated from Blum’s
protocol and the one instantiated using LSλ) in a non-black box way in order to prove the security of our
protocols. It will be crucial for our reduction to rely on the (adaptive-input) Special HVZK of Π0 and
Π1 instead of using directly the WI property of ΠOR. The intuitively reason is that it is often easier in a
reduction to rely on the security of a non-interactive primitive (like Special HVZK is) instead of an interactive
primitive (like WI). This is the reason why we use the OR composition of [CDS94, GMY06] combined with
the Blum’s protocol (or the LS protocol) instead of relying on the (adaptive-input) WI provided by a Blum’s
protocol (LS protocol).

In the rest of the paper, in order to rely on OWFs only, we sometimes use a four round version of Blum’s
and LS protocols. In this case there is an additional initial round that goes from the verifier to the prover
and corresponds to the first round of Naor’s commitment scheme [Nao91].

39

	Introduction
	Our Contribution
	MPCT from NMZK
	Overview of Our Delayed-Input Parallel NMZK Argument from OWFs
	4-Round Secure Multi-Party Coin Tossing

	Definitions and Tools
	(Delayed-Input) Proof/Argument Systems

	4-Round Delayed-Input NMZK from OWFs
	Notation, Non-Malleability Definitions and Tools
	Non-Malleable Commitments
	2-Round Instance-Dependent Trapdoor Commitments.

	Overview of Our Protocol
	Our protocol: NMZK.

	Construction of Delayed-Input NMZK from OWFs

	Multi-Party Coin-Tossing Protocol
	4-Round Secure Multi-Party Coin Tossing: MPCT
	MPCT: Informal Description and Security Intuition
	Formal Description

	Acknowledgments
	Standard Definitions
	Commitment Schemes
	3-Round Honest-Extractable Commitment Schemes

	Definition of Secure Computation
	Two-Party Computation

	Special WIPoK
	Improving the Soundness of LS
	Combining (adaptive-input) Special HVZK PoK Through CDS94

