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Abstract

We study the question of minimizing the computational complexity of (robust) secret sharing schemes
and error correcting codes. In standard instances of these objects, both encoding and decoding involve
linear algebra, and thus cannot be implemented in the class AC0. The feasibility of non-trivial secret
sharing schemes in AC0 was recently shown by Bogdanov et al. (Crypto 2016) and that of (locally)
decoding errors in AC0 by Goldwasser et al. (STOC 2007).

In this paper, we show that by allowing some slight relaxation such as a small error probability, we
can construct much better secret sharing schemes and error correcting codes in the class AC0. In some
cases, our parameters are close to optimal and would be impossible to achieve without the relaxation.
Our results significantly improve previous constructions in various parameters.

Our constructions combine several ingredients in pseudorandomness and combinatorics in an inno-
vative way. Specifically, we develop a general technique to simultaneously amplify security threshold
and reduce alphabet size, using a two-level concatenation of protocols together with a random permuta-
tion. We demonstrate the broader usefulness of this technique by applying it in the context of a variant
of secure broadcast.
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1 Introduction

The motivation for this paper comes from two different sources. The first is the general theme of improving
performance at the price of allowing some small probability of error or failure. This is evident throughout
computer science. For example, randomized algorithms tend to be much more efficient than their deter-
ministic counterparts. In cryptography and coding theory, randomization with small failure probability can
often be used to amplify security or improve efficiency. This is arguably a good tradeoff in practice.

The second source of motivation is the goal of minimizing the computational complexity of crypto-
graphic primitives and related combinatorial objects. For example, a line of work on the parallel complexity
of cryptography [19, 16, 33, 2, 3] successfully constructed one-way functions and other cryptographic
primitives in the complexity class NC0 based on different kinds of assumptions, including very standard
cryptographic assumptions. Works along this line have found several unexpected applications, most re-
cently in the context of general-purpose obfuscation [27]. The study of low-complexity cryptography is also
motivated by the goal of obtaining stronger negative results. For instance, low-complexity pseudo-random
functions imply stronger hardness results for learning [34] and stronger natural proof barriers [31], and
low-complexity decryption [9] implies a barrier for function secret sharing [11].

In this paper, we address the question of minimizing the complexity of secret sharing schemes and error
correcting codes by introducing additional randomization and allowing for a small failure probability. We
focus on the complexity class AC0, which is the lowest class for which a secret can be reconstructed or a
message be decoded with negligible error probability. We show that the randomization approach can be
used towards obtaining much better parameters than previous constructions. In some cases, our parameters
are close to optimal and would be impossible to achieve without randomization.

We now give a more detailed account of our results, starting with some relevant background.

1.1 (Robust) secret sharing in AC0

A secret sharing scheme allows a dealer to randomly split a secret between n parties so that qualified subsets
of parties can reconstruct the secret from their shares while unqualified subsets learn nothing about the secret.
We consider here a variant of threshold secret sharing (also known as a “ramp scheme”), where any k parties
can learn nothing about the secret, whereas all n parties together can recover the secret from their shares.
We also consider a robust variant where the secret should be correctly reconstructed even if at most d shares
are corrupted by an adversary, possibly in an adaptive fashion. We formalize this below.

Definition 1.1 (secret sharing). An (n, k) secret sharing scheme with message alphabet Σ0, message length
m, and share alphabet Σ is a pair of functions (Share,Rec), where Share : Σm

0 → Σn is probabilistic and
Rec : Σn → Σm

0 is deterministic, which satisfy the following properties.

• Privacy: For a privacy threshold k, the adversary can choose a sequence W = (w1, . . . , wk) ∈ [n]k

of share indices to observe, either adaptively (where each wi depends on previously observed shares
Share(x)w1 , . . . ,Share(x)wi−1) or non-adaptively (where W is picked in one shot). We say that the
scheme is ε-private if for every such strategy, there is a share distribution D over Σk such that for
every secret message x ∈ Σm

0 , Share(x)W is ε-close (in statistical distance) to D. We refer to ε as the
privacy error and say that the scheme has perfect privacy if ε = 0.

• Reconstruction: We say that the scheme has reconstruction error η if for every x ∈ Σm
0 ,

Pr[Rec(Share(x)) = x] ≥ 1− η.

We say the scheme has perfect reconstruction if η = 0.

We are also interested in robust secret sharing, where an adversary is allowed to modify at most d shares.
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• Robustness: For any secret x ∈ Σm
0 , let Y = Share(x). Consider an arbitrary adversary who

(adaptively or non-adaptively) observes d shares and can then arbitrarily change these d shares,
transforming Y to Y ′. The scheme is d-robust if for every such adversary,

Pr[Rec(Y ′) = x] ≥ 1− η.

If the share alphabet and the message alphabet are both Σ, then we simply say the alphabet of the
scheme is Σ. By saying that a secret sharing scheme is in AC0, we mean that both the sharing function and
the reconstruction function can be computed by (uniform) AC0 circuits.

A recent work of Bogdanov et al. [8] considers the complexity of sharing and reconstructing secrets. The
question is motivated by the observation that almost all known secret sharing schemes, including the well
known Shamir’s scheme [35], require the computation of linear functions over finite fields, and thus cannot
be implemented in the class AC0 (i.e., constant depth circuits). Thus a natural question is whether there exist
secret sharing schemes in AC0 with good parameters. In the case of threshold secret sharing, Bogdanov et.
al [8] showed a relation between the approximate degree1 of a function and the privacy threshold of a secret
sharing scheme. Using this and known approximate degree lower bounds, they obtained several secret
sharing schemes with sharing and reconstruction functions computable in AC0. However, to achieve a large
privacy threshold (e.g., k = Ω(n)) their construction needs to use a large alphabet (e.g., size 2poly(n)). In
the case of binary alphabet, they can only achieve privacy threshold Ω(

√
n) with perfect reconstruction

and privacy threshold Ω((n/ log n)2/3) with constant reconstruction error η < 1/2. This limit is inherent
without improving the best known approximate degree of an AC0 function [12]. Furthermore, their schemes
only share one bit, and a naive approach of sharing more bits by repeating the scheme multiple times will
lead to a bad information rate. This leaves open the question of improving these parameters. Ideally, we
would like to share many bits (e.g., Ω(n)), obtain a large privacy threshold (e.g., Ω(n)), and achieve perfect
reconstruction and small alphabet size at the same time.

In order to improve the AC0 secret sharing schemes from [8], we relax their perfect privacy requirement
and settle for the notion of ε-privacy from Definition 1.1. (This relaxation was recently considered in [10],
see discussion below.) Note that this relaxation is necessary to improve the privacy threshold of AC0 secret
sharing schemes, unless one can obtain better approximate degree lower bounds of an explicit AC0 function
(as [8] showed that an explicit AC0 secret sharing scheme with privacy threshold k and perfect privacy also
implies an explicit function in AC0 with approximate degree at least k). Like most schemes in [8], we
only require that the secret can be reconstructed by all n parties. On the other hand, we always require
perfect reconstruction. We show that under this slight relaxation, we can obtain much better secret sharing
schemes in AC0. For an adaptive adversary, we can achieve both a constant information rate and a large
privacy threshold (k = Ω(n)) over a binary alphabet. In addition, our privacy error is exponentially small.
Specifically, we have the following theorem.

Theorem 1.2 (adaptive adversary). For every n ∈ N and constant γ ∈ (0, 1/4), there exists an explicit
(n,Ω(n)) secret sharing scheme in AC0 with alphabet {0, 1}, secret length m = Ω(n), adaptive privacy

error 2−Ω(n
1
4−γ) and perfect reconstruction.

Note that again, by using randomization and allowing for a small privacy error, we can significantly
improve both the privacy threshold and the information rate, while also making the scheme much more
efficient by using a smaller alphabet.

1The approximate degree of a Boolean function is the lowest degree of a real polynomial that can approximate the function
within, say, an additive difference of 1/3 on every input.
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Remark 1.3. We note that a recent paper by Bun and Thaler [12] gave improved lower bounds for the
approximate degree of AC0 functions. Specifically, for any constant α > 0 they showed an explicit AC0

function with approximate degree at least n1−α, and by the relation established in [8] this also gives a
secret sharing scheme in AC0 with privacy threshold n1−α. However, our results are stronger in the sense
that we can achieve threshold Ω(n), and furthermore we can achieve perfect reconstruction while the secret
sharing scheme in [12] only has constant reconstruction error.

Remark 1.4. Our construction of AC0 secret sharing schemes is actually a general transformation and

can take any such scheme in [8] or [12] as the starting point. The error 2−Ω(n
1
4−γ) in Theorem 1.2 comes

from our use of the one-in-a-box function [32], which has approximate degree n1/3. We can also use the

new AC0 function of [12] with approximate degree n1−α, which will give us an error of 2−Ω(n
1
2−γ) but the

reconstruction error will become a constant. We note that the privacy error of our construction is also close
to optimal, without further improvement on the lower bounds of approximate degree of AC0 functions. This
is because a privacy error of 2−s will imply an AC0 function of approximate degree Ω(s/ log n). Thus if one
can achieve a sufficiently small privacy error (e.g., 2−Ω(n)), then this will give an improved approximate
degree lower bound for an AC0 function. See Appendix A of the full version for a more detailed explanation.

A very recent paper by Bogdanov and Williamson [10] considered a similar relaxation as ours. Specif-
ically, they showed how to construct two distributions over n bits that are (k, ε)-wise indistinguishable, but
can be distinguished with advantage 1− η by some AC0 function. Here (k, ε)-wise indistinguishable means
that if looking at any subset of k bits, the two distributions have statistical distance at most ε. Translating into
the secret sharing model, this roughly implies an AC0 secret sharing scheme with binary alphabet, privacy
threshold k, privacy error ε and reconstruction error η. Bogdanov and Williamson [10] obtained several re-
sults in this case. Specifically, they showed a pair of such distributions for any k ≤ n/2 with ε = 2−Ω(n/k),
that can be distinguished with η = Ω(1) by the OR function; or for any k with ε = 2−Ω((n/k)1−1/d), that can
be distinguished with η = 0 by a depth-d AND-OR tree.

We note the following important differences between our results and the corresponding results by Bog-
danov and Williamson [10]: first, the results in [10], in the language of secret sharing, only consider a 1-bit
secret, while our results can share Ω(n) bits with the same share size. Thus our information rate is much
larger than theirs. Second, we can achieve a privacy threshold of k = Ω(n) while simultaneously achieving
an exponentially small privacy error of ε = 2−n

Ω(1)
and perfect reconstruction (η = 0). In contrast, the re-

sults in [10], when going into the range of k = Ω(n), only have constant privacy error. In short, our results
are better than the results in [10], in the sense that we can simultaneously achieve asymptotically optimal
information rate and privacy threshold, exponentially small privacy error and perfect reconstruction. As a
direct corollary, we have the following result, which is incomparable to the results in [10].

Corollary 1.5. There exists a constant α > 0 such that for every n and k ≤ αn, there exists a pair
of (k, 2−n

Ω(1)
)-wise indistinguishable distributions X , Y over {0, 1}n and an AC0 function D such that

Pr[D(X)]− Pr[D(Y )] = 1.

Next, we extend our AC0 secret sharing schemes to the robust case, where the adversary can tamper
with several parties’ shares. Our goal is to simultaneously achieve a large privacy threshold, a large toler-
ance to errors, a large information rate and a small alphabet size. We can achieve a constant information
rate with privacy threshold and error tolerance both Ω(n), with constant size alphabet, exponentially small
privacy error and polynomially small reconstruction error. However, here we can only handle a non-adaptive
adversary. Specifically, we have the following theorem.

Theorem 1.6 (non-adaptive adversary). For every n ∈ N, every η = 1
poly(n) , there exists an explicit

(n,Ω(n)) robust secret sharing scheme in AC0 with share alphabet {0, 1}O(1), message alphabet {0, 1},
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message length m = Ω(n), non-adaptive privacy error 2−n
Ω(1)

, non-adaptive robustness Ω(n) and recon-
struction error η.

1.2 Error correcting codes for additive channels in AC0

Robust secret sharing schemes are natural generalizations of error correcting codes. Thus our robust secret
sharing schemes in AC0 also give error correcting codes with randomized AC0 encoding and deterministic
AC0 decoding. The model of our error correcting codes is the same as that considered by Guruswami
and Smith [21]: stochastic error correcting codes for additive channels. Here, the code has a randomized
encoding function and a deterministic decoding function, while the channel can add an arbitrary error vector
e ∈ {0, 1}n of Hamming weight at most ρn to the transmitted codeword of length n. As in [21], the error
may depend on the message but crucially does not depend on the randomness used by the encoder. Formally,
we have the following definition.

Definition 1.7. For any n,m ∈ N, any ρ, ε > 0, an (n,m, ρ) stochastic binary error correcting code
(Enc,Dec) with randomized encoding function Enc : {0, 1}m → {0, 1}n, deterministic decoding function
Dec : {0, 1}n → {0, 1}m and decoding error ε, is such that for every x ∈ {0, 1}m, every e = (e1, . . . , em) ∈
{0, 1}m with hamming weight at most ρn,

Pr[Dec(Enc(x) + e) = x] ≥ 1− ε.

An (n,m, ρ) stochastic error correcting code (Enc,Dec) can be computed by AC0 circuits if both Enc
and Dec can be computed by AC0 circuits.

Guruswami and Smith [21] constructed such codes that approach the Shannon capacity 1−H(ρ). Their
encoder and decoder run in polynomial time and have exponentially small decoding error. Here, we aim at
constructing such codes with AC0 encoder and decoder. In a different setting, Goldwasser et. al [20] gave a
construction of locally decodable codes that can tolerate a constant fraction of errors and have AC0 decoding.
Their code has deterministic encoding but randomized decoding. By repeating the local decoder for each
bit for O(log n) times and taking majority, one can decode each bit in AC0 with error probability 1/poly(n)
and thus by a union bound the original message can also be decoded with error probability 1/poly(n).
However we note that the encoding function of [20] is not in AC0, and moreover their message rate is only
polynomially small. In contrast, our code has constant message rate and can tolerate a constant fraction of
errors (albeit in a weaker model) when the decoding error is 1/poly(n) or even 2−poly log(n). The rate and
tolerance are asymptotically optimal. We can achieve even smaller error (2−Ω(r/ logn)) with message rate
1/r. Furthermore both our encoding and decoding are in AC0. Specifically, we have the following theorems.

Theorem 1.8 (error-correcting codes). For any n ∈ N and ε = 2−poly log(n), there exists an (n,Ω(n),Ω(1))
stochastic binary error correcting code with decoding error ε, which can be computed by AC0 circuits.

Theorem 1.9 (error-correcting codes with smaller decoding error). For any n, r ∈ N, there exists an
(n,m = Ω(n/r),Ω(1)) stochastic binary error correcting code with decoding error 2−Ω(r/ logn), which
can be computed by AC0 circuits.

Note that Theorem 1.9 is interesting mainly in the case where r is at least poly log n.

Remark 1.10. We note that, without randomization, it is well known that deterministic AC0 circuits cannot
compute asymptotically good codes [29]. Thus the randomization in our AC0 encoding is necessary here.
For deterministic AC0 decoding, only very weak lower bounds are known. In particular, Lee and Viola [26]
showed that any depth-c AC0 circuit with parity gates cannot decode beyond error (1/2−1/O(log n)c+2)d,
where d is the distance of the code. While the repetition code can be decoded in AC0 with a near-optimal
fraction of errors by using approximate majority, obtaining a similar positive result for codes with a signifi-
cantly better rate is open.
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1.3 Secure broadcasting with an external adversary

We apply our ideas and technical approach to the following flavor of secure broadcasting in the presence of
an adversary. The problem can be viewed as a generalization of a one-time pad encryption. In a one-time pad
encryption, two parties share a secret key which can be used to transmit messages with information-theoretic
security. Suppose that each party wants to transmit anm-bit string to the other party. If an external adversary
can see the entire communication, then it is well known that to keep both messages secret, the parties must
share a secret key of length at least 2m. This can be generalized to the case of n parties, where we assume
that they have access to a public broadcast channel, and each party wants to securely communicate an m-bit
string to all other parties. This problem can be useful, for example, when n collaborating parties want to
compute a function of their secret inputs without revealing the inputs to an external adversary. Again, if the
adversary can see the entire communication, then the parties need to share a secret key of length at least nm.

Now, what if we relax the problem by restricting the adversary’s power? Suppose that instead of seeing
the entire communication, the adversary can only see some fraction of the communicated messages. Can
we get more efficient solutions? We formally define this model below, requiring not only the secrecy of the
inputs but also correctness of the outputs in the presence of tampering with a bounded fraction of messages.

Definition 1.11. Let n,m ∈ N and α, ε > 0. An (n,m,α, ε, η)-secure broadcasting protocol is an n-party
protocol with the following properties. Initially, each party i has a local input xi ∈ {0, 1}m and the parties
share a secret key. The parties can then communicate over a public broadcast channel. At the end of the
communication, each party computes a local output. We require the protocol to satisfy the following security
properties.

• (Privacy) For any adversarial observation W which observes at most 1−α fraction of the messages,
there is a distribution D, such that for any inputs x = (x1, . . . , xn) ∈ ({0, 1}m)n leading to a
sequence of messages Y , the distribution YW of observed messages is ε-close to D.

• (Robustness) For any adversary that corrupts at most 1−α fraction of the messages, and any n-tuple
of inputs x = (x1, . . . , xn) ∈ ({0, 1}m)n, all n parties can reconstruct x correctly with probability at
least 1− η after the communication.

The naive solution of applying one-time pad still requires a shared secret key of length at least nm, since
otherwise even if the adversary only sees part of the communication, he may learn some information about
the inputs. However, by using randomization and allowing for a small error, we can achieve much better
performance. Specifically, we have the following theorem.

Theorem 1.12 (secure broadcasting). For any n,m, r ∈ N with r ≤ m, there exists an explicit (n,m,α =
Ω(1), n2−Ω(r), n2−Ω(r)+nm2−Ω(m/r)) secure broadcasting protocol with communication complexityO(nm)
and shared secret key of length O(r log(nr)).

1.4 Overview of the techniques

Secret sharing. Here we give an overview of the techniques used in our constructions of AC0 secret shar-
ing schemes and error correcting codes. Our constructions combine several ingredients in pseudorandom-
ness and combinatorics in an innovative way, so before describing our constructions, we will first describe
the important ingredients used.

The secret sharing scheme in [8]. As mentioned before, Bogdanov et. al [8] were the first to consider
secret sharing schemes in AC0. Our constructions will use one of their schemes as the starting point. Specif-
ically, since we aim at perfect reconstruction, we will use the secret sharing scheme in [32] based on the
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so called “one-in-a-box function” or Minsky-Papert CNF function. This scheme can share one bit among n
parties, with binary alphabet, privacy threshold Ω(n1/3) and perfect reconstruction.

Random permutation. Another important ingredient, as mentioned before, is random permutation. Ap-
plying a random permutation, in many cases, reduces worst case errors to random errors, and the latter is
much more convenient to handle. This property has been exploited for improving the efficiency of error
correcting codes in several previous work, such as the error correcting codes by Smith [36], Guruswami and
Smith [21], and Hemenway et al. [24]. We note that a random permutation from [n] to [n] can be computed
in AC0 [30, 23, 38].

K-wise independent generators. The third ingredient of our construction is the notion of k-wise inde-
pendent pseudorandom generators. This is a function that stretches some r uniform random bits to n bits
such that any subset of k bits is uniform. Such generators are well studied, while for our constructions we
need such generators which can be computed by AC0 circuits. This requirement is met by using k-wise in-
dependent generators based on unique neighbor expander graphs, such as those constructed by Guruswami
et. al [22] which use seed length r = kpoly log(n).

Secret sharing schemes based on error correcting codes. Using asymptotically good linear error cor-
recting codes, one can construct secret sharing schemes that simultaneously achieve constant information
rate and privacy threshold Ω(n) (e.g., [13]). However, certainly in general these schemes are not in AC0

since they need to compute linear functions such as parity. For our constructions, we will use these schemes
with a small block length (e.g., O(log n) or poly log(n)) such that parity with such input length can be
computed by constant depth circuits. For robust secret sharing, we will also be using robust secret sharing
schemes based on codes, with constant information rate, privacy threshold and tolerance Ω(n) (e.g., [15]),
with a small block length.

The constructions. We can now give an informal description of our constructions. As mentioned before,
our construction is a general transformation and can take any scheme in [8] or [12] as the starting point. A
specific scheme of interest is the one in [8] based on the one-in-a-box function, which has perfect recon-
struction. Our goal then is to keep the property of perfect reconstruction, while increasing the information
rate and privacy threshold. One naive way to share more bits is to repeat the scheme several times, one for
each bit. Of course, this does not help much in boosting the information rate. Our approach, on the other
hand, is to use this naive repeated scheme to share a short random seed R. Suppose this gives us n parties
with privacy threshold k0. We then use R and the k-wise independent generator G mentioned above to
generate an n-bit string Y , and use Y to share a secret X by computing Y ⊕X .

Note that now the length of the secret X can be as large as n and thus the information rate is increased
to 1/2. To reconstruct the secret, we can use the first n parties to reconstruct R, then compute Y and
finally X . Note that the whole computation can be done in AC0 since the k-wise independent generator G is
computable in AC0. The privacy threshold, on the other hand, is the minimum of k0 and k. This is because
if an adversary learns nothing about R, then Y is k-wise independent and thus by looking at any k shares in
Y ⊕X , the adversary learns nothing about X . This is the first step of our construction.

In the next step, we would like to boost the privacy threshold to Ω(n) while decreasing the information
rate by at most a constant factor. Our approach for this purpose can be viewed as concatenating a larger outer
protocol with a smaller inner protocol, which boosts the privacy threshold while keeping the information
rate and the complexity of the whole protocol. More specifically, we first divide the parties obtained from
the first step into small blocks, and then for each small block we use a good secret sharing scheme based on
error correcting codes. Suppose the adversary gets to see a constant fraction of the shares, then on average
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for each small bock the adversary also gets to see only a constant fraction of the shares. Thus, by Markov’s
inequality and adjusting the parameters, the adversary only gets to learn the information from a constant
fraction of the blocks. However, this is still not enough for us, since the outer protocol only has threshold
nΩ(1).

We solve this problem by using a threshold amplification technique. This is one of our main innova-
tions, and a key step towards achieving both constant information rate and privacy threshold Ω(n) without
sacrificing the error. On a high level, we turn the inner protocol itself into another concatenated protocol
(i.e., a larger outer protocol combined with a smaller inner protocol), and then apply a random permutation.
Specifically, we choose the size of the block mentioned above to be something likeO(log2 n), apply a secret
sharing scheme based on asymptotically good error correcting codes and obtain O(log2 n) shares. We then
divide these shares further into O(log n) smaller blocks each of size O(log n) (alternatively, this can be
viewed as a secret sharing scheme using alphabet {0, 1}O(logn)), and now we apply a random permutation
of these smaller blocks. If we are to use a slightly larger alphabet, we can now store each block together
with its index before the permutation as one share. Note that we need the index information when we try to
reconstruct the secret, and the reconstruction can be done in AC0.

Now, suppose again that the adversary gets to see some small constant fraction of the final shares, then
since we applied a random permutation, we can argue that each smaller block gets learned by the adversary
only with some constant probability. Thus, in the larger block of sizeO(log2 n), by a Chernoeff type bound,
except with probability 1/poly(n), we have that only some constant fraction of the shares are learned by the
adversary. Note that here by using two levels of blocks, we have reduced the probability that the adversary
learns some constant fraction of the shares from a constant to 1/poly(n), which is much better for the outer
protocol as we shall see soon. By adjusting the parameters we can ensure that the number of shares that
the adversary may learn is below the privacy threshold of the larger block and thus the adversary actually
learns nothing. Now, going back to the outer protocol, we know that the expected number of large blocks the
adversary can learn is only n/poly(n); and again by a Chernoff type bound, except with probability 2−n

Ω(1)
,

the outer protocol guarantees that the adversary learns nothing. This gives us a secret sharing scheme with
privacy threshold Ω(n) while the information rate is still constant since we only increased the number of
shares by a constant factor. With the O(log n) size alphabet, we can actually achieve privacy threshold
(1− α)n′ for any constant 0 < α < 1, where n′ is the total number of final parties.

To reduce to the binary alphabet, we can apply another secret sharing scheme based on error correcting
codes to each share of length O(log n). In this case then we won’t be able to achieve privacy threshold
(1 − α)n′, but we can achieve βn′ for some constant β > 0. This is because if the adversary gets to see
a small constant fraction of the shares, then by Markov’s inequality only for some constant fraction of the
smaller blocks the adversary can learn some useful information. Thus the previous argument still holds.

As described above, our general construction uses two levels of concatenated protocols, which corre-
sponds to two levels of blocks. The first level has larger blocks of size O(log2 n), where each larger block
consists of O(log n) smaller blocks of size O(log n). We use this two-level structure to reduce the probabil-
ity that an adversary can learn some constant fraction of shares, and this enables us to amplify the privacy
threshold to Ω(n). We choose the smaller block to have size O(log n) so that both a share from the larger
block with length O(log n) and its index information can be stored in a smaller block. This ensures that the
information rate is still a constant even if we add the index information. Finally, the blocks in the second
level are actually the blocks that go into the random permutation. This general strategy is one of our main
contributions and we hope that it can find other applications.

The above construction gives an AC0 secret sharing scheme with good parameters. However, it is not
a priori clear that it works for an adaptive adversary. In standard secret sharing schemes, a non-adaptive
adversary and an adaptive adversary are almost equivalent since usually we have privacy error 0. More
specifically, a secret sharing scheme for a non-adaptive adversary with privacy error ε and privacy threshold
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k is also a secret sharing scheme for an adaptive adversary with privacy error nkε and privacy threshold k.
However in our AC0 secret sharing scheme the error ε is not small enough to kill the nk factor. Instead,
we use the property of the random permutation to argue that our final distribution is essentially symmetric;
and thus informally no matter how the adversary picks the shares to observe adaptively, he will not gain any
advantage. This will show that our AC0 secret sharing scheme also works for an adaptive adversary.

To extend to robust secret sharing, we need to use robust secret sharing schemes instead of normal
schemes for the first and second level of blocks. Here we use the nearly optimal robust secret sharing
schemes based on various codes by Cheraghchi [15]. Unfortunately since we need to use it on a small
block length of O(log n), the reconstruction error becomes 1/poly(n). Another tricky issue here is that an
adversary may modify some of the indices. Note that we need the correct index information in order to
know which block is which before the random permutation. Suppose the adversary does not modify any of
the indices, but only modify the shares, then the previous argument can go through exactly when we change
the secret sharing schemes based on error correcting codes into robust secret sharing schemes. However, if
the adversary modifies some indices, then we could run into situations where more than one block have the
same index and thus we cannot tell which one is correct (and it’s possible they are all wrong). To overcome
this difficulty, we store every index multiple times among the blocks in the second level. Specifically, after
we apply the random permutation, for every original index we randomly choose O(log n) blocks in the
second level to store it. As the adversary can only corrupt a small constant fraction of the blocks in the
second level, for each such block, we can correctly recover its original index with probability 1−1/poly(n)
by taking the majority of the backups of its index. Thus by a union bound with probability 1−1/poly(n) all
original indices can be correctly recovered. In addition, we use the same randomness for each block to pick
the O(log n) blocks, except we add a different shift to the selected blocks. This way, we can ensure that for
each block the O(log n) blocks are randomly selected and thus the union bound still holds. Furthermore the
randomness used here is also stored in every block in the second level, so that we can take the majority to
reconstruct it correctly. In the above description, we sometimes need to take majority for n inputs, which is
not computable in AC0. However, we note that by adjusting parameters we can ensure that at least say 2/3
fraction of the inputs are the same, and in this case it suffices to take approximate majority, which can be
computed in AC0 [37].

For our error correcting codes, the construction is a simplified version of the robust secret sharing con-
struction. Specifically, we first divide the message itself into blocks of the first level, and then encode every
block using an asymptotically good code and divide the obtained codeword into blocks of the second level.
Then we apply a random permutation to the blocks of the second level as before, and we encode every
second level block by another asymptotically good code. In short, we replace the above mentioned robust
secret sharing schemes by asymptotically good error correcting codes. We use the same strategy as in robust
secret sharing to identify corrupted indices. Using a size of O(log2 n) for blocks in the first level will result
in decoding error 1/poly(n), while using larger block size (e.g., poly log(n)) will result in decoding error
2−poly log(n). This gives Theorem 1.8. To achieve even smaller error, we can first repeat each bit of the
message r times for some parameter r. This serves as an outer error correcting code, which can tolerate up
to r/3 errors, and can be decoded in in AC0 by taking approximate majority. The two-level block structure
and the argument we described before can now be used to show a smaller decoding error of 2−Ω(r/ log2 n).
This gives Theorem 1.9.

Comparison with related works on efficient error-correcting codes. As discussed above, our con-
struction of error correcting codes shares some common ideas with earlier constructions of Smith [36],
Guruswami and Smith [21], and Hemenway et al. [24]. All these constructions have a common structure
which has a “control-information” part and a “payload” part, where the payload part encodes the message
using some randomness that is encoded in the control-information part. The general strategy to encode the
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payload part is to first encode the message, then do a random permutation over all the symbols, and finally
encode again. The idea of using random permutations to randomize errors and thereby improve efficiency
was also used by some earlier works such as [6, 28]. Here we are using fully random permutations as in [6],
whereas [36, 21] used k-wise independent permutations and [28, 24] assumed the existence of a pseudoran-
dom generator for permutations. Our goals are quite different from those considered in [36, 21, 24]. The
goal of [36, 21] was to optimize standard code parameters, so some components in their constructions are
not local or in AC0. Hemenway et. al. [24] mainly focused on locally decodable codes in the computational
secure setting so they use cryptographic primitives (based on cryptographic assumptions) such as seman-
tically secure public-key encryption and pseudorandom generators. Their construction cannot be in AC0

unless they use stronger assumptions such that those cryptographic primitives can be computed in AC0. Our
construction focuses on the information theoretic secure setting. We observe that the payload part can be
realized in AC0 if the encodings, before and after the permutation, are conducted over small blocks, though
this only gives decoding error quasi-polynomially small. Finally, there is a technical difference between our
encoding of the control information and the one used in prior works. Here we use a new index backup tech-
nique that be implemented (for both encoding and decoding) in AC0 and can be used to reconstruct all the
indices under non-adaptive adversaries. The analysis for the backup technique argues that a non-adaptive
adversary corrupting a small constant fraction of the shares can only corrupt at most 1/3 fraction of the
backups for one index, thus one can recover every index correctly by taking the approximate majority.

Secure broadcasting. We turn to describe the ideas behind our solution to the secure broadcasting problem
from Section 1.3. Rather than use the naive approach of one-time pad, here a more clever solution is to use
secret sharing (assuming that each party also has access to local private random bits). By first applying a
secret sharing scheme to the input and then broadcasting the shares, a party can ensure that if the adversary
only gets to see part of the messages (below the secrecy threshold), then the adversary learns nothing. In
this case the parties do not even need shared secret key. However, one problem with this solution is that
the adversary cannot be allowed to see more than 1/n fraction of the messages, since otherwise he can
just choose the messages broadcasted from one particular party, and then the adversary learns the input of
that party. This is the place where randomization comes into play. If in addition, we allow the parties to
share a small number of secret random bits, then the parties can use this secret key to randomly permute
the order in which the they broadcast their messages (after applying the secret sharing scheme). Since the
adversary does not know the secret key, we can argue that with high probability only a small fraction of
each party’s secret shares are observed. Therefore, by the properties of secret sharing we can say that the
adversary learns almost nothing about each party’s input. The crucial features of this solution solution are
that first, the adversary can see some fixed fraction of messages, which is independent of the number of
parties n (and thus can be much larger than 1/n). Second, the number of shared secret random bits is much
smaller than the naive approach of one-time pad. Indeed, as we show in Theorem 7.11, to achieve security
parameter roughly r it is enough for the parties to shareO(r(log n+log r)) random bits. Finally, by using an
appropriate secret sharing scheme, the communication complexity of our protocol for each party is O(m),
which is optimal up to a constant factor. Note that here, by applying random permutation and allowing for
a small probability of error, we simultaneously improve the security threshold (from 1/n to Ω(1)) and the
length of the shared secret key (from nm to O(r(log n+ log r))).

Discussion and open problems. In this paper we continue the line of work on applying randomization
and allowing a small failure probability for minimizing the computational complexity of cryptographic
primitives and related combinatorial objects while maximizing the level of achievable security. In the context
of secret sharing in AC0, we show how to get much better parameters by allowing an (exponentially) small
privacy error. We note that achieving exponentially small error here is non-trivial. In fact, if we allow for
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a larger error then (for a non-adaptive adversary) there is a simple protocol for AC0 secret sharing: one
can first take a random seed R of length Ω(n), and then apply a deterministic AC0 extractor for bit-fixing
sources to obtain an output Y of length Ω(n). The secret X can then be shared by computing the parity
of Y and X . This way, one can still share Ω(n) bits of secret, and if the adversary only learns some small
fraction of the seed, then the output Y is close to uniform by the property of the extractor, and thus X
remains secret. However, by the lower bound of [14], the error of such AC0 extractors (or even for the
stronger seeded AC0 extractors) is at least 2−poly log(n). Therefore, one has to use additional techniques to
achieve exponentially small error. We also extended our techniques to robust AC0 secret sharing schemes,
stochastic error correcting codes for additive channels, and secure broadcasting. Several intriguing open
problems remain.

First, in our robust AC0 secret sharing schemes, we only achieve reconstruction error 1/poly(n). This is
because we need to use existing robust secret sharing schemes on a block of size O(log n). Is it possible to
avoid this and make the error exponentially small? Also, again in this case we can only handle non-adaptive
adversaries, and it would be interesting to obtain a robust AC0 secret sharing scheme that can handle adaptive
adversaries. These questions are open also for AC0 stochastic error correcting codes.

Second, as we mentioned in Remark 1.4 (see also [10]), a sufficiently small privacy error in an AC0

secret sharing scheme would imply an improved approximate degree lower bound for AC0 functions. Is
it possible to improve our AC0 secret sharing scheme, and use this approach to obtain better approximate
degree lower bound for AC0 functions? This seems like an interesting direction.

In addition, the privacy threshold amplification technique we developed, by using two levels of con-
catenated protocols together with a random permutation, is quite general and we feel that it should have
applications elsewhere. We note that the approach of combining an “outer scheme” with an “inner scheme”
to obtain the best features of both has been applied in many previous contexts. For instance, it was used to
construct better codes [1, 21] or better secure multi-party computation protocols [17]. However, in almost
all of these previous applications, one starts with an outer scheme with a very good threshold (e.g., the
Reed-Solomon code which has a large distance) and the goal is to use the inner scheme to inherit this good
threshold while improving some other parameters (such as alphabet size). Thus, one only needs one level of
concatenation. In our case, instead, we start with an outer scheme with a very weak threshold (e.g., the one-
in-a-box function which only has privacy threshold n1/3). By using two levels of concatenated protocols
together with a random permutation, we can actually amplify this threshold to Ω(n) while simultaneously
reducing the alphabet size. This is an important difference to previous constructions and one of our main
contributions. We hope that these techniques can find other applications in similar situations.

Finally, since secret sharing schemes are building blocks of many other important cryptographic appli-
cations, it is an interesting question to see if the low-complexity secret sharing schemes we developed here
can be used to reduce the computational complexity of other cryptographic primitives.

Paper organization. We introduce some notation and useful results in Section 2. In Section 3 we give
our privacy threshold amplification techniques. In Section 4, we show how to increase the information
rate using k-wise independent generators. Combining all the above techniques, our final construction of
AC0 secret sharing schemes is given in Section 5. Instantiations appear in Section 6. Finally, we give
our constructions of robust AC0 secret sharing schemes, AC0 error correcting codes, and secure broadcast
protocols in Section 7.

2 Preliminaries

Let | · | denote the size of the input set or the absolute value of an input real number, based on contexts.
For any set I of integers, for any r ∈ Z, we denote r + I or I + r to be {i′ : i′ = i+ r, i ∈ I}.
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We use Σ to denote the alphabet. Readers can simply regard Σ as {0, 1}l for some l ∈ N. For σ ∈ Σ,
let σn = (σ, σ, . . . , σ) ∈ Σn. For any sequence s = (s1, s2, . . . , sn) ∈ Σn and sequence of indices
W = (w1, . . . , wt) ∈ [n]t with t ≤ n, let sW be the subsequence (sw1 , sw2 , . . . , swt).

For any two sequences a ∈ Σn, b ∈ Σ′n
′

where a = (a1, a2, . . . , an), b = (b1, b2, . . . , bn′), let a ◦ b =
(a1, . . . , an, b1, . . . , bn′) ∈ Σn × Σ′n

′
.

Let supp(·) denote the support of the input random variable. Let I(·) be the indicator function.

Definition 2.1 (Statistical Distance). The statistical distance between two random variables X and Y over
Σn for some alphabet Σ, is SD(X,Y ) which is defined as follows,

SD(X,Y ) = 1/2
∑
a∈Σn

|Pr[X = a]− Pr[Y = a]|.

Here we also say that X is SD(X,Y )-close to Y .

Lemma 2.2 (Folklore Properties of Statistical Distance [4]). 1. (Triangle Inequality) For any random vari-
ables X , Y , Z over Σn, we have

SD(X,Y ) ≤ SD(X,Z) + SD(Y,Z).

2. ∀n,m ∈ N, any deterministic function f : {0, 1}n → {0, 1}m and any random variables X , Y over
Σn, SD(f(X), f(Y )) ≤ SD(X,Y ).

We will use the following well known perfect XOR secret sharing scheme.

Theorem 2.3 (Folklore XOR secret sharing). For any finite field F, define Share+ : F → Fn and Rec+ :
Fn → F, such that for any secret x ∈ F, Share+(x) = y such that y is uniformly chosen in Fn conditioned
on

∑
i∈[n] yi = x and Rec+ is taking the sum of its input.

(Share+,Rec+) is an (n, n− 1) secret sharing scheme with share alphabet and message alphabet both
being F, message length 1, perfect privacy and reconstruction.

Definition 2.4 (Permutation). For any n ∈ N, a permutation over [n] is defined to be a bijective function
π : [n]→ [n].

Definition 2.5 (k-wise independence). For any set S, let X1, . . . , Xn be random variables over S. They are
k-wise independent (and uniform) if any k of them are independent (and uniformly distributed).

For any r, n, k ∈ N, a function g : {0, 1}r → Σn is a k-wise (uniform) independent generator, if for
g(U) = (Y1, . . . , Yn), Y1, . . . , Yn are k-wise independent (and uniform). Here U is the uniform distribution
over {0, 1}r.

Definition 2.6 ([22] ). A bipartite graph with N left vertices, M right vertices and left degree D is a (K,A)
expander if for every set of left vertices S ⊆ [N ] of size K, we have |Γ(S)| > AK. It is a (≤ Kmax, A)
expander if it is a (K,A) expander for all K ≤ Kmax.

Here ∀x ∈ [N ], Γ(x) outputs the set of all neighbours of x. It is also a set function which is defined
accordingly. Also ∀x ∈ [N ], d ∈ [D], the function Γ : [N ] × [D] → [M ] is such that Γ(x, d) is the dth
neighbour of x.

Theorem 2.7 ([22] ). For all constants α > 0, for every N ∈ N, Kmax ≤ N , and ε > 0, there ex-
ists an explicit (≤ Kmax, (1 − ε)D) expander with N left vertices, M right vertices, left degree D =
O((logN)(logKmax)/ε)1+1/α and M ≤ D2K1+α

max . Here D is a power of 2.
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Definition 2.8 (AC0). AC0 is the complexity class which consists of all families of circuits having constant
depth and polynomial size. The gates in those circuits are NOT, AND and OR, where AND gates and OR
gates have unbounded fan-in.

For any circuit C, the size of C is denoted as size(C). The depth of C is denoted as depth(C). Usually
when we talk about computations computable by AC0 circuits, we mean uniform AC0 circuits, if not stated
specifically.

Lemma 2.9 (Forklore properties of AC0 circuits [4, 20]). The following are well known properties of AC0

circuits.
For every n ∈ N,

1. ([4] forklore) every boolean function f : {0, 1}l=Θ(logn) → {0, 1} can be computed by an AC0 circuit
of size poly(n) and depth 2.

2. ([20]) for every c ∈ N, every integer l = Θ(logc n), if the function fl : {0, 1}l → {0, 1} can be
computed by a circuit with depth O(log l) and size poly(l), then it can be computed by a circuit with
depth c+ 1 and size poly(n).

Remark 2.10. We briefly describe the proof implied in [20] for the second property of our Lemma 2.9. As
there exists an NC1 complete problem which is downward self-reducible, the function fl can be reduced to
(AC0 reduction) a function with input length O(log n). By Lemma 2.9 part 1, and noting that the reduction
here is an AC0 reduction, fl can be computed by an AC0 circuit.

3 Random Permutation

3.1 Increasing the privacy threshold

The main technique we use here is random permutation.

Lemma 3.1 ([30, 23, 38]). For any constant c ≥ 1, there exists an explicit AC0 circuit C : {0, 1}r → [n]n

with size poly(n), depth O(1) and r = O(nc+1 log n) such that with probability 1 − 2−n
c
, C(Ur) gives a

uniform random permutation of [n]; When this fails the outputs are not distinct.

In the following we give a black box AC0 transformation of secret sharing schemes increasing the privacy
threshold.

Construction 3.2. For any n, k,m ∈ N with k ≤ n, any alphabet Σ,Σ0, let (Share,Rec) be an (n, k)
secret sharing scheme with share alphabet Σ, message alphabet Σ0, message length m.

Let (Share+,Rec+) be a (t, t− 1) secret sharing scheme with alphabet Σ by Theorem 2.3.
For any constant a ≥ 1, α > 0, large enough b ≥ 1, we can construct the following (n′ = tnn̄, k′ =

(1−α)n′) secret sharing scheme (Share′,Rec′) with share alphabet Σ×[n′], message alphabet Σ0, message
length m′ = mn̄, where t = O(log n), n̄ = bna−1.

Function Share′ : Σm′
0 → (Σ× [n′])n

′
is as follows.

1. On input secret x ∈ Σmn̄
0 , parse x to be (x1, x2, . . . , xn̄) ∈ (Σm

0 )n̄ .

2. Compute y = (y1, . . . , yn̄) = (Share(x1), . . . ,Share(xn̄)) and parse it to be ŷ = (ŷ1, . . . , ŷnn̄) ∈
Σnn̄. Note that Share is from Σm

0 to Σn.

3. Compute (Share+(ŷ1), . . . ,Share+(ŷnn̄)) ∈ (Σt)nn̄ and split every entry to be t elements in Σ to get
y′ = (y′1, . . . , y

′
n′) ∈ Σn′ . Note that Share+ is from Σ to Σt.
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4. Generate π by Lemma 3.1 which is uniformly random over permutations of [n′]. If it fails, which can
be detected by checking element distinctness, set π to be such that ∀i ∈ [n′], π(i) = i.

5. Let
Share′(x) = (y′π−1(1) ◦ π

−1(1), . . . , y′π−1(n′) ◦ π
−1(n′)) ∈ (Σ× [n′])n

′
.

Function Rec′ : (Σ× [n′])n
′ → Σm′

0 is as follows.

1. Parse the input to be (y′π−1(1) ◦ π
−1(1), . . . , y′π−1(n′) ◦ π

−1(n′)).

2. Compute y′ = (y′1, . . . , y
′
n′) according to the permutation.

3. Apply Rec+ on y′ for every successive t entries to get ŷ.

4. Parse ŷ to be y.

5. Compute x by applying Rec on every entry of ŷ.

6. Output x.

Lemma 3.3. If Share and Rec can be computed by AC0 circuits, then Share′ and Rec′ can also be computed
by AC0 circuits.

Proof. As Share can be computed by an AC0 circuit, y can be computed by an AC0 circuit (uniform). By
Lemma 2.9 part 1, we know that (Share+,Rec+) both can be computed by AC0 circuits. By Lemma 3.1,
(π−1(1), π−1(2), . . . , π−1(n′)) can be computed by an AC0 circuit. Also ∀i ∈ [n′], y′π−1(i) =

∨
j∈[n′](y

′
j ∧

(j = π−1(i))). Thus Share′ can be computed by an AC0 circuit.
For Rec′, ∀i ∈ [n′], y′i =

∨
j∈[n′](y

′
π−1(j) ∧ (π−1(j) = i)). As Rec+ can be computed by an AC0 circuit,

y can be computed by an AC0 circuit. As Rec can be computed by an AC0 circuit, Rec′ can be computed by
an AC0 circuit.

Lemma 3.4. If the reconstruction error of (Share,Rec) is η, then the reconstruction error of (Share′,Rec′)
is η′ = n̄η.

Proof. According to the construction, as (Share+,Rec+) has perfect reconstruction by Lemma 2.3, the y
computed in Rec′ is exactly (Share(x1),Share(x2), . . . ,Share(xn̄)). As ∀i ∈ [n̄],Pr[Rec(Share(xi)) =
xi] ≥ 1− η,

Pr[Rec′(Share′(x)) = x] = Pr[
∧
i∈[n̄]

(Rec(Share(xi)) = xi)] ≥ 1− n̄η,

by the union bound.

In order to show privacy, we need the following Chernoff Bound.

Definition 3.5 (Negative Correlation [5, 7]). Binary random variables X1, X2, . . . , Xn are negative corre-
lated, if ∀I ⊆ [n],

Pr[
∧
i∈I

(Xi = 1)] ≤
∏
i∈I

Pr[Xi = 1] and Pr[
∧
i∈I

(Xi = 0)] ≤
∏
i∈I

Pr[Xi = 0].

Theorem 3.6 (Negative Correlation Chernoff Bound [5, 7]). Let X1, X2, . . . , Xn be negatively correlated
random variables with X =

∑n
i=1Xi, µ = E[X].
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• For any δ ∈ (0, 1),

Pr[X ≤ (1− δ)µ] ≤ e−δ2µ/2 and Pr[X ≥ (1 + δ)µ] ≤ e−δ2µ/3.

• For any d ≥ 6µ, Pr[X ≥ d] ≤ 2−d.

Lemma 3.7. Let π : [n]→ [n] be a random permutation. For any set S,W ⊆ [n], let u = |W |
n |S|. Then the

following holds.

• for any constant δ ∈ (0, 1),

Pr[|π(S) ∩W | ≤ (1− δ)µ] ≤ e−δ2µ/2,

Pr[|π(S) ∩W | ≥ (1 + δ)µ] ≤ e−δ2µ/3.

• for any d ≥ 6µ, Pr[|π(S) ∩W | ≥ d] ≤ 2−d.

Proof. For every s ∈ S, let Xs be the indicator such that Xs = 1 is the event that π(s) is in W . Let
X =

∑
s∈S Xs. So |π(S) ∩W | = X . Note that Pr[Xs = 1] = |W |/n. So µ = E(X) = |W |

n |S|.
For any I ⊆ S,

Pr[
∧
i∈I

(Xi = 1)] =
|W |
n
· |W | − 1

n− 1
· · · |W | − |I|

n− |I|

(if |W | < |I|, it is 0). This is because the random permutation can be viewed as throwing elements 1, . . . , n
into n boxes uniformly one by one, where every box can have at most one element. We know that for
j = 1, . . . , |I|, |W |−jn−j ≤

|W |
n as |W | ≤ n. So Pr[

∧
i∈I(Xi = 1)] ≤

∏
i∈I Pr[Xi = 1]. In the same way, for

any I ⊆ [n],

Pr[
∧
i∈I

(Xi = 0)] =
n− |W |

n
· n− |W | − 1

n− 1
· · · n− |W | − |I|

n− |I|

(if n − |W | < |I|, it is 0). Thus ∀I ⊆ [n],Pr[
∧
i∈I(Xi = 0)] ≤

∏
i∈I Pr[Xi = 0]. By Theorem 3.6, the

conclusion follows.

We can get the following more general result by using Lemma 3.7.

Lemma 3.8. Let π : [n] → [n] be a random permutation. For any W ⊆ [n] with |W | = γn, any constant
δ ∈ (0, 1), any t, l ∈ N+ such that tl ≤ 0.9δ

1+0.9δγn, any S = {S1, . . . , Sl} such that ∀i ∈ [l], Si ⊆ [n] are
disjoint sets and |Si| = t, let Xi be the indicator such that Xi = 1 is the event |π(Si) ∩W | ≥ (1 + δ)γt.
Let X =

∑
i∈[l]Xi. Then for any d ≥ 0,

Pr[X ≥ d] ≤ e−2d+(e2−1)e−Ω(γt)l.

Proof. For any s > 0, Pr[X ≥ d] = Pr[esX ≥ esd] ≤ E[esX ]
esd

by Markov’s inequality. For every i ∈ [l],
∀x1, . . . , xi−1 ∈ {0, 1}, consider p = Pr[Xi = 1|∀j < i,Xj = xj ]. Let S̄i =

⋃i
j=1 Sj for i ∈ [l]. Note that

the event ∀j < i,Xj = xj is the union of exclusive events π(S̄i−1) = V,∀j < i,Xj = xj for V ⊆ [n] with
|V | = (j − 1)t and π(S̄i−1) = V does not contradict ∀j < i,Xj = xj . Conditioned on any one of those
events, saying π(S̄i−1) = V,∀j < i,Xj = xj , π is a random bijective mapping from [n] − S̄i to [n] − V .
Note that |W∩([n]−V )|

n−(i−1)t ≤ γn

n− 0.9δ
1+0.9δ

γn
≤ γn

n− 0.9δ
1+0.9δ

n
≤ (1 + 0.9δ)γn, since (i − 1)t ≤ lt ≤ 0.9δ

1+0.9δγn. So

E[π(Si) ∩W ||π(S̄i−1) = V,∀j < i,Xj = xj ] ≤ (1 + 0.9δ)γt. By Lemma 3.7, Pr[Xi = 1|π(S̄i−1) =
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V,∀j < i,Xj = xj ] = Pr[|π(Si) ∩W | ≥ (1 + δ)γt|π(S̄i−1) = V,∀j < i,Xj = xj ] ≤ e−Ω(γt). Thus
p ≤ e−Ω(γt). Next note that

E[es
∑l
k=iXk |∀j < i,Xj = xj ]

=pesE[es
∑l
k=i+1Xk |∀j < i,Xj = xj , Xi = 1] + (1− p)E[es

∑l
k=i+1Xk |∀j < i,Xj = xj , Xi = 0]

≤(pes + 1− p) max(E[es
∑l
k=i+1Xk |∀j < i,Xj = xj , Xi = 1],E[es

∑l
k=i+1Xk |∀j < i,Xj = xj , Xi = 0])

≤ep(es−1) max(E[es
∑l
k=i+1Xk |∀j < i,Xj = xj , Xi = 1],E[es

∑l
k=i+1Xk |∀j < i,Xj = xj , Xi = 0])

≤ee−Ω(γt)(es−1) max(E[es
∑l
k=i+1Xk |∀j < i,Xj = xj , Xi = 1],E[es

∑l
k=i+1Xk |∀j < i,Xj = xj , Xi = 0]).

(1)

As this holds for every i ∈ [l] and every x1, . . . , xi−1 ∈ {0, 1}, we can iteratively apply the inequality and
get the result that there exists x′1, . . . , x

′
l ∈ {0, 1} such that E[esX ] ≤ ee

−Ω(γt)(es−1)E[es
∑l
k=2Xk |X1 =

x′1] ≤ e2e−Ω(γt)(es−1)E[es
∑l
k=3Xk |X1 = x′1, X2 = x′2] ≤ · · · ≤ ee

−Ω(γt)(es−1)l. Let’s take s = 2. So
Pr[X ≥ d] ≤ E[esX ]

esd
≤ e−2d+(e2−1)e−Ω(γt)l.

Let’s first show the non-adaptive privacy of this scheme.

Lemma 3.9. If the non-adaptive privacy error of (Share,Rec) is ε, then the non-adaptive privacy error of
(Share′,Rec′) is n̄(ε+ 2−Ω(k)).

Proof. We show that there exists a distribution D such that for any string x ∈ Σm′
0 , for any sequence of

distinct indices W = (w1, w2, . . . , wk′) ∈ [n′]k
′

(chosen before observation),

SD(Share′(x)W ,D) ≤ n̄(ε+ 2−Ω(k)).

For every i ∈ [nn̄], the block Share+(ŷi) has length t. Let the indices of shares in Share+(ŷi) be
Si = {(i− 1)t+ 1, . . . , it}.

For every i ∈ [n̄], let Ei be the event that for at most k of j ∈ {(i − 1)n + 1, . . . , in}, π(Sj) ⊆ W .
Let E =

⋂
i∈[n̄]Ei. We choose b to be such that tn ≤ 0.9α

1+0.9α |W |. So by Lemma 3.8, Pr[Ei] ≥ 1 −
e−Ω(k)+(e2−1)e−Ω((1−α)t)n. We choose a large enough t = O(log n) such that Pr[Ei] ≥ 1 − e−Ω(k). So
Pr[E] ≥ 1− n̄e−Ω(k) by the union bound.

Let’s define the distribution D to be Share′(σ)W for some σ ∈ Σm′
0 . We claim that Share′(x)W |E and

D|E have statistical distance at most n̄ε. The reason is as follows.
Let’s fix a permutation π for which E happens. We claim that Share′(x)W is a deterministic function of

at most k entries of each yi for i ∈ [n̄] and some extra uniform random bits. This is because, as E happens,
for those i ∈ [nn̄] with π(Si) *W , the shares in π(Si)∩W are independent of the secret by the privacy of
(Share+,Rec+). Note that they are also independent of other shares since the construction uses independent
randomness for Share+(ŷi), i ∈ [nn̄]. For those i ∈ [nn̄] with π(Si) ⊆ W , the total number of them is at
most k. So the claim holds. Hence by the privacy of (Share,Rec) with noting that yi, i ∈ [n̄] are generated
using independent randomness,

SD(Share′(x)W ,D) ≤ n̄ε.

So with probability at least 1− n̄e−Ω(k) over the fixing of π, Share′(x)W and D have statistical distance
at most n̄ε, which means that

SD(Share′(x)W ,D) ≤ n̄(ε+ 2−Ω(k)).
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Next we show the adaptive privacy.

Lemma 3.10. For any alphabet Σ, any n, k ∈ N with k ≤ n, for any distribution X = (X1, . . . , Xn)
over Σn, let Y = ((Xπ−1(1) ◦ π−1(1)), . . . , (Xπ−1(n) ◦ π−1(n))) where π is a random permutation over
[n]→ [n]. For any adaptive observation W with |W | = k, YW is the same distribution as Y[k].

Proof. Let W = (w1, . . . , wk).
We use induction.
For the base step, for any x ∈ Σ, any i ∈ [n],

Pr[Yw1 = (x, i)] = Pr[Xi = x]/n,

while
Pr[Y1 = (x, i)] = Pr[Xi = x]/n.

So Yw1 and Y1 are the same distributions.
For the inductive step, assume that YW[i]

and Y[i] are the same distributions. We know that for any
u ∈ (Σ× [n])i,

Pr[YW[i]
= u] = Pr[Y[i] = u].

Fix a u ∈ (Σ × [n])i. For any v = (v1, v2) ∈ (Σ × [n]), where v1 ∈ Σ, v2 ∈ [n], Pr[Ywi+1 = v|YW[i]
=

u] = 0 if v2 has already been observed in the previous i observations; otherwise Pr[Ywi+1 = v|YW[i]
= u] =

Pr[Xv2=v1]
n−i . Also Pr[Yi+1 = v|Y[i] = u] = 0 if v2 has already been observed in the previous i observations;

otherwise Pr[Yi+1 = v|Y[i] = u] =
Pr[Xv2=v1]

n−i .
Thus YW[i+1]

and Y[i+1] are the same distributions. This finishes the proof.

Lemma 3.11. If (Share,Rec) has non-adaptive privacy error ε, then (Share′,Rec′) has adaptive privacy
error n̄(ε+ 2−Ω(k)).

Proof. First we assume that the adaptive observer always observes k′ shares. For every observer M which
does not observe k′ shares, there exists another observer M ′ which can observe the same shares as M and
then observe some more shares. That is to say that if the number of observed shares is less than k′, M ′ will
choose more unobserved shares (sequentially in a fixed order) to observe until k′ shares are observed. Since
we can use a deterministic function to throw away the extra observes of M ′ to get what M should observe,
by Lemma 2.2 part 2, if the privacy holds for M ′ then the privacy holds for M . As a result, we always
consider observers which observe k′ shares.

By Lemma 3.10, for any s ∈ Σm′
0 , Share′(s)W , for any adaptive observation W , is the same distribution

as Share′(s)W ′ where W = {w1, w2, . . . , wk′}, W ′ = [k′]. As W ′ is actually a non-adaptive observation,
by Lemma 3.9, for distinct s, s′ ∈ {0, 1}m′ , SD(Share′(s)W ′ , Share

′(s′)W ′) ≤ n̄(ε+ 2−Ω(k)). So

SD(Share′(s)W ,Share
′(s′)W ) = SD(Share′(s)W ′ , Share

′(s′)W ′) ≤ n̄(ε+ 2−Ω(k)).

Theorem 3.12. For any n,m ∈ N,m ≤ n, any ε, η ∈ [0, 1] and any constant a ≥ 1, α ∈ (0, 1], if
there exists an explicit (n, k) secret sharing scheme in AC0 with share alphabet Σ, message alphabet Σ0,
message length m, non-adaptive privacy error ε and reconstruction error η, then there exists an explicit
(n′ = O(na log n), (1− α)n′) secret sharing scheme in AC0 with share alphabet Σ× [n′], message alpha-
bet Σ0, message length Ω(mna−1), adaptive privacy error O(na−1(ε + 2−Ω(k))) and reconstruction error
O(na−1η).

Proof. It immediately follows from Construction 3.2, Lemma 3.3, Lemma 3.4 and Lemma 3.11.
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3.2 Binary alphabet

In this subsection, we construct AC0 secret sharing schemes with binary alphabet based on some existing
schemes with binary alphabets, enlarging the privacy threshold.

If we simply break each share in Construction 3.2 into bits, then we in fact get a secret sharing scheme
with non-adaptive privacy. However, the privacy threshold becomes O(n/ log n) which is sublinear, as the
observer does not have to observe the indices. To overcome the barrier, we use some coding techniques and
secret sharing for small blocks. An even bigger problem is that whether we can achieve adaptive privacy in
this case. It seems to be hard since we have to break the indices into pieces. But surprisingly, we are still
able to show adaptive privacy.

Lemma 3.13 ([13] Section 4). For any n ∈ N, any constant δ0, δ1 ∈ (0, 1), letC ⊆ Fn2 be an asymptotically
good (n, k = δ0n, d = δ1n) linear code.

1. There exists an (n, d) secret sharing scheme (Share,Rec) with alphabet {0, 1}, message length k,perfect
privacy and reconstruction. Here ∀x ∈ {0, 1}k, Share(x) = f(x)+c with c drawn uniform randomly
from C⊥ (the dual code of C) and f is the encoding function from {0, 1}k to C. For y ∈ {0, 1}n,
Rec(y) is to find x such that there exists a c ∈ C⊥ with f(x) + c = y.

2. For any p = poly(n), there exists an explicit (n, d) secret sharing scheme (Share,Rec) with alphabet
{0, 1}p, message length k, perfect privacy and reconstruction.

3. If the codeword length is logarithmic (say n = O(logN) for some N ∈ N), then both schemes can
be constructed explicitly in AC0 (in N ).

Proof. The first assertion is proved in [13].
The second assertion follows by applying the construction of the first assertion in parallel p times.
The third assertion holds because, when the codeword length is O(logN), both encoding and decoding

functions have input length O(logN). For encoding, we can use any classic methods for generating asymp-
totically good binary codes. For decoding, we can try all possible messages to uniquely find the correct one.
By Lemma 2.9, both functions can be computed by AC0 circuits.

Now we give the secret sharing scheme in AC0 with a constant privacy rate while having binary alphabet.

Construction 3.14. For any n, k,m ∈ N with k,m ≤ n, let (Share,Rec) be an (n, k) secret sharing scheme
with alphabet {0, 1}, message length m.

Let (ShareC ,RecC) be an (nC , kC) secret sharing scheme with alphabet {0, 1}p=O(logn), message
length mC by Lemma 3.13, where mC = δ0nC , kC = δ1nC , nC = O(log n) for some constants δ0, δ1.

Let (Share0,Rec0) be an (n0, k0) secret sharing scheme with alphabet {0, 1}, message length m0 by
Lemma 3.13, where m0 = δ0n0 = p+O(log n), k0 = δ1n0.

For any constant a ≥ 1, we can construct the following (n′ = O(na), k′ = Ω(n′)) secret sharing scheme
(Share′,Rec′) with alphabet {0, 1}, message length m′ = mn̄, where n̄ = Θ(na−1) is large enough.

Function Share′ : {0, 1}m′ → {0, 1}n′ is as follows.

1. On input x ∈ {0, 1}mn̄, parse it to be (x1, x2, . . . , xn̄) ∈ ({0, 1}m)n̄ .

2. Compute y = (y1, . . . , yn̄) = (Share(x1), . . . ,Share(xn̄)) ∈ ({0, 1}n)n̄. Split each entry to be blocks
each has length pmC to get ŷ = (ŷ1, . . . , ŷñ) ∈ ({0, 1}pmC )ñ, where ñ = n̄d n

pmC
e.

3. Let y∗ = (ShareC(ŷ1), . . . ,ShareC(ŷñ)). Parse it to be y∗ = (y∗1, . . . , y
∗
n∗) ∈ ({0, 1}p)n∗ , n∗ = ñnC .
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4. Generate π by Lemma 3.1 which is uniform random over permutations of [n∗]. If it failed, which can
be detected by checking element distinctness, set π to be such that ∀i ∈ [n∗], π(i) = i.

5. Compute

z(x) = Share′(x) = (Share0(y∗π−1(1) ◦ π
−1(1)), . . . ,Share0(y∗π−1(n∗) ◦ π

−1(n∗))) ∈ ({0, 1}n0)n
∗
.

6. Parse z(x) to be bits and output.

Function Rec′ : {0, 1}n′=n0n∗ → {0, 1}m′ is as follows.

1. Parse the input bits to be z ∈ ({0, 1}n0)n
∗

and compute

(y∗π−1(1) ◦ π
−1(1), . . . , y∗π−1(n∗) ◦ π

−1(n∗)) = (Rec0(z1), . . . ,Rec0(zn∗)).

2. Compute y∗ = (y∗1, . . . , y
∗
n∗).

3. Compute ŷ by applying RecC on y∗ for every successive nC entries.

4. Parse ŷ to be y.

5. Compute x by applying Rec on every entry of y.

Lemma 3.15. If Share and Rec can be computed by AC0 circuits, then Share′ and Rec′ can be computed by
AC0 circuits.

Proof. As Share can be computed by an AC0 circuit, y can be computed by an AC0 circuit. By Lemma 2.9
part 2 and 3.13, we know that (ShareC ,RecC) both can be computed by AC0 circuits. By Lemma 3.1, π can
be computed by an AC0 circuit. Also ∀i ∈ [n∗], y∗π−1(i) =

∨
j∈[n∗](y

∗
j ∧ (j = π−1(i))). Thus Share′ can be

computed by an AC0 circuit.
For Rec′, ∀i ∈ [n∗], y∗i =

∨
j∈[n∗](y

∗
π−1(j)∧(π−1(j) = i)). As RecC can be computed by an AC0 circuit,

y can be computed by an AC0 circuit. As Rec can be computed by an AC0 circuit, Rec′ can be computed by
an AC0 circuit.

Lemma 3.16. If the reconstruction error of (Share,Rec) is η, then the reconstruction error of (Share′,Rec′)
is η′ = n̄η.

Proof. As (Share0,Rec0) and (ShareC ,RecC) have perfect reconstruction by Lemma 3.13, the y computed
in Rec′ is exactly (Share(x1),Share(x2), . . . ,Share(xn̄)). As ∀i ∈ [n̄],Pr[Rec(Share(xi)) = xi] ≥ 1− η,

Pr[Rec′(Share′(x)) = x] = Pr[
∧
i∈[n̄]

(Rec(Share(xi)) = xi)] ≥ 1− n̄η,

by the union bound.

Lemma 3.17. If the non-adaptive privacy error of (Share,Rec) is ε, then the non-adaptive privacy error of
(Share′,Rec′) is n̄(ε+ 2−Ω(k/ log2 n)).

Proof. Let k′ = 0.9δ2
1n
′. We show that there exists a distribution D such that for any string x ∈ {0, 1}m,

for any W ⊆ [n′] with |W | ≤ k′,

SD(Share′(x)W ,D) ≤ n̄(ε+ 2−Ω(k/ log2 n)).
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Let D be Share′(σ)W for some σ ∈ {0, 1}m′ .
Consider an arbitrary observation W ⊆ [n′], with |W | ≤ k′. Note that for at least 1 − 0.9δ1 fraction

of all blocks zi ∈ {0, 1}n0 , i = 1, . . . , n∗, at most δ1 fraction of the bits in the block can be observed.
Otherwise the number of observed bits is more than 0.9δ1 × δ1n

′. Let W ∗ be the index set of those blocks
which have more than δ1 fraction of bits being observed.

For every i ∈ [n∗]\W ∗, zi is independent of y∗π−1(i) ◦π
−1(i) by the privacy of (Share0,Rec0). Note that

zi is also independent of zi′ , i′ ∈ [n∗], i′ 6= i since it is independent of y∗π−1(i) ◦ π
−1(i) (its randomness is

only from the randomness of the Share0 function) and every Share0 function uses independent randomness.
So we only have to show that

SD(zW ∗(x), zW ∗(σ)) ≤ n̄(ε+ 2−Ω(k/ log2 n)).

For every i ∈ [ñ], let Si = {(i − 1)nC + 1, . . . , inC}. Let Xi be the indicator that |π(Si) ∩W ∗| >
kC , i ∈ [ñ]. Note that E[|π(Si) ∩W ∗|] ≤ 0.9δ1nC = 0.9kC .

For every i ∈ [n̄], let Ei be the event that
∑id n

pmC
e

j=(i−1)d n
pmC

e+1Xj ≤ k
pmC

. Let E =
⋂
i∈[n̄]Ei. We take n̄

to be large enough such that nCd n
pmC
e ≤ 0.9×0.1

1+0.9×0.1 |W
∗|. For every i ∈ [n̄], by Lemma 3.8,

1− Pr[Ei] ≤ e
−2k/(pmC)+(e2−1)e−Ω(0.9δ21nC )d n

pmC
e
.

We take nC = O(log n) to be large enough such that the probability is at most e−Ω(k/(pmC)) ≤ e−Ω(k/ log2 n).
Next we do a similar argument as that in the proof of Lemma 3.9. We know that Pr[E] ≥ 1 −

n̄e−Ω(k/ log2 n). We claim that zW ∗(x)|E and zW ∗(σ)|E have statistical distance at most n̄ε. The reason
follows.

Let’s fix a permutation π for which E happens. We claim that zW ∗(x) is a deterministic function of
at most k bits of each yi for i ∈ [n̄] and some extra uniform random bits. This is because, as E happens,
for those i ∈ [ñ] with |π(Si) ∩W ∗| ≤ kC , the shares in π(Si) ∩W ∗ are independent of the secret by the
privacy of (ShareC ,RecC). Note that they are also independent of other shares since the construction uses
independent randomness for ShareC(ŷi), i ∈ [ñ]. For those i ∈ [ñ] with |π(Si)∩W ∗| > kC , the total number
of them is at most k

pmC
. By the construction, Share′(x)W ∗ is computed from at most k

pmC
× pmC = k bits

of each yi for i ∈ [n̄] and some extra uniform random bits. Hence by the privacy of (Share,Rec) and noting
that yi,∈ [n̄] are generated using independent randomness,

SD(zW ∗(x), zW ∗(σ)) ≤ n̄ε.

Thus with probability at least 1−n̄e−Ω(k/ log2 n) over the fixing of π, zW ∗(x) and zW ∗(σ) have statistical
distance at most n̄ε, which means that

SD(zW ∗(x), zW ∗(σ)) ≤ n̄(ε+ e−Ω(k/ log2 n)).

Lemma 3.18. For any alphabet Σ, any n ∈ N, LetX = (X1, . . . , Xn) be an arbitrary distribution over Σn.
For any n0, k0 ∈ N with k0 ≤ n0, let (Share0,Rec0) be an arbitrary (n0, k0)-secret sharing scheme with
binary alphabet, message length m0 = log |Σ| + O(log n), perfect privacy. Let Y = (Share0(Xπ−1(1) ◦
π−1(1)), . . . ,Share0(Xπ−1(n) ◦ π−1(n))) where π is a random permutation over [n] → [n]. For any t ≤
n · k0, let W be an any adaptive observation which observes t shares. Then there exists a deterministic
function f : {0, 1}poly(n) → {0, 1}t such that YW has the same distribution as f(YW ′ ◦ S), where S is
uniform over {0, 1}poly(n) and W ′ = [t′n0], t′ = d tk0

e.
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Proof. For every i ∈ [n], Let Bi = {(i− 1)n0 + 1, . . . , in0}. Assume the adaptive adversary is M .
Let f be defined as the following.

Algorithm 3.1: f(·)
Input: y ∈ {0, 1}t′n0 , s ∈ {0, 1}poly(n)

Let c = 1;
∀i ∈ [n], li ∈ [n] ∪ {null} is assigned to be null;
Compute the secrets for the t′ blocks y, which are

(x1, . . . , xt′) ∈ ({0, 1}m0)t
′
;

Compute (Share0(σ), . . . ,Share0(σ)) ∈ ({0, 1}n0)n and parse it to be r ∈ {0, 1}n0n, for an arbitrary
σ ∈ Σ. Here for each Share0 function, we take some unused bits from s as the random bits used in
that function.

Next f does the following computation by calling M ;
while M wants to observe the ith bit which is not observed previously do

Find j ∈ [n] such that i ∈ Bj ;
if the number of observed bits in the jth block is less than k0 then

Let M observe ri;
else

Let Ij be the indices of the observed bits in the jth block. (The indices here are the relative
indices in the jth block)

if lj = null then
lj = c;
c = c+ 1;
Draw a string vj from Share0(xc)|Share0(xc)Ij=r(j−1)n0+Ij

by using some unused bits of s;

end
Let M observe vji−(j−1)n0

;

end
end

Let W = (w1, . . . , wt) ∈ [n · n0]t, Z = f(YW ′ ◦ S). Let R ∈ {0, 1}nn0 be the random variable
corresponds to r.

We use induction to show that YW has the same distribution as Z.
For the base case, the first bits of both random variables have the same distributions by the perfect

privacy of (Share0,Rec0).
For the inductive step, assume that, projected on the first d bits, the two distributions are the same. Fix

the first d observed bits for both YW and Z to be ȳ ∈ {0, 1}d. Assume that the (d + 1)th observation is to
observe the wdth bit where wd is in Bj for some j.

If the number of observed bits in the jth block is less than k0 then Y{w1,...,wd+1}∩Bj has the same distri-
bution as R{w1,...,wd+1}∩Bj , following the privacy of (Share0,Rec0). Note that the blocks Y{w1,...,wd+1}∩Bi ,
i ∈ [n] are independent. The blocksR{w1,...,wd+1}∩Bi , i ∈ [n] are also independent. As f will outputRwd+1

,
the conclusion holds for d+ 1.

Else, if the number of observed bits in the jth block is at least k0, it is sufficient to show that Ywd+1
|Y{w1,...,wd}=ȳ

has the same distribution as that of Zd+1|Z{1,...,d}=ȳ. Note that there are c blocks such that W observes more
than k0 bits for each of them. Let q1, . . . , qc denote those blocks. Let I = ((q1 − 1)n0 + Iq1 , . . . , (qc −
1)n0 + Iqc), which is the set of indices of all observed bits. Note that I ⊆ {w1, . . . , wd}.

By the privacy of the secret sharing scheme, for those blocks which have at most k0 bits being observed,
they are independent of the secret and hence independent of other blocks. So Ywd+1

|Y{w1,...,wd}=ȳ
is in fact
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Ywd+1
|YI=y∗ where y∗ are the corresponding bits from ȳ with a proper rearrangement according to I . From

the definition of f we know that for i ∈ [c], the observed bits in the qith block is exactly the same distribution
as (YBlqi

)Iqi = Share0(xlqi )Iqi . So for Zd+1|Z{1,...,d}=ȳ, it is the same distribution as

T = (YBlj )wd−(j−1)n0
|∧c

i=1((YBlqi
)Iqi

=y∗
(qi−1)n0+Iqi

)

= Share0(xlj )wd−(j−1)n0
|∧c

i=1(Share0(xlqi
)Iqi

=y∗
(qi−1)n0+Iqi

).
(2)

By Lemma 3.10, (YBq1 , . . . , YBqc ) has the same distribution as (YBlq1
, . . . , YBlqc ) as they both are the

same distribution as (Share0(x1), . . . ,Share0(xc)). Thus Ywd+1
|YI=y∗ has the same distribution as T , as

Ywd+1
|YI=y∗ is the distribution of some bits in (YBq1 , . . . , YBqc ) and T is the distribution of the correspond-

ing bits (same indices) in (YBlq1
, . . . , YBlqc ) . So we know that Ywd+1

|Y{w1,...,wd}=ȳ
has the same distribution

as Zd+1|Z{1,...,d}=ȳ and this shows our conclusion.

Lemma 3.19. If the non-adaptive privacy error of (Share,Rec) is ε, then the adaptive privacy error of
(Share′,Rec′) is n̄(ε+ 2−Ω(k/ log2 n)).

Proof. Let W be an adaptive observation . Let W ′ = [d|W |/k0en0]. Let |W | = Ω(n′) be small enough
such that |W ′| ≤ 0.9δ2

1n
′. By Lemma 3.18, there exists a deterministic function f such that for any x, x′ ∈

{0, 1}m′ , SD(Share′(x)W ,Share(x
′)W ) = SD(f(Share′(x)W ′ ◦ S), f(Share′(x′)W ′ ◦ S)) where S is the

uniform distribution as defined in Lemma 3.18 which is independent of Share′(x)W ′ or Share′(x′)W ′ . By
Lemma 2.2, we know that

SD(f(Share′(x)W ′ ◦ S), f(Share′(x′)W ′ ◦ S)) ≤ SD(Share′(x)W ′ ,Share
′(x′)W ′).

By Lemma 3.17 we know that

SD(Share′(x)W ′ , Share
′(x′)W ′) ≤ n̄(ε+ 2−Ω(k/ log2 n)).

Hence
SD(Share′(x)W , Share

′(x′)W ) ≤ n̄(ε+ 2−Ω(k/ log2 n)).

Theorem 3.20. For any n,m ∈ N,m ≤ n, any ε, η ∈ [0, 1] and any constant a ≥ 1, if there exists an explicit
(n, k) secret sharing scheme in AC0 with alphabet {0, 1}, message length m, non-adaptive privacy error ε
and reconstruction error η, then there exists an explicit (n′ = O(na), k′ = Ω(n′)) secret sharing scheme in
AC0 with alphabet {0, 1}, message length Ω(mna−1), adaptive privacy error O(na−1(ε + 2−Ω(k/ log2 n)))
and reconstruction error O(na−1η).

Proof. It follows from Construction 3.14, Lemma 3.15, 3.16 and 3.19.

4 k-wise independent generator in AC0

In this section we focus on increasing the secret length to be linear of the number of shares while keeping
the construction in AC0. The privacy rate is not as good as the previous section. The main technique is to
use the following well known k-wise independent generator which is constructed from expander graphs.
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Theorem 4.1 ([33]). For any N,D,M ∈ N, any ε > 0, if there exists a (≤ Kmax, (
1
2 + ε)D) expander with

left set of vertices [N ], right set of vertices [M ], left degree D, then the function g : {0, 1}M → {0, 1}N ,
defined by g(x)i =

⊕
j∈[D] xΓ(i,j), i = 1, 2, . . . , N , is a Kmax-wise uniform independent generator.

Proof. For any subset S ⊆ [N ] with |S| ≤ Kmax, there exists a u ∈ Γ(S) such that ∃v ∈ S, u ∈ Γ(v) while
∀w ∈ S with w 6= v, u /∈ Γ(w). This is because if not, then |Γ(S)| ≤ 1

2D|S| which contradicts that Γ is a
(≤ Kmax, (

1
2 + ε)D) expander.

As ⊕
i∈S

g(x)i =
⊕
i∈S

⊕
j∈[D]

xΓ(i,j),

⊕
i∈S g(UM )i is uniform.
By the Information Theoretic XOR-Lemma of [18], for every set S′ ⊆ [N ] of size Kmax, g(UM )S′ is

uniform. Thus g is a Kmax-wise uniform independent generator.

Theorem 4.2. For any M ∈ N, N = poly(M), any alphabets Σ0,Σ, any constant γ ∈ (0, 1], there exists
an explicit K-wise independent generator g : ΣM

0 → ΣN in AC0, where K = (M log |Σ0|
log |Σ| )1−γ .

Proof. We first consider Σ0 = Σ = {0, 1}. By Theorem 2.7 for any constant α and every ε > 0 there
exists an explicit function Γ : [N ]× [D]→ [M ] which is the neighbour function of a (≤ Kmax, (

1
2 + ε)D)

expander, whereD = O((logN)(logKmax)/ε)1+1/α andM ≤ D2K1+α
max . We take ε = 0.1 and take α to be

a small enough constant such that Kmax ≥M1−γ . By Theorem 4.1 we get an explicit K-wise independent
generator g : {0, 1}M → {0, 1}N where K = M1−γ .

For arbitrary alphabets Σ0,Σ, we simply apply the generator for log |Σ| times in parallel using indepen-
dent seeds. Note that the total seed length is M log |Σ0| by parsing the input symbols into bits. So for every
one of the |Σ| generator in parallel, its seed length is M log |Σ0|

log |Σ| . Hence each of them is a K-wise uniform

independent generator with K = (M log |Σ0|
log |Σ| )1−γ .

By Theorem 4.1, the construction take XOR over D bits. So by Lemma 2.9, it can be computed in AC0.
Thus the generator can be computed in AC0.

Now we give the construction of secret sharing schemes in AC0 with large message rate (saying 1 −
1/poly(n)).

Construction 4.3. For any n, k,m ∈ N with k ≤ n, any alphabets Σ0,Σ, let (Share,Rec) be an (n, k)
secret sharing scheme with share alphabet Σ, message alphabet Σ0, message length m.

For any constant a > 1, γ ∈ (0, 1], we construct the following (n′ = n + m′, k′ = min(k, l)) secret
sharing scheme (Share′,Rec′) with alphabet Σ, message length m′ = Ω(na), where l = Θ(m log |Σ0|

log |Σ| )1−γ .

The function Share′ : Σm′ → Σn′ is as follows.

1. Let gΓ : Σm
0 → Σm′ be the l-wise independent generator by Theorem 4.2.

2. For secret x ∈ Σm′ , we draw r uniform randomly from Σm
0 let

Share′(x) = (Share(r), gΓ(r)⊕ x).

The function Rec′ : Σn′ → Σm′ is as follows.

1. The input is y = (y1, y2) where y1 ∈ Σn, y2 ∈ Σm′ .
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2. Let
Rec′(y) = gΓ(Rec(y1))⊕ y2.

Lemma 4.4. If Share and Rec can be computed by AC0 circuits, then Share′ and Rec′ can be computed by
AC0 circuits.

Proof. As Share can be computed by an AC0 circuit and gΓ(r) ⊕ x can be computed by a CNF or DNF,
Share′ can be computed by an AC0 circuit.

Similarly, Rec′ can also be computed by an AC0 circuit.

Lemma 4.5. If the reconstruction error of (Share,Rec) is η, then the reconstruction error of (Share′,Rec′)
is η′ = η.

Proof. Let the input for Rec′ be (y1, y2) = (Share(r), gΓ(r)⊕ x). If Rec(·) computes correctly then

Rec′(y) = gΓ(Rec(y1))⊕ y2 = gΓ(r)⊕ gΓ(r)⊕ x = x,

which means that Rec′ recovers the correct secret.
So η′ = η.

Next we show the non-adaptive privacy error of the construction.

Lemma 4.6. If the non-adaptive privacy error of (Share,Rec) is ε, then the non-adaptive privacy error of
(Share′,Rec′) is also ε.

Proof. Consider an arbitrary set W ⊆ [n′] of size k′. We view W as the union of two disjoint sets W1 ⊆ [n]
and W2 ⊆ {n + 1, . . . , n + m′}. Consider any two distinct secrets x, x′ ∈ Σm′ . As gΓ is an l-wise
independent generator and k′ ≤ l, Share′(x)W2 = (gΓ(R) ⊕ x)W2 and Share′(x′)W2 = (gΓ(R) ⊕ x′)W2

are both uniform distributions where R is uniform over Σm. For any string u ∈ Σm′ , the statistical distance
between the distribution Share′(x)W1 |Share′(x)W2

=u and the distribution Share′(x′)W1 |Share′(x′)W2
=u is ε,

because (Share,Rec) has privacy error ε. So we have that

SD(Share′(x)W , Share
′(x′)W )

=
∑
u∈Σm′

1

|Σ|m′
SD(Share′(x)W1 |Share′(x)W2

=u,Share
′(x′)W1 |Share′(x′)W2

=u)

=ε.

(3)

Theorem 4.7. For any n,m ∈ N,m ≤ n, any ε, η ∈ [0, 1] , any constant γ ∈ (0, 1], any m′ = poly(n)
and any alphabets Σ0,Σ, if there exists an explicit (n, k) secret sharing scheme in AC0 with share alphabet
Σ, message alphabet Σ0, message length m, non-adaptive privacy error ε and reconstruction error η, then
there exists an explicit (n + m′,min(k, (m log |Σ0|

log |Σ| )1−γ)) secret sharing scheme in AC0 with alphabet Σ,
message length m′, non-adaptive privacy error ε and reconstruction error η.

Proof. It immediately follows from Construction 4.3, Lemma 4.4, 4.5 and 4.6.
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5 Final construction

In this section we give our final AC0 construction of secret sharing schemes which has constant message
rate and constant privacy rate.

Our construction will use both random permutation and k-wise independent generator proposed in the
previous sections.

5.1 The construction

We first give the construction with a relatively big alphabet.

Construction 5.1. For any n, k,m ∈ N with k,m ≤ n, any alphabets Σ0, Σ, let (Share,Rec) be an (n, k)
secret sharing scheme with share alphabet Σ, message alphabet Σ0, message length m.

Let (ShareC ,RecC) be an (nC , kC) secret sharing scheme from Lemma 3.13 with alphabet Σ, message
length mC , where mC = δ0nC , kC = δ1nC , nC = O(log n) for some constant δ0, δ1.

For any constant a ≥ 1, γ ∈ (0, 1], we can construct the following (n′ = O(na), k′ = Ω(n′) secret
sharing scheme (Share′,Rec′) with share alphabet Σ × [n′], message alphabet Σ, message length m′ =
Ω(n′).

The function Share′ : Σm′ → (Σ× [n′])n
′

is as follows.

1. Let n̄ = Θ(na−1) where the constant factor is large enough.

2. Let gΓ : Σmn̄
0 → Σm′ be the l-wise independent generator by Theorem 4.2, where l = Ω(mn̄ log |Σ0|

log |Σ| )1−γ .

3. For secret x ∈ Σm′ , we draw a string r = (r1, . . . , rn̄) uniformly from (Σm
0 )n̄.

4. Let y = (ys, yg), where ys = (Share(r1), . . . ,Share(rn̄)) ∈ (Σn)n̄ and yg = gΓ(r)⊕ x ∈ Σm′ .

5. Get ŷs ∈ (ΣmC )ns from ys by parsing ys,i to be blocks each having length mC for every i ∈ [n̄],
where ns = d n

mC
en̄.

6. Get ŷg ∈ (ΣmC )ng from yg by parsing yg to be blocks each having length mC , where ng = d m′mC
e.

7. Compute
(ShareC(ŷs,1), . . . ,ShareC(ŷs,ns), ShareC(ŷg,1), . . . ,Share′C(ŷg,ng)).

and parse it to be y′ = (y′1, . . . , y
′
n′) ∈ Σn′ , where n′ = (ns + ng)nC .

8. Generate a random permutation π : [n′]→ [n′] and output

z = ((y′π−1(1) ◦ π
−1(1)), (y′π−1(2) ◦ π

−1(2)), . . . , (y′π−1(n′) ◦ π
−1(n′))) ∈ (Σ× [n′])n

′
.

The function Rec′ : (Σ× [n′])n
′ → Σm′ is as follows.

1. The input is z = ((y′π−1(1) ◦ π
−1(1)), (y′π−1(2) ◦ π

−1(2)), . . . , (y′π−1(n′) ◦ π
−1(n′))).

2. Compute y′ = (y′1, . . . , y
′
n′).

3. Parse y′ to be (y′s, y
′
g) where y′s = (y′s,1, . . . , y

′
s,ns) ∈ (ΣnC )ns , y′g = (y′g,1, . . . , y

′
g,ng) ∈ (ΣnC )ng .

4. Compute (RecC(y′s,1), . . . ,RecC(y′s,ng)) and (RecC(y′g,1), . . . ,RecC(y′g,ng)). Parse them to get ys
and yg.
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5. Compute r by applying Rec on every entry of ys.

6. Output
Rec′(z) = gΓ(r)⊕ yg.

Lemma 5.2. If (Share,Rec) can be computed by AC0 circuits, then (Share′,Rec′) can be computed by AC0

circuits.

Proof. By Theorem 4.2, gΓ can be computed by an AC0 circuit. As Share can be computed by an AC0

circuit, y can be computed by an AC0 circuit. By Lemma 2.9 part 2, as nC = O(log n), (ShareC ,RecC)
can be computed by an AC0 circuit. By Lemma 3.1 the random permutation π can be computed by an AC0

circuit. Also ∀i ∈ [n′], y′π−1(i) =
∨
j∈[n′](y

′
j ∧ (j = π−1(i))). Thus Share′ can be computed by an AC0

circuit.
For Rec′, ∀i ∈ [n′], y′i =

∨
j∈[n′](y

′
π−1(j) ∧ (π−1(j) = i)). As RecC and Rec can be computed by an

AC0 circuits, Rec′ can be computed by an AC0 circuit.

Lemma 5.3. If the reconstruction error of (Share,Rec) is η, then the reconstruction error of (Share′,Rec′)
is η′ = n̄η.

Proof. As (ShareC ,RecC) has perfect reconstruction, the error only occurs when we apply Rec. So we can
compute each ri, i = 1, . . . , n̄ correctly except with error η. By the union bound, with probability 1− n̄η, r
is correctly computed. Once we can compute r correctly, the secret x = gΓ(r)⊕yg. Note that the correctness
of yg is guaranteed. This is because from z we can get the value of every entry of y′ since each entry of z
includes one entry of y′ and an index showing which entry of y′ it is. So yg is correct as it is part of y′.

Lemma 5.4. If the non-adaptive privacy error of (Share,Rec) is ε, then the non-adaptive privacy error of
(Share′,Rec′) is n̄(ε+ e−Ω(k/ logn)) + e−Ω(l/ logn).

Proof. Let k′ = 0.9δ1n
′. Consider an arbitrary W ⊆ [n′] with |W | ≤ k′.

For every i ∈ [ns], let Si = {nC(i− 1) + 1, . . . , nCi}. Let S = {S1, . . . , Sns}. Let Xi be the indicator
such that Xi = 1 is the event |π(Si) ∩W | > kC . Note that E[|π(Si) ∩W |] ≤ 0.9δ1nC = 0.9kC .

For every i ∈ [n̄], let Ei be the event that
∑id n

mC
e

j=(i−1)d n
mC
e+1Xj ≤ k

mC
. Since n̄ is large enough,

nCd n
mC
e ≤ 0.9×0.1

1+0.9×0.1 |W |. By Lemma 3.8,

1− Pr[Ei] ≤ e
−2k/mC+(e2−1)e−Ω(0.9δ1nC )d n

mC
e
.

We take nC = O(log n) to be large enough such that the probability is at most e−Ω(k/mC) ≤ e−Ω(k/ logn).
Let T = {T1, . . . , Tng}, where Ti = nsnC + {nC(i − 1) + 1, . . . , nCi}, i = 1, . . . , ng. Let Yi be the

indicator such that Yi = 1 is the event |π(Ti) ∩ W | > kC . Let Y =
∑

i∈[ng ] Yi. Note that E[|π(Ti) ∩
W |] ≤ 0.9δ1nC = 0.9kC . Let Eg be the event that Y ≤ l

mC
. Since n̄ is large enough, we can have

nCng ≤ 0.9×0.1
1+0.9×0.1 |W | when m′ = Ω(n). By Lemma 3.8,

1− Pr[Eg] ≤ e−2l/mC+(e2−1)e−Ω(0.9δ1nC )ng .

We take nC = O(log n) to be large enough such that the probability is at most e−Ω(l/mC) ≤ e−Ω(l/ logn).
Let E be the event that (

⋂
i∈[n̄]Ei)∩Eg. By the union bound, Pr[E] ≥ 1− n̄e−Ω(k/ logn)−e−Ω(l/ logn).

We claim that Share′(x)W |E and Share′(σ)W |E have statistical distance at most n̄ε, where σ is an arbitrary
string in Σm′ . The reason is as follows.
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We fix a permutation π for which E happens. Let Ws = (
⋃
i∈[ns]

Si) ∩W , Wg = (
⋃
i∈[ng ] Ti) ∩W .

Let R be the random variable which corresponds to the random choice of r.
We claim that Share′(x)Wg is a deterministic function of at most l entries of yg and some extra uniform

random bits. As Eg happens, for those i ∈ [ng] with |π(Ti) ∩W | ≤ kC , the shares indexed by π(Ti) ∩W
are independent of the secret by the privacy of (ShareC ,RecC). Note that they are also independent of other
shares since the construction uses independent randomness for sharing ŷg,i, i ∈ [ng] and ŷs,i, i ∈ [ns]. For
those i ∈ [ng] with |π(Ti)∩W | > kC , the total number of them is at most l

mC
. So Share′(x)Wg is computed

from at most l
mC
×mC = l entries of yg and some extra uniform random bits.

As gΓ(·) is an l-wise independent generator, the distribution of Share′(x)Wg is independent of the secret.
For any v ∈ supp(Share′(x)Wg), Share′(x)Ws |Share′(x)Wg=v is a convex combination of Share′(x)Ws |R=r

for some different r such that Share′(x)Wg = v happens.
We claim that Share′(x)Ws |R=r is a deterministic function of at most k entries of each ys,i for i ∈ [n̄]

and some extra uniform random bits. This is because, as E happens, for those i ∈ [ns] with |π(Si) ∩W | ≤
kC , the shares in π(Si) ∩ W are independent of the secret by the privacy of (ShareC ,RecC). Note that
they are also independent of other shares since the construction uses independent randomness for sharing
ŷg,i, i ∈ [ng] and ŷs,i, i ∈ [ns]. For those i ∈ [ns] with |π(Si) ∩W | > kC , the total number of them is at
most k

mC
. So Share′(x)Ws |R=r is computed from at most k

mC
×mC = k entries of each ys,i for i ∈ [n̄] and

some extra uniform random bits.
Since the privacy error of (Share,Rec) is ε and ys,i|R=r, i ∈ [n̄] are computed using independent uniform

random bits, for any r, r′ ∈ (Σm
0 )n̄,

SD(Share′(x)Ws |R=r, Share
′(σ)Ws |R=r′) ≤ n̄ε.

So
SD(Share′(x)Ws |Share′(x)Wg=v, Share

′(σ)Ws |Share′(σ)Wg=v) ≤ n̄ε.

As a result,
SD(Share′(x), Share′(σ)) ≤ n̄ε.

Thus with probability at least 1 − n̄e−Ω(k/ logn) − e−Ω(l/ logn) over the fixing of π, Share′(x)W and
Share′(σ)W have statistical distance at most n̄ε, which means that

SD(Share′(x),Share′(σ)W ) ≤ n̄(ε+ e−Ω(k/ logn)) + e−Ω(l/ logn).

Lemma 5.5. If the non-adaptive privacy error of (Share,Rec) is ε, then the adaptive privacy error of
(Share′,Rec′) is n̄(ε+ e−Ω(k/ logn)) + e−Ω(l/ logn).

Proof. It follows immediately from Lemma 3.10 and 5.4.

Theorem 5.6. For any ε, η ∈ [0, 1], any n,m ∈ N,m ≤ n and any constant a > 1, γ ∈ (0, 1], if there
exists an explicit (n, k) secret sharing scheme in AC0 with share alphabet Σ, message alphabet Σ0, message
length m, non-adaptive privacy error ε and reconstruction error η, then there exists an explicit (n′ =
O(na),Ω(n′)) secret sharing scheme in AC0 with share alphabet Σ × [n′], message alphabet Σ message
length Ω(n′), adaptive privacy error O(na−1(ε + e−Ω(k/ logn)) + e−Ω(l/ logn)) and reconstruction error
O(na−1η) where l = Ω(mn

a−1 log |Σ0|
log |Σ| )1−γ .

Proof. It follows from Construction 5.1, Lemma 5.2, 5.3, 5.5.
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In step 5 of Construction 5.1, if we instead using xor based secret sharing scheme (Theorem 2.3) then
we can get a even larger privacy threshold, but shorter message length. The proof is similar.

Theorem 5.7. For any n,m ∈ N,m ≤ n, any ε, η ∈ [0, 1] and any constant a > 1, γ ∈ (0, 1], if there
exists an explicit (n, k) secret sharing scheme in AC0 with share alphabet Σ, message alphabet Σ0, message
length m, non-adaptive privacy error ε and reconstruction error η, then there exists an explicit (n′ =
O(na log n), (1 − α)n′) secret sharing scheme in AC0 with share alphabet Σ × [n′], message alphabet
Σ, message length Ω(na), adaptive privacy error O(na−1(ε + 2−Ω(k)) + 2−Ω(l)) and reconstruction error
na−1η, where l = Ω(mn

a−1 log |Σ0|
log |Σ| )1−γ .

5.2 Binary alphabet

Our construction can be modified to have binary alphabet while keeping the message rate and privacy rate
to be constant. We again use the tiny secret sharing schemes from asymptotically good codes as in Section
3.

Construction 5.8. For any n, k,m ∈ N with k,m ≤ n, let (Share,Rec) be an (n, k) secret sharing scheme
with alphabet {0, 1}, message length m.

Let (ShareC ,RecC) be an (nC , kC) secret sharing scheme from Lemma 3.13 with alphabet {0, 1}p=O(logn),
message length mC , where mC = δ0nC , kC = δ1nC , nC = O(log n) for some constants δ0, δ1.

Let (Share∗C ,Rec
∗
C) be an (n∗C , k

∗
C) secret sharing scheme from Lemma 3.13 with alphabet {0, 1}, mes-

sage length large enough m∗C , where m∗C = δ0n
∗
C = p+O(log n), n∗C = δ1n

∗
C .

For any constant a > 1, γ > 0, we can construct the following (n′ = O(na), k′ = Ω(n′) secret sharing
scheme (Share′,Rec′) with alphabet {0, 1}, message length m′ = Ω(n′).

The function Share′ : {0, 1}m′ → {0, 1}n′ is as follows.

1. Let n̄ = Θ(na−1) where the constant factor is large enough.

2. Let gΓ : {0, 1}mn̄ → {0, 1}m′ be the l-wise independent generator by Theorem 4.2, where l =
Ω(mna−1)1−γ .

3. For secret x ∈ {0, 1}m′ , we draw a string r = (r1, . . . , rn̄) uniform randomly from ({0, 1}m)n̄.

4. Let y = (ys, yg), where ys = (ys,1, . . . , ys,n̄) = (Share(r1), . . . ,Share(rn̄)) ∈ ({0, 1}n)n̄ and yg =
(yg,1, . . . , yg,m′) = gΓ(r)⊕ x ∈ {0, 1}m′ .

5. Compute ŷs ∈ (({0, 1}p)mC )ns from ys by parsing ys,i to be blocks over ({0, 1}p)mC for every
i ∈ [n̄], where ns = d n

pmC
en̄.

6. Compute ŷg ∈ (({0, 1}p)mC )ng from yg by parsing yg to be blocks over ({0, 1}p)mC , where ng =

d m′

pmC
e.

7. Let
y′ = (ShareC(ŷs,1), . . . ,ShareC(ŷs,ns),ShareC(ŷg,1), . . . ,ShareC(ŷg,ng)).

Parse y′ as (y′1, . . . , y
′
n∗) ∈ ({0, 1}p)n∗ , where n∗ = (ns + ng)nC .

8. Generate a random permutation π : [n∗]→ [n∗] and compute

z(x) = (Share∗C(y′π−1(1) ◦ π
−1(1)), . . . ,Share∗C(y′π−1(n∗) ◦ π

−1(n∗))) ∈ ({0, 1}n∗C )n
∗
.

9. Parse z(x) to be bits and output.
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The function Rec′ : {0, 1}n′ → {0, 1}m′ is as follows.

1. Parse the input bits to be z = (z1, . . . , zn∗) ∈ ({0, 1}n∗C )n
∗
.

2. For every i ∈ [n∗], let (y′π−1(i) ◦ π
−1(i)) = Rec∗C(zi) to get y′.

3. Parse y′ = (y′s, y
′
g) where y′s = (y′s,1, . . . , y

′
s,ns) ∈ ({0, 1}pnC )ns , y′g = (y′g,1, . . . , y

′
g,ng) ∈ ({0, 1}pnC )ng .

4. Let
ŷs = (RecC(y′s,1), . . . ,RecC(y′s,ns)), ŷg = (RecC(y′g,1), . . . ,RecC(y′g,ng)).

5. Parse ŷs to get ys.

6. Parse ŷg to get yg

7. Let r = (Rec(ys,1), . . . ,Rec(ys,n̄)).

8. Output
Rec′(z) = gΓ(r)⊕ yg.

Lemma 5.9. If (Share,Rec) can be computed by AC0 circuits, then (Share′,Rec′) can be computed by AC0

circuits.

Proof Sketch. The construction is similar to that of Construction 5.1. As nC = O(log n), n′C = O(log n),
n∗C = O(log n), we know that (ShareC ,RecC) and Share∗C ,Rec

∗
C can be computed by AC0 circuits by

Lemma 2.9 part 2.
So the overall construction can be computed by AC0 circuits.

Lemma 5.10. If the reconstruction error of (Share,Rec) is η, then the reconstruction error of (Share′,Rec′)
is η′ = n̄η.

Proof. As (ShareC ,RecC) and (Share∗C ,Rec
∗
C) have perfect reconstructions, the error only occurs when we

apply Rec. So we can compute each ri, i = 1, . . . , n̄ correctly except with error η. By the union bound, with
probability 1 − n̄η, r is correctly computed. Once we can compute r correctly, the secret x = gΓ(r) ⊕ yg.
It remains to show the correctness of yg. From z we can get the value of every entry of y′, since for every
i ∈ [n∗], (y′π−1(i) ◦ π

−1(i)) = Rec∗C(zi) and we can get y′ by putting each value into its correct position.
Thus y′g is correct as it is part of y′. By noting that RecC has no reconstruction error, ŷg is correct. As yg is
from ŷg by parsing, it is also correct.

Lemma 5.11. If the non-adaptive privacy error of (Share,Rec) is ε, then the non-adaptive privacy error of
(Share′,Rec′) is n̄(ε+ e−Ω(k/ log2 n)) + e−Ω(l/ log2 n).

Proof Sketch. Let k′ = 0.9δ2
1n
′. We need to show that there exists a distribution D such that for any

W ⊆ [n′] with |W | ≤ k′, for every x ∈ {0, 1}m′ ,

SD(Share′(x)W ,D) ≤ n̄(ε+ e−Ω(k/ log2 n)) + e−Ω(l/ log2 n).

Let D be Share′(σ)W for an arbitrary σ ∈ {0, 1}m′ .
Consider an arbitrary observation W ⊆ [n′] with |W | ≤ k′. For at least 1− 0.9δ1 fraction of the blocks

zi, i = 1, . . . , n∗, at most δ1 fraction of the bits in each block can be observed, because otherwise the number
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of observed shares is more than 0.9δ1 × δ1n
′ = 0.9δ2

1n
′. Let W ∗ be the index sequence of those blocks

which have more than δ1 fraction of their bits observed. Let |W ∗| = k∗ which is at most 0.9δ1n
∗.

Consider every i /∈ W ∗. The distribution of zi is independent of y′π−1(i) ◦ π
−1(i) by the privacy of

(Share∗C ,Rec
∗
C). Since every Share0 function uses independent randomness, zi is also independent of zi′ for

every i′ ∈ [n∗] with i′ 6= i. So we only have to show that

SD(zW ∗(x), zW ∗(σ)) ≤ n̄(ε+ e−Ω(k/ log2 n)) + e−Ω(l/ log2 n).

For every i ∈ [ns], let Si = {nC(i− 1) + 1, . . . , nCi} and Xi be the boolean random variable such that
Xi = 1 is the event |π(Si) ∩W ∗| > kC . Let S = {S1, . . . , Sns}. Note that ∀i ∈ [ns],E[|π(Si) ∩W ∗|] ≤
0.9δ1nC = 0.9kC .

For every i ∈ [n̄], let Ei be the event that
∑id n

pmC
e

j=(i−1)d n
pmC

e+1Xj ≤ k
pmC

. We take n̄ to be large enough

such that nCd n
pmC
e ≤ 0.9×0.1

1+0.9×0.1 |W
∗|. By Lemma 3.8, for every i ∈ [n̄].

1− Pr[Ei] ≤ e
−2k/(pmC)+(e2−1)e−Ω(0.9δ21nC )d n

pmC
e
.

We take nC = O(log n) to be large enough such that the probability is at most e−Ω(k/(pmC)) ≤ e−Ω(k/ log2 n).
For every i ∈ [ng], Ti = {n′C(i − 1) + 1, . . . , nCi} and Yi be the event that |π(Ti) ∩W ∗| > kC . Let

T = {T1, . . . , Tng}. Let Y =
∑

i∈[ng ] Yi. Note that E[|π(Ti) ∩W ∗|] ≤ 0.9δ1nC = 0.9kC . Let Eg be the
event such that Y ≤ l

pmC
. Since n̄ is large enough, we have nCng ≤ 0.9×0.1

1+0.9×0.1 |W
∗|. By Lemma 3.8,

1− Pr[Eg] ≤ e−2l/(pmC)+(e2−1)e−Ω(0.9δ21nC )ng .

We take nC = O(log n) to be large enough such that the probability is at most e−Ω(l/(pmC)) ≤ e−Ω(l/ log2 n).
Let E be the event that (

⋂
i∈[n̄]Ei) ∩ Eg. By the union bound, Pr[E] ≥ 1 − n̄e−Ω(k/(log2 n)) −

e−Ω(l/(log2 n)). We claim that zW ∗(x)|E and zW ∗(σ)|E have statistical distance at most n̄ε. The reason
is as follows.

We fix a permutation π for which E happens. Let Ws = (
⋃
i∈[ns]

Si) ∩W ∗, Wg = (
⋃
i∈[ng ] Ti) ∩W ∗.

Let R be the random variable which corresponds to the random choice of r.
We claim that zWg(x) is a deterministic function of at most l entries of yg and some extra uniform

random bits. As Eg happens, for those i ∈ [ng] with |π(Ti)∩W ∗| ≤ kC , the blocks indexed by π(Ti)∩W ∗
are independent of the secret by the privacy of (ShareC ,RecC). Note that they are also independent of other
blocks since the construction uses independent randomness for sharing ŷg,i, i ∈ [ng] and ŷs,i, i ∈ [ns]. For
those i ∈ [ng] with |π(Ti) ∩W ∗| > kC , the total number of them is at most l

pmC
. So zWg(x) is computed

from at most l
pmC
× pmC = l entries of yg and some extra uniform random bits.

As gΓ(·) is an l-wise independent generator, the distribution of zWg(x) is independent of the secret. For
any v ∈ supp(zWg(x)), consider zWs(x)|zWg (x)=v and zWs(σ)|zWg (σ)=v. Note that zWs(x)|zWg (x)=v is a
convex combination of zWs(x)|R=r for some different r such that zWg(x) = v happens.

We claim that zWs(x)|R=r is a deterministic function of at most k entries of each ys,i for i ∈ [n̄] and
some extra uniform random bits. This is because, as E happens, for those i ∈ [ns] with |π(Si)∩W ∗| ≤ kC ,
the shares in π(Si)∩W ∗ are independent of the secret by the privacy of (ShareC ,RecC). Note that they are
also independent of other shares since the construction uses independent randomness for sharing ŷg,i, i ∈
[ng] and ŷs,i, i ∈ [ns]. For those i ∈ [ns] with |π(Si)∩W ∗| > kC , the total number of them is at most k

pmC
.

So zWs(x)|R=r is computed from at most k
pmC
× pmC = k entries of each ys,i for i ∈ [n̄] and some extra

uniform random bits.
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Since the privacy error of (Share,Rec) is ε and every Share function uses independent uniform random
bits, for any r, r′ ∈ (Σm

0 )n̄,
SD(zWs(x)|R=r, zWs(σ)|R=r) ≤ n̄ε.

So
SD(zWs(x)|zWg (x)=v, zWs(σ)|zWg (σ)=v) ≤ n̄ε.

As a result,
SD(zWs(x), zWs(σ)) ≤ n̄ε.

Thus with probability at least 1 − n̄e−Ω(k/(log2 n)) − e−Ω(l/(log2 n)) over the fixing of π, zW ∗(x) and
zW ∗(σ) have statistical distance at most n̄ε, which means that

SD(zW ∗(x), zW ∗(σ)) ≤ n̄(ε+ e−Ω(k/ log2 n)) + e−Ω(l/ log2 n).

Using Lemma 5.11 and a similar argument as in Lemma 3.19, we can get adaptive privacy as follows.

Lemma 5.12. If the non-adaptive privacy error of (Share,Rec) is ε, then the adaptive privacy error of
(Share′,Rec′) is n̄(ε+ e−Ω(k/ log2 n)) + e−Ω(l/ log2 n).

Proof. Let W be the adaptive observation of length k′. Let W ′ = [dk′/k∗Ce]. By Lemma 3.18, there exists a
deterministic function f such that for x, x′ ∈ {0, 1}m′ , SD(Share′(x)W ,Share(x

′)W ) = SD(f(Share′(x)W ′◦
R ◦ S), f(Share′(x′)W ′ ◦ R ◦ S)) where R,S are as defined in Lemma 3.18 which are independent of
Share′(x)W ′ and Share′(x′)W ′ . By Lemma 2.2, we know that

SD(f(Share′(x)W ′ ◦R ◦ S), f(Share′(x′)W ′ ◦R ◦ S)) ≤ SD(Share′(x)W ′ ,Share
′(x′)W ′).

By Lemma 5.11 we know that

SD(Share′(x)W ′ ,Share
′(x′)W ′) ≤ n̄(ε+ e−Ω(k/ log2 n)) + e−Ω(l/ log2 n).

So
SD(Share′(x)W ,Share

′(x′)W ) ≤ n̄(ε+ e−Ω(k/ log2 n)) + e−Ω(l/ log2 n).

Theorem 5.13. For any ε, η ∈ [0, 1], any n,m ∈ N,m ≤ n and any constant a > 1, γ > 0, if there exists an
explicit (n, k) secret sharing scheme in AC0 with alphabet {0, 1}, message length m, non-adaptive privacy
error ε and reconstruction error η, then there exists an explicit (n′ = O(na),Ω(n′)) secret sharing scheme
in AC0 with alphabet {0, 1}, message length Ω(n′), adaptive privacy error O(na−1(ε + 2−Ω(k/ log2 n)) +

2−Ω((mna−1)1−γ/ log2 n)) and reconstruction error O(na−1η).

Proof. It follows from Construction 5.8, Lemma 5.9, 5.10, 5.12.

30



6 Instantiation

The Minsky-Papert function [32] gives a secret sharing scheme in AC0 with perfect privacy.

Theorem 6.1 ([32]). For any n ∈ N, there exists an explicit (n, n
1
3 ) secret sharing scheme in AC0 with

alphabet {0, 1}, message length 1, perfect privacy and reconstruction.

Combining our techniques with Theorem 6.1, we have the following results.

Theorem 6.2. For any n ∈ N, any constant α ∈ (0, 1], β ∈ [0, 1), there exists an explicit (n, (1 − α)n)
secret sharing scheme in AC0 with share alphabet {0, 1}O(logn), message alphabet {0, 1}, message length

m = nβ , adaptive privacy error 2
−Ω(( n

m logn
)1/3) and perfect reconstruction.

Proof. It follows from Theorem 6.1 and 3.12. We use the (n0, n
1/3
0 ) secret sharing scheme from Theorem

6.1 to instantiate Theorem 3.12. So n = O(na0 log n0) for some constant a > 1. The message length is

O(n/(n0 log n)). Since n0 = n
m logn , the privacy error is 2

−Ω(( n
m logn

)1/3). The share alphabet is {0, 1} ×
[n].

Note that when β = 0, this is a scheme sharing 1 bit. Next we give our theorem for secret sharing
schemes with binary alphabet, constant secret rate and constant privacy rate.

Theorem 6.3. For any n ∈ N, for any constant γ ∈ (0, 1/4), there exists an explicit (n,Ω(n)) secret

sharing scheme in AC0 with alphabet {0, 1}, message length m = Ω(n), adaptive privacy error 2−Ω(n
1
4−γ)

and perfect reconstruction.

Proof. It follows from Theorem 6.1 and 5.13.
Let (n0, n

1/3
0 ) be the secret sharing scheme of Theorem 6.1 with message length m0 = 1. Let n =

O(na0) for some constant a > 1. For any constant β ∈ (0, 1), let n1/3
0 = (m0n

a−1
0 )1−β . Then a = 4−3β

3(1−β) .

So n0 = O(n
3(1−β)
4−3β ). Hence by Theorem 5.13, we have the desired secret sharing scheme with the privacy

error 2−Ω(n
1−β
4−3β / log2 n).

7 Extensions and other Applications

7.1 Robust secret sharing

Our secret sharing schemes can be made robust by using robust secret sharing schemes and authentication
techniques in small blocks.

We will use cyclic shifting of indices in some constructions in this section. For any index i in some
index set S, for any j ∈ N, i� j is the index obtained from i by doing right cyclic shifting for j positions,
whereas i� j is the index obtained from i by doing left cyclic shifting for j positions.

Theorem 7.1 ([15]). For any n ∈ N, any constant ρ < 1/2, there exists an (n,Ω(n)) robust secret sharing
scheme, with alphabet {0, 1}O(1), message length Ω(n), perfect privacy, robustness parameter d = ρn and
reconstruction error 2−Ω(n).

Also we need the following theorem about computing approximate majorities.

Theorem 7.2 ([37]). For every n ∈ N, there exists an explicit depth 3 circuit Cn : {0, 1}n → {0, 1} which
decides whether the fraction of 1’s in the input is at least 2/3.
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We use concatenations of the schemes from Theorem 7.1 to get the following robust secret sharing
scheme in AC0 with poly-logarithmic number of shares.

Lemma 7.3. For any n ∈ N, any constant a ∈ N, any ε = 1/poly(n), there exists an (n0 = O(loga n), k0 =
Ω(n0)) robust secret sharing scheme in AC0 (in n), with share alphabet {0, 1}O(1), message alphabet {0, 1},
message length Ω(n0), perfect privacy, robustness parameter Ω(n0), reconstruction error ε.

Proof. Let (RShare1,RRec1) be an (n1 = O(log n), k1 = Ω(n1)) robust secret sharing scheme from The-
orem 7.1 with message length m1, robustness parameter d1, share alphabet {0, 1}p=O(1).

We use induction on a.
For a = 1, as the output length is O(log n), by Lemma 2.9, the sharing and reconstruction can both be

done in AC0. Other properties follow from Theorem 7.1.
Assume the conclusion holds for some a ≥ 1. So there exists an (na = O(loga n), ka = Ω(na)) ro-

bust secret sharing scheme meeting the requirements, with message length ma, message alphabet {0, 1},
robustness parameter da, share alphabet {0, 1}p. Consider a + 1. For any x ∈ {0, 1}O(loga+1 n), let
RSharea+1 be constructed as follows. Split x into blocks (x̄1, . . . , x̄m1) ∈ ({0, 1}ma)m1 . Let ȳi =
RShare1(x̄1,i, . . . , x̄m1,i), i = 1, . . . ,ma, where x̄j,i is the ith bit of x̄j , j = 1, . . . ,m1 . Let x̃i =
(ȳ1,i, . . . , ȳma,i), i = 1, . . . , n1, where ȳj,i is the ith bit of ȳj , j = 1, . . . ,ma. Let yi = RSharea(x̃i),
i = 1, . . . , n1. Let RSharea+1(x) = (y1, . . . , yn1). The message length is ma+1 = m1 ·ma. The privacy
is ka+1 = k1 · ka = Ω(na). This is because, if the adversary can see at most k1 · ka shares, then at most
k1 of x̃1, . . . , x̃n1 are observed. So by the privacy of Share1, x̄1, . . . , x̄m1 are not observed. Thus x is not
observed. The robustness is da+1 = d1da = Ω(na), due to a similar argument as for the privacy. RSharea+1

can be computed by AC0 circuits since both RShare1 and RSharea can be computed by AC0 circuits. The
reconstruction is in AC0 since we can first apply RReca on yi for every i = 1, . . . , n1. By assumption this
is in AC0. Then we apply RRec1 on ȳi for every i = 1, . . . ,ma. This is in AC0 by the base case. The re-
construction error is still 1/poly(n) since both (RShare1,RRec1) and (RSharea,RReca) have reconstruction
error 1/poly(n).

Next, we give our construction of robust secret sharing scheme with “asymptotically good” parameters.

Theorem 7.4. For any n ∈ N, any η = 1
poly(n) , there exists an explicit (n,Ω(n)) robust secret sharing

scheme in AC0 with share alphabet {0, 1}O(1), message alphabet {0, 1}, message length m = Ω(n), non-
adaptive privacy error 2−n

Ω(1)
, non-adaptive robustness Ω(n) and reconstruction error η.

Proof Sketch. We modify Construction 5.8. Let δ0, δ1, ρ be some proper constants in (0, 1).
Let (RShareC ,RRecC) be an (nC , kC) secret sharing scheme from Theorem 7.3 with share alphabet

{0, 1}p=O(log2 n′), message alphabet {0, 1}, message length mC , where mC = δ0nC , kC = δ1nC , nC =
O(log n′), robustness parameter ρnC .

Also let (RShare∗C ,RRec
∗
C) be an (n∗C , k

∗
C) secret sharing scheme from Theorem 7.3 with share alphabet

Σ = {0, 1}O(1), message alphabet {0, 1}, message length m∗C = p + O(log2 n), where m∗C = δ0n
∗
C ,

k∗C = δ1n
∗
C , robustness parameter ρn∗C .

The robust secret sharing scheme construction is the same as that of Construction 5.1 except the fol-
lowing modifications. We replace (ShareC ,RecC) and (Share∗C ,Rec

∗
C) by their corresponding robust ones

(RShareC ,RRecC) and (RShare∗C ,RRec
∗
C) . For the share function, we replace the last two steps in Con-

struction 5.8 by the following.

• Generate a random permutation π : [n∗]→ [n∗].

• Randomly pick l′ = O(log n∗) indices r′1, . . . , r
′
l′ ∈ [n∗] and let r′ = (r′1, . . . , r

′
l′).
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• For each block y′π−1(i)◦π
−1(i), i = 1, . . . , n∗, we attach r′ and π−1(i� r′1), π−1(i� r′2), . . . , π−1(i�

r′l′) to it. That is, the ith block is

ỹi = y′π−1(i) ◦ π
−1(i) ◦ π−1(i� r′1) ◦ · · · ◦ π−1(i� r′l′) ◦ r′.

• Compute z(x) = (RShare∗C(ỹ1), . . . ,RShare∗C(ỹn∗)).

• Parse z to be shares over Σn′=n∗Cn
∗

and output.

For the reconstruction function we replace the first two steps with the following.

• Parse the input to be blocks each of length n∗C and apply RRec∗C on every block to get ỹ.

• Compute r′ by taking the approximate majority of the r′s in ỹi, i = 1, . . . , n∗.

• ∀i ∈ [n′], take the approximate majority of the l backups of π−1(i) to reconstruct π−1(i).

• Compute y′ using the recovered indices and ỹ.

We claim that, we get a (n′,Ω(n′)) robust secret sharing scheme with share alphabet {0, 1}O(1), message
alphabet {0, 1}, message length m′ = Ω(n′), non-adaptive privacy error 2−n

′Ω(1)
, non-adaptive robust pa-

rameter Ω(n′) and reconstruction error η.
The non-adaptive privacy can be proved in the same way as that of Lemma 5.11. Note that for each

i ∈ [n∗] we attach additional information about the indices. But this gives no more information about the
secret since we are considering the non-adaptive case.

What we need to prove is that the reconstruction works under non-adaptive adversaries. Assume that the
adversary corrupts at most min(0.9ρ2, ρ/3) fraction of shares. Thus for at most 1/3 fraction of zi, i ∈ [n∗],
the fraction of corrupted shares is more than ρ. Because otherwise the total fraction of corrupted shares is
more than ρ/3. Hence for at least 2/3 fraction of zi, i ∈ [n∗], the fraction of corrupted shares is at most ρ.
By the robustness of (RShare∗C ,RRec

∗
C), at least 2/3 fraction of ỹi, i ∈ [n∗] can be reconstructed correctly.

By Theorem 7.2, we can reconstruct r′ correctly.
For any i ∈ [n∗], the event π−1(i) can be recovered correctly with probability 1 − e−Θ(logn′) = 1 −

poly(n′) by a Chernoff bound, since the l′ indices r′1, . . . , r
′
l′ are independently chosen and at most ρ/3

fraction of ỹ1, . . . , ỹn∗ cannot be reconstructed correctly. By the union bound with probability 1− poly(n′),
∀i ∈ [n∗], π−1(i) can be recovered correctly. Before applying RRecC on every y′i, we bound the number
of corrupted bits (including the blanks) for y′i. The probability that the fraction of corrupted bits in y′i is at
most ρ is at least 1− 1/poly(n′) by Lemma 3.7. Once for every block y′i, i = 1, . . . , n∗, the corrupted rates
are at most ρ , we can finally get the correct secret. By the union bound, we know the probability that this
happens is at least 1− 1/poly(n′).

The construction is still in AC0. We only need to show that the modified parts can be computed in
AC0. For the share function, generating random permutation is by Lemma 3.1. Additions of indices can be
computed by AC0 circuits by Lemma 2.9 since the indices are recorded by O(log n′) bits. Also note that
RShare∗C is from Lemma 7.3. For the reconstruction, note that RRec∗C is from Lemma 7.3. The approximate
majority is from Theorem 7.2. So they all can be computed by AC0 circuits. The tests which check the
equivalence of indices are in AC0 by Lemma 2.9, as the input length is O(log n′).

We still use Theorem 6.1 to instantiate the scheme.
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7.2 Stochastic error correcting code

Using our general strategy, we can also construct stochastic error correcting codes in AC0 which can resist
additive errors ([21]).

One important component of our construction is the following “tiny” codes. It is constructed by classic
code concatenation techniques.

Lemma 7.5. For any n ∈ N, any constant a ∈ N, there exists an asymptotically good binary (n0 =
O(loga n),m0, d0) code C such that the encoding and decoding can both be computed by AC0 circuits of
size poly(n).

Proof. Let C1 be an (n1 = O(log n),m1, d1) binary code which is asymptotically good.
We use induction on a.
For a = 1, as the code length is O(log n) and there are plenty of asymptotically good binary codes

construction, by Lemma 2.9, the encoding and decoding can both be done in AC0. So our conclusion holds
in this case.

Assume the conclusion holds for some a ≥ 1. So there exists an asymptotically good binary (na =

O(loga n),ma, da) code Ca. Consider a + 1. For any x ∈ {0, 1}O(loga+1 n), let Ca+1(x) be computed
as the following codes concatenation. Parse x into blocks of length ma, which is (x̄1, . . . , x̄m1). Let
ȳi = C1(x̄1,i, . . . , x̄m1,i), i = 1, . . . ,ma, where x̄j,i is the ith bit of x̄j . Let x̃i = (ȳ1,i, . . . , ȳma,i),
i = 1, . . . , n1, where ȳj,i is the ith bit of ȳj , j = 1, . . . ,ma. Let yi = Ca(x̃i), i = 1, . . . , n1. Let
Ca+1(x) = (y1, . . . , yn1). The message length is ma+1 = m1 ·ma. The distance is da+1 = d1 · da. So
Ca+1 is still an asymptotically good code due to that a is a constant. The encoding can be computed by AC0

circuits since the encoding of both C1 and Ca can be computed by AC0 circuits. The decoding is in AC0

since we can first decode yi for every i = 1, . . . , n1. By assumption this is in AC0. Then we decode ȳi for
every i = 1, . . . ,ma. This is in AC0 by the base case.

Here we give the construction of stochastic error correcting codes in AC0 which are “asymptotically
good”.

Construction 7.6. For any n ∈ N, we construct the following (n,m = Ω(n), ρ = Ω(1)) stochastic error
correcting code.

Let δ0, δ1 be some proper constants in (0, 1).
Let (Enc0,Dec0) be an asymptotically good (n0,m0, d0) error correcting code with alphabet {0, 1}p,

n0 = O(log n), m0 = δ0n0, d0 = δ1n0. In fact we can realize this code by applying an asymptotically good
binary code, having the same rate, in parallel p times.

Let (Enc1,Dec1) be an asymptotically good (n1,m1, d1) error correcting code from Lemma 7.5 with
alphabet {0, 1}, n1 = p+O(log n), m1 = δ0n1 = O(p), d1 = δ1n0.

Encoding function Enc : {0, 1}m=Ω(n) → {0, 1}n is a random function which is as follows.

1. On input x ∈ {0, 1}m, split x into blocks of length pm0 such that x = (x̄1, . . . , x̄m/(pm0)) ∈
({0, 1}pm0)m/(pm0).

2. Compute (Enc0(x̄1), . . . ,Enc0(x̄m/(pm0))) and parse it to be y = (y1, . . . , yn′) ∈ ({0, 1}p)n′ , n′ =
m/(δ0p).

3. Generate a random permutation π : [n′]→ [n′].

4. Randomly pick l = O(log n) different indices r1, . . . , rl ∈ [n′] and let r = (r1, . . . , rl).
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5. For every i ∈ [n′], let ỹi = (yπ−1(i), π
−1(i), π−1(i� r1), . . . , π−1(i� rl), r).

6. Output z = (Enc1(ỹ1), . . . ,Enc1(ỹn′)) ∈ ({0, 1}n1)n
′
.

Decoding function Dec : {0, 1}n=n1n′ → {0, 1}m is as follows.

1. On the input z, apply Dec1 on every block of length n0 to get ỹ.

2. Take the majority of the r in every ỹi, i ∈ [n′] to get r.

3. ∀i ∈ [n′], take the approximate majority of the l backups of π−1(i) to reconstruct π−1(i).

4. Compute the entries of y using the recovered indices and ỹ.

5. Apply Dec0 on every block of y of length pn0 to get x.

Theorem 7.7. For any n ∈ N, any ε = 1/poly(n), there exists an explicit (n,m = Ω(n), ρ = Ω(1))
stochastic binary error correcting code with decoding error ε, which can be computed by AC0 circuits.

The proof here is similar to the proof of Theorem 7.4.

Proof Sketch. We claim that Construction 7.6 gives such a code.
Let ρ = 0.9(δ1/3)2. So for at most 0.9(δ1/3) fraction of blocks z1, . . . , z

′
n, each of them has at least

(δ1/3) fraction of bits being corrupted, since otherwise the overall corrupted bits is larger than 0.9(δ1/3)×
(δ1/3)n1n

′ = ρn. For blocks of z1, . . . , zn with less than (δ1/3) fraction of bits being corrupted, they can
be decoded correctly since d1/2 = δ1n1/2. Thus we know that r can be reconstructed correctly through
taking approximate majorities.

For any i ∈ [n′], as r1, . . . , rl are randomly chosen and at most 0.9(δ1/3) fraction of ỹ1, . . . , ỹn′ can
not be computed correctly, by a Chernoff bound, the probability that π−1(i) is correctly computed can be
at least 1 − 0.5ε/n′ by setting l to be large enough. So by the union bound, the probability that for every
i ∈ [n′], π−1(i) is correctly recovered, is at least 1− 0.5ε.

Now we bound the number of corrupted bits for every yi. The probability that the fraction of corrupted
bits in yi is at most δ1/3 is at least 1− 1/poly(n) by Lemma 3.7. Once for every block yi, i = 1, . . . , n′, the
corrupted rates are at most δ1/3 , we can decode correctly. By the union bound, we know the probability
that this happens is at least 1− 1/poly(n).

The Construction can be computed by AC0 circuits since all components can be computed by AC0

circuits.

Note that if we set both levels of codes in our construction to be from Lemma 7.5 with length poly log n
and l to be also poly log n, we can get quasi-polynomially small decoding error following the same proof.
The result is stated as the follows.

Theorem 7.8. For any n ∈ N, any ε = 2−poly logn, there exists an explicit (n,m = Ω(n), ρ = Ω(1))
stochastic binary error correcting code with decoding error ε, which can be computed by AC0 circuits.

We can use duplicating techniques to make the decoding error to be even smaller, however with a smaller
message rate.

Theorem 7.9. For any n, r ∈ N, there exists an (n,m = Ω(n/r), ρ = Ω(1)) stochastic binary error
correcting code with decoding error 2−Ω(r/ logn), which can be computed by AC0 circuits.
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Proof Sketch. For message x ∈ {0, 1}m, we simply repeat every bit for r times and then apply the coding
scheme in Construction 7.6. When decoding, we apply the circuits from Theorem 7.2 to decide each xi from
r symbols. The error is 2−Ω(r/ logn) since we need to correctly reconstruct Ω(r/ log n) blocks to have the
approximate majority being correct.

7.3 Secure broadcasting

We give a secure protocol for the multi-party broadcasting model against external adversaries. The definition
is given by Definition 1.11. Here we briefly describe the model again.

There are n parties where every party i ∈ [n] has a local input xi ∈ {0, 1}m. After communication, they
want every party to know all xi, i ∈ [n]. Usually we assume the communication is conducted in a broadcast
channel. The adversary can observe/corrupt some messages appeared in the communication but not all of
them. A protocol for this model is secure in the sense that the adversary can learn almost nothing about the
local inputs.

The major difference between our model and the multi-party computation model is that, in our case, all
parties are honest. The adversary can only observe/corrupt a constant fraction of messages.

The model is pretty practical in real world. For example, in military, we can think of several command-
centres willing to exchange their information, while there are enemy radars or receivers which can detect
their information frequently (but not always, since our army will find and attack them). Or several players
want to have a common guess for the lottery but do not want anybody else occasionally passing by to know
their guess.

To achieve our objective, we need to use the almost t-wise independent random permutation. A random
variable π : [n] → [n] is an ε almost t-wise independent random permutation if for every t elements
i1, . . . , it ∈ [n], (π(i1), . . . , π(it)) has statistical distance at most ε from (π′(i1), . . . , π′(it)) where π′

is a random permutation over [n]. Kaplan, Naor and Reingold [25] give a polynomial time construction
generating ε almost t-wise independent permutations using O(t log n+ log(1/ε)) random bits.

Our protocol for secure broadcasting is as follows. We assume that all parties share a small secret key.
This assumption is reasonable since in our protocol the length of the shared secret key is significantly smaller
than the total input length.

Protocol 7.10. For any n,m ∈ N, for any i ∈ [n], let xi ∈ {0, 1}m be the input of party i. Let the security
parameter be r ∈ N with r ≤ m.

Let (RShare0,RRec0) be an (n0, k0 = δ0n0) robust secret sharing scheme with share alphabet {0, 1}p=O(1),
secret length m0 = m = δn0 and robust parameter d0 = δ1n0, by Theorem 7.1 for some constant δ, δ0, δ1

with δ0 ≥ δ1.
Let (RShare1,RRec1) be an (n1, k1 = δ0n1) robust secret sharing scheme with share alphabet {0, 1}p=O(1),

secret length m1 = pn0/r = δn1 and robust parameter d1 = δ1n1, by Theorem 7.1.
Assume that all parties have a common secret key s ∈ {0, 1}O(r log(nr)).
The i-th party does the following.

1. Generate a 2−Ω(r)-almost r-wise independent random permutation π over [nr] using s.

2. Compute the secret shares yi = RShare0(xi) ∈ ({0, 1}p)n0 . Split yi into r blocks each of length
pn0/r such that yi = (yi,1, . . . , yi,r).

3. View the communication procedure as having [nr] time slots. For j ∈ [r], on the π((i − 1)r + j)’s
time slot, send message zi,j = RShare1(yi,j).
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4. For every i ∈ [n], j ∈ [r], compute yi,j = RRec1(zi,j), where zi,j is the message received in the
π((i− 1)r + j)’s time slot.

5. For every i ∈ [n] get yi = (yi,1, . . . , yi,r).

6. For every i ∈ [n], xi = RRec0(yi).

Theorem 7.11. For any n,m, r ∈ N with r ≤ m, there exists an explicit (n,m,α = Ω(1), n2−Ω(r), n2−Ω(r)+
nm2−Ω(m/r)) secure broadcasting protocol with communication complexityO(nm), secret key lengthO(r log(nr)).

Proof Sketch. Let α = 0.1δ2
1/p. We consider the non-adaptive adversary. For at least 1 − 0.1δ1 fraction

of nr blocks, the adversary can only observe/corrupt at most δ1/p fraction of bits in one block. Because
otherwise the total observed/corrupted fraction is more than 0.1δ1 × δ1/p.

For every block zi,j with at most δ1/p fraction of bits being corrupted, yi,j is hidden and can be recon-
structed correctly, since (RShare1,RRec1) is a robust secret sharing scheme. LetW ⊆ [nr] denote the set of
indices of those blocks for which the adversary can tempt more than δ1/p fraction of bits. So |W |nr ≤ 0.1δ1.

Let’s first assume that π is a perfect random permutation.
LetXi,j be the indicator such thatXi,j = 1 is the event that π((i−1)n+j) ∈W . LetXi =

∑
j∈[r]Xi,j .

Thus
Pr[Xi,j = 1] ≤ 0.1δ1.

By Lemma 3.7,
Pr[Xi > δ1r] ≤ 2−Ω(r).

As (RShare0,RRec0) and (RShare1,RRec1) are all robust, once Xi ≤ δ1r, xi can be reconstructed
correctly. Since δ0 ≥ δ1, xi is also hidden.

Now consider π being a 2−Ω(r)-almost r-wise independent random permutation. Since Xi is a deter-
ministic function of π, by Lemma 2.9 the statistical distance between Xi and that in the perfect random
permutation case is 2−Ω(r). So

Pr[Xi > δ1r] ≤ 2−Ω(r).

By the union bound, the probability that ∀i ∈ [n], xi is hidden and can be reconstructed correctly, is at
least 1− n2−Ω(r).

The reconstruction error is from the two reconstruction functions RRec0 and RRec1. As we applied
them for at most O(nm) times and want them to always compute correctly, the error is at most n2−Ω(r) +
nm2−Ω(m/r). Note that the support of the almost r-wise independent random permutation is a subset of the
set of all permutations [25], so the reconstruction can still be done following a same analysis as the proof of
Theorem 7.4.

The total number of bits in the transmission is nm(p/δ)2 = O(nm).
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A Secret sharing with small privacy error implies approximation degree
lower bound

The following result is a direct corollary of Theorem D.1. and Theorem 1.2 of [8].

Theorem A.1 (Corollary from Theorem D.1. and Theorem 1.2 of [8]). For any n, k ∈ N, if there exists
an (n, k) secret sharing scheme with alphabet {0, 1}, message length m ≥ 1, privacy error ε = O( 1

nk
),

reconstruction function f and reconstruction error being constant, then f has α-approximation degree at
least k, where α is a constant in (0, 1).

Proof. Let the secret sharing scheme be (Share, f). For two different message x, x′ ∈ {0, 1}m, consider
Y = Share(x) and Y ′ = Share(x′). By definition of secret sharing scheme, there are no test on k bits which
can distinguish them with advantage ε. By Theorem D.1. of [8], there exists Z,Z ′ over {0, 1}n, where Z
is 2εnk close to Y and Z ′ is 2εnk close to Y ′. Also Z and Z ′ are k-wise indistinguishable. So once ε is
small enough, f can still distinguish them with a constant advantage. Thus by Theorem 1.2 of [8], f has
α-approximation degree at least k with α being a constant in (0, 1).
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