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Abstract

Oblivious RAM (ORAM) is a powerful cryptographic building block that allows a program
to provably hide its access patterns to sensitive data. Since the original proposal of ORAM by
Goldreich and Ostrovsky, numerous improvements have been made. To date, the best asymp-
totic overhead achievable for general block sizes is O(log2N/ log logN), due to an elegant scheme
by Kushilevitz et al., which in turn relies on the oblivious Cuckoo hashing scheme by Goodrich
and Mitzenmacher.

In this paper, we make the following contributions: we first revisit the priorO(log2N/ log logN)-
overhead ORAM result. We demonstrate the somewhat incompleteness of this prior result, due
to the subtle incompleteness of a core building block, namely, Goodrich and Mitzenmacher’s
oblivious Cuckoo hashing scheme.

Even though we do show how to patch the prior result such that we can fully realize Goodrich
and Mitzenmacher’s elegant blueprint for oblivious Cuckoo hashing, it is clear that the extreme
complexity of oblivious Cuckoo hashing has made understanding, implementation, and proofs
difficult. We show that there is a conceptually simple O(log2N/ log logN)-overhead ORAM
that dispenses with oblivious Cuckoo hashing entirely.

We show that such a conceptually simple scheme lends to further extensions. Specifically,
we obtain the first O(log2N/ log logN) Oblivious Parallel RAM (OPRAM) scheme1, thus not
only matching the performance of the best known sequential ORAM, but also achieving super-
logarithmic improvements in comparison with known OPRAM schemes.

1 Introduction

Oblivious RAM [19,20,39], originally proposed in the seminal work by Goldreich and Ostrovsky [19,
20], is a powerful cryptographic primitive that provably obfuscates a program’s access patterns
to sensitive data. Since Goldreich and Ostrovsky’s original work [19, 20], numerous subsequent
works have proposed improved constructions, and demonstrated a variety of ORAM applications

∗The subtlety regarding shared Cuckoo hash stashes pointed out by Falk et al. [13] does not affect the correctness of
our ORAM and OPRAM results, since our ORAM/OPRAM results do not rely on Cuckoo hash table. Nonetheless,
in our appendices, we rectified oblivious Cuckoo hash table constructions — the subtlety pointed out by Falk et
al. [13] also does not affect our oblivious Cuckoo hash table construction because our oblivious hash table visits two
real positions as well as the stash. See Remark 4 for details.

1In a companion paper, Chan and Shi obtain the same asymptotical result in the tree-based framework [8].
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in both theoretical contexts (e.g., multiparty computation [23, 28], Garbled RAMs [18, 29]) as
well as in secure hardware and software systems (e.g., secure processors [15, 16, 30, 38], and cloud
outsourcing [22,37,40,41,46]). To hide access patterns, an ORAM scheme typically involves reading,
writing, or shuffling multiple blocks for every data request. Suppose that on average, for each data
request, an ORAM scheme must read/write X blocks. In this paper, we refer to X as the overhead
(or the total work blowup) of the ORAM scheme.

Goldreich and Ostrovsky [19,20] showed that, roughly speaking, any “natural” ORAM scheme
that treats each block as an “opaque ball” must necessarily suffer from at least logarithmic overhead.
The recent Circuit ORAM [44] work demonstrated an almost matching upper bound for large
enough blocks. Let N denote the total memory size. Circuit ORAM showed the existence of
a statistically secure ORAM scheme that achieves O(α logN) overhead for N ε-bit blocks for any
constant ε > 0 and any super-constant function α = ω(1) (where the ORAM’s statistical failure
probability is N−α). To date, the existence of an almost logarithmic ORAM scheme is only known
for large blocks. For general block sizes, the state of affairs is different: the best known construction
(asymptotically speaking) is a computationally secure scheme by Kushilevitz et al. [27], which

achieves O( log2N
log logN ) overhead assuming block sizes2 of Ω(logN). We note that all known ORAM

schemes assume that a memory block is at least large enough to store its own address, i.e., at least
Ω(logN) bits long. Therefore, henceforth in this paper, we use the term “general block size” to
refer to a block size of Ω(logN).

Although most practical ORAM implementations (in the contexts of secure multi-party compu-
tation, secure processors, and storage outsourcing) opted for tree-based ORAM constructions [39,
43,44] due to tighter practical constants, we note that hierarchical ORAMs are nonetheless of much
theoretical interest: for example, when the CPU has O(

√
N) private cache, hierarchical ORAMs

can achieve O(logN) simulation overhead while a comparable result is not known in the tree-based
framework. Recent works [3, 7] have also shown how hierarchical ORAMs can achieve asymptoti-
cally better locality and IO performance than known tree-based approaches.

Our contributions. In this paper, we make the following contributions:

• Revisit O(log2N/ log logN) ORAMs. We revisit how to construct a computationally secure

ORAM with O( log2N
log logN ) overhead for general block sizes. First, we show why earlier results

along this front [22, 27] are somewhat incomplete due to the incompleteness of a core build-
ing block, oblivious Cuckoo hashing, that is proposed and described by Goodrich and Mitzen-
macher [22]. Next, besides fixing and restating the earlier results regarding the existence of
an O(log2N/ log logN) ORAM, perhaps more compellingly, we show how to obtain an ORAM
with the same asymptotic overhead, but in a conceptually much simpler manner, completely
obviating the need to perform oblivious Cuckoo hashing [22] which is the center of complexity
in the earlier result [27].

• New results on efficient OPRAMs. Building on our new ORAM scheme, we next present

the first Oblivious Parallel RAM (OPRAM) construction that achieves O( log2N
log logN ) simulation

overhead. To the best of our knowledge, our OPRAM scheme is the first one to asymptotically
match the best known sequential ORAM scheme for general block sizes. Moreover, we achieve a
super-logarithmic factor improvement over earlier works [5, 9] and over the concurrent work by
Nayak et al. [33] (see further clarifications in Section 1.3).

2This O( log2 N
log logN

) result for computational security was later matched in the tree-based ORAM framework [8, 14]
although tree-based ORAMs were initially investigated for the case of statistical security.
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We stress that our conceptual simplicity and modular approach can open the door for possible
improvements. For example, our OPRAM results clearly demonstrate the benefits of having a
conceptually clean hierarchical ORAM framework: had we tried to make (a corrected variant of)
Kushilevitz et al. [27] into an OPRAM, it is not clear whether we could have obtained the same
performance. In particular, achieving O(log2N/ log logN) worst-case simulation overhead requires
deamortizing a parallel version of their oblivious cuckoo hash rebuilding algorithm, and moreover,
work and depth have to be deamortized at the same time — and we are not aware of a way to do
this especially due to the complexity of their algorithm.

1.1 Background on Oblivious Hashing and Hierarchical ORAMs

In this paper, we consider the hierarchical framework, originally proposed by Goldreich and Os-
trovsky [19, 20], for constructing ORAM schemes. At a high level, this framework constructs an
ORAM scheme by having exponentially growing levels of capacity 1, 2, 4, . . . , N respectively, where
each smaller level can be regarded as a “stash” for larger levels. Each level in the hierarchy is real-
ized through a core abstraction henceforth called oblivious hashing in the remainder of this paper.
Since oblivious hashing is the core abstraction we care about, we begin by explicitly formulating
oblivious hashing as the following problem:

• Functional abstraction. Given an array containing n possibly dummy elements where each non-
dummy element is a (key, value) pair, design an efficient algorithm that builds a hash table
data structure, such that after the building phase, each element can be looked up by its key
consuming a small amount of time and work. In this paper, we will assume that all non-dummy
elements in the input array have distinct keys.

• Obliviousness. The memory access patterns of both the building and lookup phases do not
leak any information (to a computationally bounded adversary) about the initial array or the
sequence of lookup queries Q — as long as all non-dummy queries in Q are distinct. In particular,
obliviousness must hold even when Q may contain queries for elements not contained in the array
in which case the query should return the result ⊥. The correct answer to a dummy query is
also ⊥ by convention.

Not surprisingly, the performance of a hierarchical ORAM crucially depends on the core building
block, oblivious hashing. Here is the extent of our knowledge about oblivious hashing so far:

• Goldreich and Ostrovsky [19, 20] show an oblivious variant of normal balls-and-bins hashing
that randomly throws n elements into n bins. They show that obliviously building a hash table
containing n elements costs O(αn log n log λ) work, and each query costs O(α log λ) work. If
α is any super-constant function, we can attain a failure probability negl(λ). This leads to an
O(α log3N)-overhead ORAM scheme, where N is the total memory size3.

• Subsequently, Goodrich and Mitzenmacher [22] show that the Cuckoo hashing algorithm can be
made oblivious, incurring O(n log n) total work for building a hash table containing n elements,
and only O(1) query cost (later we will argue why their oblivious hashing scheme is somewhat
incomplete). This leads to an ORAM scheme with O(log2N)-overhead.

3Henceforth in this paper, we use n to denote the size of a hash table and λ to denote its security parameter. For
our ORAM construction, we use N to denote both the logical memory size as well as the ORAM’s security parameter.
This distinction is necessary since the ORAM will employ hash tables of varying n.
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• Kushilevitz et al. [27] in turn showed an elegant reparametrization trick atop the Goodrich and

Mitzenmacher ORAM, thus improving the overhead to O( log2N
log logN ). Since Kushilevitz et al. [27]

crucially rely on Goodrich and Mitzenmacher’s oblivious Cuckoo hashing scheme, incompleteness

of the hashing result in some sense carries over to their O( log2N
log logN ) overhead ORAM construction.

1.2 Technical Roadmap

Revisit oblivious Cuckoo hashing. Goodrich and Mitzenmacher [22]’s blueprint for obliviously
building a Cuckoo hash table is insightful and elegant. They express the task of Cuckoo hash
table rebuilding as a MapReduce task (with certain nice properties), and they show that any such
MapReduce algorithm has an efficient oblivious instantiation.

Fundamentally, their construction boils down using a sequence of oblivious sorts over arrays of
(roughly) exponentially decreasing lengths. To achieve full privacy, it is necessary to hide the true
lengths of these arrays during the course of the algorithm. Here, Goodrich and Mitzenmacher’s
scheme description and their proof appear inconsistent: their scheme seems to suggest padding
each array to the maximum possible length for security — however, this would make their scheme
O(log3N) overhead rather than the claimed O(log2N). On the other hand, their proof appears
only to be applicable, if the algorithm reveals the true lengths of the arrays — however, as we
argue in detail in Appendix A, the array lengths in the cuckoo hash rebuilding algorithm contain
information about the size of each connected component in the cuckoo graph. Thus leaking array
lengths can lead to an explicit attack that succeeds with non-negligible probability: at a high level,
this attack tries to distinguish two request sequences, one repeatedly requesting the same block
whereas the other requests disctinct blocks. The latter request sequence will cause the cuckoo
graph in the access phase to resemble the cuckoo graph in the rebuild phase, whereas the former
request sequence results in a fresh random cuckoo hash graph for the access phase (whose connected
component sizes are different than the rebuild phase with relatively high probability).

As metioned earlier, the incompleteness of oblivious Cuckoo hashing also makes the existence
proof of an O(log2N/ log logN)-overhead ORAM somewhat incomplete.

Is oblivious Cuckoo hashing necessary for efficient hierarchical ORAM? Goodrich and
Mitzenmacher’s oblivious Cuckoo hashing scheme is extremely complicated. Although we do show
in our Appendix A that the incompleteness of Goodrich and Mitzemacher’s construction and proofs
can be patched, thus correctly and fully realizing the elegant blueprint they had in mind — the
resulting scheme nonetheless suffers from large constant factors, and is unsuitable for practical
implementation. Therefore, a natural question is, can we build efficient hierarchical ORAMs without
oblivious Cuckoo hashing?

Our first insight is that perhaps oblivious Cuckoo hashing scheme is an overkill for constructing
efficient hierarchical ORAMs after all. As initial evidence, we now present an almost trivial modi-
fication of the original Goldreich and Ostrovsky oblivious balls-and-bins hashing scheme such that
we can achieve an O(αlog2N)-overhead ORAM for any super-constant function α.

Recall that Goldreich and Ostrovsky [19, 20] perform hashing by hashing n elements into n
bins, each of O(α log λ) capacity, where λ is the security parameter. A simple observation is the
following: instead of having n bins, we can have n

α log λ bins — it is not hard to show that each bin’s
occupancy will still be upper bounded by O(α log λ) except with negl(λ) probability. In this way,
we reduce the size of the hash table by a log λ factor, and thus the hash table can be obliviously
rebuilt in logarithmically less time. Plugging in this new hash table into Goldreich and Ostrovsky’s
ORAM construction [19,20], we immediately obtain an ORAM scheme with O(α log2N) overhead.
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This shows that through a very simple construction we can almost match Goodrich and Mitzen-
macher’s ORAM result [22]. This simple scheme does not quite get us to where we aimed to be, but

we will next show that oblivious Cuckoo hashing is likewise an overkill for constructing ( log2N
log logN )-

overhead ORAMs.

Conceptually simple ( log2N
log logN )-overhead ORAM. Recall that a hierarchical ORAM’s over-

head is impacted by two cost metrics of the underlying oblivious hashing scheme, i.e., the cost of
building the hash-table, and the cost of each lookup query. Goodrich and Mitzenmacher’s oblivious
Cuckoo hashing scheme [22] minimizes the lookup cost to O(1), but this complicates the building
of the hash-table.

Our key insight is that in all known hashing-based hierarchical ORAM constructions [19, 20,
22, 27], the resulting ORAM’s cost is dominated by the hash-table rebuilding phase, and thus it
may be okay if the underlying hashing scheme is more expensive in lookup. More specifically, to

obtain an O( log2N
log logN ) ORAM, we would like to apply Kushilevitz et al. [27]’s reparametrized version

of the hierarchical ORAM. Kushilevitz et al. [27] showed that their reparametrization technique
works when applied over an oblivious Cuckoo hashing scheme. We observe that in fact, Kushilevitz
et al. [27]’s reparametrization technique is applicable for a much broader parameter range, and
concretely for any oblivious hashing scheme with the following characteristics:

• It takes O(n log n) total work to build a hash table of n elements — in other words, the per-
element building cost is O(log n).

• The lookup cost is asymptotically smaller than the per-element building cost — specifically,
O(logε λ) lookup cost suffices where ε ∈ (0.5, 1) is a suitable constant.

This key observation allows us to relax the lookup time on the underlying oblivious hashing
scheme. We thus propose a suitable oblivious hashing scheme that is conceptually simple. More
specifically, our starting point is a (variant of a) two-tier hashing scheme first described in the
elegant work by Adler et al. [1]. In a two-tier hashing scheme, there are two hash tables denoted
H1 and H2 respectively, each with n

logε λ bins of O(logε λ) capacity, where ε ∈ (0.5, 1) is a suitable
constant. To hash n elements (non-obliviously), we first throw each element into a random bin in
H1. For all the elements that overflow its bin capacity, we throw them again into the second hash
table H2. Stochastic bounds show that the second hash table H2 does not overflow except with
negl(λ) probability. Clearly, the lookup cost is O(logε λ); and we will show that the hash table
building algorithm can be made oblivious through O(1) number of oblivious sorts.

New results on oblivious parallel RAM. The conceptual simplicity of our ORAM scheme
not only makes it easier to understand and implement, but also lends to further extensions. In
particular, we construct a computationally secure OPRAM scheme that has O(log2N/ log logN)
overhead — to the best of our knowledge, this is the first OPRAM scheme that matches the best
known sequential ORAM in performance for general block sizes. Concretely, the hierarchical lookup
phase can be parallelized using the standard conflict resolution (proposed by Boyle et al. [5]) as this
phase is read-only. In the rebuild phase, our two-tier oblivious hashing takes only O(1) number of
oblivious sort and linear scan that marks excess elements, which can be parallelized with known
algorithms, i.e. range prefix sum.

As mentioned earlier, our modular approach and conceptual simplicity turned out to be a crucial
reason why we could turn our ORAM scheme into an OPRAM — it is not clear whether (a corrected
version of) Kushilevitz et al. [27] is amenable to the same kind of transformation achieving the same
overhead due to complications in deamortizing their cuckoo hash rebuilding algorithm. Thus we
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argue that our conceptually simple framework can potentially lend to other possible applications
and improvements.

1.3 Related Work

ORAMs. ORAM was first proposed in a seminal work by Goldreich and Ostrovsky [19,20] who
showed a computationally secure scheme with O(α log3N) overhead for general block sizes and for
any super-constant function α = ω(1). Subsequent works improve the hierarchical ORAM [22, 27]

and show that O( log2N
log logN ) overhead can be attained under computational security — our paper

points out several subtleties and the incompleteness of the prior results; additionally, we show that

it is possible to obtain such an O( log2N
log logN ) overhead in a conceptually much simpler manner.

Besides the hierarchical framework, Shi et al. [39] propose a tree-based paradigm for construct-
ing ORAMs. Numerous subsequent works [10,43,44] improved tree-based constructions. With the
exception of a few works [14], the tree-based framework was primarily considered for the construc-
tion of statistically secure ORAMs. The performance of tree-based ORAMs depend on the block
size, since with a larger block size we can reduce the number of recursion levels in these construc-
tions. The recent Circuit ORAM work [44] shows that under block sizes as large as N ε for any
arbitrarily small constant ε, we can achieve α logN bandwidth overhead for an arbitrary super-
constant function α = ω(1) — this also shows the (near) tightness of the Goldreich-Ostrovsky lower
bound [19,20] showing that any ORAM scheme must necessarily incur logarithmic overhead. Note
that under block sizes of at least log1+εN for an arbitrarily small constant ε, Circuit ORAM [44]

can also attain O( log2N
log logN ) overhead and it additionally achieves statistical security rather than

computational.

OPRAMs. Since modern computing architectures such as cloud platforms and multi-core archi-
tectures exhibit a high degree of parallelism, it makes sense to consider the parallel counterpart of
ORAM. Oblivious Parallel ORAM (OPRAM) was first proposed by Boyle et al. [5], who showed
a construction with O(α log4N) overhead for any super-constant function α. Boyle et al.’s result
was later improved by Chen et al. [9], who showed how to achieve O(α log3N) overhead with poly-
logarithmic CPU private cache — their result also easily implies an O(α log3N log logN) overhead
OPRAM with O(1) CPU private cache, the setting that we focus on in this paper for generality.

A concurrent and independent manuscript by Nayak et al. [33] further improves the CPU-
memory communication by extending Chen et al.’s OPRAM [9]. However, their scheme still requires
O(α log3N log logN) CPU-CPU communication which was the dominant part of the overhead in
Chen et al. [9]. Therefore, under a general notion of overhead that includes both CPU-CPU com-
munication and CPU-memory communication, Nayak et al.’s scheme still has the same asymptotic
overhead4 as Chen et al. [9] which is more than a logarithmic factor more expensive in comparison
with our new OPRAM construction.

In a companion paper, Chan et al. [8] showed how to obtain statistically secure and computa-
tionally secure OPRAMs in the tree-based ORAM framework. Specifically, they showed that for
general block sizes, we can achieve statistically secure OPRAM with O(log2N) simulation over-
head and computationally secure OPRAM with O(log2N/ log logN) simulation overhead. For the
computationally secure setting, Chan et al. [8] achieves the same asymptotical overhead as this
paper, but the two constructions follow different paradigms so we believe that they are both of
value. In another recent work, Chan et al. [6] proposed a new notion of depth for OPRAMs where

4The title of their paper [33] suggests O(log2N) overhead, since they did not account for the cost of CPU-CPU
communication when describing the overhead.
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the OPRAM is allowed to have more CPUs than the original PRAM to further parallelize the
computation. In this paper, an OPRAM’s simulation overhead is defined as its runtime blowup
assuming that the OPRAM consumes the same number of CPUs as the PRAM.

Non-oblivious techniques for hashing. Many hashing schemes [4,11,17,25,31] were considered
in the (parallel) algorithms literature. Unfortunately, most of them are not good candidates for
constructing efficient ORAM and OPRAM schemes since there is no known efficient and oblivious
counterpart for the algorithm. Below we review some representative works in the hashing literature.

Multiple choice hashing [32], commonly referred to as “the power of choice 2” is a hashing
scheme that reduces collision by having each element inspect 2 (or in general, d = O(1)) random
bins, and pick the bin with the smallest load. An ingenious analysis by Mitzenmacher shows that
each bin’s load cannot exceed c log log n with high probability. Unfortunately, the power of choice
2 is not a great candidate for constructing ORAM and OPRAMs, since the algorithm for building
the hash table heavily relies on dynamic memory accesses and we know of no straightforward way
implement it as an efficient oblivious algorithm.

Perfect hashing or static hashing [11, 17] is another approach for hashing such that lookups
can be performed in constant time. The idea of perfect hashing is to select a hash function that
satisfies nice properties, e.g., one that reduces collisions. Perfect hashing and similar approaches
are not natural candidates for constructing oblivious hashing schemes, since the selection of the
hash function biases the distribution: for example, suppose a hash function with fewer collisions is
preferred, then if one sees a visit to a hash bin looking for a real item, then another request for a
real item will less likely hit the same hash bin. Further, although some static hashing schemes [17]
also adopt a two-tier hash structure, their constructions are different in nature from ours despite
the name collision.

The parallel algorithms community have also proposed several elegant and highly non-trivial
parallel hashing algorithms [4, 25, 31]. Amazingly, these ingenious works have shown that it takes
only O(n) work and O(log∗ n) time to preprocess n elements, such that lookup queries can be
supported in constant time. Unfortunately, to the best of our knowledge, known parallel hashing
algorithms are fundamentally non-oblivious as well in a similar spirit as why perfect hashing [17]
is non-oblivious.

2 Definitions and Building Blocks

2.1 Parallel Random Access Machines

We define a Parallel Random Access Machine (PRAM) and an Oblivious Parallel Random Access
Machine (OPRAM) in a similar fashion as Boyle et al. [5] as well as Chan and Shi [8]. Some of the
definitions in this section are borrowed verbatim from Boyle et al. [5]. or Chan and Shi [8].

Although we give definitions only for the parallel case, we point out that this is without loss of
generality, since a sequential RAM can be thought of as a special-case PRAM.

Parallel Random Access Machine (PRAM). A parallel random-access machine (PRAM)
consists of a set of CPUs and a shared memory denoted mem indexed by the address space [N ] :=
{1, 2, . . . , N}. In this paper, we refer to each memory word also as a block, and we use D to denote
the bit-length of each block.

We support a more general PRAM model where the number of CPUs in each time step may
vary. Specifically, in each step t ∈ [T ], we use mt to denote the number of CPUs. In each step,
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each CPU executes a next instruction circuit denoted Π, updates its CPU state; and further,

CPUs interact with memory through request instructions ~I(t) := (I
(t)
i : i ∈ [mt]). Specifically, at

time step t, CPU i’s instruction is of the form I
(t)
i := (read, addr), or I

(t)
i := (write, addr, data)

where the operation is performed on the memory block with address addr and the block content
data ∈ {0, 1}D ∪ {⊥}.

If I
(t)
i = (read, addr) then the CPU i should receive the contents of mem[addr] at the beginning

of time step t. Else if I
(t)
i = (write, addr, data), CPU i should still receive the contents of mem[addr]

at the beginning of time step t; further, at the end of step t, the contents of mem[addr] should be
updated to data.

Write conflict resolution. By definition, multiple read operations can be executed concurrently
with other operations even if they visit the same address. However, if multiple concurrent write

operations visit the same address, a conflict resolution rule will be necessary for our PRAM be
well-defined. In this paper, we assume the following:

• The original PRAM supports concurrent reads and concurrent writes (CRCW) with an arbitary,
parametrizable rule for write conflict resolution. In other words, there exists some priority rule
to determine which write operation takes effect if there are multiple concurrent writes in some
time step t.

• Our compiled, oblivious PRAM (defined below) is a “concurrent read, exclusive write” PRAM
(CREW). In other words, our OPRAM algorithm must ensure that there are no concurrent
writes at any time.

We note that a CRCW-PRAM with a parametrizable conflict resolution rule is among the most
powerful CRCW-PRAM model, whereas CREW is a much weaker model. Our results are stronger
if we allow the underlying PRAM to be more powerful but the our compiled OPRAM uses a weaker
PRAM model. For a detailed explanation on how stronger PRAM models can emulate weaker ones,
we refer the reader to the work by Hagerup [24].

CPU-to-CPU communication. In the remainder of the paper, we sometimes describe our
algorithms using CPU-to-CPU communication. For our OPRAM algorithm to be oblivious, the
inter-CPU communication pattern must be oblivious too. We stress that such inter-CPU commu-
nication can be emulated using shared memory reads and writes. Therefore, when we express our
performance metrics, we assume that all inter-CPU communication is implemented with shared
memory reads and writes. In this sense, our performance metrics already account for any inter-
CPU communication, and there is no need to have separate metrics that characterize inter-CPU
communication. In contrast, some earlier works [9] adopt separate metrics for inter-CPU commu-
nication.

Additional assumptions and notations. Henceforth, we assume that each CPU can only store
O(1) memory blocks. Further, we assume for simplicity that the runtime of the PRAM, the number
of CPUs activited in each time step and which CPUs are activited in each time step are fixed a priori
and publicly known parameters. Therefore, we can consider a PRAM to be a tuple

PRAM := (Π, N, T, (Pt : t ∈ [T ])),

where Π denotes the next instruction circuit, N denotes the total memory size (in terms of number
of blocks), T denotes the PRAM’s total runtime, and Pt denotes the set of CPUs to be activated
in each time step t ∈ [T ], where mt := |Pt|.

8



Finally, in this paper, we consider PRAMs that are stateful and can evaluate a sequence of
inputs, carrying state across in between. Without loss of generality, we assume each input can be
stored in a single memory block.

2.2 Oblivious Parallel Random-Access Machines

Randomized PRAM. A randomized PRAM is a special PRAM where the CPUs are allowed to
generate private random numbers. For simplicity, we assume that a randomized PRAM has a priori
known, deterministic runtime, and that the CPU activation pattern in each time step is also fixed
a priori and publicly known.

Memory access patterns. Given a PRAM program denoted PRAM and a sequence of inputs
(inp1, . . . , inpd), we define the notation Addresses[PRAM](inp1, . . . , inpd) as follows:

• Let T be the total number of parallel steps that PRAM takes to evaluate inputs (inp1, . . . , inpd).

• Let At :=
{

(cput1, addrt1), (cput2, addrt2) . . . , (cputmt , addrtmt)
}

be the list of (CPU id, address) pairs
such that cputi accessed memory address addrti in time step t.

• We define Addresses[PRAM](inp1, . . . , inpd) to be the random variable [At]t∈[T ].

Oblivious PRAM (OPRAM) Scheme. To define oblivious PRAM (OPRAM) scheme, we
will consider stateful algorithms. A stateful algorithm can be activated multiple times over time,
each time receiving some input and returning some output; moreover, the algorithm stores persis-
tent state in between multiple activations. Oblivious PRAM scheme is a stateful algorithm that
obliviously simulates an ideal logical memory that always returns the last value written when sev-
eral addresses are requested. More formally, recall that a PRAM algorithm sends the instruction
~I(t) := (I

(t)
i : i ∈ [mt]) at each time step t, where mt denotes the number of CPUs and CPU i’s

instruction is of the form I
(t)
i := (read, addr), or I

(t)
i := (write, addr, data). Let Fmem denote the

ideal logical memory such that on receiving the request instructions ~I(t), for each i ∈ [mt], Fmem

outputs the last value (for all step t′ < t) written to addr in its state; or if nothing has been written

to addr, it outputs 0; additionally, if I
(t)
i = (write, addr, data), Fmem writes data to addr in its state.

We define an adaptively secure, composable notion for OPRAM scheme below.

Definition 1 (Adaptively secure OPRAM scheme). We say that a stateful algorithm OPRAM is
an oblivious PRAM scheme iff there exists a p.p.t. simulator Sim, such that for any non-uniform
p.p.t. adversary A, A’s view in the following two experiments Exptreal,OPRAM

A and Exptideal,Fmem

A,Sim are
computationally indistinguishable:

Exptreal,OPRAM
A (1λ):

out0 = X0 = ⊥
For r = 1, 2, . . . poly(λ):

~I(r) ← A(1λ, outr−1, Xr−1)

outr ← OPRAM(~I(r)),

Xr := Addresses[OPRAM](~I(r))

Exptideal,Fmem

A,Sim (1λ):

out0 = X0 = ⊥
For r = 1, 2, . . . poly(λ):

~I(r) ← A(1λ, outr−1, Xr−1)

outr ← Fmem(~I(r)),

Xr ← Sim(1λ, N, r)

Note that here we handle correctness and obliviousness in a single definition. Also note that the
output outr of ideal logical memory is a vector that responds the instruction ~I(r), but Xr denotes
the addresses that OPRAM incurs to fulfill the instruction ~I(r), which can involve several CPUs
and take several time steps.
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Oblivious simulation and simulation overhead. In the above definition, an OPRAM scheme
simulates the ideal logic parallel memory. For convenience, we often adopt two intermediate metrics
in our descriptions, namely, total work blowup and parallel runtime blowup. We say that an OPRAM
scheme has a total work blowup of x and a parallel runtime blowup of y, iff for every step t in
which the instruction ~I(t) requested by mt CPUs, the OPRAM can complete this step with x ·mt

total work and in y parallel steps — if the OPRAM is allowed to consume any number of CPUs
(possibly greater than mt).

Fact 1. If there exists an OPRAM0 scheme with x total work blowup and y parallel runtime blowup
such that x ≥ y, then there exists an OPRAM1 scheme that has O(x) simulation overhead when
consuming the same number of CPUs as the original PRAM that sends instructions at every step.

Proof. Let OPRAM0 the OPRAM that has x total work blowup and y parallel runtime blowup,
where OPRAM0 may consume as many CPUs as it wants. We now construct an OPRAM scheme
denoted OPRAM1 that consumes the same number of CPUs as the original PRAM. Effectively
OPRAM1 will simulate OPRAM0 with possibly fewer CPUs than OPRAM0 for any PRAM step.
Suppose that for a time step t, the PRAM consumes mt CPUs: OPRAM1 simulates the t-th PRAM
step as follows:

• If OPRAM0 consumes at most mt CPUs for simulating the t-th PRAM step, then OPRAM1

does the same as what OPRAM0 would have done for simulating the t-th PRAM step. Clearly,
OPRAM1 can simulate the t-th PRAM step in O(y) number of parallel steps where y ≤ x.

• The non-trivial case is that OPRAM0 uses more than mt CPUs. Observe that one parallel step
using m CPUs (where m > mt) has total work m; when simulated by mt CPUs, this total work
can be finished in O(m/mt) parallel steps. Denote W as the portion of total work performed
by OPRAM0 with more than mt CPUs. By the above argument, this portion can be simulated
with mt CPUs in O(Wmt ) parallel steps. Hence, the total number of parallel steps by OPRAM1

(with only mt CPUs) is at most y+O(Wmt ) ≤ y+x = O(x), where first inequality follows by the
definition of x.

2.3 Oblivious Hashing Scheme

Without loss of generality, we define only the parallel version, since the sequential version can be
thought of the parallel version subject to executing on a single CPU.

An oblivious (parallel) hashing scheme is a stateful (parallel) algorithm that obliviously simu-
lates an ideal hashing functionality denoted Fht, consisting of the following activation points:

• ⊥ ← Fht(Build, S): stores the input set S = {(ki, vi) | dummy}i∈[n], where each element is either
a dummy denoted dummy or a (key, value) pair denoted (ki, vi). For an input set S to be valid,
we require that any two non-dummy elements in S must have distinct keys.

• v ← Fht(Lookup, k): given a (possibly dummy) query k, outputs a value v. Let set S be the set
stored in the last Build request (or empty set if there is no such set). Given S and query k, v is
chosen in a way that resepects the following:

– If k = dummy (i.e., if k is a dummy query) or if k /∈ S, then v = ⊥.

– Else, it must hold that (k, v) ∈ S.
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When we consider a parallel oblivious hashing scheme, we assume that it is executed on a Concurrent
Read, Exclusive Write PRAM.

A legitimate sequence of requests is denoted as ~I = (I1, . . . , Ipoly(λ)), where the first request I1
must be of the form (Build, ), and every other request Ii for i > 1 must be of the form (Lookup, ).
We say ~I is non-recurrent if all non-dummy Lookup queries in ~I ask for distinct keys.

Definition 2 (Adaptively secure oblivious hashing scheme). We say that HT is an oblivious (par-
allel) hashing scheme if it obliviously simulates an ideal hashing functionality Fht in the following
sense: there exists a p.p.t. simulator Sim, such that for any non-uniform p.p.t. adversary A, A’s
view in the following two experiments Exptreal,HTA and Exptideal,Fht

A,Sim are computationally indistin-
guishable as long as A produces non-recurrent (legitimate) request sequences in both experiments
with probability 1 (below n denotes the size of the set contained in the Build request, i.e., the first
request in a legitimate sequence):

Exptreal,HT
A (1λ):

out0 = X0 = ⊥
For r = 1, 2, . . . poly(λ):
Ir ← A(1λ, outr−1, Xr−1)

outr ← HT(1λ, Ir),

Xr := Addresses[HT](Ir)

Exptideal,Fht
A,Sim (1λ):

out0 = X0 = ⊥
For r = 1, 2, . . . poly(λ):
Ir ← A(1λ, outr−1, Xr−1)

outr ← Fht(Ir),

Xr ← Sim(1λ, n, r)

Notations. For convenience, for our real-world hashing algorithms, we will write T← Build(1λ, S)
in place of ⊥ ← HT(1λ,Build, S), where T is the data structure created by Build upon receiving
S; similarly we will write v ← Lookup(1λ,T, k) in place of v ← HT(1λ, Lookup, k). Note that T is
encrypted and hence hidden from the adversary in the above experiments.

Definition 3 ( (Wbuild, Tbuild,Wlookup, Tlookup)-parallel oblivious hashing scheme). Let Wbuild(·, ·),
Wlookup(·, ·), Tbuild(·, ·), and Tlookup(·, ·) be functions in n and λ. We say that (Build, Lookup)
is a (Wbuild, Tbuild,Wlookup, Tlookup)-parallel oblivious hashing scheme, iff (Build, Lookup) satisfies
adaptive security as defined above; and moreover, the scheme achieves the following performance:

• Building a hash table with n elements takes n ·Wbuild(n, λ) total work and Tbuild(n, λ) time with
all but negl(λ) probability. Note that Wbuild(n, λ) is the per-element amount of work required
for preprocessing.

• A lookup query takes Wlookup(n, λ) total work and Tlookup(n, λ) time.

As a special case, we say that (Build, Lookup) is a (Wbuild,Wlookup)-oblivious hashing scheme,
if it is a (Wbuild, ,Wlookup, )-parallel oblivious hashing scheme for any choice of the wildcard field
“ ” — in other words, in the sequential case, we do not care about the scheme’s parallel runtime,
and the scheme’s total work is equivalent to the runtime when running on a single CPU.

[Read-only lookup assumption.] When used in ORAM, observe that elements are inserted in
a hash table in a batch only in the Build algorithm. Moreover, we will assume that the Lookup
algorithm is read-only, i.e., it does not update the hash table data structure T, and no state is
carried across between multiple invocations of Lookup.

A note on the security parameter. Since later in our application, we will need to apply
oblivious hashing to different choices of n (including possibly small choices of n), throughout the
description of the oblivious hashing scheme, we distinguish the security parameter denoted λ and
the size of the set to be hashed denoted n.
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2.4 Building Blocks

Duplicate suppression. Informally, duplicate suppression is the following building block: given
an input array X consisting of (key, value) pairs and possibly dummy elements where each key
can have multiple occurrences, the algorithm outputs a duplicate-suppressed array where only one
occurrence of each key is preserved, and a preference function priority is used to choose which one.

More formally, SuppressDuplicate(X,n′, priority) is a parallel algorithm that takes in the following
inputs:

• an array X where each element is either of the form (k, v) or a dummy denoted ⊥,

• a correct upper bound n′ on the number of real elements in X which also serves as the target
output length, and

• a priority function priority which defines a total ordering on all elements with the same key.

SuppressDuplicate(X,n′, priority) outputs an array Y of length n′, such that

• No two elements in Y have the same key k except for dummy elements;

• All non-dummy elements in Y come from X, i.e., for any (k, v) ∈ Y , it holds that (k, v) ∈ X;
and

• If multiple elements in X have the same k, the most preferred element is preserved in Y . More
formally, for every non-dummy element (k, v) ∈ X, there exists a (k, v′) ∈ Y such that either
v′ = v or (k, v′) is preferred over (k, v) according to the priority function priority.

Earlier works have [5, 19, 20] proposed an algorithm that relies on oblivious sorting to achieve
duplicate suppression in O(n log n) work and O(log n) parallel runtime where n := |X|.

Oblivious select. Select(X, k, priority) takes in an array X where each element is either of the
form (k, v) or a dummy denoted ⊥, a query k, and a priority function priority which defines a
total ordering on all elements with the same key; and outputs a value v such that (k, v) ∈ X and
moreover there exists no (k, v′) ∈ X such that v′ is preferred over v for the key k by the priority
function priority.

Oblivious select can be accomplished using a simple tree-based algorithm [8] in O(log n) parallel
runtime and O(n) total work where n = |X|.

Oblivious multicast. Oblivious multicast is the following building block. Given the following
inputs:

• a source array X := {(ki, vi) | dummy}i∈[n] where each element is either of the form (k, v) or a
dummy denoted dummy, and further all real elements must have a distinct k; and

• a destination array Y := {k′i}i∈[n] where each element is a query k′ (possibly having duplicates).

the oblivious multicast algorithm outputs an array ans := {vi}i∈[n] such that if k′i /∈ X then vi := ⊥;
else it must hold that (k′i, vi) ∈ X.

Boyle et al. [5] propose an algorithm based on O(1) oblivious sorts that achieves oblivious
multicast in O(log n) parallel runtime and O(n log n) total work.
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Range prefix sum. We will rely on a parallel range prefix sum algorithm which offers the
following abstraction: given an input array X = (x1, . . . , xn) of length n where each element of X
is of the form xi := (ki, vi), output an array Y = (y1, . . . , yn) where each yi is defined as follows:

• Let i′ ≤ i be the smallest index such that ki′ = ki′+1 = . . . = ki;

• yi :=
∑i

j=i′ vj .

In the GraphSC work, Nayak et al. [34] provide an oblivious algorithm that computes the range
prefix sum in O(log n) parallel runtime and O(n log n) total work — in particular, their paper [34]
defines a building block called “longest prefix sum” which is a slight variation of the range prefix
sum abstraction we need. It is easy to see that Nayak et al.’s algorithm for longest prefix sum can
be modified in a straightforward manner to compute our notion of range prefix sum.

3 Oblivious Two-Tier Hashing Scheme

In this section, we present a simple oblivious two-tier hashing scheme. Before we describe our
scheme, we make a couple important remarks that the reader should keep in mind:

• Note that our security definition implies that the adversary can only observe the memory access
patterns, and we require simulatability of the memory access patterns. Therefore our scheme
description does not explicitly encrypt data. When actually deploying an ORAM scheme, all
data must be encrypted if the adversary can also observe the contents of memory.

• In our oblivious hashing scheme, we use λ to denote the security parameter, and use n to denote
the hash table’s size. Our ORAM application will employ hash tables of varying sizes, so n can
be small. Observe that an instance of hash table building can fail with negl(λ) probability; when
this happens in the context of ORAM, the hash table building is restarted. This ensures that
the ORAM is always correct, and the security parameter is related to the running time of the
ORAM.

• For small values of n, we need special treatment to obtain negl(λ) security failure probability —
specifically, we simply employ normal balls-and-bins hashing for small values of n. Instead of
having the ORAM algorithm deal with this issue, we wrap this part inside the oblivious hashing
scheme, i.e., the oblivious hashing scheme will automatically decide whether to employ normal
hashing or two-tier hashing depending on n and λ.

This modular approach makes our ORAM and OPRAM algorithms conceptually simple and
crystallizes the security argument as well.

The goal of this section is to give an oblivious hashing scheme with the following guarantee.

Theorem 1 (Parallel oblivious hashing). For any constant ε > 0.5, for any α(λ) := ω(1), there
exists a (Wbuild, Tbuild,Wlookup, Tlookup)-parallel oblivious hashing scheme where

Wbuild = O(log n), Tbuild = O(log n),

Wlookup =

{
O(α log λ) if n < e3 log

ε λ

O(logε λ) if n ≥ e3 logε λ
, Tlookup = O(log log λ)
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3.1 Construction: Non-Oblivious and Sequential Version

For simplicity, we first present a non-oblivious and sequential version of the hashing algorithm,
and we can use this version of the algorithm for the purpose of our stochastic analysis. Later in
Section 3.2, we will show how to make the algorithm both oblivious and parallel. Henceforth, we
fix some ε ∈ (0.5, 1).

Case 1: n < e3 log
ε λ. When n is sufficiently small relative to the security parameter λ, we

simply apply normal hashing (i.e., balls and bins) in the following manner. Let each bin’s capacity
Z(λ) = α log λ, for any α = ω(1) superconstant function in λ.

For building a hash table, first, generate a secret PRF key denoted sk
$←{0, 1}λ. Then, store

the n elements in B := d5n/Ze bins each of capacity Z, where each element (k, ) is assigned to a
pseudorandom bin computed as follows:

bin number := PRFsk(k).

Due to a simple application of the Chernoff bound, the probability that any bin overflows is negli-
gible in λ as long as Z is superlogarithmic in λ.

To look up an element with the key k, compute the bin number as above and read the entire
bin.

Case 2: n ≥ e3 log
ε λ. This is the more interesting case, and we describe our two-tier hashing

algorithm below.

• Parameters and data structure. Suppose that our memory is organized into two hash tables
named H1 and H2 respectively, where each hash table has B := d n

logε λe bins, and each bin can
store at most Z := 5 logε λ blocks.

• Build(1λ, {(ki, vi) | dummy}i∈[n]):

a) Generate a PRF key sk
$←{0, 1}λ.

b) For each element (ki, vi) ∈ S, try to place the element into the bin numbered PRFsk(1||ki) in
the first-tier hash table H1. In case the bin is full, instead place the element in the overflow
pile henceforth denoted Buf.

c) For each element (k, v) in the overflow pile Buf, place the element into the bin numbered
PRFsk(2||k) in the second-tier hash table H2.

d) Output T := (H1,H2, sk).

• Lookup(T, k): Parse T := (H1,H2, sk) and perform the following.

a) If k = ⊥, i.e., this is a dummy query, return ⊥.

b) Let i1 := PRFsk(1||k). If an element of the form (k, v) is found in H1[i1], return v. Else, let
i2 := PRFsk(2||k), look for an element of the form (k, v) in H2[i2] and return v if found.

c) If still not found, return ⊥.
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Overflow event. If in the above algorithm, an element happens to choose a bin in the second-tier
hash table H2 that is full, we say that a bad event called overflow has happened. When a hash
building is called in the execution of an ORAM, recall that if an overflow occurs, we simply discard
all work thus far and restart the build algorithm from the beginning.

In Section 3.4, we will prove that indeed, overflow events occur with negligible probability.
Therefore, henceforth in our ORAM presentation, we will simply pretend that overflow events never
happen during hash table building.

Remark 1. Since the oblivious hashing scheme is assumed to retry from scratch upon overflows,
we guarantee perfect correctness and computational security failure (due to the use of a PRF).
Similarly, our resulting ORAM and OPRAM schemes will also have perfect correctness and com-
putational security. Obviously, the algorithms may execute longer if overflows and retries take place
— henceforth in the paper, whenever we say that an algorithm’s total work or runtime is bounded
by x, we mean that it is bounded by x except with negligible probability over the randomized
execution.

3.2 Construction: Making it Oblivious

Oblivious Building. To make the building phase oblivious, it suffices to have the following
Placement building block.

Let B denote the number of bins, let Z denote each bin’s capacity, and let R denote the
maximum capacity of the overflow pile. Placement is the following building block. Given an array
Arr = {(elemi, posi) | dummy}i∈[n] containing n possibly dummy elements, where each non-dummy
element elemi is tagged with a pseudo-random bin number posi ∈ [B], output B arrays {Bini}i∈[B]

each of size exactly Z and an overflow pile denoted Buf of size exactly R. The placement algorithm
must output a valid assignment if one exists. Otherwise if no valid assignment exists, the algorithm
should abort outputting overflow.

We say that an assignment is valid if the following constraints are respected:

i) Every non-dummy (elemi, posi) ∈ Arr exists either in some bin or in the overflow pile Buf.

ii) For every Bini, every non-dummy element in Bini is of the form ( , i). In other words, non-dummy
elements can only reside in their targeted bin or the overflow pile Buf.

iii) For every Bini, if there exists a dummy element in Bini, then no element of the form ( , i) appears
in Buf. In other words, no elements from each bin should overflow to Buf unless the bin is full.

[Special case]. A special case of the placement algorithm is when the overflow pile’s targeted capacity
R = 0. This special case will be used when we create the second-tier hash table.

Below, we show that using standard oblivious sorting techniques [2], Placement can be achieved
in O(n log n) total work:

1. For each i ∈ [B], add Z copies of filler elements (�, i) where � denotes that this is a filler element.
These filler elements are there to make sure that each bin is assigned at least Z elements. Note
that filler elements and dummy elements are treated differently.

2. Oblivious sort all elements by their bin number. For elements with the same bin number, break
ties by placing real elements to the left of filler elements.

3. In a single linear scan, for each element that is not among the first Z elements of its bin, tag
the element with the label “excess”.
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4. Oblivious sort all elements by the following ordering function:

• All dummy elements must appear at the very end;

• All non-excess elements appear before excess elements;

• For two non-excess elements, the one with the smaller bin number appears first (breaking
ties arbitrarily).

• For excess elements, place real elements to the left of filler elements.

5. Finally, output the first BZ elements as the B bins, and the next R elements as the overflow
pile. If there are more real elements after position BZ +R, abort outputting overflow.

Oblivious lookups. It remains to show how to make lookup queries oblivious. To achieve this,
we can adopt the following simple algorithm:

• If the query k 6= ⊥: compute the first-tier bin number as i1 := PRFsk(1||k). Read the entire
bin numbered i1 in the first-tier hash table H1. If found, read an entire random bin in H2; else
compute i2 := PRFsk(2||k) and read the entire bin numbered i2 in the second-tier hash table H2.
Finally, return the element found or ⊥ if not found.

• If the query k = ⊥, read an entire random bin in H1, and an entire random bin in H2. Both bin
numbers are selected freshly and independently at random. Finally, return ⊥.

3.3 Construction: Making it Parallel

To make the aforementioned algorithm parallel, it suffices to make the following observations:

i) Oblivious sorting of n elements can be accomplished using a sorting circuit [2] that involves
O(n log n) total work and O(log n) parallel runtime.

ii) Step 3 of the oblivious building algorithm involves a linear scan of the array marking each
excessive element that exceeds its bin’s capacity.

This linear scan can be implemented in parallel using the oblivious “range prefix sum” algorithm
in O(n log n) total work and O(log n) parallel runtime. We refer the reader to Section 2.4 for a
definition of the range prefix sum algorithm.

iii) Finally, observe that the oblivious lookup algorithm involves searching in entire bin for the
desired block. This can be accomplished obliviously and in parallel through our “oblivious
select” building block defined in Section 2.4. Since each bin’s capacity is O(logε n), the oblivious
select algorithm can be completed in O(log log n) parallel runtime and tight total work.

Remark 2 (The case of small n). So far, we have focused our attention on the (more interesting)
case when n ≥ e3 log

ε λ. When n < e3 log
ε λ, we rely on normal hashing, i.e., balls and bins. In this

case, hash table building can be achieved through a similar parallel oblivious algorithm that com-
pletes in O(n log n) total work and O(log n) parallel runtime; further, each lookup query completes
obliviously in O(α log λ) total work and O(log log λ) parallel runtime.
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Performance of our oblivious hashing scheme. In summary, the resulting algorithm achieves
the following performance:

• Building a hash table with n elements takes O(n log n) total work and O(log n) parallel runtime
with all but negl(λ) probability, regardless of how large n is.

• Each lookup query takes O(logε λ) total work when n ≥ e3 logε λ and O(α log λ) total work when
n < e3 log

ε λ where α(λ) = ω(1) can be any super-constant function. Further, regardless of how
large n is, each lookup query can be accomplished in O(log log λ) parallel runtime.

3.4 Overflow Analysis

We give the overflow analysis of the two-tier construction in Section 3.1. Throughout the overflow
analysis, we assume that the scheme employs a truly random function rather than a pseudorandom
function — in fact, later we will use the overflow analysis in a hybrid experiment where pseudo-
randomness is replaced with true randomness. We use the following variant of Chernoff Bound.

Fact 2 (Chernoff Bound for Binomial Distribution). Let X be a random variable sampled from a

binomial distribution (with any parameters). Then, for any k ≥ 2E[X], Pr[X ≥ k] ≤ e−
k
6 .

Utilization of first-tier hash. Recall that the number of bins is B :=
⌈

n
logε λ

⌉
. For i ∈ [B],

let Xi denote the number of items that are sent to bin i in the first-tier hash. Observe that the
expectation E[Xi] = n

B ≥ logε λ.

Overflow from first-tier hash. For i ∈ [B], let X̂i be the number of items that are sent to bin i
in the first-tier but have to be sent to the overflow pile because bin i is full. Recall that the capacity
of a bin is Z := 5 logε λ. Then, it follows that X̂i equals Xi − Z if Xi > Z, and 0 otherwise.
Tail bound for overflow pile. We next use the standard technique of moment generating function
to give a tail inequality for the number

∑
i X̂i of items in the overflow pile. For sufficiently small

t > 0, we have

E[etX̂i ] ≤ 1 +
∑

k≥1 Pr[Xi = Z + k] · etk ≤ 1 +
∑

k≥1 Pr[Xi ≥ Z + k] · etk ≤ 1 +
exp(−Z

6
)

e
1
6−t−1

,

where the last inequality follows from Fact 2 and a standard computation of a geometric series.

For the special case t = 1
12 , we have E[e

X̂i
12 ] ≤ 1 + 12 exp(−Z

6 ).

Lemma 1 (Tail Inequality for Overflow Pile). For k ≥ 288Be−
Z
6 , Pr[

∑
i∈[B] X̂i ≥ k] ≤ e−

k
24 .

Proof. Fix t := 1
12 . Then, we have Pr[

∑
i∈[B] X̂i ≥ k] = Pr[t

∑
i∈[B] X̂i ≥ tk] ≤ e−tk ·E[et

∑
i∈[B] X̂i ],

where the last inequality follows from the Markov’s inequality.
As argued in [12], when n balls are thrown independently into n bins uniformly at random, then

the numbers Xi’s of balls received in the bins are negatively associated. Since X̂i is a monotone
function of Xi, it follows that the X̂i’s are also negatively associated. Hence, it follows that

E[et
∑
i∈[B] X̂i ] ≤

∏
i∈[B]E[etX̂i ] ≤ exp(12Be−

Z
6 ).

Finally, observing that k ≥ 288Be−
Z
6 , we have Pr[

∑
i∈[B] X̂i ≥ k] ≤ exp(12Be−

Z
6 − k

12) ≤ e−
k
24 ,

as required.

In view of Lemma 1, we consider N := 288Be−
Z
6 as an upper bound on the number of items in

the overflow pile. The following lemma gives an upper bound on the probability that a particular
bin overflows in the second-tier hash.
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Lemma 2 (Overflow Probability in the Second-Tier Hash). Suppose the number of items in the

overflow pile is at most N := 288Be−
Z
6 , and we fix some bin in the second-tier hash. Then, the

probability that this bin receives more than Z items in the second tier hash is at most e−
Z2

6 .

Proof. Observe that the number of items that a particular bin receives is stochastically dominated
by a binomial distribution with N items and probability 1

B . Hence, the probability that it is at

least Z is at most
(
N
Z

)
· ( 1
B )Z ≤ (NeZ )Z · ( 1

B )Z ≤ e−
Z2

6 , as required.

Corollary 1 (Negligible Overflow Probability). Suppose the number n of items is chosen such that

both Be−
Z
6 and Z2 are ω(log λ), where B :=

⌈
n

logε λ

⌉
and Z := d5 logε λe. Then, the probability

that the overflow event happens in the second-tier hash is negligible in λ.

Proof. Recall that B = d n
logε λe, where n ≥ e3 logε λ in Theorem 1. By choosing N = 288Be−

Z
6 , from

Lemma 1, the probability that there are more than N items in the overflow pile is exp(−Θ(N)),
which is negligible in λ.

Given that the number of items in the overflow pile is at most N , according to Lemma 2, the

probability that there exists some bin that overflows in the second-tier hash is at most Be−
Z2

6 by
union bound, which is also negligible in λ, because we assume B ≤ poly(λ).

3.5 Main Theorem for Our Oblivious Hashing Scheme

Theorem 2. Suppose that PRF is a secure pseudo-random function family. The scheme described
in this section is an oblivious hashing scheme by Definition 2.

Proof. Consider the following simulator Sim(1λ, n, r):

• For Build: simulate by running the real-world Build algorithm with input (1λ, S), where S is a
multiset consisting of n dummy entries. Output the access patterns of the real-world algorithm.

• For each Lookup: if n is sufficiently large, output the addresses of a random bin for each tier of
the hash tables. Otherwise, if n is small and there is only one tier, output the addresses of a
random bin in the single hash-table.

We would like to show the adversary A’s view in the real- and ideal-world experiments, that
is, Exptreal,HT

A and Exptideal,Fht
A,Sim , are computationally indistinguishable, as long as A respects the

non-recurrence condition with probability 1 when making Lookup queries. We complete the proof
through the following hybrid sequence.

Hybrid 1. Hybrid 1 is defined almost identically as the real-world experiment, except that we
now replace the PRF in the real-world scheme with a truly random function.

The following claim is straightforward to see by the standard security definition of PRFs (even
when the adversary A can adaptively make access requests).

Claim 1. Assume that the PRF scheme is secure, then, the adversary A’s view in the real-world
experiment and Hybrid 1 are computationally indistinguishable.

We next prove that A’s view in Hybrid 1 and the ideal experiment are statistically close as long
as the all non-dummy lookup queries ask for distinct keys.

Claim 2. For every non-uniform p.p.t. A that respects the non-recurrent condition, A’s view in
Hybrid 1 and the ideal experiment are statistically indistinguishable.

18



Proof. Note that in the ideal experiment with the simulator described above, we can alternatively
imagine that the simulator pre-selects the randomness that determines the bin(s) to visit upon each
Lookup — henceforth suppose that randomness ri determines which bin(s) to visit upon the i-th
Lookup. Now, for every possible choice of random string: 1) the adversary receives correct lookup
outcomes since the outcome is from Fht; 2) the Build-phase access patterns are deterministic and
no overflow happens; and 3) every Lookup visits the bin(s) determined by ri.

In Hybrid 1, we can imagine that upfront, we make random bin choices for every key k. Further,
imagine that upfront, we make random bin choices for every dummy query — let di denote the
random bin choices for the i-th dummy query. Now, except for a negligible faction of the random
strings where overflows events happen — see Lemma 2 and in case n is small recall the standard
overflow analysis for balls-and-bins hashing — we have that 1) the adversary receives correct out-
comes for lookups by construction of our algorithm; 2) the Build-phase access patterns are fixed and
the Build-phase does not abort outputting overflow; and 3) every Lookup for the some non-dummy
element k visits the bin(s) that was pre-selected for the key k; every Lookup query for a dummy
element looks up the bin(s) determined by di.

Thus, it is not difficult to see that as long as all the non-dummy keys queried during Lookup are
distinct, then A’s view in Hybrid 1 is statistically indistinguishable from its view in the ideal-world
experiment.

4 Modular Framework for Hierarchical ORAM

4.1 Preliminary: Hierarchical ORAM from Oblivious Hashing

Goldreich and Ostrovsky [19,20] were the first to define Oblivious RAM (ORAM) and they provide
an elegant solution to the problem which was since referred to as the “hierarchical ORAM”. Gol-
dreich and Ostrovsky [19, 20] describe a special-case instantiation of a hierarchical ORAM where
they adopt an oblivious variant of näıve hashing. Their scheme was later extended and improved
by several subsequent works [22,27,45].

In this section, we will present a generalized version of Goldreich and Ostrovsky’s hierarchical
ORAM framework. Specifically, we will show that Goldreich and Ostrovsky’s core idea can be
interpreted as the following: take any oblivious hashing scheme satisfying the abstraction defined
in Section 2.3, we can construct a corresponding ORAM scheme that makes blackbox usage of the
oblivious hashing scheme.

From our exposition, it will be clear why such a modular approach is compelling: it makes both
the construction and the security proof simple. In comparison, earlier hierarchical ORAM works
do not adopt this modular approach, and their conceptual complexity could sometimes confound
the security proof [36].

Data structure. There are logN+1 levels numbered 0, 1, . . . , L respectively, where L := dlog2Ne
is the maximum level. Each level is a hash table denoted T0,T1, . . . ,TL where Ti has capacity 2i.
At any time, each table Ti can be in two possible states, available or full. Available means that
this level is currently empty and does not contain any blocks, and thus one can rebuild into this
level. Full means that this level currently contains blocks, and therefore an attempt to rebuild into
this level will effectively cause a cascading merge.
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ORAM operations. Upon any memory access request (read, addr) or (write, addr, data), per-
form the following procedure. For simplicity, we omit writing the security parameter of the algo-
rithms, i.e., let Build(·) := Build(1N , ·), and let Lookup(·) := Lookup(1N , ·).

1. found := false.

2. For each ` = 0, 1, . . . L in increasing order,

• If not found, fetched := Lookup(T`, addr): if fetched 6= ⊥, let found := true, data∗ := fetched.

• Else Lookup(T`,⊥).

3. Let T∅ := {(addr, data∗)} if this is a read operation; else let T∅ := {(addr, data)}. Now perform
the following hash table rebuilding:

• Let ` be the smallest level index such that T` is marked available. If all levels are marked full,
then ` := L. In other words, ` is the target level to be rebuilt.

• Let S := T∅∪T0∪T1∪ . . .∪T`−1; if all levels are marked full, then additionally let S := S∪TL.
Further, tag each non-dummy element in S with its level number, i.e., if a non-dummy element
in S comes from Ti, tag it with the level number i.

• T` := Build(SuppressDuplicate(S, 2`, pref)), and mark T` as full. Further, let T0 = T1 = . . . =
T`−1 := ∅ and their status bits set to available. Here we adopt the following priority function
pref:

When two or more real blocks with the same address (i.e., key) exist, the one with the smaller
level number is preferred (and the algorithm maintains the invariant that no two blocks with
the same address and the same level number should exist).

4. Return data∗.

Deamortization. In the context of hierarchical ORAM, a hash table of capacity n is rebuilt every
n memory requests, and we typically describe the ORAM’s overhead in terms of the amortized cost
per memory request. As one may observe, every now and then, the algorithm needs to rebuild a
hash table of size N , and thus a small number of memory requests may incur super-linear cost to
complete.

A standard deamortization technique was described by Ostrovsky and Shoup [35] to evenly
spread the cost of hash table rebuilding over time, and this deamortization framework only blows
up the total work of the ORAM scheme by a small constant factor; the details are in Appendix C.
In the rest of the paper, we assume that every instance of hash table used in an ORAM scheme
is rebuilt in the background using this deamortization technique without explicitly mentioning
so. Further, the stated costs in the theorems are applicable to worst-case performance (not just
amortized).

Obliviousness. To show obliviousness of the above construction, we make the following obser-
vations.

Fact 3 (Non-recurrence condition is preserved). In the above ORAM construction, it holds that for
every hash table instance, all lookup queries it receives satisfy the non-recurrence condition.
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Proof. Due to our ORAM algorithm, every 2` operations, the old instance of hash table T` is
destroyed and a new hash table instance is created for T`. It suffices to prove the non-recurrence
condition in between every two rebuilds for T`. Suppose that after T` is rebuilt in some step, now
we focus on the time steps going forward until the next rebuild. Consider when a block block∗

is first found in T` where ` ∈ [L], block∗ is entered into T∅. Due to the definition of the ORAM
algorithm, until the next time T` is rebuilt, block∗ exists in some T`′ where `′ < `. Due to the way
the ORAM performs lookups — in particular, we would look up a dummy element in T` if block∗ is
found in a smaller level — we conclude that until T` is rebuilt, no lookup query will ever be issued
again for block∗ to T`. Note this holds even when queries are adaptively choosen.

Lemma 3 (Obliviousness). Suppose that the underlying hashing scheme is an oblivious hashing
scheme by Definition 2, then it holds that the above ORAM scheme is secure by Definition 1.

Proof. Let Simht denote the simulator for the oblivious hashing scheme, and let Simoram denote the
simulator for the ORAM. We may construct Simoram as follows: note that when a level gets rebuilt
is determined solely by the index of the request in our ORAM scheme. Thus Simoram does the most
obvious thing: whenever a level is being rebuilt, Simoram forks a new instance of Simht and outputs
its access patterns for Build. Whenever a request is being made, for every level, Simoram calls the
relevant Simht instance and outputs the addresses obtained.

The remainder of the proof follows in a straightforward fashion by observing Fact 3 and the
adaptive security of the underlying oblivious hashing scheme (see Definition 2).

Theorem 3 (Hierarchical ORAM from oblivious hashing). Assume the existence of one-way func-
tions and a (Wbuild,Wlookup)-oblivious hashing scheme. Then, there exists an ORAM scheme that
achieves the following blowup for block sizes of Ω(logN) bits:

ORAM’s blowup := max

(
logN∑
`=0

Wbuild(2`, N),

logN∑
`=0

Wlookup(2`, N)

)
+O(log2N)

This theorem is essentially proved by Goldreich and Ostrovsky [19,20] — however, they proved
it only for a special case. We generalize their hierarchical ORAM construction and express it
modularly to work with any oblivious hashing scheme as defined in Section 2.3.

Remark 3. We point out that due to the way we define our oblivious hashing abstraction, each
instance of oblivious hash table will independently generate a fresh PRF key during Build, and
this PRF key is stored alongside the resulting hash table data structure in memory. Throughout
this paper, we assume that each PRF operation can be evaluated in O(1) runtime on top of our
RAM. We stress that this implicit assumption (or equivalent) was made by all earlier ORAM
works [19, 20, 22, 27] that rely on a PRF for security.

4.2 Preliminary: Improving Hierarchical ORAM by Balancing Reads and Writes

Subsequent to Goldreich and Ostrovsky’s ground-breaking result [19, 20], Kushilevitz et al. [27]
propose an elegant optimization for the hierarchical ORAM framework such that under some special
conditions to be specified later, they can shave a (multiplicative) log logN factor off the total
work for a hierarchical ORAM scheme. Similarly, Kushilevitz et al. [27] describe a special-case
instantiation of an ORAM scheme based on oblivious Cuckoo hashing which was proposed by
Goodrich and Mitzenmacher [22].
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In this section, we observe that the Kushilevitz et al.’s idea can be generalized. For the sake
of exposition, we will first ignore the smaller ORAM levels that employ normal hashing in the
following discussion, i.e., we assume that the smaller levels that employ normal hashing will not
be a dominating factor in the cost. Now, imagine that there is an oblivious hashing scheme such
that for sufficiently large n, the per-element cost for preprocessing is more expensive than the cost
of a lookup by a logδ n factor for some constant δ > 0. In other words, imagine that there exists a
constant δ > 0 such that the following condition is met for sufficiently large n:

Wbuild(n, λ)

Wlookup(n, λ)
≥ logδ n.

If the underlying oblivious hashing scheme satisfies the above condition, then Kushilevitz et
al. [27] observes that Goldreich and Ostrovsky’s hierarchical ORAM construction is suboptimal in
the sense that the cost of fetch phase is asymptotically smaller than the cost of the rebuild phase.
Hence, the resulting ORAM’s total work will be dominated by the rebuild phase, which is then
determined by the building cost of the underlying hashing scheme, i.e., Wbuild(n, λ).

Having observed this, Kushilevitz et al. [27] propose the following modification to Goldreich
and Ostrovsky’s hierarchical ORAM [19,20]. In Goldreich and Ostrovsky’s ORAM, each level is a
factor of 2 larger than the previous level — henceforth the parameter 2 is referred to the branching
factor. Kushilevitz et al. [27] proposes to adopt a branching factor of µ := logN instead of 2, and
this would reduce the number of levels to O(logN/ log logN) — in this paper, we will adopt a
more general choice of µ := logφN for a suitable positive constant φ. To make this idea work, they
allow up to µ− 1 simultaneous hash table instances for any ORAM level. If for all levels below `,
all instances of hash tables are full, then all levels below ` will be merged into a new hash table
residing at level ` + 1. The core idea here is to balance the cost of the fetch phase and the rebuild
phase by having a larger branching factor; and as an end result, we could shave a log logN factor
from the ORAM’s total work.

We now elaborate on this idea more formally.

Data structure. Let µ := logφN for a suitable positive constant φ to be determined later. There
are O(logN/ log logN) levels numbered 0, 1, . . . , L respectively, where L = dlogµNe denotes the
maximum level. Except for level L, for every other ` ∈ {0, 1, . . . , L− 1}: the `-th level contains up
to µ− 1 hash tables each of capacity µ`. Henceforth we use the notation T` to denote level `, and
Ti` to denote the i-th hash table within level `.

The largest level L contains a single hash table of capacity N denoted T0
L. Finally, every level

` ∈ {0, 1, . . . , L} has a counter c` initialized to 0. Effectively, for every level ` 6= L, if c` = µ − 1,
then the level is considered full; else the level is considered available.

ORAM operations. Upon any memory access query (read, addr) or (write, addr, data), perform
the following procedure.

1. found := false.

2. For each ` = 0, 1, . . . L in increasing order, for τ = c` − 1, c` − 2 . . . 0 in decreasing order:

If not found: fetched := Lookup(Tτ` , addr); if fetched 6= ⊥, let found := true, data∗ := fetched.
Else Lookup(Tτ` ,⊥).

3. Let T∅ := {(addr, data∗)} if this is a read operation; else let T∅ := {(addr, data)}. Now, perform
the following hash table rebuilding.
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• Let ` be the smallest level index such that its counter c` < µ− 1. If no such level index exists,
then let ` := L. In other words, we plan to rebuild a hash table in level `.

• Let S := T∅ ∪T0 ∪T1 ∪ . . . ,∪T`−1; and if ` = L, additionally, let S := S ∪T0
L and let cL = 0.

Further, in the process, tag each non-dummy element in S with its level number and its hash
table number within the level. For example, if a non-dummy element in S comes from Tτi , i.e.,
the τ -th table in the i-th level, tag it with (i, τ).

• Let Tc`` := Build(SuppressDuplicate(S, µ`, pref)), and let c` := c` + 1.

Here we adopt the following priority function pref: when two or more blocks with the same
address (i.e., key) exist, the one with the smaller level number is preferred; if there is a tie in
level number, the one with the larger hash table number is preferred.

• Let T0 = T1 = . . . = T`−1 := ∅ and set c0 = c1 = . . . = c`−1 := 0.

4. Return data∗.

Goldreich and Ostrovsky’s ORAM scheme [19,20] is a special case of the above for µ = 2.

Deamortization. The deamortization technique of Ostrovsky and Shoup [35] (described in Ap-
pendix C) applies in general to hierarchical ORAM schemes for which each level is some data
structure that is rebuilt regularly. Therefore, it can be applied to our scheme as well, and thus the
work of rebuilding hash tables is spread evenly across memory requests.

Obliviousness. The obliviousness proof is basically identical to that presented in Section 4.1,
since the only change here from Section 4.1 is that the parameters are chosen differently due to
Kushilevitz et al.’s elegant idea [27].

Theorem 4 (Hierarchical ORAM variant.). Assume the existence of one-way functions and a
(Wbuild,Wlookup)-oblivious hashing scheme. Then, there exists an ORAM scheme that achieves the
following blowup for block sizes of Ω(logN) bits where L = O(logN/ log logN):

ORAM’s blowup := max

(
L∑
`=0

Wbuild(µ`, N), logφN ·
L∑
`=0

Wlookup(µ`, N)

)
+O(L logN)

We note that Kushilevitz et al. [27] proved a special case of the above theorem, we now generalize
their technique and describe it in the most general form.

4.3 Conceptually Simpler ORAM for Small Blocks

In the previous section, we presented a hierarchical ORAM scheme, reparametrized using Kushile-
vitz et al. [27]’s technique, consuming any oblivious hashing scheme with suitable performance
characteristics as a blackbox.

To obtain a conceptually simple ORAM scheme with O(log2N/ log logN) overhead, it suffices
to plug in the oblivious two-tier hashing scheme described earlier in Section 3.

Corollary 2 (Conceptually simpler ORAM for small blocks). There exists an ORAM scheme with
O(log2N/ log logN) runtime blowup for block sizes of Ω(logN) bits.

Proof. Using the simple oblivious two-tier hashing scheme in Section 3 with ε = 3
4 , we can set

φ = 1
4 in Theorem 4 to obtain the result.
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Remark: Fine-tuning Branching Factor. Plugging the oblivious two-tier hashing (Theo-
rem 1) into the ORAM data structure (Theorem 4) straightforwardly would actually yield an addi-
tional factor α in the runtime blowup, where α comes from the n < e3 log

ε λ case of Theorem 1. To
shave such α, the ORAM data structure is slightly modified as follows: for every level ` < 3 logε λ,
the level ` contains only 1 hash table (rather than µ); the counter c` and ORAM operations are
also modified respectively. Therefore, the runtime of levels ` < 3 logε λ is asymptotically dominated
by that of greater levels, which is O(log2N/ log logN) as claimed.

4.4 IO Efficiency and the Case of Large CPU Cache

Besides the ORAM’s runtime, we often care about its IO performance as well, where IO-cost is
defined as the number of cache misses as in the standard external-memory algorithms literature.
When the CPU has a large amount of private cache, e.g., N ε blocks where ε > 0 is an arbitrarily
small constant, several works have shown that oblivious sorting n ≤ N elements can be accom-
plished with O(n) IO operations [7,21,22]. Thus, a direct corollary is that for the case of N ε CPU
cache, we can construct a computationally secure ORAM scheme with O(logN) IO-cost (by using
the basic hierarchical ORAM construction with O(logN) levels with an IO-efficient oblivious sort).

5 Asymptotically Efficient OPRAM

In this section, we show how to construct an O( log2N
log logN ) OPRAM scheme. To do this, we will show

how to parallelize our new O( log2N
log logN )-overhead ORAM scheme. Here we benefit tremendously

from the conceptual simplicity of our new ORAM scheme. In particular, as mentioned earlier,
our oblivious two-tier hashing (Build, Lookup) algorithms have efficient parallel realizations. We
will now present our OPRAM scheme. For simplicity, we first present a scheme assuming that
the number of CPUs in each step of the computation is fixed and does not change over time. In
this case, we show that parallelizing our earlier ORAM construction boils down to parallelizing the
(Build and Lookup) algorithms of the oblivious hashing scheme. We then extend our construction
to support the case when the number of CPUs varies over time.

5.1 Intuition

Warmup: uniform number of CPUs. We first describe the easier case of uniform m, i.e., the
number of CPUs in the PRAM does not vary over time. Further, we will consider the simpler case
when the branching factor µ := 2.

• Data structure. Recall that our earlier ORAM scheme builds an exponentially growing hier-
archy of oblivious hash tables, of capacities 1, 2, 4, . . . , N each. Here, we can do the same,
but we can start the level of hierarchy at capacity m = 2i (i.e., skip the smaller levels).

• OPRAM operations. Given a batch of m simultaneous memory requests, suppose that all
addresses requested are distinct — if not, we can run a standard conflict resolution procedure
as described by Boyle et al. [5] incurring only O(logm) parallel steps consuming m CPUs.
We now need to serve these requests in parallel. In our earlier ORAM scheme, each request
has two stages: 1) reading one block from each level of the exponentially growing hierarchy;
and 2) perform necessary rebuilding of the levels. It is not hard to see that the fetch phase
can be parallelized easily — particularly, observe that the fetch phase is read-only, and thus
having m CPUs performing the reads in parallel will not lead to any write conflicts.
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It remains to show how to parallelize the rebuild phase. Recall that in our earlier ORAM
scheme, each level has a status bit whose value is either available or full. Whenever we access
a single block, we find the available (i.e., empty) level ` and merge all smaller levels as well
as the updated block into level `. If no such level ` exists, we simply merge all levels as well
as the updated block into the largest level.

Here in our OPRAM construction, since the smallest level is of size m, we can do something
similar. We find the smallest available (i.e., empty) level `, and merge all smaller levels as
well as the possibly updated values of the m fetched blocks into level `. If no such level `
exists, we simply merge all levels as well as possibly updated values of the m fetched blocks
into the largest level. Rebuilding a level in parallel effectively boils down to rebuilding a hash
table in parallel (which boils down to performing O(1) number of oblivious sorts in parallel)
— which we have shown to be possible earlier in Section 3.

Varying number of CPUs. Our definitions of PRAM and OPRAMs allow the number of CPUs
to vary over time. In this case, oblivious simulation of a PRAM is more sophisticated. First, instead
of truncating the smaller levels whose size are less than m, here we have to preserve all levels —
henceforth we assume that we have an exponentially growing hierarchy with capacities 1, 2, 4, . . . , N
respectively. The fetch phase is simple to parallelize as before, since the fetch phase does not make
modifications to the data structure. We now describe a modified rebuild phase when serving a
batch of m = 2γ requests: note that in the following, γ is a level that matches the current batch
size, i.e., the number of CPUs in the present PRAM step of interest:

(a) Suppose level γ is marked available. Then, find the first available (i.e., empty) level ` greater
than γ. Merge all levels below γ and the updated values of the newly fetched m blocks into
level `.

If no such level ` exists, then merge all blocks and the updated values of the newly fetched
m blocks into the largest level L.

(b) Suppose level γ is marked as full. Then, find the first available (i.e., empty) level ` greater
than γ. Merge all levels below or equal to γ (but not the updated values of the m fetched
blocks) into level `; rebuild level γ to contain the updated values of the m fetched blocks.

Similarly, if no such level ` exists, then merge all blocks and the updated values of the newly
fetched m blocks into the largest level L.

One way to view the above algorithm is as follows: let us view the concatenation of all levels’
status bits as a binary counter (where full denotes 1 and available denotes 0). If a single block is
accessed like in the ORAM case, the counter is incremented, and if a level flips from 0 to 1, this
level will be rebuilt. Further, if there would be a carry-over to the (L+ 1)-st level, then the largest
level L is rebuilt. However, now m blocks may be requested in a single batch — in this case, the
above procedure for rebuilding effectively can be regarded as incrementing the counter by some
value v where v ≤ 2m — in particular, the value v is chosen such that only O(1) levels must be
rebuilt by the above rule.

We now embark on describing the full algorithm — specifically, we will describe for a general
choice of the branching factor µ that is not necessarily 2. Further, our description supports the
case of varying number of CPUs.
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5.2 Detailed Algorithm

Data structure. Same as in Section 4.2. Specifically, there are O(logN/ log logN) levels num-
bered 0, 1, . . . , L respectively, where L = dlogµNe denotes the maximum level. Except for level L,
for every other ` ∈ {0, 1, . . . , L−1}: the `-th level contains up to µ−1 hash tables each of capacity
µ`. Henceforth, we use the notation T` to denote level `. Moreover, for 0 ≤ i < µ − 1, we use
Ti` to denote the i-th hash table within level `. The largest level L contains a single hash table of
capacity N denoted T0

L. Finally, every level ` ∈ {0, 1, . . . , L} has a counter c` initialized to 0.
We say that a level ` < L is available if its counter c` < µ − 1; otherwise, c` = µ − 1, and we

say that the level ` < L is full. For the largest level L, we say that it is available if cL = 0; else we
say that it is full. Note that for the case of general µ > 2, available does not necessarily mean that
the level’s empty.

OPRAM operations. Upon a batch of m memory access requests Q := {opp}p∈[m] where each
opp is of the form (read, addrp) or (write, addrp, datap), perform the following procedure. Hence-
forth we assume that m = 2γ where γ denotes the level whose capacity matches the present batch
size.

1. Conflict resolution. Q′ := SuppressDuplicate(Q,m,PRAM.priority), i.e., perform conflict res-
olution on the batch of memory requests Q, and obtain a batch Q′ of the same size but where
each distinct address appears only once — suppressing duplicates using the PRAM’s priority
function priority, and padding the resulting set with dummies to length m.

2. Fetch phase. For each opi ∈ Q′ in parallel where i ∈ [m], parse opi = ⊥ or opi = (read, addri)
or opi = (write, addri, datai):

(a) If opi = ⊥, let found := true; else let found := false.

(b) For each ` = 0, 1, . . . L in increasing order, for τ = c` − 1, c` − 2 . . . 0 in decreasing order:

• If not found: fetched := Lookup(Tτ` , addri); if fetched 6= ⊥, let found := true, data∗i := fetched.

• Else, Lookup(Tτ` ,⊥).

3. Rebuild phase. For each opi ∈ Q′ in parallel where i ∈ [m]: if opi is a read operation add
(addri, data∗i ) to T∅; else if opi is a write operation, add (addri, datai) to T∅; else add ⊥ to T∅.

Perform the following hash table rebuilding — recall that γ is the level whose capacity matches
the present batch size:

(a) If level γ is full, then skip this step; else, perform the following:

Let S := T0∪T1∪. . .∪Tγ−1, and T
cγ
γ := Build(SuppressDuplicate(S, µγ , pref)) where pref prefers

a block from a smaller level (i.e., the fresher copy) if multiple blocks of the same address exists.
Let cγ := cγ + 1, and for every j < γ, let cj := 0.

(b) • At this moment, if level γ is still available, then let T
cγ
γ := Build(T∅), and cγ := cγ + 1.

• Else, if level γ is full, perform the following:
Find the first available level ` > γ greater than γ that is available; if no such level ` exists,
let ` := L and let cL := 0.
Let S := T∅ ∪ T0 ∪ . . . ∪ T`−1; if ` = L, additionally include S := S ∪ TL.
Let Tc`` := Build(SuppressDuplicate(S, µ`, pref)), and let c` := c` + 1. For every j < `, reset
cj := 0.
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Deamortization. The deamortization technique (described in Appendix C) of Ostrovsky and
Shoup [35] applies here as well, and thus the work of rebuilding hash tables are spread evenly
across memory requests.

Obliviousness. The obliviousness proof is basically identical to that presented in Section 4.1.
Since we explicitly resolve conflict before serving a batch of m requests, we preserve the non-
recurrence condition. The only remaining differences here in comparison with Section 4.1 is that
1) here we use a general branching factor of µ rather than 2 (as in Section 4.1); and 2) here we
consider the parallel setting. It is clear that neither of these matter to the obliviousness proof.

Theorem 5 (OPRAM from oblivious parallel hashing). Assume the existence of one-way func-
tions and a (Wbuild, Tbuild,Wlookup, Tlookup)-oblivious hashing scheme. Then, there exists an ORAM

scheme that achieves the following performance for block sizes of Ω(logN) bits where L = O( logN
log logN ):

total work blowup := max

(
L∑
`=0

Wbuild(µ`, N), logφN ·
L∑
`=0

Wlookup(µ`, N)

)
+O(L logN),

and para. runtime blowup := max

(
{Tbuild(µ`, N)}`∈[L], logφN ·

L∑
`=0

Tlookup(µ`, N)

)
+O(L).

Proof. Basically, the proof is our explicit OPRAM construction from any parallel oblivious hashing
scheme described earlier in this section. For total work and parallel runtime blowup, we basically
take the maximum of the ORAM’s fetch phase and rebuild phase. The additive term O(L logN)
in the total work stems from additional building blocks such as parallel duplicate suppression and
other steps in our OPRAM scheme; and same for the additive term O(L) in the parallel runtime
blowup.

Using the simple oblivious hashing scheme in Section 3 with ε = 3
4 , we can set φ = 1

4 to obtain
the following corollary.

Corollary 3 (Asympototically efficient OPRAM for small blocks). Assume that one-way functions
exist. Then, there exists a computationally secure OPRAM scheme that achievesO(log2N/ log logN)
simulation overhead when the block size is at least Ω(logN) bits.
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A Oblivious Cuckoo Hashing Revisited

In this section, we revisit the elegant oblivious Cuckoo hashing idea by Goodrich and Mitzen-
macher [22], and we clarify unspecified, but somewhat non-trivial details of their algorithm and
proofs.

A.1 Revisiting Goodrich and Mitzenmacher’s Oblivious Cuckoo Hashing Scheme

Background: oblivious Cuckoo hashing. Two concurrent and independent works, Pinkas
and Reimann [36] and Goodrich and Mitzenmacher [22] both considered how to rely on a Cuckoo
hash table to construct asymptotically efficient ORAMs. It was observed by others [22, 42] that
the Pinkas and Reimann [36] construction did not obliviously build the Cuckoo hash table, and
consequently their scheme is flawed in terms of security. Goodrich and Mitzenmacher [22] tackled
the highly non-trivial challenge of obliviously rebuilding a Cuckoo hashing table by proposing an
elegant blueprint. Goodrich and Mitzenmacher [22] showed that the task of building a Cuckoo hash
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table can be expressed as an efficient MapReduce algorithm. They then showed how to obliviously
realize any MapReduce algorithm (where the reduce operation satisfies certain nice properties).
Specifically, the map operation can be performed obliviously in a trivial fashion; whereas the
reduce algorithm, which boils down to a group-by-key followed by an aggregate-by-key operation,
can be implemented through an oblivious sort (implementing group-by-key), followed by a linear
scan (implementing aggregate-by-key). Their observation is very elegant and powerful — in fact,
they showed that not only a single algorithm, but also a broad class of algorithms, can be made
oblivious efficiently. This powerful idea was extended in several subsequent works in the design
of efficient oblivious algorithms [28, 34] and in designing programming frameworks for oblivious
computation [28,34].

We now explain Goodrich and Mitzenmacher’s blueprint in more detail. In a Cuckoo hash table,
each element is assigned to two bins. We may consider each element as an edge that connects the
two vertices representing the two bins. This defines what is called a Cuckoo graph. The process
of building the Cuckoo hash table can be regarded as performing breadth-first-search (BFS) on
this Cuckoo graph, such that we can group the vertices by the connected components they are in.
In the process of performing BFS, there is a way to assign each element (i.e. edge) to a bin (i.e.
an incident vertex) — for the purpose of our discussion, the reader need not know how such an
assignment can be made.

Such a BFS algorithm can be expressed efficiently in the MapReduce framework. The goal of
the BFS is to let each edge know the vertex with the smallest index in its connected component.
Roughly speaking, suppose that at the beginning of each iteration, each edge know some vertex
in its connected component. Now, during the iteration, each edge in parallel contacts other edges
that share a vertex. Throughout this process, an edge may discover another vertex with smaller
index in its component, and hence, it will update this information. The process continues until
convergence, i.e., every edge knows the vertex with the smallest index in its component.

Goodrich and Mitzenmacher [22] observe the following: 1) each iteration of the above BFS
process can be expressed as O(1) map and O(1) reduce operations, and thus can be implemented
through O(1) oblivious sorts; and 2) convergence will happen after super-logarithmic number of
iterations except with negligible probability, since the largest connected component can have at
most super-logarithmic number of vertices (which also gives a bound on the diameter) except with
negligible probability.

Array lengths: to reveal or not reveal? There is, however, one subtlety regarding the length
of the array containing the edges that are in “active” components, i.e., those components whose
edges have not reached consensus yet. To summarize, building a Cuckoo hashing table obliviously
involves super-logarithmic number of MapReduce iterations. When performed in the cleartext, the
number of edges in active components will decrease geometrically. For connected components that
have reached consensus, the edges inside them no longer need to participate in future iterations.
Hence, if a connected component has diameter at most k, it is active only within the first k
iterations.

When we perform this procedure obliviously, however, the immediate question is whether the
number of active edges (i.e., the edges in active components) can be revealed throughout the
algorithm. If this number is revealed, then some information is leaked about the structure of the
Cuckoo hashing graph. Below, we will demonstrate an explicit attack on the security of the ORAM
scheme if this information is leaked to the adversary during the hash table rebuilding.

Goodrich and Mitzenmacher [22] did not explicitly address how to deal with edges in compo-
nents that have reached consensus. On this front, their algorithm description and their proof of
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performance bounds appear inconsistent. Their algorithm description (Figure 1 in their paper)
seems to suggest that all edges continue to participate until the end. If so, their algorithm would
incur O(log3N) cost rather than the claimed O(log2N). Hence, we have to assume that inactive
edges are pruned during the execution of BFS — but this will reveal the number of active edges
over time during the course of the BFS algorithm. Indeed, Goodrich and Mitzenmacher’s stochastic
bounds and overhead analysis are also only applicable assuming that the number of inactive edges
are pruned during the course of BFS. We now show an explict an attack on the resulting ORAM
scheme, assuming that the number of active edges during the course of the BFS are revealed to the
adversary.

An explicit attack when the number of active edges is revealed. Before we describe the
attack, we first make a remark about one subtle difference regarding how Goodrich and Mitzen-
macher [22] and Kushilevitz et al. [27] use oblivious Cuckoo hashing. Specifically, Goodrich and
Mitzenmacher employ the technique of placing dummy elements and relying on dummy counters,
whereas Kushilevitz et al. does not employ dummy counters. Our attack below directly applies to
Kushilevitz et al.’s version of the algorithm, but at the end of our description, we make a remark
on one might be able to extend this idea to attack Goodrich and Mitzenmacher’s version.

Consider a specific hash table of capacity n in the hierarchical ORAM henceforth called the
target hash table, and consider two request sequences:

• Request sequence 0: repeatedly ask for the same block whose identifier is 1. In this case, every
time 1 will have been found in a smaller level, and thus we would make a dummy request to the
target level.

• Request sequence 1: keep cycling through the requests 1, 2, . . . , n. In this case, consider the
subsequent n requests to the target level immediately after the level is rebuilt: for any of these
n requests, the requested block will not have been found in a smaller level, and thus we would
look for a real block that exists in the target level.

It suffices to show that a polynomial-time adversary can distinguish between the two cases with
non-negligible probability, based on its view in the course of the ORAM algorithm.

Recall that when the target level is being rebuilt, consider the rebuilding algorithm as a sampling
experiment. The adversary would have observed the following random variables: the number of
active edges over time during the course of the BFS algorithm.

Now during the lookup phase, if we have request sequence 0, the adversary observes two random
bins (i.e., a fresh random edge) upon every request. If we have request sequence 1, the adversary
observes an actual edge that was actually drawn in the rebuild phase.

The adversary’s job is to decide which case it is. This translates to deciding whether the random
bipartite graph being gradually unveiled in the lookup phase is the same as the random graph of
the earlier rebulid phase (where the adversary has observed certain random variables of the graph
as mentioned earlier). To show that the adversary has non-negligible advantage in distinguishing
the two cases, it suffices observe the following — since the adversary can simply simulate the
BFS algorithm on the random graph unveiled during the lookup phase, and compare the observed
random variables with those observed in the rebuild phase:

Claim 3. For two random bipartite graphs with n edges generated independently, the probability
that running the BFS algorithm on them will lead to exactly the same number of active edges after
every iteration is at most some constant c < 1.
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To summarize, the above constitutes an explicit attack on Kushilevitz et al.’s ORAM scheme [27]
assuming that the Cuckoo hashing scheme prunes the number of inactive edges.

Inspired by this idea, it is conceivable that a similar attack would exist against Goodrich and
Mitzenmacher’s ORAM scheme as well — but the attack there will need to be somewhat more
sophisticated, since Goodrich and Mitzenmacher employ the techniques of having dummy blocks
and dummy counters, which provides some extent of obfuscation. We note that the Kushilevitz et
al. [27] scheme cannot employ the same technique because in their scheme, each hash table must
be accessed more times than Goodrich and Mitzenmacher, and since the dummy counter technique
requires that the number of dummy elements match the number of accesses, there would be too
many dummy elements which would make their scheme asymptotically more expensive.

B Oblivious Cuckoo Hashing Clarified

In this section, we clarify Goodrich and Mitzenmacher’s elegant blueprint of obliviously performing
Cuckoo hashing. We show that some non-trivial additional steps are needed in both the algorithm
and the proofs to correctly implement their blueprint. We include this section for completeness —
however, for constructing ORAMs and OPRAMs, we instead recommend the usage of conceptually
simpler hashing schemes as described in the main body of the paper.

Intuition. As mentioned earlier, if we do not prune any edges throughout the hash-table rebuild-
ing algorithm, the cost would be too high to obtain an O(log2N). We therefore would like to prune
inactive edges during the process. Unfortunately, as argued earlier, we also cannot reveal the true
number of active edges since this would result in leakage of the Cuckoo hashing graph, and thus
lead to an explicit attack on the resulting ORAM’s security.

Our idea is to prune inactive edges using an a priori fixed schedule that is not dependent on the
concrete sample of the Cuckoo graph. This a priori fixed schedule will decrease geometrically —
but possibly slower than the actual number of active edges. Specifically, the number of active edges
left after the k-th iteration is roughly the number of edges residing in connected components of size
k or larger — henceforth we use the random variable Tk to denote this quantity. Roughly speaking,
we would like to prove statements of the following form: for a suitable constant β ∈ (0, 1), as long
as k is not too large, the following holds

Pr[Tk ≥ O(nβk)] ≤ negl(λ)

In some sense, the above statement is a bit stronger than the stochastic bounds that Goodrich and
Mitzenmacher actually proved [22], and their analysis does not trivially imply such a statement —
in fact, to prove this, we need to modify their Martingale analysis in a non-blackbox manner (see
Section B.1).

Roadmap. In the remainder of this section, we will do the following:

• In Section B.1, we will formalize and prove the above stochastic bounds regarding the Cuckoo
hash graph;

• In Section B.2, we will describe a complete algorithm for obliviously building a Cuckoo hash
table. Specifically, we will describe how exactly to prune arrays during the process of oblivious
hash table rebuilding, an important detail that is seemingly unspecified in the earlier work.
Finally, we will comment on how to leverage oblivious Cuckoo hashing to construct an ORAM.
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B.1 Analysis of Cuckoo Graph

In this section, we prove a high-probability upper bound on how fast the array lengths decrease
in the aforementioned BFS exploration of the random Cuckoo graph. Based on this bound, we
will explicitly describe how to obliviously prune arrays during the BFS exploration in Section B.2
— importantly, we will prune only up to this a priori known upper bound, not to the true array
lengths.

We first establish some notations and terminology. Let λ be the secure parameter such that
the failure probability of the hashing scheme is negl(λ). For n ≥ log8 λ, the cuckoo hashing scheme
stores n distinct keys using the data structure T consisting of three arrays: two tables T1,T2 of
size m = (1 + ε)n, and one stash S of size O(log λ), where ε > 0 is a constant. The scheme uses two

functions PRFsk(1|| ·), PRFsk(2|| ·) mapping from the key space to [m], where PRF key sk
$←{0, 1}λ

is freshly generated in each Build, and we use PRF1 and PRF2 in the following for short. For each
key k, it is stored in one of the following locations: (a) PRF1(k)-th slot of T1, (b) PRF2(k)-th slot of
T2, or (c) some slot of S, where we always prefer to store elements in T1 and T2 rather S. Each slot
accommodates only one key. After building the hast table T = {T1,T2,S}, a straightforward Lookup
can be done with total work O(log λ). Therefore, in the following, we analyze cuckoo hashing using
a bipartite graph. Specifically, we describe the algorithm Build, which takes O(n log n) total work.

Recall that the cuckoo graph is formed in the following way. For some constant ε > 0, n
independently random edges are inserted into a bipartite graph, where each part has m = (1 + ε)n
vertices, in the following way: each edge’s endpoints are sampled uniformly at random from each
of the two parts. The following fact is proved in [26, Lemma 2.4].

Fact 4 (Every Vertex in Small Component). For any vertex v in the cuckoo graph, let Cv be the
connected component containing v. Then, there exists a constant β ∈ (0, 1) (depending on the
parameter ε chosen for the cuckoo graph) such that for any vertex v and integer k ≥ 2, Pr[|Cv| ≥
k] ≤ βk.

Lemma 4. Consider the cuckoo graph defined above. For any (random) edge e, let Ce be the
connected component containing the edge e. Then, there exists a constant β ∈ (0, 1) (depending
on the parameter ε chosen for the cuckoo graph) such that for any vertex v and integer k ≥ 3,
Pr[|Ce| ≥ k] ≤ 2βk.

Proof. We use Fact 4 for the existence of some β̂ ∈ (0, 1) such that for every vertex v and integer

k, it holds that the probability Pr[|Cv| ≥ k] ≤ β̂k. We set β :=

√
β̂.

Fix some integer k and some edge e. We condition on the end-points x and y of edge e.
We remove edge e from the cuckoo graph, and consider the randomness due to the remaining
edges. For each vertex v, let Ĉv be the component containing v in the remaining graph. Since
the remaining graph has fewer (random) edges, by a standard coupling argument, it follows that
Pr[|Ĉv| ≥ k|e] ≤ β̂k.

Since |Cv| ≥ k implies that either Ĉx or Ĉy contains at least
⌈
k
2

⌉
vertices, we have Pr[|Ce| ≥

k] = Ex,y[Pr[|Ce| ≥ k|e = {x, y}]] ≤ Ex,y[Pr[|Ĉx| ≥
⌈
k
2

⌉
|e] + Pr[|Ĉy| ≥

⌈
k
2

⌉
|e]], which is at most

2βk, as required.

Lemma 5. Let Tk := |{e | |Ce| ≥ k}| be the number of edges e whose component Ce in the
cuckoo graph contains at least k vertices. Suppose β ∈ (0, 1) is the constant (depending on ε) from
Lemma 4. For any integer k such that nβk ≥ n0.87, Pr[Tk ≥ 3nβk] ≤ negl(λ), where n ≥ log8 λ.

Proof. Fix some k such that nβk ≥ n0.87. Define E to be the event that there exists some edge e
such that |Ce| > K := log λ log log λ. Lemma 4 implies that Pr[E ] ≤ negl(λ).

34



We next define the truncated random variable T̂k := {e|k ≤ |Ce| ≤ K}.
Consider the n edges in any arbitrary order, and define the filtration {Fi : i = 0, 1, . . . , n},

where Fi corresponds to the randomness due to the first i edges.
Next, define the Doob martingale Xi := E[T̂k|Fi] for i = 0, 1, . . . , n]. In order to use Azuma’s

inequality, we need to give a uniform upper bound on |Xi − Xi+1|. By conditioning on the ran-
domness of the first i edges and applying a coupling argument on the (i+ 2)nd to the nth edge, it
suffices to consider what happens to T̂k when a single edge changes.

It suffices to consider how T̂k can change when a single edge is removed. Observe that T̂k
changes by more than 1 only when removing an edge breaks a component C into two components
C1 and C2. The random variable can increase if originally C contains more than K vertices, but
after removal at least one of C1 and C2 has size between k and K; hence, the increase in T̂k is at
most K2. The random variable can also decrease by more than 1 if k ≤ |C| ≤ K, but both |C1|
and |C2| are less than k, in which case T̂k decreases by at most K2

2 , due to the edges in C.
Therefore, we can conclude that with probability 1, |Xi −Xi+1| ≤ c := 2K2.
Hence, By Azuma’s inequality, for any ρ > 0,

Pr[Xn ≥ X0 + ρ] ≤ exp(−2ρ2

nc2
) = exp(− ρ2

2nK4
).

By definition of Xi and Lemma 4, X0 = E[T̂k] ≤ E[Tk] =
∑

e Pr[Ce ≥ k] ≤ 2nβk, and Xn = T̂k.
Thus, we have

Pr[T̂k ≥ 2nβk + ρ] ≤ Pr[Xn ≥ X0 + ρ] ≤ exp(− ρ2

2nK4
).

Choosing ρ = nβk ≥ n0.87 yields Pr[T̂k ≥ 3nβk] ≤ exp(− log1.5 λ) ≤ negl(λ).
Finally, we have Pr[Tk ≥ 3nβk] ≤ Pr[Tk ≥ 3nβk ∧E ]+Pr[E ] ≤ Pr[T̂k ≥ 3nβk]+Pr[E ] ≤ negl(λ),

where we use the observation that the event E implies that Tk = T̂k.

B.2 Complete Algorithm Description for Oblivious Cuckoo Hashing

In this section, we give a complete description of an oblivious Cuckoo hashing scheme — specifically,
we explicitly spell out important details regarding how to prune array lengths. Although Goodrich
and Mitzenmacher [22] describe their oblivious Cuckoo hashing algorithm using MapReduce as
an intermediate abstraction, for concreteness and ease of understanding, we skip the intermediate
abstraction and spell out the exact algorithm.

Recall that the cuckoo graph is a bipartite graph G = (V1 ∪ V2, E), where V1 and V2 cor-
responds to slots in the two hash tables, and each edge e corresponds to some key x such that
e = {PRF1(x),PRF2(x)}.

Oblivious and Parallel Breadth-First-Search (BFS). The goal of this subroutine is to build
a BFS tree for each connected component in G. Specifically, the root of a component C will be the
vertex in V1 ∩C with the smallest index. After BSF is performed, each edge e in the component C
will be labeled as either a tree edge or a cylce edge. Moreover, every edge e will be assigned a
direction away from the root, and hence the head of the edge is the vertex that is further away
from the root in the BFS tree.

Algorithm ObiviousBFS(x1, . . . , xn) :
Input: a list of unique keys x1, . . . , xn (and implicitly the secret key of PRF1,PRF2).
Output: create BFS tree for each connected component.

35



Initialization. For each key x, we create an entry ent := (x, u1 := PRF1(x), u2 := PRF2(x), c, l, t),
where the fields (c, l, t) have the following meaning. The field c indicates the root of the BFS
tree that currently contains the edge of ent, and is initialized to PRF1(x). The field l ∈ {1, 2}
indicates that the edge is directed towards Vl, and is initialized to 2. The field t ∈ {0, 1}
indicates whether the edge is a tree edge (1) or a cycle edge (0), and is initialized to 1.

Propagation. In one round of propagation, there are two phases. In the first phase, we extend
the BFS tree from V2, and in the second phase, we do so from V1. The two phases are similar,
and we give the description for Extendi, where i = 2, 1. (Hence, we first perform Extend2,
followed by Extend1.) For convenience, we use i⊕ 1 to indicate flipping between 1 and 2.

1. We perform oblivious sort on the entries according to the following fields in decreasing
priority:

(a) ui: Edges incident on the same vertex in Vi are grouped together.

(b) c: Edges labeled with the same root are grouped together, where a root with smaller
index has higher priority.

(c) l: Edges directing towards Vl have higher priority.

(d) t: Tree edges (1) have higher priority.

(e) Remaining ties are resolved consistently, for instance, using the key.

2. After sorting, the entries are grouped according to the vertex in Vi they share. By
oblivious aggregation, each entry ent also knows the entry ent0 (and its corresponding
fields (c0, l0, t0)) that has the highest priority in its group. In parallel over all entries, the
fields (c, l, t) of an entry ent are updated (with respect to the fields (c0, l0, t0)) according
to the following rules:

(a) If ent = ent0, then the fields (c, l, t) remain unchanged.

(b) If c 6= c0, then the entry ent needs to update its root, and we perform the updates
c← c0, l← i⊕1, t← 1; observe that this edge directs away from Vi and is potentially
tagged as a tree edge.

(c) If c = c0 and l = i⊕1, then the edge of ent directs away from Vi and its fields (c, l, t)
remain unchanged.

(d) If c = c0 and l = i, then in this case, we must have l0 = i. Since the in-degree of
every vertex due to tree edges is at most 1, for the entry ent 6= ent0, either ent is
already indicated as a cycle edge, or else we update its field t← 0.

Oblivious pruning. Observe that if a component has k vertices, then after k rounds of propaga-
tion, the entries ent contained in that component will not be updated anymore. To reduce total
work, we do not have to include these entries in future propagation steps. However, the exact
size of a component will leak information, and hence, we need to perform pruning obliviously.

To this end, Lemma 5 states that after k rounds of propagation, with all but negligible
probability, at most 3nβk entries are not finished yet. Hence, we can gradually decrease the
number of entries that we keep in running the first k0 rounds of propagation, where k0 is the
largest integer such that nβk ≥ n0.87.
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Figure 1: An example of propagation on a cuckoo graph, where each entry is represented by an
arrow that has fields color (a, b, c), direction (V1 → V2 or V2 → V1), and type (solid line for a tree
edge, and dashed for a cycle edge).

It remains to describe how we detect whether an entry is finished. Observe that a component
is finished if the c fields of all its entries stay exactly the same after one round of propagation.
Hence, in each round of pruning, we perform oblivious sorting on the entries according to the
field c first and resolve ties consistently (for instance according to the key). Each entry then
remembers which entry follows it immediately, except for the last entry in the same component,
and the first entry in the component remembers that it is the first entry in the group. During a
round of pruning, an entry checks that its relevant information is not changed from the previous
round and marks itself as potentially ready. Then, oblivious aggregation over all entries in the
same component can decide if all the entries in that group are finished.

Observe that k0 = O(log n). Since the entries decreases geometrically in these first k0 rounds,
the total work is O(n log n).

After the first k0 rounds of propagation, the number of entries after pruning is at most O(n0.87).
We simply run K = log λ log log λ more rounds of propagation to finish all entries. This takes total
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work O(n0.87 log n) ·K = O(n log n).

Build Cuckoo Hash Table. After the BFS tree is constructed for each component, the infor-
mation in the (c, l, t) fields are used to build the hash table.

Intuitively, for each component, all the entries corresponding to the tree edges, i.e., t = 1, will
have their keys stored in table T1 or T2, where exactly which table is indicated by the field l. The
keys for the cycle edges are stored in the stash.

However, to reduce the stash size, it is possible to store the key of one cycle edge in one of the
tables as well. One arbitrary cycle edge e = (u, v) (which is currently directing towards v) is picked
and there is a unique path P in the BFS tree from the root r to the vertex u. For the edge e,
we store its key in the slot corresponding to u. For every tree edge in the path P , we reverse the
direction of the edge and store the key in the slot corresponding to the vertex closer to the root.

Observe that path P can be discovered by an oblivious procedure similar to the propagation
procedure, and we omit the details.

Lemma 6. For any integer s ≥ 1, the size S of the stash after all items have been inserted satisfies
Pr[S ≥ s] = O(n−s). Hence, Pr[S ≥ log λ] = negl(λ).

Proof. We use Theorem 2.1 in [26], which builds cuckoo hash table in the following way: (a) inserts
a key into its slot in T1, and (b) evicts the other key if the slot is occupied, (c) evicts iteratively
if the next slot is still occupied. In addition, if no empty slots after A log n evictions, then the key
is placed in the stash S, where A is some large enough constant. Using this strategy, they showed
that the probability that the stash has size at least s is at most O(n−s).

Observe that the procedure we describe using BFS is more aggressive, because it is equivalent to
searching for an empty slot with no upper bound on the number of evictions. Hence, the probability
bound still holds.

Lookup Cuckoo Hash Table. To Lookup a query k in the cuckoo hash table T = {T1,T2, S},
it suffices to read (a) PRF1(k)-th slot of T1, (b) PRF2(k)-th slot of T2, and (c) every slot of S, and
then check if k is found. Hence, it runs in O(S) = O(log λ) total work and O(logS) = O(log log λ)
time.

Theorem 6 (Oblivious Cuckoo Hashing). Given security parameter λ, cuckoo hashing with n ≥
log8 λ is a (Wbuild, Tbuild,Wlookup, Tlookup)-parallel oblivious hashing scheme where

Wbuild = O(log n), Tbuild = O(log2 n+ log n log λ log log λ),

Wlookup = O(log λ), Tlookup = O(log log λ).

Remark: Using Cuckoo Hashing Scheme for ORAM. Observe that if we use Cuckoo Hashing
directly, according to Theorem 6, each lookup takes time Ω(log λ) work because of the stash.
Although this seems to defeat the advantage of Cuckoo hashing, as described in [27], a shared
stash (with capacity, say, at most O(log1.9N)) can be used to store the overflowing keys for all
instances of cuckoo hashing. Therefore, not counting the work for looking up in the shared stash,
each lookup in an instance of cuckoo hashing takes only O(1) work. Hence, we can still use a

variant of Theorem 4 to achieve an ORAM scheme with O( log2N
log logN ) runtime blowup for block sizes

of Ω(logN) bits.

Remark 4 (A historical note). Historical note: the subsequent work by Falk et al. [13] pointed
out the following subtlety: when we use a shared stash, if a block belonging to level ` is found in
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the shared stash, we should still look up the real positions PRF1(k) and PRF2(k) in the level `.
This subtlety does not affect the correctness of our oblivious Cuckoo hash table construction —
our oblivious Cuckoo hash table does look at the real positions as well as the stash. The subtlety
is only relevant in the ORAM scheme in which the multiple stashes are merged into shared one.

Obliviousness. Our goal is to show the above construction satisfies the obliviousness defined
in Section 2.3: there exists a simulator Sim such that for any non-recurrent query sequence
k := {k2, . . . , kpoly(λ)}, it holds that Exptideal,Fht

A,Sim (1λ) is computationally indistinguishable from

Exptreal,HT
A (1λ).

The simulator Sim can be constructed by simulating as follows: to simulate Build, just output
the access pattern Build(1λ, S′), where S′ is a list consisting of |S| dummy entries. To simulate
Lookup on each query kr (on the hash table), it suffices to take all kr queries as dummy queries,
and then call the real-world Lookup algorithm using dummy queries as inputs.

The remainder of the proof can be accomplished through a sequence of hybrids in almost the
same manner as in Section 3.5.

C Deamortization

The high level idea of deamortizing hierarchical ORAMs is due to Ostrovsky and Shoup [35]. The
original description in [35] works for the case when the size of hash tables grows by a factor of
2 between adjacent levels. We give the details here for the case when the factor µ of growth is
arbitrary. For simplicity, we first describe the sequential case for ORAM.
Re-building from Smaller Levels. Recall that in Sections 4.2 and 5.2, a hash table with
capacity µ`+1 is rebuilt from hash tables from levels 0 to ` as an atomic procedure. To carry out
the amortized analysis, we break this procedure into several phases such that in each phase, the
elements from µ hash tables of the same capacity (say µi) are combined to build a bigger hash
table (say with µi+1 capacity).
Properties of the Underlying Oblivious Hashing Scheme. We need the following properties
of the oblivious hashing scheme. At each level i ≥ 1, a hash table with capacity µi satisfies:
• It is built from at most µ smaller hash tables with capacity µi−1. The total work for building

will be amortized over (µ− 1)µi−1 requests.
• It can support a sequence of non-recurrent requests with length at most 3µi+1.

Modified Data Structure. Denote L =
⌈
logµN

⌉
, and the levels are numbered 0, 1, . . . , L. In

each level 0 ≤ ` < L, we use T` to denote level `, which consists a FIFO queue of at most
2µ− 1 hash tables, each with capacity µ`; the queue in level L contains at most 1 hash table. For
0 ≤ i < 2µ − 1, we use Ti` to denote the i-th hash table within level `, where smaller i indicates
joining the queue earlier. Moreover, each level ` has a counter c` indicating the number of hash
tables in the corresponding queue. In this deamortization, one observation is that those hash tables
to be rebuilt is read-only in lookup phases, so we can copy them to another space on-the-fly. Also,
delaying the output of rebuild could create more duplicated elements, but those duplication can
be suppressed in the same way. Therefore, the rebuild task can be done in the background as we
doubled the number of hash tables in each level.
Data Structure Invariant. When there are at least µ hash tables in the queue T`, the elements from
the µ oldest hash tables will be copied to build a hash table with capacity µ`+1 in the background.
Before this building is finished, these older hash tables are still accessible.
Fetch Phase. This is exactly the same as before, except that there might be more hash tables in
each level.
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Rebuild Phase. For each request, the algorithm performs the following. The block just requested
is added to the queue T0 as a hash table with capacity 1. Each level ` ∈ {0, 1, 2, . . . , L−1} performs
the following independently:

1. If there are at least µ hash tables in the queue T` and no rebuilding is currently under progress,
then initiate rebuilding from the µ oldest hash tables in the queue.

2. If the oldest hash table has been in the queue for more than 2µ`+1 requests and no rebuilding
is under progress because there are less than µ hash tables in the queue T`, then initiate
rebuilding a new hash table of capacity µ`+1 from the existing hash tables in the queue.

3. If the rebuilding of some hash table (of capacity µ`+1) is already initiated, then perform the
work of rebuilding allocated to this request. Recall that the work for rebuilding a hash table
at this level is allocated to (µ− 1)µ` requests.

4. If the rebuilding at this level (to produce a hash table of capacity µ`+1 is finished, then remove
the oldest µ hash tables from the queue and pass the newly built hash table to the next level
`+ 1.

5. Any hash table received from level `− 1 is inserted into the queue.
The case for ` = L is special in the sense that it will start rebuilding (a hash table with capacity

µL as long as its queue TL contains at least 2 hash tables.

Lemma 7 (Correctness of Deamortization). The correctness follows from the two properties:
(a) For each `, in µ` consecutive requests, level ` receives at most one hash table (with capacity

µ`).
(b) For each `, any hash table stays in the queue for at most 3µ`+1 requests.

Proof. We prove statement (a) by induction. The case ` = 0 holds trivially. For the inductive step,
it suffices to show that assuming the truth for the case `, then in any µ`+1 consecutive requests, at
most one hash table is sent from T` to T`+1.

Observe that rebuilding at level ` starts as soon as there are at least µ hash tables in T`. Hence,
by the time a hash table of capacity µ`+1 is rebuilt and sent to level T`+1, at most µ−1 hash tables
of capacity µ` are in the remaining queue T`. Hence, it takes a further µ` requests for another hash
table to arrive in T`; after that, it takes another (µ − 1)µ` requests to finish rebuilding another
hash table of capacity µ`+1. Therefore, it takes at least µ`+1 requests to send another hash table
to T`+1.

Statement (b) holds because rebuilding will be initiated if any hash table stays in the queue T`
for more than 2µ`+1 requests, and rebuilding takes at most (µ− 1)µ` < µ`+1 requests.

Deamortization Analysis. Suppose the work needed to build a hash table of capacity µ` is
W (µ`). By our construction, this work is spread over (µ − 1)µµ−1 = Θ(µ`) requests. Moreover,
Lemma 7 states that in µ` consecutive reqeusts, at most 1 hash table of capacity µ` will be produced.
Therefore, in every request, the work used to rebuild a hash table of capacity µ` is at most 1

µ`
W (µ`).
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