
Thunderella: Blockchains with Optimistic
Instant Confirmation

Rafael Pass Elaine Shi

2

Abstract

State machine replication, or “consensus”, is a central abstraction for distributed systems where
a set of nodes seek to agree on an ever-growing, linearly-ordered log. In this paper, we propose a
practical new paradigm called Thunderella for achieving state machine replication by combining a
fast, asynchronous path with a (slow) synchronous “fall-back” path (which only gets executed if
something goes wrong); as a consequence, we get simple state machine replications that essentially
are as robust as the best synchronous protocols, yet “optimistically” (if a super majority of the
players are honest), the protocol “instantly” confirms transactions.

We provide instantiations of this paradigm in both permissionless (using proof-of-work) and
permissioned settings. Most notably, this yields a new blockchain protocol (for the permissionless
setting) that remains resilient assuming only that a majority of the computing power is controlled
by honest players, yet optimistically—if 3/4 of the computing power is controlled by honest players,
and a special player called the “accelerator”, is honest—transactions are confirmed as fast as the
actual message delay in the network. We additionally show the 3/4 optimistic bound is tight for
protocols that are resilient assuming only an honest majority.

4

Contents

1 Introduction 1

1.1 The Thunderella Paradigm . 2

1.2 Related Work . 7

2 Definitions and Preliminaries 9

2.1 Execution Model . 9

2.1.1 Modeling Protocol Execution . 9

2.1.2 Constrained Execution Environments . 11

2.1.3 Notations . 12

2.2 State Machine Replication . 13

2.3 Abstract Blockchain Protocols . 13

2.3.1 Syntax and Security Definitions . 14

2.3.2 Blockchain Implies State Machine Replication 16

2.4 Warmup: Blockchain Instantiations . 16

2.4.1 Permissionless Environment . 16

2.4.2 Permissioned, Classical Environment . 17

2.4.3 Permissioned, Sleepy Environment . 19

2.5 Preliminaries: Responsiveness and Optimistic Responsiveness 20

2.5.1 Responsiveness . 20

2.5.2 “Bare Minimum” Optimistic Responsiveness 22

3 Basic Thunderella Protocol with a Static Committee 25

3.1 Our Basic Protocol in a Nutshell . 26

3.1.1 Optimistic Fast Path . 26

3.1.2 Falling Back to the Blockchain . 27

3.1.3 Initiating a New Optimistic Epoch . 28

3.2 Detailed Protocol Description . 29

3.2.1 Useful Definitions . 29

3.2.2 Πthunder: Core Protocol for Consistency . 30

3.2.3 Concrete Chain-State Function and Worst-Case Liveness 32

3.2.4 Coordination Protocol Πella and Optimistic Responsiveness 33

3.3 Proofs for Basic Thunderella with Static Committee 35

3.3.1 Consistency . 35

3.3.2 Worst-Case Liveness . 37

3.3.3 Optimistic Responsiveness . 37

5

4 Thunderella for Permissioned 41
4.1 Permissioned, Classical Environments . 41
4.2 Permissioned, Sleepy Environments . 45

4.2.1 Practical Considerations for Consortium Blockchains 45

5 Thunderella for Permissionless 49
5.1 Thunderella with Robust Committee Reconfiguration 49

5.1.1 Protocol Π̃thunder: Consistency and Worst-Case Liveness 50
5.1.2 Protocol Π̃ella: Optimistic Responsiveness . 53
5.1.3 Proofs: Robust Committee Reconfiguration Framework 55

5.2 Recent Blockchain Miners As Committee . 58
5.2.1 Preliminary: Mildly Adaptive Corruptions . 58
5.2.2 Preliminary: Committee Election in a Permissionless Environment 59
5.2.3 Detailed Protocol . 61
5.2.4 Reward Distribution and Incentive Compatibility 62

5.3 Recent Stake-Holders As Committee . 62
5.3.1 Fair Committee Down-Selection and Incentive Compatibility 63

5.4 Leader As an Acceleration Service . 64

Chapter 1

Introduction

State machine replication, also referred to as atomic broadcast, is a core distributed systems ab-
straction that has been investigated for three decades. In a state machine replication protocol, a set
of servers seek to agree on an ever-growing, linearly-ordered log, such that two important properties
are satisfied: 1) consistency, i.e., all servers must have the same view of the log; and 2) liveness,
i.e., whenever a client submits a transaction, the transaction is incorporated quickly into the log.
In this paper, we will also refer to state machine replication as consensus for short1.

State machine replication is a fundamental building block for replicated databases. For more
than a decade, companies such as Google and Facebook have deployed Paxos-style protocols [6,
28,34] to replicate a significant part of their computing infrastructure. These classical deployment
scenarios are typically relatively small scale, with fast local-area networking, where crash (rather
than byzantine) faults are usually of concern.

Fuelled by decentralized cryptocurrencies, recently the community has been excited about large-
scale applications of distributed consensus. Two deployment scenarios are of interest: 1) the
permissionless setting where anyone can join freely (e.g., decentralized cryptocurrencies); and 2)
the permissioned setting where only approved participants may join (e.g., a consortium blockchain
where multiple banks collaborate to build a distributed ledger). Regardless of which setting, the
typical deployment would involve a large number of nodes (e.g., thousands or more) controlled by
mutually distrustful individuals and organizations.

Roughly speaking, two broad classes of protocols have been considered for the large-scale setting,
each with their own set of deficiencies:

• First, classical-style protocols such as PBFT [13] and Byzantine-Paxos [34] confirm transactions
quickly in the normal case; but these protocols are notoriously complicated, making implemen-
tation, reconfiguration, and maintenance relatively difficult especially in a large-scale setting.
Further, these protocols achieve “fast confirmation” by adopting the asynchronous (or partially
synchronous) model, and thus inherently they can tolerate at most 1

3 corruptions [19,41].

• Second, blockchain-style protocols, represented by Nakamoto’s original blockchain [23, 38, 39],
are a new breakthrough in distributed consensus: these protocols are conceptually simple and
tolerate minority corruptions. Moreover, it is has been shown how to remove the expensive
proof-of-work from blockchain-style consensus [15,30,43] thus solving the energy waste problem.
Further, not only has blockchains’ robustness been empirically proven, earlier works [15,43] have

1Although the term “consensus” has been used in the distributed systems literature to mean other related ab-
stractions such as single-shot consensus; in this paper, we use “consensus” to specifically refer to “state machine
replication”.

1

2 CHAPTER 1. INTRODUCTION

also shown mathematically that blockchain-style consensus indeed achieves certain robustness
properties in the presence of sporadic participation and node churn that none of the classical-
style protocols can attain! Unfortunately known blockchain-style protocols suffer from slow
transaction confirmation, e.g., Bitcoin’s Nakamoto consensus has a 10-minute block interval and
it takes several blocks to confirm a transaction with sufficient confidence. Earlier works that
mathematically analyze blockchain-style consensus [39, 43] have pointed out that such slowness
is inherent for blockchain-style protocols since the expected block interval must be set to be
sufficiently large for the protocol to retain security.

A natural question that arises is whether there is some way to simultaneously reap the benefit
of both of these “worlds”. Unfortunately, a negative answer was presented by earlier works [41–43]
which showed that a natural notion of fast transaction confirmation called “responsiveness” is
unattainable against 1

3 (even static) corruptions in classical or permissionless models. In this paper
we consider a new notion called optimistic responsiveness that allows us “circumvent” this lower
bound such that we can achieve responsiveness most of the time in practice and yet tolerate up
to minority corruptions in the worst-case. In our approach, in the optimistic case (when e.g., a
super majority is honest), we enjoy the fast nature of asynchronous protocols; and yet we retain
the resilience of synchronous (e.g., blockchain) protocols as well as their robustness properties (e.g.,
support for sporadic participation). More precisely, we show how to combine a fast and simple
“asynchronous path”—which guarantees consistency but not liveness—with a (slow) synchronous
“fall-back” path which only gets executed if something goes wrong.

1.1 The Thunderella Paradigm

To characterize what we mean by “fast” or “instant confirmation”, we adopt the same notion of
responsiveness as proposed in the work by Attiya, Dwork, Lynch, and Stockmyer [2] and later
adopted by others [27, 41]. A consensus protocol is said to be responsive iff any transaction input
to an honest node is confirmed in time that depends only on the actual network delay, but not on
any a-priori known upper bound on the network delay. Henceforth in this paper, we use δ to denote
the actual network delay and use ∆ to denote an a-priori known upper bound of the network’s
delay where ∆ is possibly provided as input to the protocol.

As shown in [41], achieving responsiveness requires us to assume that 2/3 of the players are
honest. (Additionally, all known protocols that are responsive are very complicated, and thus hard
to implement.)

Towards overcoming this issue, we here instead consider a notion of optimistic responsive-
ness—where responsiveness is only required to hold whenever some “goodness conditions” are
satisfies. More precisely, we consider two sets of conditions:

• worst-case conditions (denoted W) under which the protocol provides worst-case guarantees
including consistency and “slow” confirmation (e.g., W = majority honest).

• optimistic-case conditions (denoted O ⊆ W) under which the protocol additionally provides
responsive confirmation (e.g., O =“more than 3

4 are honest and online, and some designated
player (the “leader”) is honest”).

Our main result is a paradigm for taking any blockchain protocol (permissioned or permis-
sionless) that satisfies consistency and liveness under conditions W , and transform it into a new
protocol that satisfies consistency and liveness under “essentially” the same conditions W (and in
many cases, actually the same conditions W), and additionally satisfies optimistic responsiveness
under condition O.

1.1. THE THUNDERELLA PARADIGM 3

The idea in a nutshell To explain our approach, consider first the following simple protocol:

• We have a designated entity: the leader, or “accelerator”.

• Transactions are sent to the leader; the leader signs the transaction (with an increasing
sequence number), and sends out the signed transaction to a “committee” of players.

• The committee members “ack” all leader-signed transactions, but at most one per sequence
number.

• If a transaction has received more than 3/4 of the committees signatures—we refer to such a
transaction as being notarized. Participants, can directly output their longest sequence of con-
secutive (in terms of their sequence numbers) notarized transactions—all those transactions
are confirmed.

It is not hard to see that this protocol is consistent under condition W ′ = “1/2 the committee
is honest”); additionally, it satisfies liveness with optimistic responsiveness under condition O =
“leader is honest, and 3/4 of the committee is honest”. In fact, under these optimistic condition, we
only need 2 communication rounds to confirm a transaction! This approach is extremely practical
and indeed this protocol is often used in practice—for instance chain.com use something very
similar as their permissioned blockchain (and manage to handle a very high volume of transactions
with fast confirmations).

The problem with this approach, however, is that the protocol does not satisfy liveness (even
“slow” liveness) under condition W ′. If the leader is cheating (or is simply taken down from the
network), the protocol halts. (Indeed, in this case chain.com resorts to manually fixing the issue.)

To overcome this problem, we leverage the underlying (slow) blockchain protocol, which satisfies
both consistency and liveness under W = “honest majority of players”. Roughly speaking, if players
notice that transactions are not getting confirmed by the leader/committee, some “evidence” of
this is sent to the underlying blockchain. We then enter a “cool-down” period, where committee
members stop signing messages from the leader, yet we allow players to broadcast any notarized
transactions they have seen so far. The length of the cool-down period is counted in blocks on the
underlying blockchain (say κ blocks where κ is a security parameter). Finally, after the cool-down
period ends, we can safely enter a “slow period” where transactions only get confirmed in the
underlying blockchain. We can next use the blockchain to switch out the leader (if needed) and
begin a new epoch of the optimistic protocol.

Let us point out the reason for having a cool-down period: without it, players may disagree on
the set of transactions that have been confirmed before entering the “slow mode”, and thus may
end up with inconsistent views. The cool-down period enables honest players to post all notarized
transactions they have seen to the (slow) underlying blockchain, and thus (slowly) reach consistency
of this set of transactions; once we have reached this consistent view (at the end of the cool-down),
we can finally fully switch over to confirming new transactions on the blockchain.

Collecting evidence of cheating It only remains to explain how to collect evidence that the
leader (and/or committee) is cheating or is simply “unavailable”. This turns out to also be simple:
if a player notices that his transaction is not getting confirmed by the leader or committee, he can
send the transaction to the underlying blockchain. The leader is additionally instructed to confirm
all transactions it sees on the blockchain.

Now, if players see some transaction on the blockchain, that has not gotten notarized within
a sufficiently long amount of time—counted in blocks in the underlying blockchains (say within n

4 CHAPTER 1. INTRODUCTION

blocks)—they know that the leader/committee must be cheating/unavailable, and thus should enter
the cool-down period. (Note that as long as the leader can confirm transactions before n blocks
are created on the underlying blockchain, he cannot be “falsely accused”; and, by the security of
the underlying blockchains those blocks cannot be created too fast).

Selecting the committee So far we have constructed a protocol that satisfies consistency and
liveness under conditions W ∩ W ′ (i.e., assuming an honest majority of players, and an honest
majority in the committee), and additionally satisfies liveness with optimistic responsiveness un-
der condition O. The question now is how to select the committee. We consider two different
approaches:

• Using all players as the committee: In a permissioned setting, the simplest approach is
to simply use all players as the committee. In this case, W ′ = W and thus, we trivially have
resilience under W . A variant of this approach with improved communication complexity is
to subsample a committee among the set of players (for instance, using the approach in [15]
which additionally requires a random oracle), and change committees on a regular basis (to
ensure adaptive security)—the resulting protocol, however, will only be secure if corruptions
are “slow” (to ensure the attacker does not have time to corrupt the whole committee before
it gets switched out.) If sub-sampling is instead done “secretly” using a VRF and a random
oracle (as in [36]), we can also ensure that the resulting protocol is adaptively secure in a
model with erasures, even with “instantaneous corruption”.

We mention that these approaches may also be used in the permissionless setting if Thunderella
is used to construct a crypto currency: then we can use (potentially a sub-sample of) recent
“stakeholders” to form a committee.

• Using “recent miners” as the committee: A different approach that works in both the
permissioned and permissionless setting is to select the committee as the miners of recent
blocks (as was done in [41]). We note, however, that to rely on this approach, we need to
ensure that the underlying is blockchain is “fair” [40] in the sense that the fraction of honestly
mined blocks is close to the fraction of honest players. This is not the case for Nakamoto’s
original blockchain (see e.g., [21]), but as shown in [40], any blockchain can be turned into a
fair one. If we use this approach, the resulting protocol will now be consistent and live under
simply the condition W (i.e., honest majority), yet also satisfy optimistic liveness under
condition O. (Again, this only gives security under adaptive corruption where corruption is
“slow”, so the set of recent miners changes sufficiently fast before they can all be corrupted.)

Permissionless Thunderella For instance, if we apply the second approach (of selecting the com-
mittee as the recent miners) to Nakamoto’s proof-of-work based blockchain, we get the following
theorem:

Theorem 1 (Thunderella for permissionless environments, informal). Assume a proof-of-work ran-
dom oracle. Then, there exists a state machine replication protocol that achieves consistency and
(non-responsive) liveness in a permissionless environment as long as the adversary wields no more
than 1

2 − ε the total online computation power in every round where ε is an arbitrarily small con-
stant, and moreover it takes a short while for the adversary to adaptively corrupt nodes. Moreover,
if more than 3

4 of the online computation power is honest and online, then the protocol achieves
responsiveness (after a short non-responsive warmup period) in any “epoch” in which the leader is
honest and online.

1.1. THE THUNDERELLA PARADIGM 5

Permissioned Thunderella Similar theorems can be shown for permissioned environments (in
e.g., the “sleepy model” of [43], or even just in the “classic” model of Dolev-Strong [18].)

The classical mode is essentially the standard synchronous model adopted by the existing dis-
tributed systems and cryptography literature. In this model, all nodes are spawned upfront, and
their identities and public keys are provided to the protocol as input; further, crashed nodes are
treated as faulty and count towards the corruption budget. In a classical, synchronous network,
we show that the classical Dolev-Strong byzantine agreement protocol [18] can be extended to im-
plement Thunderella’s underlying “blockchain”. In this case, our Thunderella paradigm (where use
the first approach to instantiate the committee) gives rise to the following informal theorem:

Theorem 2 (Thunderella for permissioned, classical environments (informal)). Assume the ex-
istence of a PKI and one-way functions. There exists a state machine replication protocol that
achieves consistency and (non-responsive) liveness in a classical environment under any f < n
number of fully adaptive, byzantine corruptions where n denotes the total number of nodes; more-
over, the protocol achieves responsiveness as long as the leader is honest and moreover bn+f

2 + 1c
nodes are honest.

The “sleepy” model was recently proposed by Pass and Shi [43] to capture the requirements
arising from “sporadic participation” in large-scale, permissioned consensus. Specifically, the sleepy
model was in fact inspired by permissionless decentralized cryptocurrencies such as Bitcoin, where
nodes may come and go frequently during the protocol, and the protocol should nonetheless guar-
antee consistency and liveness even for players that join late, and for players who might have had
a short outage and woke up later to rejoin the protocol.

The sleepy model is “permissioned” in nature in that the set of approved protocol participants
and their public keys are a-priori known and provided to the protocol as input. However, unlike
the classical setting, 1) nodes are allowed to be non-participating (i.e., sleeping); 2) sleeping nodes
are not treated as faulty; and 3) the protocol may not know in advance how many players will
actually show up. In comparison, in a classical setting, non-participating nodes are regarded as
having crashed and count towards the corruption budget; and moreover a classical protocol need
not guarantee consistency and liveness for nodes that have crashed but wake up later to rejoin.

In such a sleepy model, Pass and Shi [43] show that roughly speaking, we can achieve consensus
when the majority of online (i.e., non-sleeping) nodes are honest (interestingly, unlike the classical
synchronous model, [43] also prove that no state machine replication protocol can tolerate more
than 1

2 corruption (among online nodes).

Our Thunderella paradigm (again using the first approach for selecting the committee) can be
instantiated in the sleepy model using the sleepy consensus protocol as the underlying blockchain.
This gives rise to the following informal theorem in a sleepy environment (where we assume that
the adversary can adaptively put honest nodes to sleep).

Theorem 3 (Thunderella for permissioned, sleepy environments (informal)). Assume the existence
of a PKI, enhanced trapdoor permutations, and a common reference string (CRS). There exists
a state machine replication protocol that achieves consistency and (non-responsive) liveness in a
sleepy environment with static corruptions, as long as 1

2 − ε of the online nodes are honest in every
round for any arbitrarily small constant ε; moreover, if more than 3

4 fraction of nodes are honest
and online, the protocol achieves responsiveness (after a short non-responsive warmup period) in
any epoch in which leader is honest and online.

In fact, the above theorem also extends to adaptive corruptions with erasures using the adap-

6 CHAPTER 1. INTRODUCTION

tively secure version of sleepy consensus [43]2 as Thunderella’s underlying blockchain, assuming the
existence of a VRF and a random oracle (using the approach from [36]).

Lower bounds on the optimistic honest threshold We additionally prove that our optimistic
bound of 3/4 is tight: no protocol that is (worst-case) resilient for simply an honest majority, can
be optimistically responsive when more than 1/4 of the player can be corrupted.

Practical Considerations: Instant Confirmation and Scalability The low latency and
poor scalability of Nakamoto’s blockchain protocol are typically viewed as the main bottlenecks for
Bitcoin as well as other cryptocurrencies.

Our paradigm provides a very practical and simple approach for overcoming these issue. The
Thunderella paradigm shows how to build on top of currently running blockchains, to enable “opti-
mistic instant confirmation” of transactions. Additionally, note that in our protocol, players only
need to send transactions to the leader, who in turn lead the committee to confirm the transaction.
Most notably, the underlying blockchain is essentially only used when something goes wrong, and
blocks need not be distributed to the whole network before getting confirmed; thus, Thunderella
also solves the scalability issue with Nakamoto’s blockchain protocol. Of course, both of these guar-
antees are only “optimistic”— but arguably, under normal circumstances one would expect 3/4 of
the players to act honestly, and the leader could be incentivized (paid) to perform its job (and if
it doesn’t, will be kicked out). Thus, we believe our approach is a practically viable approach for
circumventing the main bottlenecks of today’s cryptocurrencies.

Comparison. At the surface, our idea is reminiscient of classical-style protocols such as PBFT
and Byzantine-Paxos. In particular, protocols like PBFT also have a very simple normal path
that consists of O(1) rounds of voting. However, when the normal path gets stuck, PBFT-style
protocols fall back to a “view change” mechanism that is also responsive—and thus these protocols
tolerate only 1

3 corruptions in the worst-case, and are invariably complex due to the need to handle
asynchrony. (Furthermore, this approach is not amenable for protocols in the permissionless set-
ting). Our key insight is to instead fall back to a synchronous path in the worst case, thus allowing
us to circumvent the 1

3 lower bound for partial synchrony and yet still be responsive in practice
most of the time. Moreover, since our protocol is fundamentally synchronous, we benefit from the
simplicity and robustness enjoyed by synchronous protocols (e.g., blockchains).

Interestingly, Thunderella is also a constant factor faster in the fast path than most PBFT- or
Paxos-style protocols. PBFT-style protocols typically require multiple rounds of voting even in the
normal path (c.f. Thunderella has exactly one) — and the latter rounds are necessary to prepare
for the possibility of a view change. Although it is possible to compress the normal path to a
single round of voting, this is typically achieved either by sacrificing resilience (e.g., tolerating only
1
5 corruptions) [45] or by adding yet another optimistic layer on top of the normal path — thus
further complicating the already complex protocol [33].

Roadmap In this extended abstract, we simply provide a description and proof of the general
Thunderella paradigm (informally described above) assuming the existence of a fixed committee, a
majority of which is honest. We defer the formal treatment of how to select the committee to the
supplemental material (although we described it informally above).

2The paper has multiple adaptively secure versions; here we rely on the one that achieves adaptive security with
erasures in the random oracle model (as this protocol has better parameters than the one which satisfies adaptive
security without a random oracle).

1.2. RELATED WORK 7

1.2 Related Work

State machine replication: classical and blockchain-style approaches. State machine
replication or atomic broadcast (referred to as consensus for short in this paper) is a central ab-
straction of distributed systems, and has been extensively investigated and widely adopted in
real-world systems. Roughly speaking, there are two, technically speaking, fundamentally different
approaches towards realizing state machine replication, classical-style consensus [13,18,19,29,34,35],
and blockchain-style consensus [15, 23, 30, 38, 39, 43]. For a while, it has been vaguely understood
by the community that blockchain-style protocols and classical ones achieve different properties —
but the community has only recently begun to formally understand and articulate these differences.

The recent work by Pass and Shi [43] point out one fundamental difference between classical
style and blockchain-style consensus. Most classical protocols [13,18,19,29,34,35], synchronous and
asynchronous ones alike, rely on nodes having collected sufficiently many votes to make progress;
thus these protocols would fail in a model where participation is sporadic and the exact number
of players that do show up cannot be predicted upfront. More specifically, classical models of
consensus would pessimistically treat nodes that do not show up as faulty (also referred to as crash
fault); and if too many nodes do not show up, the protocol fails to make progress. In comparison,
blockchain-style protocols can make progress regardless of how many players actually show up.
Moreover, blockchain-style consensus has also been shown to be secure in a setting where the
number of players can vary over time [22].

Classical deployments of consensus protocols are typically in a relatively small-scale and per-
missioned setting. Consensus in the permissionless setting was first empirically demonstrated to
be possible due to Bitcoin’s ingenious Nakamoto blockchain [38]. While the original Nakamoto
blockchain relies on proofs-of-work to solve the Sybil attack in the permissionless setting, other
proposals have been suggested since then for securely establishing identities in a permissionless
setting — for example, proof-of-stake [3,4,8,14,15,30,31,36,44] is a most-oft cited approach where
the stake-holders of a cryptocurrency system are responsible for voting on transactions. Recent
works [36] have also explored adopting classical style consensus in a permissionless setting where
approaches such as proof-of-stake can be used to establish identities.

Other closely related works. Our work is also reminisient of recent works that combine classical
consensus and blockchains [16, 32, 41] although these works are of a different nature as we explain
below. Among these works, Hybrid Consensus [41] is the only known formally correct approach, and
moreover the only known approach that achieves responsiveness. From a theoretical perspective,
our results are incomparable to Hybrid Consensus: we tolerate up to 1

2 corruption in the worst-case
and offer responsiveness only in the optimistic case but not in the worst case; in comparison, Hybrid
Consensus achieves responsiveness even in the worst case — but in exchange, their protocol can
only tolerate up to 1

3 corruption, and this turns out to be inherent for any worst-case responsive
protocol even when assuming proof-of-work [19, 41]. From a practical perspective, Thunderella is
more likely to be the protocol of choice in a real-world implementation partly due to its simplicity
— in comparison, Hybrid Consensus requires a full-fledged classical protocol such as PBFT and
Byzantine Paxos as a subroutine, and thus inherits the complexity of these protocols.

A line of research [12,17,20,25,26,37] has investigated Byzantine agreement protocols capable of
early-stopping when conditions are more benign than the worst-case faulty pattern: e.g., the actual
number of faulty nodes turns out to be smaller than the worst-case resilience bound. However,
these works are of a different nature than ours as we explain below. First, these earlier works focus
on stopping in a fewer number of synchronous rounds, and it is not part of their goal to achieve
responsiveness. Second, although some known lower bounds [17] show that the number of actual

8 CHAPTER 1. INTRODUCTION

rounds must be proportional to the actual number of faulty processors — note that these lower
bounds work only for deterministic protocols, and thus they are not applicable in our setting.

Finally, the idea of combining asynchrony and synchrony was described in earlier works [5];
other works have also proposed frameworks for composing multiple BFT protocols [24]. However,
to the best of our knowledge, none of the earlier works combined a synchronous fallback path and
an asynchronous optimistic path in the manner that we do, allowing us to tolerate more than 1

3
corruptions in the worst-case while still be responsive most of the time in practice.

Relevance to Ethereum’s current efforts. Ethereum [47], the second largest decentralized
cryptocurrency immediately following Bitcoin [38], has investigated significant resources in devel-
oping the next-generation proof-of-stake consensus protocol [8]. Instead of immediately dispens-
ing with proof-of-work, Ethereum seems to have devised a two-stage agenda, where, in an initial
transitional stage, voting by stake-holders and proof-of-work will co-exist — see the recent online
blog-post by Vitalik Buterin [7]. Specifically, stake-holders will vote on transactions or blocks atop
their existing proof-of-work blockchain. Vitalik Buterin’s blog-post then proposes a set of “minimal
slashing conditions” [7] to penalize voters that behave maliciously (e.g., those who cast equivocating
votes). However, it is not Ethereum’s goal to achieve optimistic instant confirmation [1].

Others have also tried to achieve instant finality in blockchains [46] — however, to date there
is no provably secure approach, and some folklore approaches even appear flawed.

Chapter 2

Definitions and Preliminaries

Since we would like to capture what the Thunderella paradigm can achieve in various settings
including permissionless and permissioned, we adopt the following modeling approach. We first
describe a general execution model that is capable of expressing an unconstrained permissionless
setting. We then express permissioned settings including classical and sleepy environments as
additional constraints that the adversary must respect.

2.1 Execution Model

2.1.1 Modeling Protocol Execution

Interactive Turing Machines. We adopt the standard Interactive Turing Machines (ITM) ap-
proach to model protocol execution [9–11]. A protocol refers to an algorithm for a set of interactive
Turing Machines (also called nodes) to interact with each other. The execution of a protocol Π
that is directed by an environment Z(1κ) (where κ is a security parameter), which activates a
number of nodes as either honest or corrupt nodes. Honest nodes would faithfully follow the pro-
tocol’s prescription, whereas corrupt nodes are controlled by an adversary A which reads all their
inputs/message and sets their outputs/messages to be sent.

The environment Z is a term often used in protocol composition in the cryptography litera-
ture [9–11] — one can regard the environment Z a catch-all term that encompasses everything
that lives outside the “box” defined by the protocol. For example, as mentioned later, part of the
environment Z’s job is to provide inputs to honest nodes and receive outputs from them. This
models the fact that the inputs to the protocol may originate from external applications and the
protocol’s outputs can be consumed by external applications where any external application or
other protocols running in the system are viewed as part of Z.

Round-based execution. A protocol’s execution proceeds in rounds that model atomic time
steps. Henceforth, we use the terms round and time interchangeably. At the beginning of every
round, honest and online nodes receive inputs from an environment Z; at the end of every round,
honest and online nodes send outputs to the environment Z.

Corruption model. In the standard distributed systems or cryptography literature, crashed
nodes are often treated as faulty and count towards the corruption budget. In this paper, we
we distinguish crashed nodes (also referred to as sleeping nodes) and corrupt nodes. An honest
node may have a short-term or long-term outage during which it is not able to participate in the

9

10 CHAPTER 2. DEFINITIONS AND PRELIMINARIES

protocol. However, such a crashed node is not in the control of the adversary — in this case we do
not attribute this node as corrupt. Informally, we often refer to the set of honest nodes that have
not crashed as being online. We also consider all corrupt nodes as being online (since this gives
the adversary more advantage).

We stress that the motivation for not treating crashed nodes as corrupt is to allow us to prove
a more powerful theorem: our Thunderella paradigm ensures consistency and worst-case liveness
when α fraction of the committee are honest but not necessarily online (and assuming that the
underlying blockchain is secure). In particular, as we noted, α can be as small as a single member
of the committee — but in this case the conditions necessary for instant confirmation are somewhat
more stringent (i.e., all committee members must be honest and online for instant confirmation).
In a more traditional model where crash is treated as corrupt, all of our theorems still apply —
except that “honest” would equate to “honest and online”.

More formally, in our model, the environment Z controls when nodes are spawned, corrupted,
put to sleep, or waken up:

• At any time during the protocol execution, the environment Z can spawn new nodes, and newly
spawned nodes can either be honest or corrupt. The adversary A has full control of all corrupt
nodes.

• At any time during the protocol execution, Z can issue a corrupt instruction to an honest
(and possibly sleeping) node. When this happens, its internal states are exposed to A and A
henceforth controls the node.

• At any time during the protocol execution, Z can issue a sleep instruction to an honest node.
When this happens, the node immediately becomes asleep (or sleeping), and it stops sending
and receiving protocol messages and performing any computation. Sleeping is similar to the
notion of a crash fault in the classical distributed systems terminology. In our paper, though,
we treat sleeping nodes as being honest rather than attributing them towards the faulty budget.

• At any time during the protocol execution, Z can issue a wake instruction to an honest, sleeping
node. At this point, this node immediately wakes up and continues to participate in the protocol.
When an honest, sleeping node wakes up, pending messages that the node should have received
while sleeping and additionally some adversarialy inserted messages may be delivered to the
waking node.

• At any time during the protocol execution, Z can issue a kill instruction to a corrupt node. At
this point, the corrupt node is removed from the protocol execution and is no longer considered
as an online node — but note that the adversary A still knows the internal states of a killed
node prior to its being killed.

Formally, we use the terminology online nodes to refer to the set of nodes that are i) either
honest and not sleeping; or ii) corrupt but not having been killed.

Communication model. We assume that honest and online nodes can send messages to all
other honest and online nodes. The adversary A is in charge of scheduling message delivery. A
cannot modify the contents of messages broadcast by honest nodes, but it can reorder and delay
messages sent by honest and online nodes, possibly subject to constraints on the maximum delays
to be defined later. The adversary A is allowed to send messages to a subset of honest and online
nodes but not all of them. The identity of the sender is not known to the recipient1.

1Later in the paper, for instantiations in the permissioned model under a PKI, authenticated channels are implied
by the PKI.

2.1. EXECUTION MODEL 11

Formally, we say that (A,Z) respects ∆-bounded delay iff Z inputs ∆ to all honest nodes when
they are spawned, and moreover the following holds:

∆-bounded delay. Suppose an honest (and online) node sends a message at time t, then in any
round r ≥ t + ∆, any honest node that is online in round r will have received the message,
including nodes that may possibly have been sleeping but just woke up in round r, as well as
nodes which may have just been spawned at the beginning of round r.

Throughout this paper, we assume that Z inputs the maximum delay parameter ∆ to all honest
nodes upon spawning (as noted in the above definition of ∆-bounded delay) — this means that the
protocol has a-priori knowledge of an upper bound on the network’s maximum delay. This is akin
to the synchronous communication model in the classical distributed systems literature.

2.1.2 Constrained Execution Environments

Our execution model defined thus far is meant to be general. Later in the paper, sometimes we
would like to say that a protocol retains security as long as (A,Z) respects certain constraints. We
will model various assumptions as constraints on (A,Z).

Definition 1 ((n, ρ,∆)-permissionless environments). We say that (A,Z) respects (n, ρ,∆)-permissionless
execution w.r.t. some protocol Π iff for every κ ∈ N and every view in the support of EXECΠ(A,Z, κ),
the following hold:

• there are exactly n online nodes in each round among which at most ρn are corrupt;

• (A,Z) respects ∆-bounded delay; and

• Z informs all honest nodes of the parameters (n, ρ,∆) upon spawning.

Whenever the context is clear, we often omit writing “w.r.t. which protocol” without risk of
ambiguity.

Corruption constraints. Our general model by default allows adaptive corruptions; however,
for protocols that retain security only under static corruption, we will model static corruption as
constraints on (A,Z). We say that (A,Z) respects static corruption w.r.t. to some protocol Π iff
for every κ, for every view in the support of EXECΠ(A,Z, κ), Z never issues corrupt to an honest
node after spawning (although Z is allowed to spawn corrupt nodes directly).

Permissioned model. Similarly, our general execution model can capture permissionless en-
vironments where nodes can join and leave the protocol at any time, and there is no a-priori
knowledge of the number of nodes. However, whenever we are concerned about the permissioned
setting, we can express “permissioned” execution environments also as additional constraints on
(A,Z). Specifically, in a permissioned setting, we require that Z spawn all nodes upfront and
inform all honest nodes the identities of all nodes spawned; further, Z is not allowed to issue
kill instructions. Henceforth without loss of generality, we may assume that the spawned nodes
have identities 0, 1, . . . , n− 1 respectively. We will distinguish two types of permissioned execution
environments:

1. In the permissioned-sleepy environment, Z can make nodes sleep — this way, we can treat
crashed nodes not under adversarial control differently from corrupt nodes that are under ad-
versarial control. Such a “sleepy” model was first considered in a recent work by Pass and
Shi [43].

12 CHAPTER 2. DEFINITIONS AND PRELIMINARIES

2. In the permissioned-classical environment, Z is not allowed to issue sleep or wake instructions
— and thus the model here is akin to that considered in the classical distributed computing
literature (in this case “honest” and “honest and online” are the same).

We now defined permissioned-sleepy and permissioned-classical environments more formally.

Definition 2 (Permissioned, sleepy environments). We say that (A,Z) respects (n, ρ,∆)-sleepy ex-
ecution w.r.t. some protocol Π iff for every κ ∈ N and every view in the support of EXECΠ(A,Z, κ),
the following hold: 1) Z spawns a set of numbered 0, 1, 2, . . . , n − 1 (for some n) upfront prior to
the start of protocol execution, and never spawns additional nodes later; 2) in every round, at most
ρ fraction of the online nodes are honest; 3) (A,Z) respects ∆-bounded message delay; 4) Z does
not issue kill instructions; and 5) Z informs all honest nodes of the parameters (n, ρ,∆) upon
spawning.

Henceforth when the context is clear, we often say that (A,Z) respects (n, ρ,∆)-sleepy execution
omitting which protocol Π we refer to.

Definition 3 (Permissioned, classical environments). We say that (A,Z) respects (n, f,∆)-classical
execution w.r.t. some protocol Π iff for every κ ∈ N and every view in the support of EXECΠ(A,Z, κ),
the following hold: 1) Z spawns a set of numbered 0, 1, 2, . . . , n − 1 (for some n) upfront prior to
the start of protocol execution, and never spawns additional nodes later; 2) Z never issues sleep,
wake, or kill instructions; 3) Z corrupts at most f nodes; 4) (A,Z) respects ∆-bounded message
delay; and 5) Z informs all honest nodes of the parameters (n, f,∆) upon spawning.

Henceforth when the context is clear, we often say that (A,Z) respects (n, f,∆)-classical exe-
cution omitting which protocol Π we refer to. Note that in a permissioned-classical environment,
all nodes are online since Z cannot issue sleep instructions; and thus “honest” and “honest and
online” are equivalent.

Besides these typical constraints on (A,Z), later we can also define protocol-specific constraints
on (A,Z).

2.1.3 Notations

Notations for randomized execution. A protocol’s execution is randomized, where the ran-
domness comes from honest nodes, the adversary denoted A that controls all corrupt nodes, the
environment Z that sends inputs to honest nodes during the protocol execution, and possibly the
random oracle if the protocol adopts one.

We use the notation view←$EXEC
Π(A,Z, κ) to denote a randomly sampled execution trace,

and |view| denotes the number of rounds in the execution trace view. More specifically, view is
a random variable denoting the joint view of all nodes (i.e., all their inputs, random coins and
messages received, including those from the random oracle) in the above execution; note that this
joint view fully determines the execution.

Additional notational conventions. We use the notation κ to denote the security parameter.
Unless otherwise stated, all variables appearing in the paper are implicitly polynomially bounded
(or inverse polynomially bounded) functions of κ (and possibly of other variables). If some variable
is not a function of κ, we will explicitly declare it as a constant for clarity.

2.2. STATE MACHINE REPLICATION 13

2.2 State Machine Replication

State machine replication has been a central abstraction in the 30 years of distributed systems
literature. In a state machine replication protocol, a set of nodes seek to agree on an ever-growing
log over time. We require two critical security properties: 1) consistency, i.e., all honest nodes’
logs agree with each other although some nodes may progress faster than others; 2) liveness, i.e.,
transactions received by honest nodes as input get confirmed in all honest nodes’ logs quickly. We
now define what it formally means for a protocol to realize a “state machine replication” abstraction.

Syntax. In a state machine replication protocol, in every round, an honest and online node
receives as input a set of transactions txs from Z at the beginning of the round, and outputs a LOG
collected thus far to Z at the end of the round.

Security definitions. Let Tconfirm(κ, n, ρ,∆, δ) and Twarmup(κ, n, ρ,∆, δ) be polynomial functions
in the security parameter κ and possibly other parameters of the view such as the number of nodes
n, the corrupt fraction ρ, the actual maximum network delay δ, the network delay upper bound ∆
that is provided by Z to the protocol as input, etc.

Definition 4 (Security of a state machine replication protocol). We say that a state machine
replication protocol Π satisfies consistency (or (Tconfirm, Twarmup)-liveness resp.) w.r.t. some (A,Z),
iff there exists a negligible function negl(·), such that for any κ ∈ N, except with negl(κ) probability
over the choice of view ← EXECΠ(A,Z, κ), consistency (or (Tconfirm, Twarmup)-liveness resp.) is
satisfied:

• Consistency: A view satisfies consistency iff the following holds:

– Common prefix. Suppose that in view, an honest node i outputs LOG to Z at time t, and an
honest node j outputs LOG′ to Z at time t′ (i and j may be the same or different), it holds
that either LOG ≺ LOG′ or LOG′ ≺ LOG. Here the relation ≺ means “is a prefix of”. By
convention we assume that ∅ ≺ x and x ≺ x for any x.

– Self-consistency. Suppose that in view, a node i is honest and online at time t and t′ ≥ t, and
outputs LOG and LOG′ at times t and t′ respectively, it holds that LOG ≺ LOG′.

• Liveness: A view satisfies (Tconfirm, Twarmup)-liveness iff the following holds: if in some round
Twarmup < t ≤ |view| − Tconfirm, some node honest and online in round t either received from Z
an input set txs that contains some transaction m or has m in its output log to Z in round t,
then, for any node i honest and online at any time t′ ≥ t + Tconfirm, let LOG be the output of
node i at time t′, it holds that m ∈ LOG.

Intuitively, liveness says that transactions input to an honest node get included in honest nodes’
LOGs within Tconfirm time; and further, if a transaction appears in some honest node’s LOG, it
will appear in every honest node’s LOG within Tconfirm time.

2.3 Abstract Blockchain Protocols

A blockchain protocol can be regarded as a way to realize state machine replication. We now
formally define what it means for a protocol to realize to a blockchain abstraction. In our paper,
our end goal is to realize state machine replication and we leverage an abstract blockchain as an
underlying building block. We note that while the blockchain abstraction may superficially resemble

14 CHAPTER 2. DEFINITIONS AND PRELIMINARIES

that of state machine replication, the blockchain abstraction in fact allows us to additionally express
1) a rough notion of time through chain growth; and 2) fairness properties [40] through chain quality.

2.3.1 Syntax and Security Definitions

Syntax. An abstract blockchain protocol satisfies the following syntax. In each round, every node
that is honest and online in this round receives from Z a set of transactions txs at the beginning
of the round; and outputs to Z an abstract blockchain chain at the end of the round. An abstract
blockchain denoted chain is an ordered sequence of blocks of the following format:

chain := {txsi}i∈[|chain|]

where each txsi is an application-specific payload such as a set of transactions.

Blockchain notations. We use the notation chain to denote an abstract blockchain. The nota-
tion chain[: −`] denotes the entire chain except the trailing ` blocks; chain[: `] denotes the entire
chain upto the block at length `; chain[−` :] denotes the trailing ` blocks of chain; and chain[` :]
denotes all blocks at length ` or greater.

Henceforth we say that chain is ”an honest chain in view”, iff chain is some honest (and online)
node’s output to the environment Z in some round in view. We use the notation chainti(view) to
denote node i’s chain in round t in view — since the context is clear, we often omit writing the view
explicitly in the above notation.

Security definitions. A blockchain protocol should satisfy chain growth, chain quality, and
consistency. Intuitively, chain growth requires that honest nodes’ blockchains grow steadily, neither
too fast nor too slow. Chain quality requires that in any honest node’s chain, any sufficiently long
window of consecutive blocks contains a certain fraction of blocks that are mined by honest nodes.
Consistency requires that all honest nodes’ chains agree with each other except for the trailing few
blocks. We will formally define these security properties below.

Definition 5 (Security of an abstract blockchain protocol). We say that a blockchain protocol
Πblockchain satisfies (T, g0, g1)-chain growth, (T, µ)-chain quality, and T -consistency w.r.t. some
(A,Z), iff there exists a negligible function negl(·), such that for every κ ∈ N, except with negl(κ)
probability over the choice of view← EXECΠblockchain(A,Z, κ), the following hold for view:

• (T, g0, g1)-chain growth. A view satisfies (T, g0, g1)-chain growth iff the following hold:

– Consistent length: If in round r some honest chain is of length `, then in round r + ∆, all
honest chains must be of length at least `.

– Growth lower bound: For any r and t such that g0(t − r) ≥ T , let chainr and chaint denote
two honest chains in round r and t respectively, it holds that

|chaint| − |chainr| ≥ bg0(t− r)c

– Growth upper bound: For any r and t such that g1(t − r) ≥ T , let chainr and chaint denote
two honest chains in round r and t respectively, it holds that

|chaint| − |chainr| ≤ dg1(t− r)e

2.3. ABSTRACT BLOCKCHAIN PROTOCOLS 15

• (T, L, µ)-chain quality. A view satisfies (T, L, µ)-chain quality iff the following holds: for any
honest chain denoted chain in view, for any T consecutive blocks chain[j + 1..j + T], more than
µ fraction of the blocks in chain[j + 1..j + T] are mined by honest nodes at most L blocks ago
— here we say that a block chain[i] is “mined by an honest node at most L blocks ago” iff there
is a set txs such that txs ⊆ chain[i] and moreover Z input txs to some honest node when its last
output to Z contains the prefix chain[: i− L] (here if i− L < 0, we round it to 0).

• T -consistency. A view satisfies T -consistency iff the following hold: for any two honest chains
chainr and chaint in round r and t ≥ r respectively, it holds that

chainr[: −T] ≺ chaint

We stress that since chainr and chaint can possibly belong to the same node, the above definition
also implies “future self consistency” except for the trailing T blocks.

Liveness as a derived property. Intuitively, liveness requires that if honest nodes receive
a transaction m as input, then m appear in honest chains very soon. More formally, we say
that a blockchain protocol Πblockchain satisfies (K,T)-liveness w.r.t. some (A,Z) iff there exists a
negligible function negl(·) such that for every κ ∈ N, except with negl(κ) probability over the choice
of view← EXECΠblockchain(A,Z, κ), the following holds:

• Suppose that in any round r ≥ t, Z always inputs a set that contains some m to every honest
and online node i unless m ∈ chainri [: −T]. Then, for any honest chain denoted chain in view
whose length is at least `+K + T , it holds that chain[: `+K] contains m where ` denotes the
shortest honest chain length at time t.

The liveness of a blockchain protocol is directly implied by chain growth and chain quality as
stated in the following lemma.

Lemma 1 (Liveness). Suppose that a blockchain protocol Πblockchain satisfies (K, g0, g1)-chain
growth, (K ′, L, µ) chain quality and T -consistency w.r.t. some (A,Z) for positive parameters
K, g0, g1,K

′, L, µ and T , then it holds that Πblockchain satisfies (2K + 2g1 + K ′ + L, T)-liveness
w.r.t. (A,Z).

Proof. We ignore the negligible fraction of views where relevant bad events take place. Let r′ be the
earliest round in which some honest chain reaches length at least `+K + g1 +K ′ +L+ T , and let
chain∗ be an honest chain in round r′ of length at least `+K+g1 +K ′+L+T . By chain quality, in
the window chain∗[`+K+ g1 +L+ 1 : `+K+ g1 +K ′+L], there must be an honest block denoted
B such that Z input (a subset of) the contents of B to some honest node i in round r ≤ r′ when
its chain contains the prefix chain∗[: ` + K + g1 + 1]. By chain growth upper bound, the longest
honest chain in round t must be of length at most `+K + g1, and thus B must be input to some
honest and online node i by Z in some round r where t ≤ r ≤ r′. By assumption, B must contain
m unless chainri [: −T] already contains m. By consistency, it must be that chain∗ and chainri are no
longer than `+ 2(K + g1) +K ′ + L+ T . By consistency, for any honest chain ch in view of length
at least ` + 2(K + g1) + K ′ + L + T , it must be that chainri [: −T] ≺ ch[: ` + 2(K + g1) + K ′ + L]
and chain∗[: −T] ≺ ch[: `+ 2(K + g1) +K ′+L], and thus ch[: `+ 2(K + g1) +K ′+L] must contain
m.

16 CHAPTER 2. DEFINITIONS AND PRELIMINARIES

2.3.2 Blockchain Implies State Machine Replication

Given any blockchain protocol Πblockchain, it is easy to construct a state machine replication pro-
tocol where 1) nodes run an instance of Πblockchain; 2) an honest node broadcasts all newly seen
transactions to each other; and 3) in every round, nodes remove the trailing T blocks from the
present chain (where T is the consistency parameter) and output the truncated chain to the en-
vironment Z [41, 43]. It is not difficult to see that consistency (of the resulting state machine
replication protocol) follows directly from consistency of the blockchain; and liveness follows from
chain quality and chain growth. The above intuition has been formalized in earlier works [41,43].

2.4 Warmup: Blockchain Instantiations

The most representative blockchain protocol is obviously Nakamoto’s orginal blockchain [38], i.e.,
the core consensus protocol underlying Bitcoin. In this section, however, we give several instantia-
tions of an “abstract blockchain protocol” in both the permissioned and permissionless models to
demonstrate the generality of this abstraction.

2.4.1 Permissionless Environment

Modeling a proof-of-work oracle. Our technique can be instantiated in a blackbox manner
from any blockchain protocol, including proof-of-work and non-proof-of-work blockchains. A proof-
of-work blockchain as represented by Nakamoto’s original proposal [23, 38, 39] relies on a proof-of-
work random oracle. Let H : {0, 1}∗ → {0, 1}κ denote a random function. Nodes are allowed to
query two functions H and H.ver. H(x) simply outputs the outcome of the random function H(x),
and H.ver(x, y) outputs 1 iff H(x) = y, else it outputs 0. In any round, any node is allowed to make
an arbitrary number of queries to H.ver but at most one query to H. If the adversary A controls q
corrupt nodes, we allow A to make q sequential queries to H. We emphasize that the environment
Z cannot access the random oracle.

Nakamoto’s proof-of-work blockchain. Nakamoto’s original proposal [38] relies on proof-of-
work to defend against Sybil attacks and achieve consensus in a permissionless setting. Garay et
al. [23] and Pass et al. [39] formally show that Nakamoto’s blockchain is secure in a fully adaptive
corruption model as long as the adversary controls only a minority of the computation power.

In the following theorem, we say that (A,Z) is compliant w.r.t. Πη
nak (parametrized by a

positive constant η) iff there exist n,∆ and some positive constant ρ < 1
2 such that (A,Z) respects

(n, ρ,∆)-permissionless execution.

Theorem 4 (Nakamoto’s blockchain [23,38,39,42]). Assume the existence of a proof-of-work ran-
dom oracle. Then, for any positive constant η, there exist a blockchain protocol Πη

nak and positive
constants c0, c1, such that for any p.p.t. (A,Z) pair2 that is compliant w.r.t. Πη

nak, Πη
nak satisfies

the following w.r.t. (A,Z) for any positive constant ε:

• (εκ, 1
c0∆ ,

1
c1∆)-chain growth;

• (εκ, 1, 1− (1+η)ρ
1−ρ)-chain quality;

• εκ-consistency; and

2Throughout this paper, whenever we refer to a p.p.t.(A,Z) pair, we mean that A and Z are non-uniform
probabilitic polynomial-time algorithms.

2.4. WARMUP: BLOCKCHAIN INSTANTIATIONS 17

• (εκ, εκ)-liveness.

In the above theorem, Nakamoto’s protocol Πη
nak will automatically pick a suitable difficulty

parameter based on the parameters (n, ρ,∆) honest nodes receive from Z as well as η. We refer
the readers to earlier works [39, 42] regarding how to concretely choose an appropriate difficulty
parameter.

We stress that since we rely on the underlying blockchain as a blackbox, Thunderella can also
be instantiated with a varying difficulty blockchain [22, 38] such that we can allow the number of
players to vary over time.

2.4.2 Permissioned, Classical Environment

As a warmup, we will additionally show that in a permissioned, classical environment and assum-
ing the existence of a public-key infrastructure (PKI), we can realize an abstract blockchain by
modifying the classical Dolev-Strong protocol [18] that tolerates arbitrary number of corruptions.

Recall that the permissioned, classical setting can be formally modeled as further constraints
on (A,Z). Specifically, recall that we say that Z respects permissioned-classical execution (or
(A,Z) respects permissioned-classical execution) iff the following holds: 1) Z must spawn all nodes
upfront prior to protocol execution; 2) Z must input the identities of all spawned nodes to every
honest node as soon as it is spawned; and 3) Z is not allowed to issue sleep or wake instructions.
Henceforth in this subsection, we will implicitly assume such a permissioned, classical execution
environment; and in particular, “honest” now equates to “honest and online”.

Multi-valued broadcast: definitions. First, we describe a multi-valued variant of the Dolev-
Strong protocol which realizes a multi-valued broadcast abstraction. In a multi-valued broadcast
protocol, there is a publicly known sender that will try to broadcast one or more values to all other
nodes. At the beginning of the protocol, all nodes receive from Z the identity of the sender, as well
as the maximum number of corrupt nodes f and the maximum network delay ∆. Moreover, an
honest sender would receive an input set U from Z. At the end of the protocol, all honest nodes
output a set of values V .

Definition 6 (Security of multi-valued broadcast). We say that a multi-valued broadcast protocol
Πbcast satisfies consistency and validity w.r.t. (A,Z) iff except with negligible probability over the
choice of view← EXECΠbcast(A,Z, κ), the following properties hold for view:

• Consistency. If two honest nodes output the sets V and V ′ respectively in view, then V = V ′.

• Validity. If the sender remains honest in view, then all honest nodes output U where U is the
input the sender receives from Z at the beginning of view.

Multi-valued broadcast from Dolev-Strong. One can easily modify the Dolev-Strong pro-
tocol to realize multi-valued broadcast. The protocol Πbcast is as described below — without loss
of generality, imagine that there are n nodes numbered 0, 1, . . . , n − 1, and node 0 is the sender.
Henceforth we use the notation pki to denote node i’s public key registered with the PKI.

Henceforth in our protocol, a message-round is defined to be ∆ small rounds where ∆ denotes
the maximum network delay. In other words, nodes always wait sufficiently long to receive messages
sent by honest nodes in the previous message round before taking any new action.

18 CHAPTER 2. DEFINITIONS AND PRELIMINARIES

Remark 1 (Regarding composition). Our state machine replication protocol will make use of
multiple instances of multi-valued broadcast. we adopt the following conventions necessary for
secure protocol composition:

1. All instances of multi-valued broadcast are spawned with a unique session identifier denoted sid .

2. We describe our protocols assuming a global signing functionality GΣ
sign (parametrized by a sig-

nature scheme Σ) shared by all instances of multi-valued broadcast — see Appendix 5.4 for a
formal specification and regarding how Z can interact with Gsign. Such a global signing func-
tionality can be realized in the most obvious manner from a global bare public-key infrastructure
shared by all multi-valued broadcast instances.

3. Henceforth, when we describe our multi-valued broadcast protocol, when honest nodes need to
sign messages, although not explicitly noted we assume that they always call GΣ

sign to obtain a
signature.

We now describe our multi-valued broadcast protocol below in the GΣ
sign-hybrid world.

• Initialize: Initialize V := ∅.

• Message-round 0: For every v ∈ U , sender broadcasts a tuple (v, σ0) where σ0 is a signature on
the value v. All other nodes do nothing.

• Each message-round r where 1 ≤ r ≤ f + 1 : The following is performed by all nodes. For every
message (v, {σi}i∈S) received from the network where S is a set of size r and σi is a signature
on v valid under pki: if v /∈ V , then

a) add v to V ;

b) let S′ := S ∪ {σ∗} where σ∗ is the current node’s signature on the value v; and

c) broadcast (v, S′).

• Output: Finally, at the end of message-round f + 1, output V .

Henceforth we say that a protocol Π satisfies consistency (or validity resp.) in (n, f,∆)-classical
environments iff for every p.p.t. (A,Z) that respects (n, f,∆)-classical execution, Π satisfies con-
sistency (or validity resp.) w.r.t. (A,Z).

Proposition 1 (Security of Πbcast). Assume that the signature scheme Σ is secure. For every n,∆
and every f < n, Πbcast satisfies consistency and validity in (n, f,∆)-classical environments.

Proof. The proof is a straightforward modification of the classical proof due to Dolev and Strong [18].

Blockchain from multi-valued broadcast. We can construct the following blockchain protocol
ΠDS in a permissioned, classical environment from multi-valued broadcast. We now describe ΠDS

in the Gsign-hybrid world.

• Broadcast: At the beginning of each message-round r, for each sender i ∈ {0, 1, . . . , n− 1}:

a) fork a new instance of multi-valued broadcast Πbcast[sid = (r, i)] where the sender i is input
as the sender.

2.4. WARMUP: BLOCKCHAIN INSTANTIATIONS 19

b) let chain be the sender i’s last output to Z, i inputs to Πbcast[sid = (r, i)] a set containing
every transaction that has been received from Z but is not in chain.

• Output: At the end of every message round r:

a) if r < f + 1, let B := ∅; else for any i, create a new block B by concatenating the outputs of
instances Πbcast[(r − (f + 1), i)] for i = 0, 1, . . . , n− 1.

b) let chain be the last output to Z and chain = if nothing has been output.

c) output chain||B.

We say that (A,Z) is compliant w.r.t. ΠDS iff there exists some n,∆ and some f < n such that
(A,Z) respects (n, f,∆)-classical execution.

Theorem 5 (Blockchain tolerating arbitrary corruptions in a permissioned, classical environment).
Suppose that the signature scheme Σ is secure. Then, for any p.p.t. pair (A,Z) that is compliant
w.r.t. ΠDS, ΠDS satisfies the following security properties w.r.t. (A,Z):

• (0, 1
∆ ,

1
∆)-chain growth;

• (1, 2, 1)-chain quality;

• 0-consistency; and

• (2, 0)-liveness.

Proof. Follows from the security of Πbcast, proof is straightforward and left as an exercise for the
reader.

2.4.3 Permissioned, Sleepy Environment

Classical modeling techniques in the distributed computing and cryptography literature typically
treat crashed nodes as corrupt, and thus crashes would count towards the corruption budget. We
next consider a permissioned model in which crashed nodes that are not under adversarial control
are treated not as corrupt, but rather as honest but “sleepy” [43]. Such a “sleepy model” was
first proposed in the recent work [43]. In the sleepy model, the set of online and honest nodes in
adjacent rounds may be completely disjoint; and nodes can go to sleep and then wake up later.
Recent work [43] showed that the following interesting facts:

• State machine replication is possible in such a permissioned, sleepy model, as long as in every
round, the majority of online nodes are honest (Theorem 6).

• Interestingly, no known classical consensus protocol can achieve state machine replication in the
sleepy model, even when we are guaranteed that 99% of online nodes must be honest in every
round.

• Moreover, the honest majority assumption (among online nodes) turns out to be necessary to
realize state machine replication in the sleepy model [43].

More concretely, Pass and Shi construct a blockchain protocol in the permissioned, sleepy model
called “sleepy consensus” [43], assuming the existence of a PKI and a common reference string.
Their protocol is inspired by Nakamoto’s proof-of-work blockchain, but they show how to remove

20 CHAPTER 2. DEFINITIONS AND PRELIMINARIES

the proof-of-work securely in a permissioned, sleepy setting. At a high level, the sleepy consen-
sus protocol is very similar in nature to the original Nakamoto blockchain — while Nakamoto’s
blockchain uses proof-of-work to elect random leaders, the sleepy consensus protocol emulates the
random leader election mechanism without relying on proof-of-work. Based on this high-level idea,
a few extra tricks are necessary to ensure the security of the protocol [43].

Although Pass and Shi [43] show positive results under both adaptive and static corruption
environments, below we state the theorem for the static corruption version where the parameters
are tighter.

In the following theorem, we say that (A,Z) is compliant w.r.t. Πη
sleepy iff there exist some

n,∆ and some positive constant ρ < 1
2 such that (A,Z) respects (n, ρ,∆)-sleepy execution, and

moreover (A,Z) respects static corruption.

Theorem 6 (Blockchains in permissioned, sleepy environments [43]). Assume the existence of a
common reference string, a bare public-key infrastructure, and enhanced trapdoor permutations.
For any positive constant η, there exists a blockchain protocol Πη

sleepy and positive constants c0 and

c1, such that for any p.p.t. pair (A,Z) that is compliant w.r.t. Πη
sleepy, for any positive constant ε,

Πη
sleepy satisfies the following w.r.t. (A,Z):

• (εκ, χ
c0∆ ,

1
c1∆)-chain growth;

• (εκ, 1, 1− (1+η)ρ
1−ρ)-chain quality;

• εκ-consistency; and

• (εκ, εκ)-liveness.

where χ(view) := ñ(view)/n is the ratio of minimum number of online nodes in any round in view
over n.

In the above theorem, we assume that Πη
sleepy will automatically choose an appropriate difficulty

parameter based on the parameters n, ρ and ∆ from Z as well as η. We refer the readers to the
earlier work [43] for concrete choice of parameters.

We stress that our Thunderella paradigm can also be extended to the adaptively secure version
of the sleepy consensus protocol [43] although protocol parameters must be re-selected.

2.5 Preliminaries: Responsiveness and Optimistic Responsiveness

2.5.1 Responsiveness

Recall that throughout this paper we always assume that (A,Z) respects ∆-bounded delay for
some ∆, i.e., Z informs the protocol of a delay upper bound ∆ upfront and all honest messages
are then delivered within ∆ number of rounds. A state machine replication protocol is said to be
responsive if the transaction confirmation time is independent of the a-priori known upper bound
∆ of the network’s delay, but depends only on the actual maximum network delay. To put our
results in perspective, we formally define the notion of responsiveness below and state a known
lower bound result suggesting the impossibility of responsiveness against 1

3 fraction of corruption.
In the remainder of the paper, we will show that if one optimistically hopes for responsiveness only
in lucky situations, then we can have protocols that retains consistency and liveness even under
more than 1

3 corruption. In practice, this means that we can have protocols that are responsive
most of the time, and even when more than 1

3 nodes are corrupt, the protocol can still guarantee
consistency and liveness although performance would degrade when under attaack.

2.5. PRELIMINARIES: RESPONSIVENESS AND OPTIMISTIC RESPONSIVENESS 21

Responsiveness. We define a technical notion called responsiveness for a state machine repli-
cation protocol. Intuitively, responsiveness requires that except for a (possibly non-responsive)
warmup period in the beginning, all transactions input afterwards will perceive transaction con-
firmation delay that is independent of the a-priori set upper bound ∆ on the network’s delay. As
shown in earlier works [19,41], responsive state machine replication is impossible if 1

3 or more frac-
tion of the nodes are corrupt (even in a permissioned, classical environment with static corruptions,
and even assuming that a proof-of-work oracle exists).

Definition 7 (Responsive state machine replication [41]). Suppose that (A,Z) respects ∆-bounded
delay for some ∆. We say that a state machine replication protocol Π satisfies (Tconfirm, Twarmup-
responsiveness w.r.t. (A,Z) iff Π satisfies (Tconfirm, Twarmup)-liveness w.r.t. (A,Z), and moreover
the function Tconfirm does not depend on the a-prior delay upper bound ∆.

We say that a protocol Π satisfies consistency (or responsiveness resp.) in (n, f,∆)-classical,
static environments iff for every p.p.t. (A,Z) pair that respects (n, f,∆)-classical execution and
static corruption, Π satisfies consistency (or responsiveness resp.) w.r.t. (A,Z). We can similarly
define (n, ρ,∆)-sleepy, static environments and (n, ρ,∆)-permissionless, static environments.

Theorem 7 (Impossibility of responsiveness against 1
3 corruption [41]). For any n and f such that

n ≤ 3f and for any polynomial Tconfirm in κ and δ, and Twarmup in κ,∆, and δ, there exists some
polynomial function ∆ in κ such that no state machine replication protocol no state machine repli-
cation protocol can can simultaneously achieve consistency and (Tconfirm, Twarmup)-responsiveness in
(n, f,∆)-classical, static environments even assuming the existence of a proof-of-work oracle.

The proof of the above theorem was presented by Pass and Shi in a recent work [41] where they
modified the classical lower bound proof by Dwork, Lynch, and Stockmeyer [19] and made it work
even in the proof-of-work setting.

Recall that permissioned-classical is expressed as constraints on (A,Z) in our formal framework.
This means that a lower bound for n ≤ 3f in the classical setting immediately implies a lower bound
in more permissive settings where (A,Z) need not respect the permissioned-classical constraints
as long as n ≤ 3f (or the equivalent holds). Thus the following corollaries are immediate from
Theorem 7.

Corollary 1. For any n and any ρ ≥ 1
3 , for any polynomial Tconfirm in κ, and δ and polynomial

Twarmup in κ,∆, and δ, there exists some polynomial function ∆ in κ such that no state machine
replication protocol no state machine replication protocol can can simultaneously achieve consistency
and (Tconfirm, Twarmup)-responsiveness in (n, ρ,∆)-sleepy, static environments even assuming the
existence of a proof-of-work oracle.

Corollary 2. For any n and any ρ ≥ 1
3 , for any polynomial Tconfirm in κ, and δ and polynomial

Twarmup in κ,∆, and δ, there exists some polynomial function ∆ in κ such that no state machine
replication protocol no state machine replication protocol can can simultaneously achieve consis-
tency and (Tconfirm, Twarmup)-responsiveness in (n, ρ,∆)-permissionless, static environments even
assuming the existence of a proof-of-work oracle.

Interestingly, how to achieve responsive state machine replication against fewer than 1
3 fraction

of corruption is also known in the in the permissioned setting assuming the existence of a PKI [13],
as well as in the permissionless setting assuming proof-of-work [41] (and under additional technical
assumptions).

22 CHAPTER 2. DEFINITIONS AND PRELIMINARIES

2.5.2 “Bare Minimum” Optimistic Responsiveness

Since full responsiveness is subject to a 1
3 corruption lower bound as stated in Theorem 7, we

consider how to relax the notion of responsiveness such that we can in practical scenarios hope
for responsiveness, say, most of the time, but not be subject to the 1

3 corruption lower bound for
worst-case security guarantees.

Although our protocols achieve much stronger guarantees regarding optimistic responsiveness,
we start with a bare-minimum goal one can hope for: informally speaking, can we have have a
protocol (for permissionless or permissioned settings) that resists ρ ≥ 1

3 fraction of corruption in
the worst case, but is at least “occasionally responsive” in honest executions where all nodes remain
honest and online throughout? Interestingly, to the best of our knowledge, no known state machine
replication protocol can satisfy even the above “bare minimum” goal.

Let Topt be a polynomial function in κ, n, ρ, and δ where n, ρ, δ are functions of a view and δ
represents the maximum actual network delay. Henceforth in this paper, without loss of generality,
we assume that Z always inputs a fresh transaction to some honest node in every round.

Definition 8. Given a view, we say that [t0, t1] is a Topt-responsive period in view iff for every
transaction m input to some honest node in some round t ∈ [t0, t1], it holds that in any round
r ≥ t+ Topt(κ, n, ρ, δ), any honest node’s output log to Z contains m.

Definition 9. We say that Π is Topt-occasionally responsive w.r.t. some (A,Z) iff there exists a
negligible function negl(·), such that for every κ, except with negl(κ) probability over the choice of
view← EXECΠ(A,Z, κ), view contains a Topt-responsive period of non-zero length.

Note that the above definition is only interesting if (A,Z) inputs a larger upper bound ∆ than
the actual maximum message delay.

Unfortunately, almost all known state machine replication protocols in the synchronous model
(including blockchain-style protocols) are not occasionally responsive even when all nodes are hon-
est. In particular, recall that earlier we described three blockchain instantiations Πnak, ΠDS,
and Πsleepy in the permissionless, permissioned-classical, and permissioned-sleepy settings respc-
tively. As noted in Section 2.3.2, we can easily construct state machine replication protocols from
blockchains. The following facts state that the resulting state machine replication protocols are
never responsive even under honest executions. Below we say that a protocol Π is Topt-occasionally
responsive in (n, ρ,∆)-permissionless environments iff Π is Topt-occasionally responsive w.r.t. to
any (A,Z) that respects (n, ρ,∆)-permissionless execution. The notions of (n, f,∆)-classical envi-
ronments and (n, ρ,∆)-sleepy environments are similarly defined.

Fact 1. For any polynomial function Topt and any n, there exists a polynomial function ∆ such
that the state machine replication protocol implied by Πnak is not Topt-occasionally responsive in
(n, ρ = 0,∆)-permissionless environments.

Fact 2. For any polynomial function Topt and any n, there exists a polynomial function ∆ such
that the state machine replication protocol implied by ΠDS is not Topt-occasionally responsive in
(n, f = 0,∆)-classical environments.

Fact 3. For any polynomial function Topt and any n, there exists a polynomial function ∆ such
that the state machine replication protocol implied by Πsleepy is not Topt-occasionally responsive in
(n, ρ = 0,∆)-classical environments.

Note that in the above theorem, we say that the sleepy consensus protocol Πsleepy is not even
occasionally responsive in honest classical environments where all nodes are honest and online
throughout (in comparison, in sleepy environments, honest nodes can fall asleep).

2.5. PRELIMINARIES: RESPONSIVENESS AND OPTIMISTIC RESPONSIVENESS 23

Indeed, asking for occasional responsiveness in entirely honest executions is the bare minimum
to hope for — despite this, no known state machine replication protocol can achieve it while
tolerating 1

3 corruptions in the worst case. Later in our paper, we will construct protocols that
tolerate minority or arbitrarily many corruptions in the worst case, and achieve not just occasional
responsiveness, but full responsiveness in honest executions. In fact, our protocols will achieve a
much stronger form of optimistic responsiveness (not just in honest executions). Roughly speaking,
our protocols are epoch based. We will guarantee optimistic responsiveness of the following nature:
whenever we encounter a lucky epoch during which (A,Z) behaves “somewhat nicely”, then during
this epoch transactions will confirm responsively. More specifically, our protocols are leader-based
such that during each epoch, a designated leader plays the role of a coordinator. Informally, suppose
that we ask for worst-case guarantees under minority corruption — then, if during any epoch the
leader remains honest and online and moreover more than 3

4 fraction of nodes are honest and online,
then this epoch is a lucky epoch. As a special case, if more than 3

4 fraction of the nodes remain
honest and online throughout the execution and the initial leader also remains honest and online,
then the entire execution will be responsive.

24 CHAPTER 2. DEFINITIONS AND PRELIMINARIES

Chapter 3

Basic Thunderella Protocol with a Static
Committee

We first describe the basic Thunderella protocol assuming a static committee that is known a-priori
to all nodes. We will discuss how to perform committee reconfiguration later in the paper. For
conceptual simplicity, we describe a version of the protocol where the blockchain is also collecting
transactions constantly in the background — in practical implementations, it will not be too dif-
ficult to optimize our theoretical construction further such that the blockchain need not store an
additional copy of all transactions under optimistic conditions.

As mentioned, in general, the Thunderella paradigm can be instantiated with any suitable asyn-
chronous protocol to serve as the optimistic path and any suitable synchronous protocol to serve
as the fallback path. However, we believe that a particular attractive instantiation is to use a
simple voting-based protocol for the optimistic path and a blockchain as the fallback. Thus for
concreteness, we will describe Thunderella for this specific instantiation.

Terminology. Our basic approach assumes three logical entities:

• miners of the underlying blockchain Πblockchain;

• a leader; and

• a committee denoted committee.

To retain consistency and worst-case liveness (i.e., confirmation in the speed of the underlying
Πblockchain), we need to assume that 1) the underlying blockchain Πblockchain retains security (and
this would translate to different compliance rules depending on how we instantiate the underlying
blockchain); 2) α fraction of the committee are assumed to remain honest (but not necessarily
online) where α is a knob that effectively allows us to trade-off security and performance as is
explained later. Notably, the leader need not be trusted for consistency and worst-case liveness.

For concreteness, in our description we will often assume that α = 1
2 , but in fact our approach

generalizes to any choice where 0 < α < 1; and whenever appropriate, we will remark how to
generalize the scheme’s parameters for arbitrary α.

For simplicity, in this section we start out by assuming a static committee. In a permissioned set-
ting, this committee can be the set of all nodes. In a permissionless setting where the set of players
are not known in advance, we can elect the committee dynamically from the underlying blockchain
using known techniques [40, 41] or have stake-holders act as the committee [7, 15, 36] — however
we defer the discussion of committee election and reconfiguration to later sections. Although we

25

26 CHAPTER 3. BASIC THUNDERELLA PROTOCOL WITH A STATIC COMMITTEE

assume a static committee in this section, our basic protocol supports leader reconfiguration. In our
presentation below we focus on describing the mechanism that enables leader reconfiguration with-
out specifying concretely what leader re-election policy to adopt — exactly what policy to adopt
depends on the application context and we thus defer the discussion of policies to later sections.

3.1 Our Basic Protocol in a Nutshell

We first describe the intuition behind our basic protocol. For simplicity, we focus our description
on what happens within a single epoch in which the identity of the leader is common knowledge.

3.1.1 Optimistic Fast Path

The optimistic fast path consists of a single round of voting to confirm each transaction (or batch).
The leader serves as a coordinator and sequences transactions in the optimistic path. It tags each
freshly seen transaction (or a batch) with a sequence number that increments over time, and the
resulting tuple (seq, tx) is referred to as a notarization request. Whenever the committee members
hear a notarization request (seq, tx) from the leader, it will sign the tuple (seq, tx) as long as it
has not signed any tuple for seq before. For consistency, it is important that an honest committee
member signs only one unique tuple (seq, tx) for every sequence number seq.

Whenever an honest node observes that a notarization request (seq, tx) has collected votes from
more than 3

4 of the committee, (seq, tx) is considered notarized. Although any notarized transaction
is ready to be confirmed, an honest node is only allowed to output a notarized (seq, tx) tuple iff
for every s < seq, a tuple (s,) has already been output. In other words, the output sequence is
not allowed to skip any sequence numbers (since transactions must be processed in a linearized
order). Henceforth, we referred to a sequence of notarized transactions with contiguous, non-
skipping sequence numbers as a lucky sequence. In other words, honest nodes always output the
maximal lucky sequence they have observed.

It is not hard to see that the optimistic, fast path satisfies the following properties as long as
the majority of the online committee members are honest (below, we focus our discussion for the
specific case α = 1

2 , although the argument can easily be generalized to arbitrary choices of α):

• The following agreement property is satisfied even when the leader is corrupt and the committee
may not be online: if any two honest nodes have output (seq, tx) and (seq, tx′) respectively, it
must be that tx = tx′ (except with negligible probability over the choice of view).

• The following liveness property is satisfied only when the leader is honest and online and more-
over more than 3

4 of the committee are honest and online (i.e., when the optimistic conditions
hold): every transaction input to an honest node will appear in all nodes’ output logs in O(1)
actual roundtrips — in other words, when optimistic conditions hold, not only do we achieve
liveness but we in fact also achieve responsiveness.

Note that when the optimistic conditions do not hold, liveness is not guaranteed for the optimistic
path. For example, a corrupt leader can propose different transactions to different nodes for the
same sequence number, and thus no transaction will collect enough votes to become notarized.
Further, progress can also be hampered if not enough committee members are honest and online
to vote.

Summarizing the above, if the leader is honest and online and moreover more than 3
4 fraction

of the committee are honest and online, all nodes will confirm transactions responsively in the

3.1. OUR BASIC PROTOCOL IN A NUTSHELL 27

optimistic path. However, to make our protocol complete, we need to deal with the case when
either the leader is corrupt (or not online), or the committee is not more than 3

4 honest and online
— in the latter case, we wish to fall back to the worst-case guarantees offered by the underlying
blockchain. Below we describe how such fallback can be achieved.

3.1.2 Falling Back to the Blockchain

In the fallback slow path, nodes will confirm transactions using the slow blockchain. The most
non-trivial part of our protocol is how to switch between the optimistic path and the fallback path.
To this end, we must answer the following two questions.

1. How do nodes decide when to fall back to the slow path?

2. Once the above decision is made, what is the mechanism for achieving this fallback?

When to fall back. The idea is to use the underlying blockchain to collect evidence of the
optimistic path not working (e.g., either due to corrupt or crashed leader or due to not sufficiently
many committee members being honest and online). Such evidence must be robust such that the
adversary cannot raise false alarms when the optimistic path is actually working.

For conceptual simplicity, we can imagine the following: 1) whenever honest nodes mine a block,
they incorporate into the block their entire view so far, including all unnotarized transactions and
notarized transactions they have seen — in the actual protocol, the transactions stored in the
blockchain can be easily deduplicated and compressed; 2) honest nodes always gossip their views
to each other, such that if one honest node sees some (notarized or unnotarized) transaction by
round r, then all honest nodes will have seen it by round r + ∆. Thus by the liveness property of
the underlying blockchain, if any (notarized or unnotarized) transaction is observed by any honest
node in round r, then in roughly εκ blocks of time, the transaction will appear in the blockchain.

Now, we may use the following criterion to detect when the optimistic path is not working:

Fallback condition: Assume that chain is the stabilized prefix of some honest node’s blockchain.
If some unnotarized transaction tx appears in the block chain[`] but tx still has not become part
of a lucky sequence contained in chain[: `+κ] where κ is a security parameter1, then we conclude
that the optimistic path has failed, and that a fallback is necessary.

Note that if the optimistic conditions hold, then the leader would have observed the unnotarized
tx when its blockchain is roughly ` in length, and the committee would have notarized tx quickly;
thus tx will soon become part of a lucky sequence contained in every node’s blockchain. If this has
not happened within κ blocks of time, then the optimistic conditions must no longer hold.

We also note that using the above mechanism, all honest nodes will decide to fall back within
∆ rounds from each other. We now reach our next question: what mechanism do we rely on for
the falling back?

How to fall back. The challenge is that when honest nodes decide to fall back (within ∆ rounds
from each other), although their optimistic logs are prefixes of each other, the logs could be of
different lengths. One decision to make during the fallback is where (i.e., at which sequence number)
to end the optimistic log before switching to blockchain mode — importantly, for consistency, honest
nodes must agree on this decision. We point out that agreeing on this decision actually requires a

1Transactions of a lucky sequence are allowed to appear out of order in the blockchain.

28 CHAPTER 3. BASIC THUNDERELLA PROTOCOL WITH A STATIC COMMITTEE

full agreement instance — unlike the optimistic path where we punted on liveness, here this decision
must be made with both consistency and liveness.

Thus the most natural idea is to rely on the underlying blockchain to reach agreement regarding
this decision. To this end, we introduce the notion of a grace period that serves as a cool-down
period before we eventually fall back into slow mode. The grace period consists of κ number of
consecutive blocks where κ is a security parameter. Let chain denote the stabilized part of an honest
node’s blockchain and suppose that `∗ is the first block such that chain[: `∗] triggers the “fallback
condition” as described above. Then, the grace period will consist of the blocks chain[`∗+1 : `+κ].
Informally speaking, the grace period is utilized in the following manner:

• Let LOG∗ be an honest node’s output log at the moment that the grace period starts (thus LOG∗

must be a lucky sequence);

• Let chain be the stabilized prefix of this honest node’s chain:

– If the grace period has not ended in chain, then the node outputs the longer of 1) LOG∗; and
2) the maximal lucky sequence contained in chain. Note that in this case, the node does not
output any additional transactions that are not part of the lucky sequence.

– Else if the grace period has ended in chain, then the node first outputs the maximal lucky
sequence contained in chain; then it outputs every other transaction (notarized or unnota-
rized) contained in chain (in the order that they are included in chain). In other words, after
the grace period is over, the nodes start confirming transactions based on the blockchain.

Let LOGmax denote the maximal lucky sequence contained in an honest node’s blockchain by
the end of the grace period. Effectively, in the above mechanism, nodes agree on LOGmax before
falling to blockchain mode. Importantly, the following informal claim must hold:

Claim 1 (Informal). Except with negligible probability, LOGmax must be at least as long as any
honest node’s output log when the node detects the start of the grace period.

To see why, recall that as mentioned earlier, all honest nodes gossip always their protocol views
to each other; and honest nodes always embed their entire protocol view into any block they mine
(in the actual protocol, the messages can be compressed). Thus, by liveness, any honest node’s
output log when the grace period starts will be in the blockchain κ blocks later.

3.1.3 Initiating a New Optimistic Epoch

So far, we have described our protocol from the perspective of a single epoch in which the leader
is common knowledge. Whenever the protocol is in a slow path, however, we would like to allow
the nodes to try to reinitiate an optimistic epoch and try to be fast again. This is easy to achieve
since our underlying blockchain is always up and live! Thus one can simply rely on the underlying
blockchain to implement any policy-based decision to reinitiate a new epoch. For example, the
blockchain can be used to agree on 1) at which block length to reinitiate a new epoch; and 2) who
will act as the leader in the new epoch. Our Thunderella framework leaves it to the application
layer to specify such policy decisions (e.g., such policies can be implemented through generic smart
contracts running atop the underlying blockchain).

Our detailed description in the remainder of this section is aware of the existence of multi-
ple epochs, and thus transactions’ sequence numbers are tagged with the epoch number to avoid
namespace collision.

3.2. DETAILED PROTOCOL DESCRIPTION 29

3.2 Detailed Protocol Description

We now formally describe our basic Thunderella protocol with a static committee. Our description
and proofs are modularized. Specifically, we first describe the minimal set of protocol instructions
necessary for guaranteeing consistency (Section 3.2.2) — in an actual implementation, security
audit should be prioritized for this part of the protocol. We then describe other surrounding
mechanisms (e.g., how to concretely instantiate the chain state function and how the leader proposes
transactions) that allow us to additionally achieve worst-case liveness (Section 3.2.3) and optimistic
responsiveness (Section 3.2.4).

Concrete blockchain parameters. For concreteness, henceforth in this section we assume a
blockchain protocol denoted Πblockchain that achieves (0.05κ, g0, g1 = 1

c∆)-chain growth for some
positive g0 and some positive constant c, (0.05κ, 1, µ)-chain quality where µ is positive, 0.05κ-
consistency, and (0.05κ, 0.05κ)-liveness w.r.t. to any p.p.t. (A,Z) that is compliant w.r.t. Πblockchain.
All the concrete blockchain instantiations mentioned earlier in Section 2.4 satisfy these parameters
(Theorems 4, 5, and 6). Although we assume these concrete parameters, our Thunderella framework
can easily be generalized to other parameters.

3.2.1 Useful Definitions

Henceforth, let Σ = (Gen,Sign,Vf) denote a digital signature scheme.

Notarized transactions. We say that a tuple (e, s,m, V) is a notarized transaction for epoch e
and sequence number s w.r.t. committee iff

• For each (pk, σ) ∈ V , pk ∈ committee and moreover σ is a valid signature for (e, s,m) under pk
— in this case, we also say that (pk, σ) is a valid vote for (e, s,m).

• There are more than 3
4 ·
∣∣committee

∣∣ votes in V with distinct pks.

If (e, s,m, V) is a notarized transaction, we also say that V is a valid notarization for (e, s,m).

Remark 2. Note that the above definition works for α = 1
2 . For a general α ∈ (0, 1], we can simply

replace the constant 3
4 with 1− α

2 .

Blockchain states. We assume that there is a deterministic and efficiently computable function
Γ such that given an abstract blockchain chain, the function Γ divides chain into multiple epochs
interspersed with interims. Each epoch is a sequence of consecutive blocks in chain, and f also
outputs a unique epoch number e for each epoch. A sequence of consecutive blocks that do not
belong to any epoch are called interim blocks. Each epoch always contains two sub-phases, an
optimistic period followed by a grace period, each of which contains at least κ consecutive blocks
and thus each epoch contains at least 2κ consecutive blocks (unless end of chain is reached).

Formally, we say that Γ(κ, ·, ·) is a chain-state function iff for any chain and 0 ≤ ` ≤ |chain|,
Γ(κ, chain, `) outputs one of the following:

• some (e, optimistic): in this case we say that chain[`] is an optimistic block belonging to epoch
e (w.r.t. Γ(κ, ·, ·));

• some (e, grace): in this case we say that chain[`] is a grace block belonging to epoch e (w.r.t.
Γ(κ, ·, ·));

30 CHAPTER 3. BASIC THUNDERELLA PROTOCOL WITH A STATIC COMMITTEE

• or interim: in this case we say that chain[`] is an interim block (w.r.t. Γ(κ, ·, ·)).

We say that a chain-state function Γ(κ, ·, ·) is admissible iff for any chain:

1. for any 0 ≤ ` ≤ `′ ≤ |chain|, if chain[`] belongs to epoch e and chain[`′] belongs to epoch e′, then
e′ ≥ e;

2. for every e: all blocks corresponding to epoch e in chain must appear in a consecutive window,
and moreover, all optimistic blocks for epoch e must appear before grace blocks for epoch e;

3. for every epoch e appearing in chain: there must be at least κ grace blocks belonging to epoch
e in chain unless chain ends at an epoch-e block.

4. for every chain and every 0 ≤ ` ≤ |chain|, Γ(κ, chain, `) depends only on chain[: `] but not
chain[`+ 1 :].

Lucky sequence. A sequence of notarized transactions {(ei, si,mi, Vi)}i∈[m] is said to be a lucky
sequence for epoch e iff for all i ∈ [m], ei = e and si = i.

Blockchain linearization. Given an abstract blockchain chain, we do not simply output all
transactions in chain in the most natural way. Instead, we adopt an algorithm denoted linearizeΓ(κ,·,·)(chain)
for chain linearization. Henceforth we often write linearize(chain) for simplicity without explicitly
denoting the chain-state function Γ(κ, ·, ·).

Our chain linearization algorithm linearize(chain) is defined as follows: scan through the chain
from left to right, and output the following:

1. For each epoch chain[` : `′] encountered with the epoch number e, output the following in order:

• first extract the maximal lucky sequence TXs for epoch e from chain[: `′] and output strip(TXs)
where strip(·) will be defined below;

• if chain[`] is not the end of chain, let TXs′ be all remaining records in chain[` : `′] not contained
in TXs, output strip(TXs′);

2. For each interim chain[` : `′] encountered, extract all transactions TXs from chain[` : `′] and
output strip(TXs).

In the above, the function strip(·) removes signatures from notarized transactions: for a notarized
transaction strip(e, s,m, V) := (e, s,m); for an unnotarized transaction we define strip(m) := m. If
the input to strip(·) is a sequence of transactions, the same operation is applied to each transaction.

3.2.2 Πthunder: Core Protocol for Consistency

Additional notation. A node’s view consists of every message (including blockchains) it has
received from Z or over the network. Henceforth we say that a notarized transaction (e, s,m, V)
is in a node’s view iff (e, s,m) exists in the node’s view, and every (pk, σ) ∈ V exists in the node’s
view (not necessarily appearing together in the node’s view). Multiple notarized transactions can
exist for a unique (e, s,m) by taking different subsets of V — but in our presentation below, we
always take V to be all the valid votes for (e, s,m) in a node’s view, such that if for some tuple
(e, s,m) there is a notarized transaction (e, s,m, V) in a node’s view, then the choice is unique.

Assumptions. Although not explicitly noted, henceforth in all of our protocols, we assume that
whenever an honest node receives any message on the network, if the message has not been broadcast
before, the honest node broadcasts the message.

3.2. DETAILED PROTOCOL DESCRIPTION 31

Protocol Πthunder. Below we describe the Π
Γ(κ,·,·)
thunder protocol that is parametrized by an admissible

chain-state function Γ(κ, ·, ·). Henceforth in our scheme, we often omit explicitly writing the chain-
state function Γ(κ, ·, ·).

• Initialize.

– Call (pk, sk)← Σ.Gen(κ) to generate a signing key pair. Output pk to Z.

– Wait to receive committee from Z, and henceforth, validity of votes and acceptability of
chains will be defined w.r.t. committee.

– Fork an instance of the Πblockchain protocol with appropriate parameters determined by ρ, n
and ∆2.

• Notarize. Upon receiving notarization request (e, s,m) from Z: if pk ∈ committee and no
signature has been produced for (e, s) earlier, compute σ := Σ.Signsk(e, s,m) and broadcast
((e, s,m), σ).

• Propose. Every round, let chain be the output from the Πblockchain instance.

– Let TXs be a set containing 1) every notarized transaction (e, s,m, V) in the node’s view such
that no notarized transaction (e, s,m,) has appeared in chain[: −0.5κ]; and 2) every unno-
tarized transaction m in the node’s view such that no m or notarized transaction (e, s,m,)
has appeared in chain[: −0.5κ].

– Propose TXs to Πblockchain.

• Output. In every round, let chain be the output from Πblockchain.

– If chain[−0.5κ] is an optimistic block belonging to epoch e:

a) let chain[−`] be the starting block for epoch e in chain where ` ≥ 0.5κ.

b) extract the maximal lucky sequence TXs for epoch e from the node’s view so far.

c) let LOG := linearize(chain[: −(`+ 1)])||strip(TXs).

– Else, let LOG := linearize(chain[: −0.5κ]).

– Let LOG be the previous output to Z: if LOG is longer than LOG, output LOG; else output
LOG to Z.

• Mempool. Upon receiving any other message from the network or Z, record the tuple.

Compliant executions. We say that (A,Z) is compliant w.r.t. Π
Γ(κ,·,·)
thunder iff

• (A,Z) is compliant w.r.t. Πblockchain;

• in every view in the support of EXECΠ
Γ(κ,·,·)
thunder(A,Z, κ), Z always inputs the same committee to

all honest nodes;

• in every view in the support of EXECΠ
Γ(κ,·,·)
thunder(A,Z, κ), more than 1

2 fraction (or in general, more
than α fraction) of the distinct public keys in committee are output by nodes that remain honest
(but not necessarily online) forever.

2Unless otherwise noted, all messages sent from the Πblockchain instance or destined for Πblockchain are automatically
passed through, but these messages also count towards the view of the current Πthunder protocol instance.

32 CHAPTER 3. BASIC THUNDERELLA PROTOCOL WITH A STATIC COMMITTEE

The following theorem says that for any chain-state function f that is admissible, Πf
thunder

satisfies consistency under compliant executions.

Theorem 8 (Consistency). Let Γ(κ, ·, ·) be any admissible chain-state function. Then, Π
Γ(κ,·,·)
thunder

satisfies consistency as defined in Section 2.2 w.r.t. any p.p.t. (A,Z) that is compliant w.r.t.

Π
Γ(κ,·,·)
thunder.

The proof of this theorem will be presented in Section 3.3.1.

3.2.3 Concrete Chain-State Function and Worst-Case Liveness

We will adopt the following chain-state function Γpred(κ, ·, ·) that is parametrized by a polynomial-
time boolean predicate pred henceforth referred to as the “next-epoch” function. Basically, the
job of pred is to examine the prefix of some blockchain and decide whether we want to advance
to a larger epoch. Specifically, for some chain prefix chain[: i] if pred(chain[: i], e) = 1 then the
blockchain wants to advance to epoch e if it is not already in epoch e — if there are multiple such
e’s such that the above holds, then the blockchain wants to go the the largest such epoch.

At this moment, we define the chain state function Γ while leaving the pred unspecified. We will
show that worst-case liveness is satisfied in compliant executions regardless of the concrete policy
pred. Intuitively, our concrete chain state function is very simple: If the blockchain is currently in
some epoch e, then the chain will stay in epoch e unless one of the following things happen:

1. either pred (applied to the prefix of the blockchain) wants to go to a larger epoch; or

2. during the current epoch some transaction did not get confirmed for a long time.

If one of the above did happen, then the chain gracefully transitions to an interim ensuring that
there are at least κ optimistic blocks for the current epoch e followed by at least κ grace blocks for
epoch e. If the blockchain is in an interim and pred wants to go to a next epoch, then we advance
to the next epoch immediately. We note that for consistency and worst-case liveness, we in fact
only need that there are at least κ grace blocks for each epoch (but not necessarily κ or more
optimistic blocks). Here we additionally require that there are at least κ optimistic blocks for each
epoch too — this gives the new epoch some time such that the blockchain can pick up possibly
stale transanctions that ought to have been confirmed such that we do not exit from the current
epoch too soon.

More formally, for any chain, Γpred(κ, chain, ·) is inductively defined as the following:

• The chain[0] := genesis block is considered an interim block;

• If chain[i] is an interim block, let e be the largest epoch number such that pred(chain[: i+1], e) = 1,
but no prefix of chain[: i] was ever in epoch e:

– If such an epoch e is found: then chain[i+ 1..i+ κ] are all optimistic blocks for epoch e′ (and
if |chain| < i+ κ, then all of chain[i+ 1 :] are optimistic blocks for epoch e′).

– Else chain[i+ 1] is also an interim block;

• If chain[i] is the `-th optimistic block of some epoch e where ` ≥ κ:

– If one of the following two conditions C1 or C2 hold, then chain[i + 1..i + κ] are all grace
blocks for epoch e, and chain[i+ κ+ 1] is an interim block (and if |chain| ≤ i+ κ then all of
chain[i+ 1 :] are grace blocks for epoch e):

3.2. DETAILED PROTOCOL DESCRIPTION 33

C1: some m or some notarized transaction (, ,m,) appears in chain[: i−0.5κ] but linearize(chain[:
i]) does not contain m or (, ,m), i.e., if some transaction has not occurred in any lucky
sequence even after a sufficiently long time;

C2: there exists some e′ > e such that pred(chain[: i + 1], e′) = 1, i.e., if the next-epoch
policy function wants to switch to a larger epoch than the current one.

– Else chain[i+ 1] is an optimistic block of epoch e.

Theorem 9 (Worst-case liveness). Let Γ(κ, ·, ·) := Γpred(·, ·, ·) be the chain-state function as speci-
fied above for any polynomial-time boolean predicate pred. Let g0 denote the underlying Πblockchain’s
chain growth lower bound parameter, and let Tconfirm(κ) := 3κ

g0
. For any p.p.t. (A,Z) that is com-

pliant w.r.t. Π
Γ(κ,·,·)
thunder, there exists a negligible function negl(·) such that for every κ ∈ N, except with

negl(κ) probability over the choice of view ← EXECΠ
Γ(κ,·,·)
thunder(A,Z, κ), the following holds: suppose

that Z inputs a transaction m to an honest node in round r, then in any round r′ ≥ r+Tconfirm(κ),
all honest and online nodes’ output LOG to Z will contain some (, ,m) or m.

The proof of the above theorem is deferred to Section 3.3.2.

3.2.4 Coordination Protocol Πella and Optimistic Responsiveness

We now describe the full protocol Π
Γ(κ,·,·)
ella that spells out the leader-based coordination mechanism

on top of Πthunder as well as the next-epoch function pred. We will then show under exactly what
optimistic conditions our protocol achieves responsiveness.

Description of protocol Πella. Πella calls Π
Γpred(κ,·,·)
thunder where the chain state function Γ(κ, ·, ·) :=

Γpred(κ, ·, ·) is as defined in Section 3.2.3. We spell out the next-epoch function pred and the rest
of Πella below.

• Next-epoch function. The policy function pred(chain, e) takes in an abstract blockchain denoted
chain and an epoch number e. If there exists a notarized transaction for epoch e in chain, then
output 1; else output 0.

• Initialize: fork an instance of the Π
Γ(κ,·,·)
thunder protocol.

• Leader switch: upon input leader(e, i): if no leader has been recorded for epoch e, record i as
the leader for epoch e, and do the following:

– if current node is i: send a notarization request for a special epoch-start transaction (e, s =
1, start), and let s = 2;

– for every notarization request (e, s,m) received earlier from node i, act as if (e, s,m) has just
been received from i.

• Notarization: upon receiving notarization request (e, s,m) from i: if i has been recorded as the

leader for epoch e, forward the notarization request (e, s,m) to Π
Γ(κ,·,·)
thunder; else ignore the request.

• Leader: every round: let e be the largest epoch recorded thus far and if current node is recorded
as the leader for epoch e:

– for every m in view such that no m or (, ,m) appears in linearize(chain[: −κ]), if a notarization
request has not been broadcast for m earlier, then broadcast the notarization request (e, s,m)
and let s := s+ 1.

34 CHAPTER 3. BASIC THUNDERELLA PROTOCOL WITH A STATIC COMMITTEE

• Other messages: pass through all other messages between Π
Γ(κ,·,·)
thunder and Z; similarly pass through

all other messages between Π
Γ(κ,·,·)
thunder and the network.

Compliant executions. To guarantee consistency and worst-case liveness, basically we just need

the same conditions as our earlier Π
Γ(κ,·,·)
thunder. We say that (A,Z) is compliant w.r.t. Π

Γ(κ,·,·)
ella iff (A,Z)

is compliant w.r.t. Π
Γ(κ,·,·)
thunder.

Lucky epoch. Below we will describe exactly under what optimistic conditions can we achieve
responsiveness. Roughly speaking, whenever a lucky epoch begins, after a short warmup time, we
can achieve responsiveness. Specifically, during a lucky epoch, the epoch’s leader is online and
honest and more than 3

4 fraction (or in general, 1− α
2 fraction of the committee remain honest and

online.

Formally, given a view, we say that [Tstart, Tend] belongs to a lucky epoch corresponding to epoch
e and leader i iff the following hold:

• In any round r ≥ Tstart +∆, any honest and online node should have received leader(e, i) where
i is the common leader that all honest nodes receive for epoch e. Further, prior to Tstart, no
honest node has received from Z any leader(e′,) instruction where e′ ≥ e.
• the leader (i.e., node i) is honest and online at in any round t ∈ [Tstart, Tend + 3∆];

• more than 3
4 fraction (or in general, more than 1 − α

2 fraction) of committee are honest and
online 3 in any round t ∈ [Tstart, Tend + 3∆].

Optimistic responsiveness in lucky epochs. We say that a protocol Π satisfies (Twarmup, Topt)-
optimistic responsiveness in lucky epochs w.r.t. (A,Z) iff except with negl(κ) probability over the

choice of view← EXECΠ
Γ(κ,·,·)
ella (A,Z, κ): for any duration [Tstart, Tend] in view that belongs to a lucky

epoch, [Tstart + Twarmup, Tend] is a Topt-responsive period in view.

Theorem 10 (Optimistic case responsiveness). Let g0 be the underlying Πblockchain’s chain growth

lower bound parameter. For every p.p.t. (A,Z) that is compliant w.r.t. Π
Γ(κ,·,·)
ella , Π

Γ(κ,·,·)
ella satisfies

(Twarmup, Topt)-optimistic responsiveness in lucky epochs for Twarmup = O(κg0
), and Topt = 3δ where

δ is the actual maximum network delay in view.

The proof of the above theorem is deferred to Section 3.3.3. We note that Theorem 10 implies the
following: informally speaking, if throughout the execution more than 3

4 fraction of the committee
remain honest and online and moreover, the initial epoch’s leader remains honest and online,
then once nodes enter the initial epoch, after a short warmup period, our protocol Πella will achieve
responsiveness throughout the remainder of the execution (assuming that the underlying blockchain
is secure).

Remark 3 (Leader re-election mechanism). In our scheme earlier, we left it unspecified how the
environment Z will decide when to issue leader-switch instructions of the form leader(e, i) that
will cause nodes to start a new leader epoch. This is an application-specific policy decision. At
this point, our paper focuses on providing a general framework that enables any application-specific
policy decisions. Later in our paper, we will give some suggestions on leader re-election policies
that are useful in practice.

3We say that a public key pk ∈ committee is honest and online in round r if some node that is honest and online
in round r output pk to Z earlier.

3.3. PROOFS FOR BASIC THUNDERELLA WITH STATIC COMMITTEE 35

3.3 Proofs for Basic Thunderella with Static Committee

We now move onto presenting the formal proofs for our basic Thunderella protocol.

Shorthand notations. Henceforth in Section 3.3.1 and 3.3.2, whenever we say that “except with
negligible probability over the choice of view, some property ev(view) holds”, we formally mean that

for any (A,Z) that is compliant w.r.t. Π
Γ(κ,·,·)
thunder, there exists a negligible function negl(·) such that

for every κ ∈ N, except with negl(κ) probability over the choice of view ← EXECΠ
Γ(κ,·,·)
thunder(A,Z, κ),

ev(view) holds. Similarly, in Section 3.3.3, whenever we say that “except with negligible probability
over the choice of view, some property ev(view) holds”, we formally mean the same as above but

now referring to Π
Γ(κ,·,·)
ella instead.

3.3.1 Consistency

Lemma 2 (Uniqueness). Assume that the signature scheme is secure, then except with negligi-
ble probability over the choice of view, the following holds. For any (e, s) pair, if two notarized
transactions (e, s,m, V) and (e, s,m′, V ′) appear in view, then it must be the case that m = m′.

Proof. For V or V ′ to be a notarization for (e, s,m) and (e, s,m′) respectively, there must be more
than 3

4M number of signatures from distinct members of committee where M := |committee|. Since
the adversary controls f < 1

2M members of committee, it must be that at least 3
4M − f honest

members of committee have signed (e, s,m) — otherwise we can leverage (A,Z) to build a reduction
that breaks the signature security. Similarly, at least 3

4M − f honest members of committee have
signed (e, s,m′). Thus, by the pigeon-hole principle at least one honest member of committee has
signed both (e, s,m) and (e, s,m′). By definition of the honest protocol, honest nodes will sign each
sequence number no more than once. Thus it holds that m = m′.

Fact 4. Let Γ(κ, ·, ·) be any admissible chain-state function. Then for any chain and any 0 ≤ i <
j ≤ |chain|, linearizeΓ(κ,·,·)(chain[: i]) ≺ linearizeΓ(κ,·,·)(chain[: j]).

Proof. Follows directly from the admissibility definition of Γ and the definition of linearize.

Let LOG
r
i denote the internal variable LOG of node i in round r.

Lemma 3. Let Γ(κ, ·, ·) be any admissible chain-state function. Except with negligible probability
over the choice of view, the following holds: for any r and t, for any node i honest and online in

round r and any node j honest and online in round t, either LOG
r
i ≺ LOG

t
j or LOG

t
j ≺ LOG

r
i .

Proof. In every round, an honest node’s LOG is of the generalized form linearize(chain[: −`])||strip(TXs)
where

• either TXs is empty and ` = 0.5κ or

• TXs is a non-empty lucky sequence for some epoch e and ` ≥ 0.5κ.

Suppose that LOG
r
i := linearize(chainri [: −`])||strip(TXs) and LOG

t
j := linearize(chaintj [: −`′])||strip(TXs′)

are output logs by node i in round r and by node j in round t respectively in view. Henceforth we
ignore the negligible fraction of views where relevant bad events happen. For the remaining good
views, the following statements hold.

By consistency of Πblockchain, either chainri [: −`] ≺ chaintj [: −`′] or chaintj [: −`′] ≺ chainri [: −`].
Without loss of generality, henceforth we assume that chainri [: −`] ≺ chaintj [: −`′]. We now consider
the following cases:

36 CHAPTER 3. BASIC THUNDERELLA PROTOCOL WITH A STATIC COMMITTEE

• Case 1: TXs is empty. In this case, it follows directly from Fact 4 that LOG
r
i ≺ LOG

t
j .

• Case 2: TXs is non-empty. In this case, chainri [−`+ 1] must be the starting block of some epoch
e, and chainri [−0.5κ] must be an optimistic block of epoch e. We now consider the following
sub-cases:

– Case 2a: Epoch e has completed in chaintj [: −`′], i.e., there are two adjacent blocks such that

the former belongs to epoch e and the latter does not in chaintj [: −`′]. Let chaintj [−`∗] denote

the last block of epoch e in chaintj [: −`′]. By Fact 4, it suffices to prove that linearize(chainri [:

−`])||strip(TXs) ≺ linearize(chaintj [: −`∗]).
By definition of the honest protocol, TXs must be a lucky sequence for epoch e in node i’s
view in round r, and further, by round r+ ∆, TXs must exist in any honest node’s view. By
the admissibility of the chain-state function Γ and the fact that chainri [−0.5κ] is an optmistic
block of epoch e, chaintj [: −`∗] must be at least 0.5κ longer than chainri . By chain growth
upper bound, by round r + ∆, any honest chain must be at most `ri + 0.25κ in length where
`ri := |chainri |. By liveness, a lucky sequence of length |TXs| for epoch e must appear in
chaintj [: −`∗]. The remainder of the proof follows from definition of linearize and Lemma 2.

– Case 2b: Epoch e has not completed in chaintj [: −`′]. Recall that node i outputs linearize(chainri [:
−`])||strip(TXs) in round r. By definition of the honest algorithm, and since chainri [: −`] ≺
chaintj [: −`′], node j’s output in round t must be of the form linearize(chainri [: −`])||strip(TXs∗)
where TXs∗ is either empty or some lucky sequence for epoch e in node j’s view in round t.

By Lemma 2, it holds that either LOG
r
i ≺ LOG

t
j or LOG

t
j ≺ LOG

r
i .

Theorem 11 (Consistency, restatement of Theorem 8). Let Γ(κ, ·, ·) be any admissible chain-state

function. Then, Π
Γ(κ,·,·)
thunder satisfies consistency as defined in Section 2.2 w.r.t. any p.p.t. (A,Z) that

is compliant w.r.t. Π
Γ(κ,·,·)
thunder.

Proof. By construction, an honest node’s output log never shrinks. Thus both common prefix and
future self-consistency follow directly from Lemma 3 and definition of the honest protocol.

We additionally prove a corollary that will later be useful for proving worst-case liveness.

Corollary 3. Let Γ(κ, ·, ·) be any admissible chain-state function. Except with negligible probability
over the choice of view, the following holds: for any round r, for any node i honest and online in
round r, linearize(chainri [: −0.5κ]) is a prefix of LOGri where chainri is node i’s Πblockchain output in
round r, and LOGri is node i’s output log to Z in round r.

Proof. We ignore the negligible fraction of views where relevant bad events happen and consider
only the remaining good views. By definition of the honest protocol and Lemma 3, LOG

r
i must be

a prefix of LOGri . Thus it suffices to prove that linearize(chainri [: −0.5κ]) is a prefix of LOG
r
i . If

chainri [: −0.5κ] is not an optimistic block of some epoch e, then by definition of the honest protocol,
LOG

r
i = linearize(chainri [: −0.5κ]). Thus henceforth we consider only the case when chainri [: −0.5κ]

is an optimistic block of some epoch e. In this case, LOG
r
i = linearize(chainri [: −`])||strip(TXs)

where chainri [−`] is the last block before epoch e in chainri and TXs is the maximal lucky se-
quence for epoch e in node i’s view in round r. On the other hand, linearize(chainri [: −0.5κ]) =
linearize(chainri [: −`])||strip(TXs′) where TXs′ is the maximal lucky sequence for epoch e contained
in chainri [: −0.5κ]. Since chainri [: −0.5κ] is part of node i’s view in round r and by Lemma 2, it
must be that strip(TXs′) ≺ strip(TXs), and the remainder of the proof is straightforward.

3.3. PROOFS FOR BASIC THUNDERELLA WITH STATIC COMMITTEE 37

3.3.2 Worst-Case Liveness

Lemma 4 (Worst-case liveness variant). Let Γpred(κ, ·, ·) be the chain-state function as specified
in Section 3.2.3 for an arbitrary polynomial-time next-epoch function pred. Let g0 denote the
underlying Πblockchain’s chain growth lower bound parameter. Except with negligible probability over
the choice of view, the following holds: suppose that Z inputs a transaction m to an honest node
when its chain output from Πblockchain has length `, then for any honest chain chain′ in view of length
at least `+ 2.5κ, it must hold that m or some (, ,m) exists in linearizeΓ(κ,·,·)(chain′[: `+ 2.5κ]).

Proof. We ignore the negligible fraction of views where relevant bad events happen. For the re-
maining good views, the following statements hold.

By liveness of the underlying Πblockchain, it must be that either m or some (, ,m,) is contained
in chain′[: ` + 0.25κ]. Let chain′[`0] denote the first block in chain′ that contains either m or some
(, ,m,) where `0 ≤ `+ 0.25κ. Now consider the following cases:

• Case 1: chain′[`0] is an interim block. By definition of linearize, it must hold that linearize(chain′[:
`0]) contains either m or some (, ,m). The remainder of the proof follows directly from Fact 4.

• Case 2: chain′[`0] belongs to some epoch e. By definition of the chain-state function Γ, if
linearize(chain′[: `0+κ]) does not contain m or some (, ,m), epoch e of chain′ must enter its grace
period at length `0+κ+1 or smaller. Thus epoch e of chain′ must end at length `0+2κ < `+2.5κ
or smaller. By definition of linearize, it must hold that linearize(chain′[: ` + 2.5κ]) must contain
m or some (, ,m).

Theorem 12 (Worst-case liveness, restatement of Theorem 9). Let Γ(κ, ·, ·) be the chain-state
function as specified in Section 3.2.3. Let g0 denote the underlying Πblockchain’s chain growth lower

bound parameter, and let Tconfirm(κ) := 3κ
g0

. For any p.p.t. (A,Z) that is compliant w.r.t. Π
Γ(κ,·,·)
thunder,

there exists a negligible function negl(·) such that for every κ ∈ N, except with negl(κ) probability

over the choice of view ← EXECΠ
Γ(κ,·,·)
thunder(A,Z, κ), the following holds: suppose that Z inputs a

transaction m to an honest node in round r, then in any round r′ ≥ r+ Tconfirm(κ), all honest and
online nodes’ output LOG to Z will contain some (, ,m) or m.

Proof. We ignore the negligible fraction of views where relevant bad events happen. For the re-
maining good views, the following statements hold. Suppose that in round r, the longest honest
chain is of length `r. By Lemma 4 and Fact 4, for any honest chain denoted chain in view whose
length is at least `r+3κ, m or some (, ,m) must exist in linearize(chain[: −0.5κ]). By chain growth
lower bound, in round r+Tconfirm or greater, every honest chain must be of length at least `r + 3κ.
Thus for any honest chain denoted chain′ in round r + Tconfirm or greater, m or some (, ,m) must
exist in linearize(chain′[: −0.5κ]). The remainder of the proof follows directly from Corollary 3.

3.3.3 Optimistic Responsiveness

We now prove that Πella satisfies optimistic responsiveness in lucky epochs.

Lemma 5. Except with negligible probability over the choice of view, the following holds: Suppose
that [Tstart, Tend] belongs to a lucky epoch in view corresponding to epoch e and leader i; and let
Twarmup = 3κ

g0
where g0 is the chain growth lower bound parameter of the underlying Πblockchain.

Then, for any honest chain denoted chain during [Tstart + Twarmup, Tend], chain[−0.5κ] must be an
optimistic block of epoch e.

38 CHAPTER 3. BASIC THUNDERELLA PROTOCOL WITH A STATIC COMMITTEE

Proof. Henceforth we ignore the negligible fraction of views where relevant bad events happen. By
our definition of lucky epoch, it holds that by the end of round Tstart+3∆, all honest nodes will have
in their view a notarized transaction for the epoch e. Let ` denote the length of the shortest honest
chain in round Tstart. By chain growth upper bound, no honest chain is greater than ` + 0.25κ in
length in round Tstart +3∆. By liveness of the underlying Πblockchain, for any honest chain ch whose
length is at least `+0.5κ during [Tstart, Tend], ch[: `+0.5κ] must contain a notarized transaction for
epoch e. Further, assuming that the signature scheme is secure, we also conclude that no honest
node will have in their view a notarized transaction for any epoch e′ > e in or before round Tend

since otherwise one can easily construct a reduction that breaks signature security. Thus, for any
honest chain ch whose length is at least ` + 0.5κ + 2κ + 0.5κ during [Tstart, Tend], it holds that
some block in ch[: −0.5κ] must have entered epoch e — since by the honest protocol, once the
chain contains a notarized transaction for epoch e, it takes at most κ optimistic blocks and κ grace
blocks and one interim block to enter epoch e. Further, we also conclude that no honest chain can
enter epoch e before ` because otherwise there must exist a notarized transaction for epoch e in
some honest node’s view before round Tstart — and by definition of a lucky epoch, if this happened
then we could easily construct a reduction that breaks signature security.

Now, it suffices to show that for any honest chain ch during [Tstart, Tend] whose length is at least
` + 3κ, ch[−0.5κ] must be an optimistic block of epoch e — since if we can show this, then the
lemma follows directly due to the chain growth lower bound and the fact that the shortest chain
at time Tstart is `. To show this claim, let us assume for the sake of contradiction that there exists
some honest chain ch∗ during [Tstart, Tend] whose length is at least `+ 3κ, but ch∗[−0.5κ] is not an
optimistic block of epoch e. Recall that some block in ch∗[: −0.5κ] must have entered epoch e, and
if ch∗[−0.5κ] is not an optimistic block of epoch e, there must exist some grace block of epoch e
in ch∗[−0.5κ]. Since no honest node has in their view a notarized transaction for epoch e′ > e by
the earlier argument, the only way to enter the grace period for epoch e is if there exists some `′

satisfying ` + κ ≤ `′ ≤ |ch| − 0.5κ and some m such that i) linearize(ch∗[: `′]) does not contain m
or some (, ,m) but m or some (, ,m) appeared in ch∗[: `′ − 0.5κ]; and ii) ch∗[`′] is an optimistic
block of epoch e, and there are at least κ optimistic blocks for epoch e in ch∗[: `′].

By consistency, when the leader’s chain is first of length `′ − 0.25κ or greater — let r∗ denote
this round and let ch′ denote the leader’s chain in round r∗ — it must be that m or some (, ,m) is
in ch′. By growth upper bound, ch′ cannot be longer than `′ and thus by consistency, neither m nor
(, ,m) is in linearize(ch′[: −κ]). Notice that by chain growth upper bound, r∗ ≥ Tstart. Thus by
the end of round r∗, the leader i must have sent a notarization request for the transaction m. Thus
by time r∗ + 2∆, all honest nodes will have some notarized transaction (e, s,m,) in its view as
well as a notarized transaction of the form (e, s′, ,) for every s′ ≤ s. By growth upper bound, no
honest chain is longer than `′ − 0.1κ in round r∗ + 2∆. By liveness, any honest chain ch′ of length
at least `′ during [Tstart, Tend], ch′[: `′] must contain some notarized transaction (e, s,m,) as well
as a notarized transaction of the form (e, s′, ,) for every s′ ≤ s. This means that linearize(ch[: `′])
must contain (e, s,m), and this contradicts our assumption.

Theorem 13 (Optimistic case responsiveness, restatement of Theorem 10). Let g0 be the underlying
Πblockchain’s chain growth lower bound parameter and let Twarmup(κ) = 3κ

g0
. For every p.p.t. (A,Z)

that is compliant w.r.t. Π
Γ(κ,·,·)
ella , there exists a negligible function negl(·) such that for every κ ∈

N, except with negl(κ) probability over the choice of view ← EXECΠ
Γ(κ,·,·)
ella (A,Z, κ), the following

holds: Suppose that [Tstart, Tend] belongs to a lucky epoch in view. Then, if Z inputs m to some
honest node in some round t ∈ [Tstart + Twarmup, Tend], then every honest node’s output LOG will
include some (, ,m) or m at time t + 3δ, where δ is the maximum actual network delay between

3.3. PROOFS FOR BASIC THUNDERELLA WITH STATIC COMMITTEE 39

[Tstart + Twarmup, Tend + 3∆] in view.

Proof. Suppose that [Tstart, Tend] corresponds to the epoch e and leader i in view. In some round
r ≤ t + δ, the leader i first sees m in its view. We consider the following two cases — further
we ignore the negligible fraction of views where relevant bad events happen and consider only the
remaining good views.

• Case 1: m or some (, ,m) exists in linearize(chainri [: −κ]). In this case, by consistency of the
underlying Πblockchain, for every honest chain ch in round r + δ or greater, m or some (, ,m)
exists in linearize(ch[: −0.5κ]). The remainder of the proof follows from Corollary 3.

• Case 2: m or some (, ,m) does not exist in linearize(chainri [: −κ]). In this case, by some round
r′ ≤ r, the leader will have sent 1) a notarization request of the form (e, s,m) for some s; and 2)
a notarization request of the form (e, s′,) for every s′ ≤ s. Thus in any round s ≥ r+ 2δ, every
node honest and online will have in its view 1) a notarized transaction of the form (e, s,m,);
and 2) for every s′ ≤ s a notarized transaction of the form (e, s′, ,). By definition of the honest
protocol and Lemma 5, (, ,m) exists in the output of any honest and online node in round
t+ 3δ or after.

40 CHAPTER 3. BASIC THUNDERELLA PROTOCOL WITH A STATIC COMMITTEE

Chapter 4

Thunderella for Permissioned

In this section, we consider two concrete instantiations of Thunderella in the permissioned setting.
We show that 1) in the classical setting, assume the existence of a bare PKI and one-way functions,
we can have a state machine replication protocol that tolerates arbitrarily many corruptions, and
achieves responsiveness during a lucky epoch; 2) in the permissioned, sleepy setting, assume the
existence of a common reference string, a bare PKI, and enhanced trapdoor permutations, we
can construct a state machine replication protocol that retains worst-case security as long as the
majority of online nodes are honest, and moreover achieves responsiveness during a lucky epoch.

Recall that our optimistic case conditions are more stringent than worst-case conditions, and
responsiveness can only be achieved when the optimistic-case conditions hold (i.e., when a lucky
epoch occurs). In this section, we shall also prove a lower bound to show that our optimistic-case
conditions are in fact tight. This lower bound reflects an inherent tradeoff between the conditions
necessary for worst-case security and the conditions necessary for responsive confirmation.

4.1 Permissioned, Classical Environments

Recall that in permissioned, classical environments, Z spawns all nodes upfront prior to protocol
execution and does not spawn any nodes later; and moreover, Z does not issue sleep or wake

instructions. In this setting, “honest” equates to “honest and online”.

Worst-case security under arbitrarily many corruptions. We will show that in a permis-
sioned, classical environment and assuming the existence of a PKI, we can have a state machine
replication protocol that achieves consistency and worst-case liveness against arbitrarily many cor-
ruptions; and moreover, when “things are good”, transactions can confirm in O(1) actual network

rounds. The concrete protocol, henceforth referred to as Π
[DS]
ella , works as follows:

1. We instantiate the Thunderella paradigm using a Dolev-Strong-based blockchain ΠDS as the
underlying blockchain (see Section 2.4.2).

2. In the classical model, Z informs all honest nodes upfront the identities of all nodes participating
in the protocol. Thus, we can simply have everyone be part of the committee.

3. Let n, f be parameters received from Z upfront where n denotes the total number of nodes and
f denotes an upper bound on the number of corrupt nodes. For a transaction to be notarized,
we require that at least bn+f

2 + 1c signatures from disctinct nodes be collected. Further, the
parameters (n, f) is also passed to the inner ΠDS instance.

41

42 CHAPTER 4. THUNDERELLA FOR PERMISSIONED

4. Finally, we make a non-essential modification to our earlier scheme such that if we happen
to be lucky, transactions will start confirming “instantly” starting from the very beginning of
the protocol without any warmup period. Specifically, we will assume that the genesis is an
optimistic block of the initial epoch (i.e., the 0-th epoch); similarly, for every i ≤ 0, we assume
by convention that chain[i] is an optimistic block of the initial epoch. Moreover, when the
protocol begins, every honest node will act as if a leader(0, 0) instruction has been input, i.e.,
node 0 will act as the leader for the initial epoch.

Regarding the last modification, in comparison, our basic protocol earlier treated the genesis
block as an interim block — since in general, if we were in a permissionless setting, we may wish to
run the blockchain protocol for a while and use the blockchain protocol to elect a committee (see
Section 5.2).

We say that a protocol Π satisfies consistency (or optimistic responsiveness in lucky epochs
resp.) in (n, f,∆)-classical environments iff for every p.p.t. (A,Z) that respects (n, f,∆)-classical
execution, Π satisfies consistency (or optimistic responsiveness in lucky epochs resp.) w.r.t. (A,Z).

Theorem 14 (Thunderella for permissioned, classical environments). For any n and any f < n,

protocol Π
[DS]
ella achieves 1) consistency and Tconfirm-liveness for some Tconfirm = O(κ∆); and 2)

optimistic responsiveness in lucky epochs (where lucky epoch is defined as in Section 3.2.4 for
α := n−f

n) in (n, f,∆)-classical environments1.

Proof. Straightforward from Theorems 5, 8, 9, and 10 — note also that the proofs of Theorems 8,
9, and 10 hold nonetheless with the non-essential modification mentioned earlier that makes it
possible for the protocol to enter a lucky epoch immediately upon execution start.

The above theorem immediately gives rise to the following corollary (Corollary 4) which says
that if the initial leader remains honest, then the entire protocol execution is a lucky epoch — and
thus responsiveness holds for the entire execution. Before we present Corollary 4, we first extend
our definition of (n, f,∆)-classical environments (n, f,∆, S)-classical environments where Z is not
allowed to corrupt nodes in the set S.

Definition 10. We say that some (A,Z) respects (n, f,∆, S)-classical execution w.r.t. protocol
Π for some set S ⊆ {0, 1, . . . , n − 1} iff (A,Z) respects (n, f,∆)-classical execution w.r.t. Π and
moreover in every view in the support of EXECΠ(A,Z, κ), the nodes in the set S remain honest.

We say that a protocol Π satisfies consistency (or responsiveness resp.) in (n, f,∆, S)-classical
environments iff for every p.p.t. (A,Z) that respects (n, f,∆, S)-classical execution, Π satisfies
consistency (or responsiveness resp.) w.r.t. (A,Z). Security in (n, n−f2 ,∆)-classical environments
is similarly defined. The definitions for (n, f,∆, S)-classical, static environments or for (n, f,∆)-
classical, static environments are similar except that now (A,Z) must additionally respect static
corruption.

Corollary 4. For any n,∆ and any f < n, protocol Π
[DS]
ella satisfies consistency in (n, f,∆)-classical

environments; and satisfies responsiveness (n, dn−f2 − 1e,∆, {0})-classical environments (see Sec-
tion 2.5 for the definition of responsiveness).

Proof. Arises naturally from Theorem 14 and our minor modification of the starting conditions
such that the protocol can immediately enter a lucky epoch if the initial epoch happens to be
lucky.

1In fact, earlier we parametrized Πella with looser parameters that worked for Πnak and Πsleepy. It is not diffi-
cult to see that through simple reparametrizations, we can in fact achieve tighter parameters where the worst-case
confirmation time Tconfirm = O(∆).

4.1. PERMISSIONED, CLASSICAL ENVIRONMENTS 43

Another useful interpretation of the above corollary is that we can have protocols that are
bimodal:

1. if a set of worst-case conditions are satisfied, then the execution preserves consistency and worst-
case liveness; and

2. if a set of more stringent, optimistic-case conditions are satisfied, then the execution confirms
transactions responsively throughout.

In fact, not only so, Theorem 14 says that we achieve something even stronger: not only for the
initial epoch, if in any epoch a set of optimistic-case conditions are satisfied, then this corresponding
epoch will start to confirm transactions responsively. Thus, in some sense, Thunderella provides a
general framework in which one can try multiple times to bootstrap a fast epoch, and if in any
epoch one happens to be lucky, then transactions can confirm responsively. Thunderella guarantees
that the transitions between epochs as well as slow mode (i.e., falling back to the blockchain) will
respect consistency.

Limits on security and performance tradeoff. So far, we have seen a tradeoff between worst-
case security and the conditions required for responsive confirmation. In particular, if one hopes for
consistency and worst-case liveness when a larger number of nodes are corrupt, then the conditions
necessary for responsive confirmation becomes more stringent. In the following theorem, we show
that in fact, such a trade-off is inherent.

Interestingly, the lower bound below (Theorem 15) is in fact a strict generalization of the 1
3 -

corruption lower bound for responsive state machine replication stated in Section 2.5. In particular,
if we plug in n = 3f into the theorem below, we effectively get a slightly stronger version of
Theorem 7 (see Section 2.5) — the difference is that here we additionally require that the initial
leader (i.e., node 0) be honest for responsiveness whereas Theorem 7 does not. Like Theorem 7, our
proof below can be generalized to a relaxed notion of responsiveness where non-responsive warmup
period is allowed.

Theorem 15 (Tradeoff between security and performance). For any n and any f < n − 1, any
polynomial function Tconfirm in κ and δ and polynomial function Twarmup in κ, ∆, and δ, there
exists a polynomial ∆ in κ, such that no state machine replication protocol Π, even assuming
proof-of-work, can simultaneously achieve the following: 1) satisfy (Tconfirm, Twarmup)-responsiveness

(n, dn−f2 e,∆, {0})-classical, static environments, and 2) satisfy consistency in (n, f,∆)-classical,
static environments.

The proof of this theorem is inspired by the famous partial synchrony lower bound by Dwork
et al. [19], and later extended by Pass and Shi [41] to the proof-of-work setting to show a 1

3 lower
bound for responsiveness.

Proof. Consider any fixed n, f < n− 1, Tconfirm and Twarmup, Suppose for the sake of contradiction
that there exists a protocol Π such that for any ∆, Π simultaneously satisfies (Tconfirm, Twarmup)-

responsiveness (n, dn−f2 e,∆, {0})-classical, static environments; and additionally satisfies consis-
tency in (n, f,∆)-classical, static environments.

Now consider the following p.p.t. (A,Z) that respects (n, f,∆)-classical execution and static cor-
ruption for some choice of ∆ to be specified later: upfront Z spawns n nodes numbered 0, 1, . . . , n−1
among which f < n − 1 are corrupt, and moreover, node 0, i.e., the initial leader is corrupt. For
the initial Twarmup(κ,∆, 1) time, Z inputs a dummy transaction to all honest nodes in every round,
and A delivers all honest messages immediately in the next round.

44 CHAPTER 4. THUNDERELLA FOR PERMISSIONED

Now, in round Twarmup(κ,∆, 1)+1 (A,Z) divides the n−f honest nodes into two camps denoted

H1 and H2 respectively, each of size bn−f2 c (if n− f is not even then one honest node will remain
and we simply discard it from consideration). Let C denote the set of corrupt nodes including the
leader. At this moment, C will simulate in its head two groups of nodes C1 and C2 (i.e., effectively
each corrupt node including the leader forks itself into two simulated instances), where Cb plays
with Hb for b ∈ {1, 2}. However, since any corrupt node can only query the proof-of-work oracle at
a bounded rate, in our attack described below, the two simulated groups C1 and C2 will perform
work in a temporally interleaved fashion. In round Twarmup(κ,∆, 1) + 1, the group C1 is working
and the group C1 is dormant.

Now, the environment Z generates two random transactions (denoted m1 and m2 respectively)
from {0, 1}κ, and in every round r > Twarmup(κ,∆, 1), Z always inputs m1 to honest nodes in the
first camp and inputs m2 to honest nodes in the second camp. A delivers messages sent by honest
nodes to other nodes in the same camp immediately in the next round; however, A delays honest
messages in between the two camps up to the maximum delay parameter ∆ (which will be set to
be sufficiently large later).

Now let us consider the view of honest nodes in the camp H1. It is not hard to see that for these
honest nodes, their view in the first Twarmup(κ,∆, 1) + ∆ rounds of EXECΠ(A,Z, κ) is identically
distributed as the following alternative execution EXECΠ(A′,Z ′, κ) in which Z ′ spawns n nodes,
among which dn−f2 e nodes are corrupt and crash in round Twarmup(κ,∆, 1) + 1, but the remaining
nodes including the leader are honest. A′ delivers messages sent by honest nodes immediately in the
next round. Further, Z ′ inputs a dummy transaction for every round r ≤ Twarmup(κ,∆, 1) and for
every round r > Twarmup(κ,∆, 1), Z ′ generates a random transaction m1 from {0, 1}κ and inputs the
same transaction to all honest nodes. By the responsiveness requirement, for every ∆, except with
negligible probability over the choice of view of the alternative execution EXECΠ(A′,Z ′, κ), every
honest node must include m1 in their output logs by time Twarmup(κ,∆, δ = 1)+Tconfirm(κ, δ = 1)+1
where Tconfirm is independent of ∆. Thus regardless of the choice of ∆, except with negligible
probability over the choice of view← EXECΠ(A,Z, κ), honest nodes in the first camp must include
m1 in their output logs by time Twarmup(κ,∆, 1) + Tconfirm(κ, δ = 1) + 1 as well.

Now, starting in round Twarmup(κ,∆, 1) + Tconfirm(κ, δ = 1) + 1, C1 becomes dormant and
C2 starts playing. Whenever a node in C2 sends a message to honest nodes in any round r ≥
Twarmup(κ,∆, 1) + Tconfirm(κ, δ = 1) + 1, the message is delivered instantly (but it appears that the
message was sent in round r−Tconfirm(κ, δ = 1) and got delayed for δ′ = Tconfirm(κ, δ = 1) rounds).
Whenever C2 receives any message from any honest node in any round r ≥ Twarmup(κ,∆, 1) +
Tconfirm(κ, δ = 1) + 1, it acts as if the message was received in r − Tconfirm(κ, δ = 1). The view of
the honest camp H2 is identically distributed as the following alternate execution: the environment
spawns n nodes, among which dn−f2 e nodes are corrupt and crash in round Twarmup(κ,∆, 1)+1, but
the remaining nodes including the leader are honest. The adversary delays messages sent by honest
nodes by a maximum of δ′ = Tconfirm(κ, δ = 1) — note that since C2 started playing late, here
we are charging this offset to the network delay. Similarly as before, in this alternate execution,
the environment inputs a dummy transaction for every round r ≤ Twarmup(κ,∆, 1) and for every
round r > Twarmup(κ,∆, 1), it generates a random transaction m2 from {0, 1}κ and inputs the same
transaction to all honest nodes. In this alternate execution, by the responsiveness requirement,
for every ∆, except with negligible probability over the choice of view ← EXECΠ(A,Z, κ), honest
nodes in H2 must include m2 in their output logs by time Twarmup(κ,∆, 1) + Tconfirm(κ, δ′) + 1.

We now consider a sufficiently large ∆ such that ∆ > Tconfirm(κ, δ′). In this case, since m1 and
m2 are sampled at random from a high-entropy distribution, except with negligible probability over
the choice of view ← EXECΠ(A,Z, κ), in round Twarmup(κ,∆, 1) + Tconfirm(κ, δ′) + 1, the output

4.2. PERMISSIONED, SLEEPY ENVIRONMENTS 45

logs of honest nodes in the first camp do not include m2 and the output logs of honest nodes in the
second camp do not include m1 since there is no information flow between the two honest camps
thus far.

Summarizing the above, we conclude that except with negligible probability over the choice of
view ← EXECΠ(A,Z, κ), in round Twarmup(κ,∆, 1) + Tconfirm(κ, δ′) + 1, the output logs of honest
nodes in the first camp must be inconsitent with the output logs of honest nodes in the second
camp — but this violates our assumption that Π satisfies consistency w.r.t. (A,Z) and thus we
reach a contradiction.

4.2 Permissioned, Sleepy Environments

In the classical model, we treat crashed nodes as corrupt, and thus crashes count towards the
corruption budget. Recent works [43] considered a new model where crashed nodes are treated as
“honest but sleeping” and they do not count towards the corruption budget. In such a permissioned,
sleepy environment, earlier work showed the following interesting results [43]:

• First, a meaingful question to ask in this model is whether state machine replication is possible
when the majority of online nodes are honest — this question was answered in the affirmative
by earlier work [43] where they proposed a protocol called “sleepy consensus” (see Theorem 6
of Section 2.4.3).

• Earlier work [42,43] also showed that indeed, honest majority is necessary to achieve state ma-
chine replication in a sleepy environment. Further, this lower bound arises due to the possibility
of “late joining” [42,43], i.e., an honest node can be asleep in the beginning and wake up later.
As a result, unlike the permissioned, classical setting, here one cannot hope for security when
arbitrarily many among those online are corrupt.

Let Π
[Sleepy]
ella be Πella where the underlying blockchain is instantiated with Πsleepy in the per-

missioned, sleepy setting, and the committee being all nodes spawned. We say that a protocol Π
satisfies consistency (or liveness, responsiveness in lucky epochs resp.) in (n, ρ,∆)-static, sleepy
environments iff for every (A,Z) that respects (n, ρ,∆)-sleepy execution and static corruption, Π
satisfies consistency (or liveness, responsiveness in lucky epochs resp.) w.r.t. (A,Z).

Theorem 16 (Thunderella for permissioned, sleepy environments). For any n, any ∆, and any

positive constant ρ < 1
2 , Π

[Sleepy]
ella satisfies 1) consistency and Tconfirm-liveness for some Tconfirm =

O(κ∆); and 2) optimistic responsiveness in lucky epochs (where lucky epoch is defined as in Sec-
tion 3.2.4 for α := 1− ρ) in (n, ρ,∆)-static, sleepy environments.

Proof. Straightforward from Theorems 6, 8, 9, and 10.

We note that although the above theorem is stated for static corruption, our Thunderella
paradigm can also generalize to the adaptively secure version of sleepy consensus [43] with pa-
rameters adjusted accordingly.

4.2.1 Practical Considerations for Consortium Blockchains

A consortium blockchain is one of the most important emerging applications for permissioned
consensus. In a consortium blockchain, a number of banks (e.g., on the order of hundreds) would
like to create a distributed ledger to allow fast inter-bank settlement and reduce back-office manual
labor. Thunderella is a good fit for such consortium blockchains — particularly, its simplicity will

46 CHAPTER 4. THUNDERELLA FOR PERMISSIONED

facilitate reconfiguration and operational maintainence. A suitable instantiation for this setting
is to rely on Sleepy consensus as the underlying blockchain and use Thunderella to add a layer
of voting to accelerate transaction confirmation. While the naive strategy is to have all registered
consensus nodes act as the committee, it would be desirable to down-select the committee to reduce
bandwidth consumption. We discuss how to achieve this below.

Bandwidth reduction and down-selection of committee. To reduce the bandwidth con-
sumption associated with the voting step, instead of having all registered nodes act as the com-
mittee, we can down-select a committee of size Θ(κ) at random. The most naive approach is to
randomly select a subset of the nodes to act as the committee upfront using a random oracle (as-
suming that users’ public keys must be registered upfront before the random oracle is determined).
Due to a simple application of the Chernoff bound, as long as overall the adversary controls only
ρ < 1

2 − ε fraction of online nodes, then among the committee the adversary can only control
minority as well. However, such an approach would tolerate only static corruptions since an
adaptive adversary can observe which Θ(κ) nodes get elected as the committee, and then corrupt
the committee specifically.

To tolerate adaptive corruptions (and adaptive sleepiness), we can rely on verifiable random
functions (VRFs) in a similar fashion as Micali [36] — concretely, such a VRF can be instantiated in
practice using a unique signature scheme and a random oracle. Let us assume that a random oracle
H is chosen after all nodes’ public keys are registered with the PKI. Let Σ := (USign,Vf) denote
a unique signature scheme — this is a separate signature scheme than the one used to notarized
transactions. Further, each node will register both public keys (one for the unique signature scheme
and one for notarizing transactions) with the PKI.

• The idea is that now each sequence number (e, s) will select a different Θ(κ)-sized committee,
and the committee formation is unpredictable to the adversary in advance.

For each sequence number (e, s), user i evaluates

r := H(USignski(e, s))

and if r < Dp, user i is eligible to vote on a transaction for the sequence number (e, s) where Dp

is an appropriate difficulty parameter chosen such that the committee size (counting only those
that are online) is roughly Θ(κ).

It is not difficult to see that given r and pki, everyone can verify that i is indeed eligible to vote
on (e, s).

• Users rely on a forward-secure signing scheme to notarize transactions. In a forward-secure
signature scheme, a signing key corresponding to a certain timestamp T can only be used to
sign transactions stamped with a sequence number T or greater. Further, knowing a signing key
for T , a computationally bounded adversary cannot forge signatures for any sequence number
smaller than T .

Whenever nodes sign a new notarization request for the sequence number (e, s), they update the
signing key to the timestamp (e, s) and then perform the signing. After notarizing a transaction
with the sequence number (e, s), the signing key is immediately updated to the next timestamp
(e, s+ 1), and the old copy immediately erased from memory. In this way, even if the adversary
immediately corrupts a node that has just notarized a transaction with the sequence number
(e, s), he is unable to make the node change his mind and sign an equivocating transaction for
the same (e, s).

4.2. PERMISSIONED, SLEEPY ENVIRONMENTS 47

Using techniques similar to Micali [36], it is not difficult to show that assuming random oracle
and the erasure model, among every committee, the majority of online committee members are
honest as long as overall, the adversary controls no more than ρ = 1

2−ε fraction of the online nodes
(for an arbitrarily small positive constant ε) — and this holds even under adaptive corruptions
(and adaptive sleepiness).

48 CHAPTER 4. THUNDERELLA FOR PERMISSIONED

Chapter 5

Thunderella for Permissionless

In this section, we will consider how to instantiate the Thunderella paradigm in a permissionless
framework, e.g., as the underlying consensus mechanism for a decentralized cryptocurrency. Specif-
ically, we will discuss i) how to elect and rotate the committees over time (Sections 5.1, 5.2 and
5.3), and ii) practical considerations for leader election (Section 5.4). Throughout this section, we
will also describe how to achieve fairness and incentive compatibility in a decentralized setting.

5.1 Thunderella with Robust Committee Reconfiguration

In the permissionless setting, it is not be known upfront who will participate in the protocol.
We will suggest two approaches for performing committee reconfiguration: 1) use the underlying
blockchain to establish the identities of recent miners [40,41], and have recently online miners form
the committee; 2) stake-holders can act as the committee [3, 4, 7, 14,15,31,36,44].

In such committee election policies, typically the committee will evolve over time. We will
describe a robust committee reconfiguration framework on top of Thunderella. An important goal
for our committee reconfiguration framework is to defend against posterior corruption. To explain
why it is important to resist posterior corruption, let us consider a proof-of-stake application where
stake-holders are asked to vote in the consensus mechanism. It is possible that the set of users who
hold (possibly the majority of) stake sometime in the past would sell their stake at some point
— from that point on, they may be incentivized to misbehave, e.g., to create a fork and double
spend their old money. Thus our goal is to maintain worst-case security as long as the majority
(or α fraction for a tunable parameter α) of the committee remain honest (but not necessarily
online) during their term of appointment and shortly afterwards as well. However, sometime after
the committee finished their term of appointment, afterwards even if the entire past committee
become corrupt, the corrupt past committee should not be able to sign into the past and break the
worst-case guarantees.

Roadmap. In this section, we will describe a general framework for robust committee election
that defends against posterior corruption. In subsequent sections, we will describe two concrete
committee rotation strategies: electing the committee either from the set of recently online miners
or from recent stake.

Intuition. Recall that we would like to have a general framework for robust committee recon-
figuration tolerating posterior corruption attacks. Our idea is to tag each notarized transaction
with a clock number denoted c, and each clock number can have a different committee denoted

49

50 CHAPTER 5. THUNDERELLA FOR PERMISSIONLESS

committeec. In our concrete realization, we will use the block length as a rough notion of time,
and thus the clock number roughly corresponds to the time at which the transaction is proposed.
Based on this, a notarized transaction will now be of the form (e, s, c, c′,m, V), where

• e denotes the epoch number,

• s denotes the sequence number within the epoch,

• m denotes the transaction, and V denotes a collection of sufficiently many signatures from
committeec on the message (e, s, c, c′,m),

• c denotes the clock number for the current transaction, and

• c′ denotes the intended clock number for the next transaction — the inclusion of c′ uniquely
determines the (e, s, c, c′) tuple of the immediate next transaction in the lucky sequence, such
that any notarized lucky sequence for an epoch must be unique.

Intuitively, this clock number c represents the approximate length of honest (and online) nodes’
blockchains at the time that the leader of epoch e proposed a notarization request (e, s, c, c′,m).
Additionally, we require that a notarized transaction with the clock number c be incorporated
in the blockchain sufficiently soon w.r.t. c. Specifically, a notarized transaction with the clock
number c must be incorporated into the blockchain by length c + 2κ — if it is incorporated later
than this, it is not considered as a legitimate inclusion in the blockchain and will simply be ignored.
Correspondingly, we require that the committees are chosen such that each committee committeec
will remain honest (but not necessarily online) till the time honest chain lengths are roughly c+ 4κ
— this makes sure that even if an entire past committee becomes corrupt a posteriori (i.e., after
the notarized transactions get incorporated into the blockchain), they cannot overwrite the past.

Finally, when an honest node outputs a lucky sequence of notarized transactions in the opti-
mistic mode, it will make sure that the lucky sequence being output will have enough time to be
legitimately incorporated into the blockchain should a grace period ensue immediately.

We now describe our new protocol Π̃thunder more formally. Specifically, our description will
roughly follow that of Section 3.2 (where we described a protocol Πthunder for the case of static
committee), but we will focus on describing the new modifications on top of Πthunder.

5.1.1 Protocol Π̃thunder: Consistency and Worst-Case Liveness

Notarized transactions. Notarized transactions are defined in a very similar way as in Sec-
tion 3.2 except now we need to incorporate an extra clock number c and for each c there is a
different committee denoted committeec. We say that a tuple (e, s, c, c′,m, V) is a notarized trans-
action w.r.t. some committee of public keys denoted committeec iff

• For each (pk, σ) ∈ V , pk ∈ committeec and moreover σ is a valid signature for (e, s, c, c′,m) under
pk — in this case, we also say that (pk, σ) is a valid vote for (e, s, c, c′,m) w.r.t. committeec.

• There are more than 3
4 ·
∣∣committeec

∣∣ votes in V with distinct pks (or more generally, we can
also replace 3

4 with 1− α
2 if we wish to tolerate 1−α fraction of corrupt committee in the worst

case)1.

If (e, s, c, c′,m, V) is a notarized transaction w.r.t. committeec, we also say that V is a valid
notarization for (e, s, c, c′,m) w.r.t. committeec.

1Note that by this definition, if committeec = ∅, no transaction can be notarized w.r.t. to committeec.

5.1. THUNDERELLA WITH ROBUST COMMITTEE RECONFIGURATION 51

Lucky sequence. To define the notion of a lucky sequence, we make the additional assumption
that each epoch number e defines the starting clock number, i.e.,

e := (ẽ, c0)

where ẽ denotes the actual epoch number and c0 is the starting clock number.
A sequence {ei, si, ci, c′i,mi, }i∈{1,2,...,`} is said to be a lucky sequence iff c1 agrees with the

starting clock number for epoch e, and moreover, for all i ∈ [`− 1], ei = ei+1, si = i, and ci+1 = c′i.
In other words, like before, we still require that the sequence numbers increment one by one; but
here we additionally require that the next clock number ci+1 should always agree with the c′i value
declared in the previous transaction,

Note that the above definition ensures the uniqueness of the lucky sequence as long as every
committeec has sufficiently many nodes that remain honest sufficiently long. In particular, it is not
possible to have two committees that are both eligible for notarizing a certain sequence number s,
since inductively, as long as the lucky sequence is unique up to sequence number s − 1, then the
next clock number will be uniquely determined (this will be proved formally later).

Chain linearization. The chain linearization algorithm linearize is defined almost identically as
in Section 3.2 (using the new notion of lucky sequence), and with the following modification:

• Any transaction of the form (e, s, c, c′,m, V) can be legitimately included in a blockchain in
between lengths [c, c + 2κ] — if some transaction of this form appears before length c or after
length c+ 2κ, it is simply ignored.

Later in our compliance rules, we will state the requirement that with probability 1, if an honest
and online node’s chain is of length c or greater, then the honest node must have recorded
committeec and moreover all honest and online nodes record the same committeec for every c —
this way, the validity of any (e, s, c, c′,m, V) tuple in any honest chain is unambiguously defined
in every view.

• Further, we modify the definition of the strip(·) function accordingly, such that strip(e, s, c, c′,m, V) :=
(e, s, c, c′,m).

Protocol Π̃
Γ(·,·,·)
thunder. We now describe our new protocol Π̃thunder that provides a committee re-

configuration framework. In particular, we highlight some important new modifications in blue.
Like before, although not explicitly noted, we assume that whenever an honest node receives any
message on the network, if the message has not been broadcast before, the honest node broadcasts
the message.

• Initialize. Fork an instance of Πblockchain with appropriate parameters. Unless otherwise noted,
all messages sent from the Πblockchain instance or destined for Πblockchain are automatically passed
through, but these messages also count towards the view of the current Π̃thunder protocol instance.

• Committee selection. On receiving elect(c, committeec) from Z, if no committee has been
recorded for clock number c earlier, record committeec as the committee for c.

• Notarize. Upon receiving notarization request (e, s, c, c′,m) from Z: if committeec has been
recorded and pk ∈ committeec, and further no signature has been produced for (e, s) earlier,
then compute σ := Σ.Signsk(e, s, c, c

′,m) and broadcast ((e, s, c, c′,m), σ).

• Propose. Every round, let chain be the output from the Πblockchain instance.

52 CHAPTER 5. THUNDERELLA FOR PERMISSIONLESS

– Let TXs be a set containing 1) every notarized transaction2 (e, s, c, c′,m, V) in the node’s view
such that no notarized transaction (e, s, c, c′,m,) was legitimately included in chain[: −0.5κ];
and 2) every unnotarized transaction m in the node’s view such that no m or notarized
transaction (e, s, c, c′,m,) was legitimately included in chain[: −0.5κ].

– Additionally, a node can generate a signing key pair (pk, sk) and include pk in the block
payload as well (such that the environment Z can choose the committees based on observed
public keys). The corresponding secret key sk is kept secret.

– Propose TXs||pk to Πblockchain.

• Output. In every round, let chain be the output from Πblockchain.

– If chain[−0.5κ] is an optimistic block belonging to epoch e:

a) let chain[−`] be the starting block for epoch e in chain where ` ≥ 0.5κ.

b) extract the maximal lucky sequence TXs for epoch e from the node’s view so far such that
for every (e, s, c, c′,m, V) ∈ TXs: either some valid (e, s, c, c′,m,) is already legitimately
contained in chain[: −0.5κ], or c + 2κ ≥ |chain| + 0.5κ, i.e., the clock number c must be
large enough for the notarized transaction to be picked up by the grace period should
chain[−0.5κ+ 1] enter a grace period.

c) let LOG := linearize(chain[: −(`+ 1)])||strip(TXs).

– Else, let LOG := linearize(chain[: −0.5κ]).

– Let LOG be the previous output to Z: if LOG is longer than LOG, output LOG; else output
LOG to Z.

• Mempool. Upon receiving any other message from the network or Z, record the tuple.

Compliant executions. We say that (A,Z) is compliant w.r.t. Π̃
Γ(κ,·,·)
thunder iff

• Blockchain compliance. (A,Z) is compliant w.r.t. Πblockchain;

• Consistency and timeliness of committee selection. For every κ, in every view in the support of

EXECΠ̃
Γ(κ,·,·)
thunder(A,Z, κ), for every c ∈ N, if in some round an honest and online node’s chain is

of length c− 0.25κ or greater, then the node must have recorded committeec; and moreover, all
honest nodes must record the same committeec.

• Resilience. For every κ, in every view in the support of EXECΠ̃
Γ(κ,·,·)
thunder(A,Z, κ), for every clock

number c, more than 1
2 fraction (or in general, more than α fraction) of the distinct public

keys in committeec are output by nodes that remain honest (but not necessarily online) till
len2time(c + 4κ, view) where len2time(`, view) denotes the earliest round in which the shortest
honest chain is at least ` in length.

Importantly, here we require that the underlying blockchain be secure, and moreover, the major-
ity of every committee must remain honest (but not necessarily online) during its term of appoint-
ment, and shortly afterwards as well. We show that Π̃thunder satisfies consistency and worst-case
liveness in compliant executions. In particular, these worst-case guarantees hold even when some
past committee can be entirely corrupt at a future point of time, i.e., our Π̃thunder scheme tolerates

2If committeec has not been recorded by an honest node, then any tuple (, , c, , ,) is not considered as a
notarized transaction at this moment (but may later become notarized when committeec has been recorded.

5.1. THUNDERELLA WITH ROBUST COMMITTEE RECONFIGURATION 53

posterior corruption. As earlier works noted [15, 30, 36, 41] formally or informally, the ability to
tolerate posterior corruption is important in proof-of-stake contexts where stake-holders are asked
to vote on transactions.

We now formally state our worst-case guarantees in compliant executions in the theorems below.
The proofs of these theorems are deferred to Section 5.1.3.

Theorem 17 (Consistency). Let Γ(κ, ·, ·) be any admissible chain-state function. Then, Π̃
Γ(κ,·,·)
thunder

satisfies consistency as defined in Section 2.2 w.r.t. any p.p.t. (A,Z) that is compliant w.r.t.

Π̃
Γ(κ,·,·)
thunder.

Chain state function. Consistency holds for any admissible chain-state function. To prove
worst-case liveness, we instantiate Γpred(·, ·, ·) with the concrete chain state function described in
Section 3.2.3. At this moment, we leave pred unspecified, since our worst-case liveness guarantees
hold regardless of what pred is.

Theorem 18 (Worst-case liveness). Let Γ(κ, ·, ·) := Γpred(·, ·, ·) be the chain-state function as
specified in Section 3.2.3 for any polynomial-time boolean predicate pred. Let g0 denote the un-
derlying Πblockchain’s chain growth lower bound parameter, and let Tconfirm(κ) := 3κ

g0
. For any

p.p.t. (A,Z) that is compliant w.r.t. Π̃
Γ(κ,·,·)
thunder, there exists a negligible function negl(·) such that

for every κ ∈ N, except with negl(κ) probability over the choice of view ← EXECΠ̃
Γ(κ,·,·)
thunder(A,Z, κ),

the following holds: suppose that Z inputs a transaction m to an honest node in round r, then in
any round r′ ≥ r + Tconfirm(κ), all honest and online nodes’ output LOG to Z will contain some
(, , , ,m) or m.

5.1.2 Protocol Π̃ella: Optimistic Responsiveness

We now describe the leader-based coordination mechanism for ensuring responsiveness during lucky
epochs. This part is captured in protocol Π̃ella.

Description of Π̃ella. Π̃ella calls Π̃
Γpred(κ,·,·)
thunder . We spell out the next-epoch function pred and the

rest of Π̃ella below. Most of the protocol is similar to our earlier Πella which works for a static
committee. We will highlight the important differences in blue.

• Next-epoch function. The policy function pred(chain, e) takes in an abstract blockchain denoted
chain and an epoch number e. If there exists a notarized transaction for epoch e in chain, then
output 1; else output 0. Notice that our definition here depends on committeec for each c of
concern — later we shall mention that in a compliant execution, all honest nodes record the
same committeec for every c and thus the definition is unambiguous.

• Initialize: fork an instance of the Π̃
Γ(κ,·,·)
thunder protocol.

• Leader switch: upon input leader(e, i): parse e := (ẽ, c) where c denotes the starting clock
number, if no leader has been recorded for epoch ẽ, record the tuple (e, i), and do the following:

– if current node is i: wait till the chain output from Πblockchain is of length at least c, and then
send a notarization request for a special epoch-start transaction (e, s = 1, c, c′, start) where
c is the starting clock number as mentioned above and c′ is the node’s current chain length;
and let s = 2;

54 CHAPTER 5. THUNDERELLA FOR PERMISSIONLESS

– for every notarization request (e, s, c, c′,m) received earlier from node i, act as if (e, s, c, c′,m)
has just been received from i.

• Notarization: upon receiving notarization request (e, s, c, c′,m) from i: if i has been recorded as

the leader for epoch e, forward the notarization request (e, s, c, c′,m) to Π̃
Γ(κ,·,·)
thunder; else ignore the

request.

• Leader: every round: let e be the largest epoch recorded thus far; if current node is recorded as
the leader for epoch e and moreover, a start request of the form (e, s = 1, , , start) has been
broadcast:

– for every m in view such that no m or (, , , ,m) appears in linearize(chain[: −κ]), if a
notarization request has not been broadcast for m earlier, then broadcast a notarization
request for m — we will describe below how this is done.

– if the previous notarization request broadcast contained a c′ value that is smaller than
the current chain length, then broadcast a notarization request for a dummy transaction
dummy||nonce for a freshly chosen nonce.

– To broadcast a notarization request for any m, do the following: 1) broadcast the tuple
(e, s, c̃, c̃′,m) where c̃ is the c′ value declared in the previous notarization request, and where
the new c̃′ is equal to the current chain length; and 2) let s := s+ 1.

• Other messages: pass through all other messages between Π̃
Γ(κ,·,·)
thunder and Z; similarly pass through

all other messages between Π̃
Γ(κ,·,·)
thunder and the network.

Compliant executions. We say that (A,Z) is compliant w.r.t. Π̃ella iff (A,Z) is compliant

w.r.t. Π̃
Γpred(κ,·,·)
thunder where Γpred(κ, ·, ·) is now concretely instantiated as mentioned above.

Lucky epoch. We now formally define the notion of a lucky epoch. Similarly as before, we will
prove that whenever there is a lucky epoch, after a short warmup time, all transactions will confirm
responsively (except for a negligible fraction of views). Formally, we say that [Tstart, Tend] is a lucky
epoch in view iff the following hold:

• In any round r ≥ Tstart+∆, any honest and online node should have received the same instruction
leader(e, i). Further, prior to Tstart, no honest node has received from Z any leader(e′,) where
e′ is the same or a larger epoch than e.

• Let c0 denote the starting clock number for epoch e, then the leader i’s chain must be no shorter
than c0 − κ in round Tstart.

• The leader (i.e., node i) is honest and online at in any round t ∈ [Tstart, Tend + 3∆];

• For every c ≥ c0 such that committeec was ever input to any honest node in or before Tend, it
must be that committeec is non-empty and more than 3

4 fraction (or in general, more than 1− α
2

fraction) of committeec are honest and online in any round during [len2time(c−0.5κ), len2time(c+
0.5κ)].

The following theorem states that our Π̃ella achieves optimistic responsiveness in lucky epochs
after a short warmup time. Its proof is deferred to Section 5.1.3.

5.1. THUNDERELLA WITH ROBUST COMMITTEE RECONFIGURATION 55

Theorem 19 (Optimistic responsiveness in lucky epochs). Let g0 be the underlying Πblockchain’s
chain growth lower bound parameter. For every p.p.t. (A,Z) that is compliant w.r.t. Π̃ella, Π̃ella

satisfies (Twarmup, Topt)-optimistic responsiveness in lucky epochs for Twarmup = O(κg0
), and Topt =

3δ where δ is the actual maximum network delay in view.

5.1.3 Proofs: Robust Committee Reconfiguration Framework

Worst-Case Guarantees

Henceforth in this subsection, whenever we say that “except with negligible probability over the
choice of view, some property ev(view) holds”, we formally mean that for any (A,Z) that is com-

pliant w.r.t. Π̃
Γ(κ,·,·)
thunder, there exists a negligible function negl(·) such that for every κ ∈ N, except

with negl(κ) probability over the choice of view← EXECΠ̃
Γ(κ,·,·)
thunder(A,Z, κ), ev(view) holds.

Lemma 6 (Uniqueness). Assume that the signature scheme is secure, then except with negligible
probability over the choice of view, the following holds. For any (e, s, c) tuple, if (e, s, c, c′,m, V)
is a notarized transaction in some honest node’s view by len2time(c + 4κ, view), and similarly
(e, s, c̃, c̃′, m̃, Ṽ) is also a notarized transaction in some honest node’s view by len2time(c+4κ, view),
then it must be the case that (c′,m) = (c̃′, m̃).

Proof. Similar to the earlier proof of Lemma 2, except that now we additionally rely on the fact
that α fraction of committeec will remain honest till len2time(c+ 4κ, view).

Henceforth, we say that an honest and online node i promptly outputs a notarized transac-
tion (e, s, c, c′,m,) in round r in view, if it included (e, s, c, c′,m) in its output in round r, but
(e, s, c, c′,m) /∈ chainri [: −0.5κ].

Lemma 7. Assume that the signature scheme is secure. Except with negligible probability over the
choice of view, the following holds: for any epoch e, any sequence number s, if for b ∈ {0, 1}, the
notarized transaction (e, s, c, c′b,mb, Vb) either is legitimately included in some honest chain in view,
or is promptly output by some honest (and online) node in view, then it holds that

(a) for b ∈ {0, 1}, (e, s, c, c′b,mb, Vb) must have appeared in view before round len2time(c+4κ, view);
and

(b) (e, s, c, c′0,m0) = (e, s, c, c′1,m1).

Proof. To show this, by Lemma 6 and definition of lucky sequence, it suffices to show the following
ignoring the negligible fraction of views where relevant bad events happen:

1. Any notarized transaction with the clock number c that legitimately appears in some honest
chain ch must appear in view before len2time(c + 4κ, view). For any notarized transaction con-
tained in ch[`∗], its clock number c ≥ `∗ − 2κ. Since len2time(`∗ + 2κ) ≤ len2time(c + 4κ), it
suffices to show that any notarized transaction that appears in ch[`∗] must appear in view before
len2time(`∗ + 2κ, view) — and this follows from consistency of the underlying Πblockchain.

2. For any notarized transaction with the clock number c cannot be promptly output by any honest
(and online) node in or after len2time(c+4κ, view). Suppose that some honest (and online) node
i promptly output some notarized transaction with the clock number c in round r. It must hold
that c ≥ |chainri | − 1.5κ. By chain growth upper bound, we have that r ≤ len2time(c+ 4κ).

56 CHAPTER 5. THUNDERELLA FOR PERMISSIONLESS

We now prove the counterpart of Lemma 3 but for our new protocol Π̃thunder.

Lemma 8. Let Γ(κ, ·, ·) be any admissible chain-state function. Except with negligible probability
over the choice of view, the following holds: for any r and t, for any node i honest and online in

round r and any node j honest and online in round t, either LOG
r
i ≺ LOG

t
j or LOG

t
j ≺ LOG

r
i .

Proof. In every round, an honest node’s LOG is of the generalized form linearize(chain[: −`])||strip(TXs)
where

• either TXs is empty and ` = 0.5κ or

• TXs is a non-empty lucky sequence for some epoch e and ` ≥ 0.5κ.

Suppose that LOG
r
i := linearize(chainri [: −`])||strip(TXs) and LOG

t
j := linearize(chaintj [: −`′])||strip(TXs′)

are output logs by node i in round r and by node j in round t respectively in view. Henceforth we
ignore the negligible fraction of views where relevant bad events happen. For the remaining good
views, the following statements hold.

By consistency of Πblockchain, either chainri [: −`] ≺ chaintj [: −`′] or chaintj [: −`′] ≺ chainri [: −`].
Without loss of generality, henceforth we assume that chainri [: −`] ≺ chaintj [: −`′]. We now consider
the following cases:

• Case 1: TXs is empty. In this case, it follows directly from Fact 4 that LOG
r
i ≺ LOG

t
j .

• Case 2: TXs is non-empty. In this case, chainri [−`+ 1] must be the starting block of some epoch
e, and chainri [−0.5κ] must be an optimistic block of epoch e. We now consider the following
sub-cases:

– Case 2a: Epoch e has completed in chaintj [: −`′], i.e., there are two adjacent blocks such that

the former belongs to epoch e and the latter does not in chaintj [: −`′]. Let chaintj [−`∗] denote

the last block of epoch e in chaintj [: −`′]. By Fact 4, it suffices to prove that linearize(chainri [:

−`])||strip(TXs) ≺ linearize(chaintj [: −`∗]).
Let `ri := |chainri | be the length of node i’s chain in round r. By definition of the honest
protocol, TXs must be a lucky sequence for epoch e in node i’s view in round r, and further,
for every notarized transaction (e, s, c, c′,m, V) ∈ TXs, unless some (e, s, c, c′,m,) is already
legitimately contained in chainri [: −0.5κ] it must be that c+2κ ≥ `ri +0.5κ, i.e., c ≥ `ri −1.5κ.
By round r+∆, TXs must exist in any honest node’s view. By the admissibility of the chain-
state function Γ and the fact that chainri [−0.5κ] is an optmistic block of epoch e, chaintj [: −`∗]
must be at least 0.5κ longer than chainri . By chain growth upper bound, by round r+ ∆, any
honest chain must be at most `ri + 0.25κ in length. By liveness, for any honest chain denoted
ch in view whose length is at least `ri + 0.5κ, all notarized transactions in TXs must appear in
ch[: `ri + 0.5κ] (and thus chaintj [: −`∗] must include TXs). We now prove that they are in fact
legitimately included in ch[: `ri + 0.5κ] (i.e., the clock numbers of notarized transactions in
TXs are not too early w.r.t. where they are contained in ch.) This is true since we know that
any notarized transaction in TXs that is not already legitimately contained in chainri [: −0.5κ]
has a clock number c ≤ `ri −1.5κ; and further, by consistency chainri [: −0.5κ] ≺ ch[: `ri +0.5κ].

The remainder of the proof follows directly from definition of linearize and Lemma 7.

5.1. THUNDERELLA WITH ROBUST COMMITTEE RECONFIGURATION 57

– Case 2b: Epoch e has not completed in chaintj [: −`′]. Recall that node i outputs linearize(chainri [:
−`])||strip(TXs) in round r. By definition of the honest algorithm, and since chainri [: −`] ≺
chaintj [: −`′], node j’s output in round t must be of the form linearize(chainri [: −`])||strip(TXs∗)
where TXs∗ is either empty or some lucky sequence for epoch e in node j’s view in round t
such that any notarized transaction in TXs∗ must either have been legitimately included in
chaintj [: −0.5κ] or it is “promptly output” by j in round t. By Lemma 7, it holds that either

LOG
r
i ≺ LOG

t
j or LOG

t
j ≺ LOG

r
i .

Proof of consistency. Theorem 17 now follows in a straightforward fashion since by construc-
tions, honest nodes’ output logs never shrink. Thus both common prefix and future self-consistency
follow from Lemma 8 and definition of the honest protocol.

Proof of worst-case liveness. The proof of worst-case liveness is almost identical to the proof
in Section 3.3.2 (except that now in proving the counterpart of Corollary 3, we apply Lemma 7
in place of Lemma 2). We thus omit repeating essentially the same proof and refer the reader to
Section 3.3.2.

Optimistic Responsiveness

We now prove the optimistic responsiveness of our protocol Π̃ella in lucky epochs. Henceforth in
this subsection, whenever we say that “except with negligible probability over the choice of view,
some property ev(view) holds”, we formally mean that for any (A,Z) that is compliant w.r.t. Π̃ella,
there exists a negligible function negl(·) such that for every κ ∈ N, except with negl(κ) probability

over the choice of view← EXECΠ̃ella(A,Z, κ), ev(view) holds.

Fact 5. Except with negligible probability over the choice of view, the following holds: suppose
[Tstart, Tend] belongs to a lucky epoch e in view in which i is the leader. Then, if node i broadcasts
a notarization request of the form (e, s, c, c′,m) in round r ∈ [Tstart, Tend], it holds that

(a) In any round r′ ≥ r+3δ, all honest nodes will have obtained a valid notarization V for the tuple
(e, s, c, c′,m); and

(b) For any honest chain denoted ch in view of length c+ 0.25κ, ch[: c+ 0.25κ] legitimately includes
some notarized transaction of the form (e, s, c, c′,m, V).

Proof. Henceforth we ignore the negligible fraction of views where relevant bad events take place. By
honest protocol definition, if the leader i proposes some notarization request of the form (e, s, c, c′,m)
in round r ∈ [Tstart, Tend], it holds that the leader’s chain must be of length c − 1 in round r − 1.
By chain growth upper bound, in round r, all honest and online nodes’ chains must be of length
at least c − 0.25κ. Further, in round r + δ, all honest and online nodes’ chains must be of length
at most c+ 0.25κ. By our compliance rules, in any round r′ ≥ r, any honest and online node must
have recorded the same tuple committeec. By definition of a lucky epoch and definition of honest
protocol, it holds that more than 3

4 fraction of committeec remain honest and online during [r, r+δ].
By honest protocol definition, it is not hard to see that claim (a) holds. Now claim (b) also follows
by liveness and definition of “legitimately include”.

We now prove the equivalent of Lemma 5 but now for our new Π̃ella.

58 CHAPTER 5. THUNDERELLA FOR PERMISSIONLESS

Lemma 9. Except with negligible probability over the choice of view, the following holds: Suppose
that [Tstart, Tend] belongs to a lucky epoch in view corresponding to epoch e and leader i; and let
Twarmup = 4κ

g0
where g0 is the chain growth lower bound parameter of the underlying Πblockchain.

Then, for any honest chain denoted chain during [Tstart + Twarmup, Tend], chain[−0.5κ] must be an
optimistic block of epoch e.

Proof. The proof would have been the same as that of Lemma 5 if in round Tstart, the leader’s
chain were exactly of length c0 where c0 is the starting epoch number for epoch c. In particular,
due to Lemma 7 and Fact 5, every argument made in the proof of Lemma 5 would still follow.

Now, taking into account that our new ”lucky epoch” definition permits the leader’s chain to be
c0 − κ or longer during round Tstart. We can simply redo the proof of Lemma 7 by replacing Tstart

in the proof with T̃start where T̃start is the earliest round in view in which the leader’s chain is of
length c0 or greater. By growth lower bound, it holds that T̃start ≤ Tstart +κ/g0 — note that in our
new lemma here, the Twarmup is redefined as 4κ/g0, and the extra κ/g0 accounts for the difference

between T̃start and Tstart.

Proof of optimistic responsiveness. The remainder of the proof for optimistic responsiveness
would follow in the same manner as the proof for Πella (for a static committee), but where the new
Twarmup = 4κ/g0.

5.2 Recent Blockchain Miners As Committee

So far, we have described a general framework for committee reconfiguration but we have not
described exactly what committee election policy would be suitable. In this section, we will describe
one concrete strategy that leverages the underlying blockchain to elect a set of recently online
blockchain miners as the committee. Henceforth in this section, we assume that the underlying
blockchain is a proof-of-work blockchain (the mechanism also applies to proof-of-stake blockchains,
but for proof-of-stake blockchains simpler mechanisms exist for electing a stake-based committee).
We would like to guarantee that as long as the adversary controls ρ fraction of overall nodes (i.e.,
computational power), then it must be the case that roughly 1 − ρ fraction of the committee will
remain honest sufficiently long, i.e., till sometime after its term of appointment. We will formally
prove this property (which is required by our earlier committee rotation framework Π̃ella) under
the assumption of a mildly adaptive adversary. Specifically, a τ -mildly adaptive adversary is a
relaxation of a fully adaptive adversary since it takes at least τ time to adaptively corrupt nodes.

5.2.1 Preliminary: Mildly Adaptive Corruptions

Let τ, τ ′ be functions in κ. In a τ -mildly adaptive corruption model, roughly speaking, it takes
the adversary at least τ(κ) rounds to corrupt an honest node, where τ is referred to as the agility
parameter [41]. Similarly, we can a corresponding agility parameter for sleepiness too called τ ′(κ).
In other words, it takes the adversary τ ′(κ) rounds to put an honest node to sleep.

To formally model this, we can bake this into the underlying model — but to do it more cleanly
in our general modeling framework, we choose to model mildly adaptive corruption as an additional
constraint on (A,Z). Formally, we say that (A,Z) respects (n, ρ,∆, τ, τ ′)-permissionless execution
w.r.t. some protocol Π iff for every κ, for every view in the support of EXECΠ(A,Z, κ), the following
hold:

1. (A,Z) respects ∆-bounded network delay w.r.t. Π;

5.2. RECENT BLOCKCHAIN MINERS AS COMMITTEE 59

2. if Z issues corrupt to any honest node i in round r in view, in some round r′ ≤ r − τ(κ), Z
must output precorrupt(i). Note that the adversary receives node i’s internal states and gets
to control node i when the actual corrupt instruction is issued to i.

3. if Z issues sleep to any honest node i in round r in view, in some round r′ ≤ r− τ ′(κ), Z must
output presleep(i). The node actually falls asleep upon receiving sleep.

4. in every round, the total number of precorrupt nodes, corrupt nodes, and honest and online
nodes equals to n where precorrupt nodes include every i such that Z has said precorrupt(i)
but i has not become corrupt yet.

5. in every round, the total number of precorrupt nodes and corrupt nodes is less than ρn.

6. Z informs all honest nodes of the parameters (n, ρ,∆) upon spawning.

In particular, in the above definition, if the agility parameter τ = 0, τ -mildly adaptive is
equivalent to fully adaptive. On the other hand, if τ =∞, then τ -mildly adaptive is equivalent to
static corruption. Similarly if τ ′ = 0, then we model adaptive sleepiness.

Terminology. Henceforth, if Z has not output precorrupt(i), then we say that i is intact. If
Z has not output corrupt(i), we say that i is honest — basically honest nodes include those that
are intact (i.e., have not received precorrupt) or those that are precorrupt but have not actually
become corrupt. When τ = 0, intact and honest mean the same.

5.2.2 Preliminary: Committee Election in a Permissionless Environment

In a permissionless environment, the set of nodes who participate in the protocol are not known
in advance. It would be desirable to have a protocol that allows us to elect a good committee in a
permissionless environment, where a committee is good iff the fraction of corrupt (and precorrupt)
nodes in the committee is not too much larger than the fraction of overall corruption ρ. A recent
work called Fruitchains [40] showed a protocol for achieving this above goal relying on any abstract
blockchain protocol. Fruitchains [40] shows that given any blockchain protocol with positive chain
quality, we can construct a blockchain protocol where for every block length, we can “elect a com-
mittee” among which, informally speaking, at most (1+ ε)ρ fraction can be corrupt (or precorrupt)
where ε is an arbitrarily small constant and ρ is the overall percentage of corrupt nodes. In other
words, if the adversary controls at most ρ fraction of corrupt (and precorrupt) nodes, he cannot
increase his representation in the elected committee by more than any arbitrarily small ε fraction.
We will formalize this property as fruit quality. We define fruit quality in the more general model
that allows mildly adaptive corruptions as described in Section 5.2.1.

Fruit quality. Henceforth, given a blockchain protocol Πblockchain and an efficiently computable
function fruits, we say that the pair (Πblockchain, fruits) satisfies (Kf , Lf , µf) fruit quality w.r.t.
(A,Z) iff there exists a negligible function negl(·) such that for any κ ∈ N, except with negligible
probability over the choice of view← EXECΠblockchain(A,Z, κ), the following holds:

• Given any honest chain denoted chain in view, for every length ` ≥ Kf that is not too short, it
holds that fruits(chain[: `]) outputs a set of “fruit records” such that more than µf fraction of
the fruit records are intact at most Lf blocks ago w.r.t. chain[: `] — here we say that a fruit
record f is intact at most Lf blocks ago w.r.t. chain[: `] iff f was contained in Z’s input to some
intact node when its chain length was at least `− Lf .

60 CHAPTER 5. THUNDERELLA FOR PERMISSIONLESS

Although our definition of fruit quality is a slight variant in comparison with the original
Fruitchains paper [40] — here we chose to define this variant as it is easier to work with — the
Fruitchains work [40] essentially proved the following lemma:

Lemma 10 (Fruit quality [40]). For any n,∆, and any positive constant ρ, suppose that there exists
a blockchain protocol Π such that for any positive constant ε, Π satisfies εκ-consistency, (εκ, εκ, µ)-
chain quality3 for some positive µ, and (εκ, g0, g1)-chain growth for some positive g0, g1 in (n, ρ,∆)-
permissionless environments, then there exists another blockchain protocol Π̃, an efficiently com-
putable function fruits, and some constants C0, C1 such that for any positive constant ε, η, (Π̃, fruits)
satisfies εκ-consistency, (εκ, εκ, µ)-chain quality, (εκ, g0, g1)-chain growth, and (C0κ,C1κ, µf)-fruit
quality where µf := 1− (1 + η)ρ in (n, ρ,∆)-permissionless environments.

Henceforth we will use the terms “fruit quality” and “committee quality” interchangably. In
particular, ideal fruit quality (or committee quality) would be exactly 1 − ρ where ρ denotes the
overall fraction of corrupt nodes.

Overview of Fruitchains. A strawman idea for electing committees is simply to elect the miners
of recent κ consecutive blocks as the committee, and to achieve consistency of the committee, a
node should also remove Θ(κ) number of trailing blocks which might not have stablized. Indeed,
some variant of this idea was adopted in some recent works such as Byzcoin [32] who incorrectly
claimed that they could achieve almost optimal “committee quality”.

An important observation is that such a strawman scheme does not result in almost ideal
committee quality due to a well-known selfish mining attack [21, 23, 39]. We use a proof-of-
work blockchain as an example below although selfish mining is also relevant to non-proof-of-work
blockchains [15, 30, 43]. In such an attack, whenever a corrupt node mines a block, it does not
release the block immediately but withholds it to itself. Whenever an honest miner mines a block
at the same length, the adversary now performs a network rushing attack and makes sure that the
adversary’s private chain is received first by other honest nodes, such that honest nodes would now
choose the adversary’s private chain to extend from. Effectively, for every block mined by corrupt
nodes, the adversary can erase one block worth of honest work, thus effectively “erasing” a fraction
of the honest mining power. Suppose that the adversary controls ρ fraction of the total mining
power and the honest nodes wield 1 − ρ fraction. As argued above, the adversary can effectively
erase ρ fraction of the honest mining power, and thus from a back-of-the-envelop calculation (which
can in fact be formalized [23,39]), we can only attain roughly 1−2ρ

1−2ρ+ρ = 1− ρ
1−ρ chain quality (c.f.,

ideal chain quality would be 1 − ρ). Thus the strawman scheme described above achieves only
1− ρ

1−ρ committee quality. For example, when the adversary controls 1
3 fraction of overall mining

power, he controls roughly 1
2 of the blocks. Similarly, if adversary controls close to 1

2 fraction of
overall mining power, he controls almost all blocks! Although the above selfish mining assumes
that honest nodes pick the chain received earlier to break ties in length, a similar analysis would
apply to other ways of tie breaking (but with possibly slightly less degradation in chain quality).

Fruitchain’s idea defends against such selfish mining attacks by introducing conceptually two
independent mining processes (in reality, the two processes are piggybacked on top of each other
such that no extra mining is required on top of Nakamoto): one for mining blocks and one for
mining fruits. Whenever an honest node mines a fruit, it will broadcast this fruit and honest nodes
would then include the fruits in blockchains4. Since the work of mining the fruits cannot be erased

3The definition of chain quality is also adapted to count intact (rather than honest) blocks in the case of mildly
adaptive corruptions.

4The Fruitchains paper [40] requires that blocks contain fruits and fruits contain transactions. In our paper, we

5.2. RECENT BLOCKCHAIN MINERS AS COMMITTEE 61

by an adversary, Fruitchain proves that in any sufficiently large window of consecutive blocks, the
fraction of recently mined intact fruits approximates the overall fraction of intact nodes.

Henceforth in our paper will leverage Fruitchain’s results as a blackbox in the manner stated
by Lemma 10.

5.2.3 Detailed Protocol

We describe a concrete instantiation of our general committee election framework. This concrete
protocol, henceforth denoted Π∗, is almost identical to Π̃ella with the following modifications:

• The underlying Πblockchain is concretely instantiated with one that has almost ideal “fruit qual-
ity” where fruits denotes the fruit election function. Specifically, we assume that there are
fixed constants C0 and C1 such that for any positive constants ε, η, (Πblockchain, fruits) satis-
fies εκ-consistency, (εκ, εκ, µ)-chain quality for some positive µ, (εκ, g0, g1)-chain growth, and
(C0κ,C1κ, µf)-fruit quality where µf = 1− (1 + η)ρ.

• Committee selection is now concretely instantiated with the following strategy: whenever the
chain output from Πblockchain is of length c− 0.5κ,

a) if c− 0.5κ < C0κ, act as if elect(c, ∅) is input from Z — note that by our definitions earlier,
in this case, no transaction can be notarized w.r.t. the c-th committee;

b) else act as if elect(c, fruits(chain[: c− κ])) has been input from Z.

Compliant executions. We say that (A,Z) is compliant w.r.t. Π∗ iff

• (A,Z) is compliant w.r.t. Πblockchain; and

• (A,Z) respects (n, ρ,∆, τ, 0)-permissionless execution w.r.t. Π∗ for τ ≥ (C1+6)κ
g0

where g0 is the
underlying Πblockchain’s growth lower bound parameter.

Theorem 20 (Concrete committee rotation strategy in a permissionless setting). For any p.p.t.(A,Z)
compliant w.r.t. Π∗, the above protocol Π∗ satisfies consistency, Tconfirm-liveness, and (Twarmup, Topt)-
optimistic responsiveness in lucky epochs w.r.t. (A,Z) for

Tconfirm := O(
κ

g0
), Twarmup := O(

κ

g0
), and Topt := 3δ

where g0 is the underlying Πblockchain’s chain growth lower bound parameter.

Proof. By Theorems 17, 18, and 19, it suffices to prove that “consistency and timeliness of com-
mittee selection” and “resilience” conditions (see Section 5.1.1) are satisfied for all but a negligible
fraction of the views — these follow in a straightforward fashion from the definition of τ -agility,
chain growth lower bound, and fruit quality.

Finally, it is not difficult to see that under mildly-adaptive sleepiness for a sufficiently large τ ′,
and assuming that ρ < 1

4−ε, then except with negligible probability, it is guaranteed that more than
3
4 of every committeec are honest and online during [len2time(c − 0.5κ), len2time(c + 0.5κ)]. More
specifically, if (A,Z) respects (n, 1

4 − ε,∆, τ, τ
′)-permissionless execution where ε is an arbitrarily

small positive constant, τ = τ ′ > Cκ∆ for an appropriately large constant C, then, the condition
for a lucky epoch boils down to the following: [Tstart, Tend] is a lucky epoch in view as long as the
following hold:

assume a more practical variant where blocks contain both fruits and transactions, and fruits contain only a public
key of the fruit’s miner. Lemma 10 is also expressed for this variant.

62 CHAPTER 5. THUNDERELLA FOR PERMISSIONLESS

• In any round r ≥ Tstart+∆, any honest and online node should have received the same instruction
leader(e, i). Further, prior to Tstart, no honest node has received from Z any leader(e′,) where
e′ is the same or a larger epoch than e.

• Let c0 denote the starting clock number for epoch e, then the leader i’s chain must be no shorter
than c0 − κ in round Tstart.

• The leader (i.e., node i) is honest and online at in any round t ∈ [Tstart, Tend + 3∆];

5.2.4 Reward Distribution and Incentive Compatibility

In a decentralized cryptocurrency, it is important to incentivize participation, such that users will
be financially driven to participate in the decentralized consensus — the broader the participation,
the more decentralized (and thus more secure) the overall system is. Further, if the underlying
blockchain is proof-of-work, users also need to be remunerated to offset the costs associated with
participation.

Incentive compatible reward distribution can be achieved using the same ideas as Fruitchains [40].
For each block chain[`], the block reward and the transaction fees for all transactions contained in
this block5 can be distributed to the recent set of fruits, i.e., fruits(chain[: `]). Pass and Shi [40] show
that such a reward distribution mechanism achieves ε-Nash equilibrium against any coalition that
controls only minority of the total computation power (for an arbitrarily small positive constant
ε). In other words, as long as the adversary controls less than minority of the computation power,
it cannot earn more than ε fraction more than its fair share of rewards.

5.3 Recent Stake-Holders As Committee

No matter whether the underlying blockchain is proof-of-work or proof-of-stake [8, 15, 30, 36], it
may make sense to select recent stake-holders to act as the committee. In Thunderella, we ask that
the stake-based committee help accelerate transaction confirmation. Of course, if the underlying
blockchain is also proof-of-stake (e.g., Snow White [15]), then the stake-based committee is in fact
serving two purposes: 1) execute the underlying consensus protocol (e.g., Snow White [15]); and
2) help accelerate transaction confirmation in optimistic situations.

The selection of a stake-based committee in Thunderella is no different from the earlier works
on proof-of-stake blockchains. Two classes of approaches have been proposed [7, 8, 15, 36]. In both
approaches, committee re-election happens periodically per epoch, and the election process takes
place on the blockchain (i.e., a committee is decided by looking back at a stabilized prefix of the
blockchain). We describe the two committee election strategies below:

1. Have (possibly a random subset of) the recent stake-holders act as the committee. In this case,
as Daian et al. [15] suggested, it would be a good idea to limit the liquidity of the cryptocurrency,
such that the present committee cannot immediately sell all of its stake and be incentivized to
attack the protocol — recall that since our committee rotation framework Π̃ella defends against
posterior corruption, i.e., a past committee who have entirely sold their stake well after their
term of appointment cannot overwrite history and break consensus. Here the limited liquidity
requirement prevents the present stake-holders from selling their stake and defecting too quickly.
We defer more detailed discussions of the limited liquidity assumption to Daian et al. [15].

5Here a transaction tx is considered to be contained in the block iff this is the first block in which some notarized
or unnotarized version of tx first appears.

5.3. RECENT STAKE-HOLDERS AS COMMITTEE 63

2. Stake-holders can express interest in participation by putting down collateral [7, 8]. This col-
lateral is frozen during the stake-holder’s term of appointment. Should there be evidence that
a stake-holder misbehaved during the protocol, its collateral may be taken away as penalty [7].

5.3.1 Fair Committee Down-Selection and Incentive Compatibility

In both cases, if too many stake-holders are eligible to vote, we may consider random down-selection
of the committee to Θ(κ)-size to reduce bandwidth consumption. Since committee members are
rewarded for their participation, such down-selection should be fair [40], such that an adversary
controlling ρ fraction of recent stake cannot control more than (1 + ε)ρ of the committee where ε
is an arbitrarily small positive constant.

Strawman idea. A strawman idea is to rely on a random oracle H to perform the down-selection,
i.e., if H(pk, (e, s, c)) < Dp where Dp is an appropriate difficulty parameter, then pk is considered a
committee member for the tuple (e, s, c). Unfortunately, this idea is prone to an adaptive chosen-key
attack, where an adversary, having seen the random oracle H, can choose keys that are guaranteed
to be elected for a specific committee c.

Dealing with chosen-key attacks. To deal with such an adaptive chosen-key attack, we can
adopt an idea described by Snow White [15], where the public keys must be registered on the
blockchain before a random nonce is generated to seed the new random oracle. More formally, A
public key pk is considered an eligible voter for the tuple (e, s, c) iff

1. pk holds sufficient stake in the prefix of the chain chain[: c − 2κ]; (henceforth, we assume that
some minimal stake S is required to become a voter, and if a public key pk has kS amount of
stake, it is regared as k separate public keys);

2. We rely on Θ(κ) blocks chain[c − 2κ : c − κ] to generate a nonce r to seed the new random
oracle. Specifically, every miner will embed a sufficiently high-entropy random string into every
block it mines; and the nonce is obtained by concatenating the random strings contained in this
Θ(κ)-sized window. Although an adversary can arbitrarily manipulate the strings contained
in corrupt blocks, by chain quality, there is at least one honest block among Θ(κ) consecutive
blocks — and thus the resulting nonce must have sufficiently high-entropy;

3. H(r, pk, (e, s, c)) < Dp where Dp is an appropriate difficulty parameter such that each committee
will be roughly Θ(κ) in size.

Defense against adaptive corruptions through secret committee election. One possible
threat is that the adversary may adaptively corrupt committee members after having observed who
are elected to a committee. To thwart such an attack, we can rely on verfiable random functions in
a similar fashion as Section 4.2.1 — and this idea is inspired by Algorand [36]. Such a VRF allows
us to elect a new committee for each (e, s, c) — but who is elected is hidden from the adversary in
advance. In particular, the newly seeded random oracle generated in the aforementioned manner
will instead be used to implement a VRF that determines if a certain public key is an eligible
voter for the tuple (e, s, c). Further, the signature scheme for performing notarization is replaced
with a forward-secure signature scheme as described in Section 4.2.1, such that the signing key
evolves upon each usage, and the old state of the signing key is erased and purged from memory
immediately after usage. Just as we argued in Section 4.2.1, such a scheme defends against adaptive
corruptions in the random oracle model assuming erasure.

64 CHAPTER 5. THUNDERELLA FOR PERMISSIONLESS

Penalty mechanisms. Another useful idea is to explicitly penalize committee members that
have misbehaved (e.g., signed equivocating transactions) [7, 8]. If committee members put down
collatoral to participate, penalty can be implemented by taking away their collateral and rewarding
the party who submits cryptographic evidence of cheating (e.g., doubly signed signatures). Addi-
tionally, it would be useful to dis-incentivize free-riding, i.e., stake-holders who register to vote but
do not end up participating in an attempt to get free rewards. This can be achieved by adjusting
the reward mechanism to give more share to those who have participated (e.g., as cryptographically
evident from the signatures they signed).

5.4 Leader As an Acceleration Service

Acceleration service. Another question is how to elect the leader in a decentralized deployment.
An important observation here is that the leader is only an accelerator and need not be trusted.
Even when the leader starts to behave arbitrarily, the worst thing it can do is that our protocol will
fall back to the performance of today’s blockchains (e.g., Bitcoin or Ethereum’s blockchains). On
the other hand, to get faster performance, it is desirable if the leader is well-provisioned, e.g., in
terms of network resources. To obtain a really fast optimistic path, we can even have the leader open
direct IP links to every committee member, for propagating notarization proposals and collecting
votes. Once a proposal has been notarized, the notarized tuple (with all signatures) can then be
propagated over a peer-to-peer overlay network (e.g., Bitcoin or Ethereum’s peer-to-peer network)
to everyone else.

One desirable approach is for nodes to bid to become the leader and the leader can potentially
charge a percentage of the transaction fees to offset its costs of running an acceleration service. The
network should prefer to choose a leader that is well-provisioned and has a fast link to everyone.

Anyone interested in providing such an acceleration service should be aware of the possibility of
a Distributed Denial-of-Service (DDoS) attack on the leader. Such a DDoS attack can transiently
slow down transaction confirmation until a new leader takes over. There are numerous approaches
that a leader can employ to protect itself against such DDoS attacks. For example, it can rely on
commercially available DDoS protection services (the associated costs can be offset by collecting
fees from running the acceleration service). The leader can also be placed behind geographically
distributed proxies and not present a public IP address. The leader can also agilely move from one
IP address to another to reduce the risk of being DDoS’ed. Even in the presence of an actual DDoS
attack, we can always rely on any form of heuristic offchain mechanism to hand-off to a backup
leader — this hand-off mechanism is not on any security critical path, and any suitable heursitics
can be adopted, since our protocol is secure even when the logical leader is corrupt.

Monitoring the leader. The network can together monitor the leader and vote the leader out
whenever suspicious behavior is detected. For example, one concern might be that the leader in
Thunderella can possibly reorder transactions (just like miners in Bitcoin or Etheurem). Funda-
mentally, since the network has delay up to ∆, for transactions that are issued ∆ rounds apart
from each other, it may not be possible to determine their absolute order. However, if the leader
attempts to reorder transactions more drastically, e.g., by more than ∆ rounds, it is possible for
other peers to detect it. For example, a peer can monitor the leader by comparing the leader’s
proposed order against the order and times at which the peer observes transactions himself. If
sufficiently many stake-holders do not like the leader, then they can jointly vote the current leader
out and reelect a new one.

Bibliography

[1] Personal communication with Vitalik Buterin.

[2] Hagit Attiya, Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Bounds on the time to
reach agreement in the presence of timing uncertainty. J. ACM, 41(1):122–152, 1994.

[3] Iddo Bentov, Ariel Gabizon, and Alex Mizrahi. Cryptocurrencies without proof of work. In
Financial Cryptography Bitcoin Workshop, 2016.

[4] Iddo Bentov, Charles Lee, Alex Mizrahi, and Meni Rosenfeld. Proof of activity: Extending
bitcoin’s proof of work via proof of stake. In Proceedings of the ACM SIGMETRICS 2014
Workshop on Economics of Networked Systems, NetEcon, 2014.

[5] Kenneth P. Birman and Thomas A. Joseph. Exploiting virtual synchrony in distributed sys-
tems. In Proceedings of the Eleventh ACM Symposium on Operating System Principles, SOSP
1987, Stouffer Austin Hotel, Austin, Texas, USA, November 8-11, 1987, pages 123–138, 1987.

[6] Mike Burrows. The chubby lock service for loosely-coupled distributed systems. In Proceedings
of the 7th Symposium on Operating Systems Design and Implementation, OSDI ’06, pages 335–
350, 2006.

[7] Vitalik Buterin. https://medium.com/@VitalikButerin/

minimal-slashing-conditions-20f0b500fc6c, 2017.

[8] Vitalik Buterin and Vlad Zamfir. Casper. https://blog.ethereum.org/2015/08/01/

introducing-casper-friendly-ghost/, 2015.

[9] R. Canetti. Universally composable security: A new paradigm for cryptographic protocols. In
FOCS, 2001.

[10] Ran Canetti, Yevgeniy Dodis, Rafael Pass, and Shabsi Walfish. Universally composable secu-
rity with global setup. In Theory of Cryptography, pages 61–85. Springer, 2007.

[11] Ran Canetti and Tal Rabin. Universal composition with joint state. In CRYPTO, 2003.

[12] Armando Castañeda, Yannai A. Gonczarowski, and Yoram Moses. Unbeatable consensus. In
DISC, 2014.

[13] Miguel Castro and Barbara Liskov. Practical byzantine fault tolerance. In OSDI, 1999.

[14] User ”cunicula” and Meni Rosenfeld. Proof of stake brainstorming. https://bitcointalk.

org/index.php?topic=37194.0, August 2011.

65

https://medium.com/@VitalikButerin/minimal-slashing-conditions-20f0b500fc6c
https://medium.com/@VitalikButerin/minimal-slashing-conditions-20f0b500fc6c
https://blog.ethereum.org/2015/08/01/introducing-casper-friendly-ghost/
https://blog.ethereum.org/2015/08/01/introducing-casper-friendly-ghost/
https://bitcointalk.org/index.php?topic=37194.0
https://bitcointalk.org/index.php?topic=37194.0

66 BIBLIOGRAPHY

[15] Phil Daian, Rafael Pass, and Elaine Shi. Snow white: Provably secure proofs of stake. Cryp-
tology ePrint Archive, Report 2016/919, 2016.

[16] Christian Decker, Jochen Seidel, and Roger Wattenhofer. Bitcoin meets strong consistency. In
ICDCN, 2016.

[17] Danny Dolev, Ruediger Reischuk, and H. Raymond Strong. Early stopping in byzantine
agreement. J. ACM, 37(4):720–741, October 1990.

[18] Danny Dolev and H. Raymond Strong. Authenticated algorithms for byzantine agreement.
Siam Journal on Computing - SIAMCOMP, 12(4):656–666, 1983.

[19] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in the presence of partial
synchrony. J. ACM, 1988.

[20] Cynthia Dwork and Yoram Moses. Knowledge and common knowledge in a byzantine envi-
ronment i: Crash failures. In TARK, pages 149–169, 1986.

[21] Ittay Eyal and Emin Gun Sirer. Majority is not enough: Bitcoin mining is vulnerable. In FC,
2014.

[22] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol with
chains of variable difficulty. Cryptology ePrint Archive, 2016/1048.

[23] Juan A. Garay, Aggelos Kiayias, and Nikos Leonardos. The bitcoin backbone protocol: Anal-
ysis and applications. In Eurocrypt, 2015.

[24] Rachid Guerraoui, Nikola Knežević, Vivien Quéma, and Marko Vukolić. The next 700 bft
protocols. In Proceedings of the 5th European Conference on Computer Systems, EuroSys ’10,
pages 363–376, New York, NY, USA, 2010. ACM.

[25] Joseph Y. Halpern, Yoram Moses, and Orli Waarts. A characterization of eventual byzantine
agreement. SIAM J. Comput., 31(3):838–865, 2001.

[26] Maurice Herlihy, Yoram Moses, and Mark R. Tuttle. Transforming worst-case optimal solutions
for simultaneous tasks into all-case optimal solutions. In PODC, 2011.

[27] Amir Herzberg and Shay Kutten. Early detection of message forwarding faults. SIAM J.
Comput., 30(4):1169–1196, 2000.

[28] Flavio P. Junqueira, Benjamin C. Reed, and Marco Serafini. Zab: High-performance broad-
cast for primary-backup systems. In Proceedings of the 2011 IEEE/IFIP 41st International
Conference on Dependable Systems&Networks, DSN ’11, pages 245–256, 2011.

[29] Jonathan Katz and Chiu-Yuen Koo. On expected constant-round protocols for byzantine
agreement. J. Comput. Syst. Sci., 75(2):91–112, February 2009.

[30] Aggelos Kiayias, Alexander Russell, Bernardo David, and Roman Oliynykov. Ouroboros:
A provably secure proof-of-stake blockchain protocol. Cryptology ePrint Archive, Report
2016/889, 2016. http://eprint.iacr.org/2016/889.

[31] Sunny King and Scott Nadal. Ppcoin: Peer-to-peer crypto-currency with proof-of-stake.
https://peercoin.net/assets/paper/peercoin-paper.pdf, 2012.

http://eprint.iacr.org/2016/889
https://peercoin.net/assets/paper/peercoin-paper.pdf

BIBLIOGRAPHY 67

[32] Eleftherios Kokoris-Kogias, Philipp Jovanovic, Nicolas Gailly, Ismail Khoffi, Linus Gasser, and
Bryan Ford. Enhancing bitcoin security and performance with strong consistency via collective
signing. CoRR, abs/1602.06997, 2016.

[33] Ramakrishna Kotla, Lorenzo Alvisi, Michael Dahlin, Allen Clement, and Edmund L. Wong.
Zyzzyva: speculative byzantine fault tolerance. In Proceedings of the 21st ACM Symposium
on Operating Systems Principles 2007, SOSP 2007, Stevenson, Washington, USA, October
14-17, 2007, pages 45–58, 2007.

[34] Leslie Lamport. Fast paxos. Distributed Computing, 19(2):79–103, 2006.

[35] Leslie Lamport, Dahlia Malkhi, and Lidong Zhou. Vertical paxos and primary-backup repli-
cation. In PODC, pages 312–313, 2009.

[36] Silvio Micali. Algorand: The efficient and democratic ledger.
https://arxiv.org/abs/1607.01341, 2016.

[37] Yoram Moses and Michel Raynal. No double discount: Condition-based simultaneity yields
limited gain. Inf. Comput., 214:47–58, May 2012.

[38] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2008.

[39] Rafael Pass, Lior Seeman, and Abhi Shelat. Analysis of the blockchain protocol in asynchronous
networks. In Eurocrypt, 2017.

[40] Rafael Pass and Elaine Shi. Fruitchains: A fair blockchain. In PODC, 2017.

[41] Rafael Pass and Elaine Shi. Hybrid consensus: Efficient consensus in the permissionless model.
In DISC, 2017.

[42] Rafael Pass and Elaine Shi. Rethinking large-scale consensus (invited paper). In CSF, 2017.

[43] Rafael Pass and Elaine Shi. The sleepy model of consensus. In Asiacrypt, 2017.

[44] User ”QuantumMechanic”. Proof of stake instead of proof of work. https://bitcointalk.

org/index.php?topic=27787.0, July 2011.

[45] Yee Jiun Song and Robbert van Renesse. Bosco: One-step byzantine asynchronous consensus.
In DISC, pages 438–450, 2008.

[46] Dominic Williams. How to achieve near-instant finality in public blockchains using a VRF.
http://string.technology/2017/02/03/stanford-conference.en/, 2017.

[47] Gavin Wood. Ethereum: A secure decentralized transaction ledger. http://gavwood.com/

paper.pdf, 2014.

Global Signing Functionality

We define the following global signing functionality GΣ
sign that is parametrized by a signature scheme

Σ. This functionality can easily be realized assuming a (global) bare public key infrastructure.

https://bitcointalk.org/index.php?topic=27787.0
https://bitcointalk.org/index.php?topic=27787.0
http://string.technology/2017/02/03/stanford-conference.en/
http://gavwood.com/paper.pdf
http://gavwood.com/paper.pdf

68 BIBLIOGRAPHY

GΣ
sign

• On receiving initialize from some honest node i: call (pki, ski) ← Σ.Gen(1κ), notify A of
(i, pki), and return pki.

• On receiving setkey(pki, ski) from some corrupt node i: record (pki, ski) if a key pair has not
been recorded for i.

• On honest node i becoming corrupt: disclose ski to A.

• On receiving sign(msg) from party i in protocol instance sid : if a key pair (pki, ski) has been
recorded for i, then return σ := Σ.Sign(ski, (sid ,msg)); else return ⊥.

• On receiving query(i): return pki.

Interactions between Z and Gsign. We assume that the following types of interactions can
happen between Z and Gsign:

• Z can interact with Gsign acting as the adversary A or any corrupt node;

• Z can interact with Gsign acting as an honest party, but only for non-challenge protocol sessions
(i.e., where the session identifier must be different from the challenge protocol session that we
are concerned about). This models the fact that there may be other rogue protocols running
possibly concurrently with the challenge protocol session.

	Introduction
	The Thunderella Paradigm
	Related Work

	Definitions and Preliminaries
	Execution Model
	Modeling Protocol Execution
	Constrained Execution Environments
	Notations

	State Machine Replication
	Abstract Blockchain Protocols
	Syntax and Security Definitions
	Blockchain Implies State Machine Replication

	Warmup: Blockchain Instantiations
	Permissionless Environment
	Permissioned, Classical Environment
	Permissioned, Sleepy Environment

	Preliminaries: Responsiveness and Optimistic Responsiveness
	Responsiveness
	``Bare Minimum'' Optimistic Responsiveness

	Basic Thunderella Protocol with a Static Committee
	Our Basic Protocol in a Nutshell
	Optimistic Fast Path
	Falling Back to the Blockchain
	Initiating a New Optimistic Epoch

	Detailed Protocol Description
	Useful Definitions
	thunder: Core Protocol for Consistency
	Concrete Chain-State Function and Worst-Case Liveness
	Coordination Protocol ella and Optimistic Responsiveness

	Proofs for Basic Thunderella with Static Committee
	Consistency
	Worst-Case Liveness
	Optimistic Responsiveness

	Thunderella for Permissioned
	Permissioned, Classical Environments
	Permissioned, Sleepy Environments
	Practical Considerations for Consortium Blockchains

	Thunderella for Permissionless
	Thunderella with Robust Committee Reconfiguration
	Protocol "0365thunder: Consistency and Worst-Case Liveness
	Protocol "0365ella: Optimistic Responsiveness
	Proofs: Robust Committee Reconfiguration Framework

	Recent Blockchain Miners As Committee
	Preliminary: Mildly Adaptive Corruptions
	Preliminary: Committee Election in a Permissionless Environment
	Detailed Protocol
	Reward Distribution and Incentive Compatibility

	Recent Stake-Holders As Committee
	Fair Committee Down-Selection and Incentive Compatibility

	Leader As an Acceleration Service

