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Abstract. We investigate the subset-resilience problem, defined in 2002
by Reyzin and Reyzin to analyze their HORS signature scheme. We show
that textbook HORS is insecure against adaptive attacks, and present a
practical attack based on a greedy algorithm.
We also describe weak messages for HORS, that map to smaller subsets
than expected, and are thus easier to cover. This leads to an improved
attack against HORS and to an improved classical attack against the
signature scheme SPHINCS, of complexity 2270 instead of 2277. We pro-
pose the PRNG to obtain a random subset construction (PORS), which
avoids weak messages, for a tiny computational overhead.
We adapt PORS to SPHINCS to also deterministically select the HORST
instance that is used to sign the input message. This new construction
reduces the attack surface and increases the security level, improving
the security of SPHINCS by 67 bits against classical attacks and 33
bits against quantum attacks. A version of SPHINCS using our PORS
construction can work with smaller parameters that reduce the signature
size by 4616 bytes and speed up signature and verification, for the same
128-bit post-quantum security as the original SPHINCS.

1 Introduction

In 2002, Reyzin and Reyzin [10] presented HORS, a few-time signature scheme
based on the hash to obtain a random subset construction. This construction uses
a hash function to select a subset of a finite set; the signature is then derived
from this subset. The security of HORS relies on the subset-resilience of the
hash function, a property defined by Reyzin and Reyzin for the purpose of this
scheme. Several signature schemes are variants of this idea, e.g. HORS++ [9] and
HORST [3]. The latter is an essential building block of SPHINCS, a practical
stateless hash-based signature scheme [3].

However, the subset-resilience problem was only partially studied; Reyzin
and Reyzin proposed two security notions to capture the security against both
adaptive and non-adaptive attacks, but they only studied non-adaptive attacks.
This paper investigates adaptive attacks and shows that security decreases dra-
matically when HORS is used more than once. We propose a greedy algorithm
that breaks HORS and we give examples of forgeries.

We also use our observations to attack and improve SPHINCS. Contrary to
textbook HORS, SPHINCS is not vulnerable to simple adaptive attacks because
the hash is unpredictable to attackers – thanks to the use of a salt. Yet, we show



that both HORS and SPHINCS are susceptible to what we call weak messages
attacks, due to how HORS maps messages to subsets. Indeed, HORS maps some
messages to small subsets – when index collisions occur in the output of the hash
function – and these small subsets are easier to cover. This yields an improved
classical attack against SPHINCS, of complexity 2270 instead of 2277. Nonethless,
this new attack does not improve over known quantum attacks, based on Grover’s
search algorithm.

To eliminate weak message attacks we propose the PORS construction –
PRNG to obtain a random subset. This new construction increases the security
of HORS and SPHINCS against both classical and quantum attacks. In the
case of SPHINCS, we extend PORS to also select the hyper-tree leaf, instead of
having this leaf freely chosen by a potential forger. We show that with this last
improvement, the security of SPHINCS increases to 171 bits (post-quantum). We
therefore propose smaller parameters in order to save 4616 bytes per signature
while guaranteeing 128-bit post-quantum security.

Roadmap. §2 introduces the subset-resilience problem, then §3 presents new
bounds on adaptive attacks, and §4 reports on practical attacks against textbook
HORS. Last, §5 reviews our new attacks against SPHINCS and §6 describes the
integration of PORS in SPHINCS and benefits thereof.

2 The subset-resilience problem and HORS signatures

In this section, we recall known results about the subset-resilience problem.

2.1 General definitions

Given integer parameters k and τ such that 0 < k ≤ 2τ , we let t = 2τ and
denote by T the set {0, . . . , t − 1}. We denote by Pk(T ) the set of subsets of
T of size at most k. We consider a finite key space K, a message space M
and a family On of functions to obtain random subsets (ORS) from messages
On = {ORSK : M → Pk(T )|K ∈ K}. Given a key K and r + 1 messages
M1, . . . ,Mr+1 we define the r-subsets-cover relation CK as:

CK(M1, . . . ,Mr+1)⇔ ORSK(Mr+1) ⊆
r⋃
j=1

ORSK(Mj)

which means that the image of Mr+1 by ORSK is covered by the images of
M1, . . . ,Mr.

2.2 Hash to obtain a random subset

Except in §6, we restrict our analysis to function families On that follow the hash
to obtain a random subset (HORS) construction, which we now describe. Given a



PRF Hn = {HK :M→ {0, 1}kτ |K ∈ K} that maps messages to kτ -bit strings,
the associated family On is constructed as follows. To compute ORSK(M), take
the string x := HK(M), split it into τ -bit blocks x1|| . . . ||xk := x and interpret
each block xi as the encoding of a number xi ∈ T . The result ORSK(M) is the
subset split(x, k) := {x1, . . . , xk}.

We note that given a uniformly distributed key K and an arbitrary message
M , the xi are independent and uniformly distributed in T , because Hn is a PRF.

2.3 Few-time signature scheme

Given such a family On and a hash function family Fn, you can construct a few-
time signature scheme, as proposed by Reyzin and Reyzin [10] improving over
Lamport [8] and Bos and Chaum [4]. To generate a key pair, select t random
values s1, . . . , st ∈ {0, 1}n for some security parameter n, along with a key
K ∈ K. The secret key is (s1, . . . , st) and the public key is (F (s1), . . . , F (st)).
To sign a message M , compute {x1, . . . , xk} = ORSK(M) and reveal the subset
of secret values {sxi |1 ≤ i ≤ k}.

Assuming that the one-way property of Fn is not broken, the security of
this signature scheme reduces to the subset-resilience problem. Namely, given
the signatures of r messages, an attacker can forge another message Mr+1 if the
associated ORSK(Mr+1) is covered by the hashes of the r messages, because the
associated secret values have already been revealed.

Practical parameters. To give some intuition about the scheme, we recall
practical choices of (k, t). For the original HORS scheme, Reyzin and Reyzin
proposed (k = 20, t = 256) or (k = 16, t = 1024). For HORST as used in
SPHINCS, Bernstein et al. proposed more conservative parameters (k = 32, t =
216).

2.4 Subset-resilience

Informally, On is r-subset-resilient if it is hard for an adversary to find r + 1
messages that form a r-subsets-cover, under a key uniformly chosen in K. Two
adversarial scenarios were considered by Reyzin and Reyzin [10]. In the adaptive
scenario, an adversary is given a key K and can compute ORSK on any messages
before selecting the r + 1 messages. In the non-adaptive scenario, also called
target-subset-resilience (as it is a generalization of target-collision-resistance [1]),
the adversary must first select r messages, after which they are given the key K
to select the last message.

Formally, the definitions by Reyzin and Reyzin can be given in terms of
adversarial advantage. We define the advantage of an adversary A against the
r-subset-resilience property of On as:

Succr−SROn
(A) = Pr

[
K

$← K; (M1, . . . ,Mr+1)← A(K) : CK(M1, . . . ,Mr+1)
]



where the probability is over the choice of K (uniform in the key space K) and
the internal coins of A.

Similarly, we define the advantage of an adversary A = (A1,A2) against the
r-target-subset-resilience of On as:

Succr−TSR
On

(A) = Pr
[
M1, . . . ,Mr

$← A1;K
$← K;Mr+1 ← A2(K,M1, . . .Mr)

: CK(M1, . . . ,Mr+1)
]

Reyzin and Reyzin originally defined (target-)subset-resilience as negligibility
of the advantage of probabilistic polynomial-time adversaries w.r.t. the variables

(t, k), more precisely as Succ
r−(T)SR
On

(A) < negl(t, k). However, we argue that
such asymptotic definitions have little practical interest because for concrete
schemes what matters is the security level for some fixed (t, k). Also, they did not
explicitly define negl(t, k), and for example an adversary could easily generate a
subsets-cover if t and k go to infinity with t = k. Last, in practice r is not fixed
and we are also interested in asymptotics in r, as in the case of SPHINCS.

Instead, we consider more precise notions of security. Given a set of resources
ξ (e.g. runtime, number of queries), we define the insecurity of On for property
P as:

InSecP(On; ξ) = max
|A|≤ξ

{SuccP
On

(A)}

where |A| ≤ ξ means that adversary A uses at most resources ξ. In a simplified
model of computation ξ is typically the runtime (which is lower bounded by
the number of queries to On), but in a more realistic model of computation one
must also include costs related to memory, communication, hardware, energy
consumption, etc.

In our analysis, we consider only generic attacks against On. In practice, if a
particular family On has structural weaknesses that allow more efficient attacks,
this family is considered broken and one can replace it with another family O′n.

Note. The HORST scheme [3] – for “HORS with trees” – simply adds a Merkle
tree on top of HORS to compress the public key. This is irrelevant to attacks
against subset-resilience, so unless otherwise specified the results in this paper
hold for both HORS and HORST.

2.5 Previous results

Reyzin and Reyzin studied the non-adaptive scenario (target-subset-resilience)
and considered a brute-force attack, i.e. given M1, . . . ,Mr iterate Mr+1 over the
message space until a match is found. In that case, given r+1 arbitrary messages
and a uniformly distributed key K, the probability that ORSK(Mr+1) is covered

by the first r messages is at most (kr/t)
k
. This is the probability that k elements

chosen uniformly at random in T are a subset of ∪rj=1ORSK(Mj), which contains



at most kr elements of T . In other words, the security level against this generic
attack is:

k(log2 t− log2 k − log2 r)

In this paper, we study the adaptive scenario and show that the security level
decreases much faster when r increases.

3 Adaptive attacks against subset-resilience

In this section, we give a new lower bound on the subset-resilience security
level, assuming only generic attacks against On. We show that compared to
target-subset-resilience, the (logarithmic) security level decreases by a factor
proportional to r + 1.

We establish the following theorem on adaptive attacks.

Theorem 1. Assuming only generic attacks against On, we have the follow-
ing bound on the r-subset-resilience against adversaries performing at most q
queries:

InSecr−SR(On; q) ≤ (q + r + 1)
r+1

r!

(
kr

t

)k
Proof. Let A be an adversary against the subset-resilience property of On. Given
a key K, we assume that A makes q distinct (offline) queries to ORSK and out-
puts r+1 messages. We construct an adversary A′ that runs A and additionally
queries the r + 1 messages output by A, before outputting them. Adversary A′
has the same success probability as A and makes at most q′ = q+ r+ 1 queries.
We denote as (Mi,ORSK(Mi))1≤i≤q′ the q′ queries of A′.

Under these assumptions, the advantage of A′ is bounded by the probability
that there exists a permutation σ of {1, . . . , q′} yielding the following r-subsets-
cover:

CK(Mσ(1), . . . ,Mσ(r+1))

Given a permutation σ, the probability that this condition holds is at most

(kr/t)
k
, as in the non-adaptive case. Besides, there are q′

(
q′−1
r

)
distinct config-

urations: each configuration is given by a choice of σ(r + 1) among q′ indices,
followed by the choice of a subset {σ(1), . . . , σ(r)} of r indices among the re-
maining q′−1. By a union bound over all configurations, we obtain the following
bound on the adversarial advantage.

Succr−SROn
(A) = Succr−SROn

(A′) ≤ q′
(
q′ − 1

r

)(
kr

t

)k
≤ q′r+1

r!

(
kr

t

)k
The result follows. ut

For practical parameters (q � r2), we have the following approximation:

(q + r + 1)
r+1

r!

(
kr

t

)k
≈ qr+1

r!

(
kr

t

)k



The associated security level corresponds to the number of queries necessary for
the advantage to be close to 1, that is:

k

r + 1
(log2 t− log2 k − log2 r) +

log2 r!

r + 1

As we can see, contrary to non-adaptive attacks, security degrades quickly
with r due to the denominator, in a birthday-like manner. The case r = 1 is
similar to collision resistance.

4 Practical attacks against HORS

In the previous section, we gave conservative bounds by considering only whether
a subsets-cover exist, but we did not provide practical algorithms to find them. In
particular, even though a r-subsets-cover exists, a naive algorithm that iterates
over all configurations σ would take a time proportional to q

(
q−1
r

)
, introducing

no improvement over a non-adaptive attack. Hence, we look for faster algorithms
to find subsets-covers.

4.1 Reduction to set cover

Given q messages and their hashes, finding a subsets-cover reduces to the set
cover problem. Indeed, for a given Mσ(r+1), we try to cover the set X =
ORSK(Mσ(r+1)) with a cover C of r elements from the family Y = {Yi}i 6=σ(r+1),

where Yi = ORSK(Mi) ∩ X. Set cover is an NP-complete decision problem;
the associated optimization problem (finding the smallest r) is NP-hard [7,5].
However, approximations can be computed with polynomial complexity.

Greedy algorithm. Given a set X to be covered by a family Y, a simple
heuristic is the following greedy algorithm:

1. Initialize an empty cover C ← ∅.
2. Select Ymax ∈ Y such that |Ymax| is maximal.

3. Add Ymax to the cover C.

4. Update X ← X\Ymax and Y ← {Yi\Ymax|Yi ∈ Y}, where A\B denotes the
set difference.

5. Repeat steps 2-4 until C contains r subsets or X is empty.

6. If X = ∅, the algorithm succeeds and outputs C.

The worst-case complexity of this greedy algorithm is O(qr), much better
than the naive O(qr/r!). The question is now: depending on the parameters
k, t, r, q, what is the success probability of this algorithm?



Previous work. The general set cover problem has long been studied [7,5]
and Feige has shown that the greedy algorithm achieves the best approximation
ratio for probabilistic polynomial-time algorithms [5]. However, these results are
for the worst-case scenario, where the family Y can be chosen in an adversarial
manner w.r.t. the algorithm. In our case, Y is chosen according to the HORS
construction, which yields a very specific probability distribution and we are
interested in the average approximation ratio.

4.2 Targeting weak messages

Instead of running the greedy algorithm on an arbitrary message, the adversary
can select a better target. Indeed, due to the HORS construction, some messages
have an image by ORSK that contain only κ < k elements. We call them weak
messages. For example, following is the SHA-256 of “88681”, grouped by blocks
of 8 bits, with some repeated bytes underlined.

98 32 3d bf 2a 64 75 32 0f f6 64 7e 98 75 64 98 f6 f5 54 02 ...

Hence, we propose the following optimized algorithm: first scan through the
q messages to find M such that ORSK(M) has the least number of elements,
then try to cover ORSK(M) greedily. This new algorithm still has a complexity
of O(qr) and its success probability can be slightly better than the naive greedy
algorithm.

To summarize, we have three algorithms:

– the greedy algorithm, that takes as input a set X to be covered by a
family Y,

– the naive greedy algorithm, that takes as input messages M1, . . . ,Mq

and applies the greedy algorithm with an arbitrary X = ORSK(M1) and
Y = {ORSK(Mj)|j 6= 1},

– the optimized greedy algorithm, that takes as input q messages and
applies the greedy algorithm with the smallest ORSK(Mi) as X, and Y =
{ORSK(Mj)|j 6= i}.

Probability distribution of weak messages. We now give a useful combi-
natorics result about the distribution of weak messages. For clarity, proofs of
theorems and lemmas in this section are given in Appendix A.

Lemma 1. Let S(k, t, κ) be the probability that when we throw k balls indepen-
dently and uniformly into t bins, exactly κ bins are non-empty. Then we have
the following equality:

S(k, t, κ) =
κ!

tk

(
t

κ

){
k

κ

}
where

{
k
κ

}
is the notation for Stirling numbers of the second kind.

The probability Pr[|ORSK(M)| = κ] that a message is mapped to exactly
κ elements is precisely S(k, t, κ). Figure 1 shows the evolution of log2 S(k, t, κ)
for the choices of the parameters (k, t) that were proposed for HORS [10] and
SPHINCS [3].
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Fig. 1: Evolution of S(k, t, κ) for various choices of (k, t). S(k, t, κ) is the prob-
ability that when we throw k balls independently and uniformly into t bins,
exactly κ bins are non-empty (Lemma 1).

4.3 Complexity analysis

We now give a complexity analysis of the greedy and optimized greedy algo-
rithms, to estimate the security level that one can obtain against this generic
attack. Given ORS parameters (k, t), a family Y of q elements, a number of it-

erations r and an initial subset X of size κ, we denote by P k,tGreedy(κ, r, q) the
success probability of the greedy algorithm. Given q queries, we denote by
P k,tGreedyNaive(r, q) the success probability of the naive greedy algorithm that takes

an arbitrary message as the initial subset X. We denote by P k,tGreedyOptim(r, q) the
success probability of the optimized greedy algorithm that selects the weakest
of the q messages as the initial subset X.

Naive greedy algorithm We first establish a recurrence relation on the prob-
ability P k,tGreedy(κ, r, q).

Theorem 2. Given a target subset of κ elements, the success probability of the
greedy algorithm P k,tGreedy(κ, r, q) verifies the following recurrence relation.

P k,tGreedy(κ, r, q) =


1 if κ = 0

0 if κ > 0 ∧ (r = 0 ∨ q = 0)∑κ
`=1 Pr[|Ymax| = `|k, t, κ, q]P k,tGreedy(κ− `, r − 1, q − 1) if κ, r, q > 0

We now aim at evaluating the probability Pr[|Ymax| = `|k, t, κ, q] that the
largest intersection |ORSK(M) ∩X| contains ` elements. We start with the fol-
lowing lemma.



Lemma 2. For 0 ≤ ` ≤ κ and M a message uniformly distributed in M, we
denote by P (k, t, κ, `) the probability that |ORSK(M)∩X| = ` given that |X| = κ.
This probability is equal to:

P (k, t, κ, `) =

k∑
λ=`

B
(
λ, k,

κ

t

)
S(λ, κ, `)

where S is defined in Lemma 1 and B(λ, k, p) is the binomial distribution:

B(λ, k, p) =

(
k

λ

)
pλ(1− p)k−λ

We can now relate Pr[|Ymax| = `|k, t, κ, q] to P (k, t, κ, `).

Lemma 3. We have the following equality:

Pr[|Ymax| ≥ `|k, t, κ, q] = 1−

(
`−1∑
λ=0

P (k, t, κ, λ)

)q

Corollary 1. We can then compute Pr[|Ymax| = `|k, t, κ, q] as:

Pr[|Ymax| = `|k, t, κ, q] = Pr[|Ymax| ≥ `|k, t, κ, q]− Pr[|Ymax| ≥ `+ 1|k, t, κ, q]

Although finding a more explicit analytic formula seems challenging, Theo-
rem 2 and Lemmas 2 and 3 allow to compute P k,tGreedy(κ, r, q) by dynamic pro-
gramming for concrete values of the parameters.

We can now estimate the success probability of the naive algorithm.

Theorem 3. The success probability of the naive greedy algorithm is equal to:

P k,tGreedyNaive(r, q) =

k∑
κ=1

S(k, t, κ)P k,tGreedy(κ, r, q − 1)

Optimized greedy algorithm We now relate the success probability of the
optimized greedy algorithm to the success probability of the greedy algorithm.

Theorem 4. The success probability of the optimized greedy algorithm is equal
to:

P k,tGreedyOptim(r, q) =

k∑
κ=1

Pr[|Ymin| = κ|k, t, q]P k,tGreedy(κ, r, q − 1)

where |Ymin| is the size of the weakest message:

|Ymin| = min
Y ∈Y
|Y |

We now relate Pr[|Ymin| = κ|k, t, q] to S(k, t, κ).



Lemma 4. We have the following equality:

Pr[|Ymin| ≤ κ|k, t, q] = 1−

(
k∑

λ=κ+1

S(k, t, λ)

)q

Corollary 2. We can then compute Pr[|Ymin| = κ|k, t, q] as:

Pr[|Ymin| = κ|k, t, q] = Pr[|Ymin| ≤ κ|k, t, q]− Pr[|Ymin| ≤ κ− 1|k, t, q]

Theorem 4 and Lemma 4 allow to compute P k,tGreedyOptim(r, q).

4.4 Practical security level

In the previous section, we studied how to compute the success probability of
the naive and optimized greedy algorithms. We now reduce the complexity of
these attacks to these success probabilities.

Given q queries and a target r, the naive greedy algorithm has a complexity
proportional to 1 + r(q− 1) (one query for the covered message and r iterations

over the q − 1 other queries) and a success probability of P k,tGreedyNaive(r, q), so we

expect to repeat it 1/P k,tGreedyNaive(r, q) times on average to obtain a r-subsets-
cover. The optimal number of queries q is the one that minimizes the attack
complexity:

1 + r(q − 1)

P k,tGreedyNaive(r, q)

Likewise, given q and r, the optimized greedy algorithm has a complexity
proportional to q + r(q − 1) (q queries to find the weakest message and r itera-
tions over the remaining q − 1 queries to cover it) and a success probability of

P k,tGreedyOptim(r, q). The optimal number of queries q is the one that minimizes the
attack complexity:

q + r(q − 1)

P k,tGreedyOptim(r, q)

We estimated these attack complexities by taking the minimum over q ∈
{2n|n ∈ N}. Figure 2 shows a comparison of the lower bounds on adaptive
and non-adaptive attacks, and the complexity of the naive and optimized greedy
algorithms, for some of the parameters originally proposed for HORS (k = 16, t =
1024). We can see that the optimized greedy algorithm is very close to the lower
bound on adaptive attacks, despite its simplicity. Also, the difference between
the naive and optimized algorithms becomes small as r grows.

4.5 Forgeries on textbook HORS

In [10], Reyzin and Reyzin proposed several combinations of (k, t) for the HORS
signature scheme: (k = 20, t = 256) and (k = 16, t = 1024). Considering only
non-adaptive attacks, they claimed a security level of 53 bits in the first case
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Fig. 2: Security level for k = 16, t = 1024. Lower bounds for adaptive and non-
adaptive attacks and complexity of naive and optimized greedy algorithms.

with r = 2 signatures and 64 bits in the second case with r = 4 signatures.
We challenge these claims in the case of adaptive attacks – which are totally
possible in this textbook version of HORS – and give forgeries for these sets of
parameters. We computed these forgeries with the optimized greedy algorithm.

Reyzin and Reyzin originally proposed to instantiate On with a hash function
such as SHA-1, but given that this function is not collision-resistant [12] we
used SHA-256 instead for our proof-of-concept attack, trimming the output to
160 bits to obtain compatible parameters. In other words, we used ORSK(·) =
split(trim(SHA-256(·), 160), k) where trim(·, 160) returns the first 160 bits of its
input, and split groups the output into k blocks of log2 t bits. We limited ourselves
to q = 222 queries, with each query Mi being the decimal representation of i as
an ASCII string.

First case k = 20, t = 256. With only q = 221 queries, we found a 2-subsets-
cover with the optimized greedy algorithm (Table 1). This is much smaller than
the advertised security level of 53 bits against non-adaptive attacks [10], and a
little larger than our adaptive lower bound of 18.1 bits estimated in Section 3.
We note that the target subset ORSK(M88681) contains only κ = 13 distinct
elements.

Second case k = 16, t = 1024. With only q = 222 queries, we found a 3-subsets-
cover with the optimized greedy algorithm (Table 2). This is much smaller than
the advertised security level of 70 bits against non-adaptive attacks [10], and a
little larger than our adaptive lower bound of 18.3 bits estimated in Section 3.
The target subset ORSK(M88817) contains only κ = 12 distinct elements.



i 160 first bits of SHA-256(i) (by groups of 8 bits)

88681 98 32 3d bf 2a 64 75 32 0f f6 64 7e 98 75 64 98 f6 f5 54 02

1468639 54 7e 64 39 f6 61 1f 4d 02 32 3d 23 68 62 9d 3e 38 bc 75 5c

80937 4b 98 e7 f5 05 9b ee 8d f4 0f 89 bb 13 7e bf 08 89 fc be 2a

Table 1: Example of 2-subsets-cover for k = 20, t = 256. The first line is the
covered message. Underlined blocks are repeated in the same line. Colored blocks
are common to several lines.

i 160 first bits of SHA-256(i) (by groups of 10 bits)

88817 3f0 2b4 193 087 38c 1e0 2b4 193 1b6 116 1c1 087 046 33a 243 243

2530852 1a9 2c6 1a2 0fe 15f 279 33a 026 2b4 3e6 2a9 116 09f 087 111 3f0

2351182 00e 02a 39c 243 292 378 152 22c 201 0ab 06d 1b6 1ff 204 1e0 1c1

216522 277 38c 06d 39c 193 124 376 2a9 08a 046 351 2df 072 219 34e 1fe

Table 2: Example of 3-subsets-cover for k = 16, t = 1024.

We also found a 4-subsets-cover with 217 queries, again much smaller than
the advertised 64 bits of security (our adaptive lower bound is 13.7 bits in this
case).

5 Application to SPHINCS

We now study attacks against subset-resilience in the context of the SPHINCS
construction. At first glance, SPHINCS is not susceptible to adaptive attacks,
because the signer selects for each message Mi a key Ki in a manner non-
predictable by an adversary. More precisely, Ki = hash(salt,Mi) where salt is a
secret value known only by the signer. That way, an adversary cannot compute
subsets-covers in advance; they have to first query the signatures of some mes-
sages and then try to find a key-message pair (K ′,M ′) such that ORSK′(M ′) is
covered by the previous signatures.

However, the SPHINCS construction uses N = 2h instances of HORST in
parallel (typically 260). For each query, the signer also selects a HORST instance
i in a deterministic but non-predictable manner. The problem is then different
than target-subset-resilience because an adversary can attack multiple instances
in parallel. In particular, although looking for weak messages does not seem to
help to break a single HORST instance in a non-adaptive attack, this can provide
a speed-up for the multi-target scenario.

The adversary can also focus on a HORST instance of their choice, a strategy
outlined in the original analysis of SPHINCS [3].



5.1 Search strategies

More formally, we let M = K × M (the extended message space that also
includes the ORS key). Given q known signatures, the goal of an adversary is to
find a pair (i, (K,M)) ∈ {1, . . . , N}×M such that ORSK(M) is covered by the
known subsets of the i-th HORST instance. A naive strategy is to brute-force
over the full space {1, . . . , N} ×M.

However, each dimension of the search space {1, . . . , N}×M has weaknesses.
On the one hand, we have already seen thatM contains weak messages. On the
other hand, {1, . . . , N} has weak HORST instances: the ones that produced
many signatures. A more clever strategy, outlined in the SPHINCS paper [3] is
to focus on weak HORST instances and try to find matching messages for these
instances – via classical brute-force over the message space or Grover’s quantum
search algorithm. A symmetric strategy is to look for weak messages – via brute-
force or Grover’s algorithm – and try to find matching HORST instances. We
now evaluate the complexity of each strategy.

5.2 Naive search

We let ρ = q/N be the ratio of the number of queries by the number of HORST
instances. Given an arbitrary pair (i,M) ∈ {1, . . . , N}×M, the probability Pρ(r)
that r messages were signed with the i-th HORST instance can be approximated
by a Poisson distribution, as shown in [3].

Pρ(r) ≈ e−ρρr/r!

Then, the probability that ORSK(M) is covered by this instance is at most

(kr/t)
k

– a tight approximation if kr � t. Hence, the success probability for the
pair (i,M) is at most:

∞∑
r=0

Pρ(r)

(
kr

t

)k
=

(
k

t

)k ∞∑
r=0

Pρ(r)r
k

The last sum corresponds to the k-th moment of a Poisson distribution and
is equal to a Touchard polynomial Tk [11].

∞∑
r=0

Pρ(r)r
k = Tk(ρ) :=

k∑
i=0

{
k

i

}
ρi

Hence, the classical complexity to obtain a forgery with this strategy is (in
bits):

k(log2 t− log2 k)− log2 Tk(ρ)

With SPHINCS parameters (k = 32, t = 216, ρ = 2−10), we obtain a classical
complexity of 331 bits for this naive attack.



5.3 Quantum naive search

Given a quantum computer, one could use Grover’s search algorithm, dividing
by 2 the bit complexity. However, this is neglecting memory access costs! Indeed,

given a function F : X 7→ {0, 1} such that Pr[x
$← X : F (x) = 1] = 2−b, Grover’s

algorithm can find a preimage x ∈ F−1(1) with Θ(2b/2f) quantum operations
on Θ(f) qubits where f is the cost of evaluating F [6]. For the naive algorithm
we consider X = {1, . . . , N} ×M and b = 331 as shown in the previous section.

In our case, F must first compute ORSK(M) and then compare this result
to the q queries, outputting 1 if and only if a subsets-cover is found. While eval-
uating ORSK(M) is somewhat cheap, the comparison circuit to a large database
of q queries is expensive. In particular, one cannot use classical algorithms that
perform conditional memory access such as binary search, because the quan-
tum comparison circuit operates on a quantum superposition of values (and each
value would need to access distinct parts of the memory).

In practice, a quantum straight-line comparison circuit would need Θ(q) op-
erations on Θ(q) qubits [2]. Besides, communication costs must be taken into ac-
count in a realistic model of memory access, e.g. random access in a 2-dimensional
table of size q takes time Θ(

√
q), due to physical constraints – namely the speed

of light. These remarks are similar to the analysis of quantum collision search
by Bernstein [2].

With SPHINCS parameters (k = 32, t = 216, h = 60) and q = 250, we obtain
a quantum complexity of 215 bits, assuming an evaluation cost f = q, but we will
see that more clever methods reduce memory costs and achieve better results.

5.4 Search over weak HORST instances

To speed up the search, one can focus on the weakest HORST instance i – found
in time Θ(q) – and then look for messages M ∈M. For a given r, the probability
that there exists an instance i that signed r messages can be approximated as
(assuming ρ� 1):

1− (1− Pρ(r))2
h

≈ 1− exp(−2hPρ(r)) . min{1, 2hPρ(r)}

Then, the success probability for each message M is again close to (kr/t)
k
.

It follows that the classical complexity of this attack is (in bits):

min
r

[
k(log2 t− log2 k − log2 r) + max

{
0, −h− log2 Pρ(r)

}]
One can also use Grover’s search algorithm over M. Contrary to the naive

algorithm, memory access is limited to the selected HORST instance, so we
neglect memory costs. The associated quantum complexity is:

min
r

[k
2

(log2 t− log2 k − log2 r) + max
{

0, −h− log2 Pρ(r)
}]

With SPHINCS parameters (k = 32, t = 216, h = 60) and q = 250, we find a
classical complexity of 277 bits and a quantum complexity of 138 bits, both for
r = 5. This is in accordance with the SPHINCS paper [3].



Worldwide attack. An interesting question is whether one can benefit from
this strategy to break any SPHINCS instance in the world. Indeed, if there
are u SPHINCS instances, each containing 2h HORST instances, and that each
SPHINCS instance is used for at most q queries, then the probability that at
least one HORST instance in the world was used for r messages is:

1− (1− Pρ(r))2
hu

The previous analysis can be adapted by replacing 2h by 2hu. For example,
if u = 240, this worldwide attack has a classical complexity of 256 bits and a
quantum complexity of 128 bits (both for r = 8).

5.5 Search over weak messages

With a classical computer, an adversary can find a weak message of size κ
in time Θ(1/S(k, t, κ)). With a quantum computer, this can be reduced to
Θ(
√

1/S(k, t, κ)) with Grover’s search algorithm.
Once a weak message M of subset size κ is found, it is covered by each

HORST instance with probability ≈ (kr/t)
κ
, where r is the number of signa-

tures already generated by this instance. The success probability of this message
against a HORST instance is then:

∞∑
r=0

Pρ(r)

(
kr

t

)κ
=

(
k

t

)κ
Tκ(ρ)

If the adversary only scans through the ≈ q = 2hρ HORST instances that
have already been used to sign messages, the success probability for each instance
increases to:

1

1− Pρ(0)

(
k

t

)κ
Tκ(ρ) ≈ ρ−1

(
k

t

)κ
Tκ(ρ)

Each weak message M is processed with complexity Θ(max{q, 1/S(k, t, κ)})
and is successful with approximate probability:

1− exp(−2h(k/t)
κ
Tκ(ρ)) . min{1, 2h(k/t)

κ
Tκ(ρ)}

It follows that the classical complexity of this attack is (in bits):

min
κ

[
max

{
0, κ(log2 t−log2 k)−log2 Tκ(ρ)−h

}
+max

{
h+log2 ρ, − log2 S(k, t, κ)

}]
One can also use Grover’s search algorithm over M, yielding a quantum

complexity of:

min
κ

[
max

{
0, κ(log2 t−log2 k)−log2 Tκ(ρ)−h

}
+max

{
h+log2 ρ,

− log2 S(k, t, κ)

2

}]
With SPHINCS parameters (k = 32, t = 216, h = 60) and q = 250, we find a

classical complexity of 270 bits (for κ = 26) and a quantum complexity of 187
bits (for κ = 5). Compared to search over weak HORST instances, this attack
is more efficient classically, but less efficient quantumly.



6 Fixing HORS: PRNG to obtain a random subset

As we have seen, the existence of weak messages for On allows to perform more
efficient attacks. We propose to improve the HORS construction to remove weak
messages and mitigate these attacks. Instead of splitting the output of a hash
function into k possibly non-unique indices, we propose to use a PRNG and
collect the first k distinct values.

We have also seen that SPHINCS has weak HORST instances, that can be
targeted by an attacker. Therefore, we then extend our PORS construction to
also select the hyper-tree leaf in SPHINCS, and show that this improvement
increases the security level of SPHINCS by a significant margin.

6.1 PORS construction

Given a PRF Hn = {HK : M → {0, 1}n|K ∈ K} that maps messages to n-bit
strings, and a PRNG G that expands a n-bit seed into an arbitrary long stream
of bits, we consider the following PRNG to obtain a random subset construction.
Given a key K and a message M , we let seed = HK(M). We define the sequence
(xi)i>0 computed by grouping the output of the PRNG by blocks of τ bits, i.e.
x1||x2|| . . . = G(seed). We then define ORSK(M) as the set containing the first
k distinct values of (xi)i>0.

Soundness of the construction. Since G is a PRNG, the xi are indistinguish-
able from independent random elements uniformly chosen in {0, 1}τ . Collecting
k distinct elements among t is a variant of the coupon’s collector problem, and
succeeds in an average of t(Ht −Ht−k) ≈ k steps, where Hn ≈ log n is the n-th
harmonic number. Besides, the failure probability of coupon collection after x
steps decreases exponentially in O(εx) with ε = (k − 1)/t, so a small number of
steps are enough with very high probability.

Comparison to other algorithms. Other algorithms [4,10] have been pro-
posed to generate k distinct elements among T , but they are not as simple and
practical. First, they take as input an integer uniformly distributed between 0
(inclusive) and

(
t
k

)
(exclusive), which is non-trivial because

(
t
k

)
is in general not

a power of 2. Second, they require arithmetic operations on large integers up
to
(
t
k

)
, i.e. 395-bit integers for SPHINCS parameters (k = 32, t = 216). Conse-

quently, Reyzin and Reyzin’s algorithm has a complexity of O(k2 log t log k) [10].
In contrast, our PORS construction has an average complexity of O(k) for k � t.
Indeed, we need to generate approximately k values and we can test if each value
is new in O(1) (e.g. with a hash table).

Besides, PORS offers a large flexibility on the choice of k, whereas HORS
constrains it to k ≤ n/ log2 t. PORS can also be used to generate auxiliary data,
as we will see in the case of SPHINCS.



6.2 Security of PORS

A non-adaptive adversary performing a brute-force attack against PORS has at
most the following success probability for each message.

(kr)!

(kr − k)!

(t− k)!

t!
=
kr

t
· kr − 1

t− 1
· · · kr − k + 1

t− k + 1

This corresponds to the probability that k distinct values uniformly distributed
in a set of size t all fall into a subset of size kr. This is lower than the success
probability bound against HORS, and the associated security level increases to:

k−1∑
j=0

log2(t− j)− log2(kr − j) ≥ k(log2 t− log2(kr))

The difference in security is especially large when r is small. For example,
with SPHINCS parameters (k = 32, t = 216) and r = 1:

− log2

[(
kr

t

)k]
= 352 − log2

[
(kr)!

(kr − k)!

(t− k)!

t!

]
≈ 394

Application to SPHINCS. If we apply the PORS construction to SPHINCS,
the best attack of Section 5.4 (search over weak HORST instances) has an in-
creased complexity, namely:

min
r

[
α

k−1∑
j=0

log2(t− j)− log2(kr − j)

+ max
{

0, −h− log2 Pρ(r)
}]

where α = 1 in the classical case and 1/2 in the quantum case. We obtain 282
bits of classical complexity and 141 bits of quantum complexity (both for r = 5).

The naive search attack also has an increased complexity by a few bits, and
is still non-competitive. The attack against weak messages (Section 5.5) does
not apply to PORS, because there are no weak messages.

6.3 SPHINCS leaf selection

As we saw in Section 5.4, SPHINCS suffers from attacks against weak HORST
instances. Indeed, even though a honest signer deterministically selects a HORST
leaf as a function of the message, a potential forger has full control over this choice
because the leaf index is part of the signature. To reduce the attack surface, we
propose to extend PORS to also generate this index.

More precisely, to generate a h-bit index i – for a hyper-tree of size 2h – one
can use the first h bits of PORS’s PRNG. Namely, we compute i||x1||x2|| . . . =
G(seed) where seed is obtained from the message as before. A schematic com-
parison of textbook SPHINCS and our new construction is shown on Figure 3.

We note that our construction also improves flexibility, because h and k are
not constrained by the output size of a hash function.



Original SPHINCS with HORST

proc GenPrivKey(1n)

salt
$← {0, 1}n

proc Sign(M)
R||i← hash(salt,M)
x1|| . . . ||xk ← split(hash(R,M))
σ ← sign(i, x1, . . . , xk)
return (R, i, σ)

proc Verify(M,R, i, σ)
x1|| . . . ||xk ← split(hash(R,M))
return verify(σ, i, x1, . . . , xk)

PORST with SPHINCS leaf selection

proc GenPrivKey(1n)

salt
$← {0, 1}n

proc Sign(M)
R← hash(salt,M)
i||x1||x2|| . . .← G(hash(R,M))
σ ← sign(i, uniquek(x1, x2, . . .))
return (R, σ)

proc Verify(M,R, σ)
i||x1||x2|| . . .← G(hash(R,M))

return verify(σ, i, uniquek(x1, x2, . . .))

Fig. 3: Simplified comparison of HORST and PORST in SPHINCS.

Increased security level. With this new construction, attacks targeting a
single weak PORST instance have a much higher complexity. The success prob-
ability for each message is divided by 2h, so the classical complexity increases by
h bits, and the quantum complexity by h/2 bits (for Grover-like attacks). Applied
to SPHINCS, the classical complexity is 342 bits and the quantum complexity
is 171 bits.

Naive attacks become more efficient in the classical case, with 337 bits of
complexity. Intuitively, targeting a single PORST instance is not worth it be-
cause the probability to hit it is too low. However, quantum naive search is not
competitive, due to memory access and comparison costs, so targeting a single
weak PORST instance is still the best strategy.

Overall, replacing HORST by PORST with leaf selection in SPHINCS yields
a gain of 67 bits of classical security (from 270 to 337) and 33 bits of post-
quantum security (from 138 to 171). As a side effect, removing the leaf index
from the signature also saves 8 bytes.

6.4 Revised parameters for SPHINCS

Thanks to the better security margin offered by PORST, we propose to decrease
SPHINCS parameters to reduce signature size. For an equivalent number of
queries q = 250 and similar signature times, we propose to reduce the total
height to h = 50, divided into d = 10 layers of Merkle trees (each of height 5
as in SPHINCS). Signatures for SPHINCS-PORST have a size of 36384 bytes
instead of 41000 bytes for textbook SPHINCS, due to the removal of 2 layers of
Merkle trees (and of the leaf index).

The corresponding security level is 267 bits classical (naive search) and 136
bits post-quantum (search on weak HORST instance), similar to the original
SPHINCS. For a slight improvement, one can also choose to reduce k to 29
instead of 32 to save 1152 more bytes, with 128 bits of post-quantum security.



The total height h can be reduced if the total number of signatures q is
smaller, and the number of layers d can be decreased if more computation time
is allotted to each signature.

7 Conclusion

In this paper, we have shown that adaptive attacks against HORS are much more
dramatic than non-adaptive attacks. We showed how to break textbook HORS
with a greedy algorithm and we gave example of forgeries, found with at most
222 queries. We then studied the SPHINCS construction, reviewed multi-target
attacks, and presented a new classical attack of complexity of 2270, against 2277

for previously known attacks.
We then proposed to improve SPHINCS security by two means: using a

PRNG to ensure uniqueness of generated indices, and to select a leaf. Although
HORS shines by the simplicity of its subset generation – a single call to a hash
function – it is the security foundation of a much more complex scheme such as
SPHINCS, so it is worth taking a few more CPU cycles with a PRNG to select a
strong subset. Besides, we don’t see any reason why leaf selection is adversarially-
controlled in textbook SPHINCS, and removing this degree of freedom makes
known attacks much more complex.

In the end, we can trade the increased security margin for lower signature size
and faster signature generation, pushing stateless hash-based signature schemes
one step further towards practicality. An open question is to which extent our
adaptive attacks could affect non-repudiability.

References

1. Bellare, M., Rogaway, P.: Collision-resistant hashing: Towards making UOWHFs
practical. In: CRYPTO (1997)

2. Bernstein, D.J.: Cost analysis of hash collisions: Will quantum computers make
sharcs obsolete? SHARCS09 Special-purpose Hardware for Attacking Crypto-
graphic Systems p. 105 (2009)

3. Bernstein, D.J., Hopwood, D., Hülsing, A., Lange, T., Niederhagen, R., Pa-
pachristodoulou, L., Schneider, M., Schwabe, P., Wilcox-O’Hearn, Z.: SPHINCS:
practical stateless hash-based signatures. In: EUROCRYPT (2015)

4. Bos, J.N., Chaum, D.: Provably unforgeable signatures. In: CRYPTO (1992)
5. Feige, U.: A threshold of ln n for approximating set cover. J. ACM 45(4) (1998)
6. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: ACM

Symposium on the Theory of Computing (1996)
7. Johnson, D.S.: Approximation algorithms for combinatorial problems. J. Comput.

Syst. Sci. 9(3) (1974)
8. Lamport, L.: Constructing digital signatures from a one-way function. Tech. rep.,

Technical Report CSL-98, SRI International Palo Alto (1979)
9. Pieprzyk, J., Wang, H., Xing, C.: Multiple-time signature schemes against adaptive

chosen message attacks. In: SAC (2003)
10. Reyzin, L., Reyzin, N.: Better than BiBa: Short one-time signatures with fast

signing and verifying. In: ACISP (2002)



11. Riordan, J.: Moment recurrence relations for binomial, poisson and hypergeometric
frequency distributions. The Annals of Mathematical Statistics 8(2) (1937)

12. Stevens, M., Bursztein, E., Karpman, P., Albertini, A., Markov, Y.: The first col-
lision for full SHA-1. In: CRYPTO (2017)

A Proofs of Lemmas and Theorems

Proof (Lemma 1). There are tk equiprobable combinations of k balls into t bins.
Out of those, we count the number of combinations for which exactly κ bins are
non-empty:

– there are
(
t
κ

)
ways to choose κ bins out of t;

– there are
{
k
κ

}
partitions of k labelled balls into κ classes (this is precisely

the definition of Stirling numbers of the second kind);
– there are κ! ways to associate the κ classes of balls to the κ bins.

This yields the result. ut

Proof (Theorem 2). First, the greedy algorithm always succeeds if there is noth-
ing to cover (κ = 0), and always fails if there is something to cover (κ > 0) but
there is no iteration or message left (r = 0 or q = 0).

Second, if the first iteration finds a maximal subset of size `, the success
probability of the following iterations is equal to the success probability of the
greedy algorithm on a subset of size κ − ` with one less iteration and one less
available message. ut

Proof (Lemma 2). We recall that ORSK(·) simulates throwing k balls uniformly
and independently into t bins. With that in mind, B(λ, k, κ/t) is the probabil-
ity that λ balls out of k fall into the κ elements of X. Then, S(λ, κ, `) is the
probability that these λ balls cover exactly ` bins out of κ.

The sum starts at λ = ` because S(λ, κ, `) = 0 when λ < ` (it is impossible
to cover ` bins with less than ` balls). ut

Proof (Lemma 3). By independence of the Yj :

Pr[|Ymax| ≥ `|k, t, κ, q] = Pr[∃j ∈ {1, . . . , q} |Yj | ≥ `|k, t, κ]

= 1− Pr[∀j ∈ {1, . . . , q} |Yj | < `|k, t, κ]

= 1−
q∏
j=1

Pr[|Yj | < `|k, t, κ]

= 1− Pr[|Y1| < `|k, t, κ]
q

where

Pr[|Y1| < `|k, t, κ] =

`−1∑
λ=0

P (k, t, κ, λ)

The result follows. ut



Proof (Theorem 3). The naive algorithm selects an arbitrary message, that has
a probability S(k, t, κ) of containing κ distinct elements. Given that, there is a

probability P k,tGreedy(κ, r, q − 1) that the algorithm succeeds. ut

Proof (Theorem 4). For 1 ≤ κ ≤ k, there is a probability Pr[|Ymin| = κ|k, t, q]
that the weakest message found by the algorithm contains κ distinct elements.
Given that, the algorithm succeeds with probability P k,tGreedy(κ, r, q − 1). ut

Proof (Lemma 4). The proof is similar to Lemma 3. By independence of the Yj :

Pr[|Ymin| ≤ κ|k, t, q] = Pr[∃j ∈ {1, . . . , q} |Yj | ≤ κ|k, t]
= 1− Pr[∀j ∈ {1, . . . , q} |Yj | > κ|k, t]
= 1− Pr[|Y1| > κ|k, t]q

Besides,

Pr[|Y1| > κ|k, t] =

k∑
λ=κ+1

S(k, t, λ)

which yields the result. ut
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