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Abstract. We investigate the merits of altering the Garg, Gentry and Halevi (GGH13) graded encoding
scheme to remove the presence of the ideal 〈g〉. In particular, we show that we can alter the form of
encodings so that effectively a new gi is used for each source group Gi, while retaining correctness. This
would appear to prevent all known attacks on indistinguishability obfuscation (IO) candidates instantiated
using GGH13. However, when analysing security in simplified branching program and obfuscation security
models, we present branching program (and thus IO) distinguishing attacks that do not use knowledge of
〈g〉. This result opens a counterpoint with the work of Halevi (EPRINT 2015) which stated that the core
computational hardness problem underpinning GGH13 is computing a basis of this ideal. Our attempts
seem to suggest that there is a structural vulnerability in the way that GGH13 encodings are constructed
that lies deeper than the presence of 〈g〉.

1 Introduction

The work of Garg, Gentry and Halevi [GGH13a] initiated the study of candidate multilinear maps
(MMAPs). In short, a multilinear map e : G1 × · · · × Gκ 7→ GT maps κ elements gi ∈ Gi to a
single target element gT ∈ GT in target group GT .1 More accurately, [GGH13a] constructed a graded
encoding scheme (GES), informally defining intermediate bilinear maps between the source groups
and thus allowing group operations on intermediate ‘levels’. The actual construction provides ‘noisy’
approximations to the functionality of MMAPs and subsequent candidates [CLT13, GGH15] follow in
the same vein. In fact, the common interface that we assume of a GES is similar to that of a levelled
FHE scheme except that decryption is replaced with a public ‘zero-testing’ procedure. This allows the
evaluator to learn whether a particular computation over encodings is equal to zero or not provided
that the result is encoded at the top level of a computation hierarchy (e.g. after κ multiplications).

The importance of these constructions for theoretical cryptography has solidified with applications
including semantically-secure, order-revealing encryption [BLR+15], attribute-based encryption for
circuits [GGH+13c] and low-overhead broadcast encryption [BWZ14] to name a few. Although, perhaps
the most important application is that of constructing candidates for indistinguishability obfuscation
(IO) [GGH+13b, BGK+14, GMM+16]. All-known constructions of IO obfuscators require usage of a
GES or MMAP, and analyse security in generic graded encoding models.

Unfortunately, the three candidates of GES [GGH13a, CLT13, GGH15] (from now on denoted as
GGH13, CLT13 and GGH15 respectively) have been shown to be vulnerable to a wide-range of attacks;
e.g. ‘zeroizing’ attacks [HJ16, CLR15, CLLT16, CLT14, CLLT17], attacks on the ‘overstretched’ NTRU
assumption [ABD16, CJL16, KF17] and algebraic dependency attacks [MSZ16a, ADGM16, CGH17].
Zeroizing attacks are largely avoided in the realm of IO since they rely on lower-level encodings of
zero being made available [HJ16, CLR15, CLLT16] or highly structured branching program construc-
tions [CLLT17]. Attacks on ‘overstretched’ NTRU assumptions only affect GGH13, but can be avoided
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1 Here we describe an asymmetric MMAP, we can equally describe a symmetric variant where G1 = · · · = Gκ = G.



by increasing parameters. Finally, algebraic dependency attacks affect specific ‘BGK-style’ IO candi-
dates (e.g. [AGIS14, BGK+14, BMSZ15, MSW14, PST14]) instantiated with the GGH13 GES and
rely on circuits outputting a sufficient number of zeroes. In short, the presence of a common generator
g in all GGH13 encodings allows an adversary in an IO security game to create a basis for the ideal
〈g〉. This basis is then used in a distinguishing attack on the obfuscated circuit.

There have been attempts to develop ‘immunised’ IO constructions such as [GMM+16] (a combina-
tion of original proposals [GMS16, MSZ16b]). These immunisations construct branching programs that
make finding algebraic dependences on zero-tested encodings (as described by [MSZ16a, ADGM16])
much more difficult, and analyse security in a weakened graded encoding model.2 However, the crypt-
analysis of Chen et al. [CGH17] seems to offer attacks that are still effective, even for these immuni-
sations.3

This work. Our analysis is motivated by the cryptanalysis of Chen et al. [CGH17] and its applicability
against ‘immunised’ IO candidates. We focus on algebraic dependency (or annihilation) attacks on IO
candidates instantiated with GGH13, and their propensity to find representatives of the ideal 〈g〉. We
investigate the possibility of making changes at the GES level to avoid the attacks described previously,
rather than using ad-hoc fixes to IO constructions. In particular, we derive a variant of GGH13 where
the common generator g is removed such that encodings on different levels i are cosets of the form
α+ Ii for κ ideals Ii. Concretely, we replace the usage of the short g in GGH13 with larger elements
βi that also depends on the level that the encoding is associated with (See Section 4 for more details).
The correctness of zero-testing is achieved since the magnitude of the result is completely determined
by the presence of the βi’s — the number of which differ in zero and non-zero encodings. The result
is a GES that has no structural ideals that can easily be computed by a PPT adversary.

At first sight, this immediately prevents all known attacks that require an annihilation phase. On
the other hand, it should be noted that, similarly to GGH13, our variant is trivially susceptible to
zeroizing attacks and thus is immediately short of providing full MMAP functionality. As such, our
alteration would only be a plausible candidate in situations where multilinear jigsaw puzzle (MJP)
functionality is sufficient (e.g. IO [GGH+13b], order-revealing encryption [BLR+15]).

However, we find that the GES that we have derived is still vulnerable, in a simplified IO security
game, to a variation of the annihilation attack given in [MSZ16a]. While we remove the ability of an
adversary to learn ideals from our MJP scheme, we detail an attack that side-steps these measures and
distinguishes based on the magnitude of zero-tested encodings. We interpret this result as a counter-
point to the work of Halevi [Hal15] where it is stated that the core computational hardness problem
underpinning GGH13 is to establish a basis of 〈g〉. Given the similarity between our encodings and
those of GGH13, our attack seems to highlight a structural fault that is exploitable even if the ideal
testing capability of adversaries is removed. However, we stress that the attack is only possible because
of distribution of our elements βi that we use to replace g.

Finally, the added machinery used in candidate obfuscators (such as ‘multiplicative bundling’ scalars
and Kilian randomisation) also does nothing to prevent similar attacks. In particular, we show that
an attack can be leveraged in a new model aiming to specifically characterise ‘BGK-style’ obfuscation
families. The attack requires top-level encodings of zero to be evaluated from the branching program
and makes use of inputs that essentially render the use of the input scalars independent of the inputs
that are chosen. This technique is similar in vein to the attacks of [MSZ16a, ADGM16] and is adapted
from the attack explained above.

2 This model allows all the same operations as the generic graded encoding model along with an additional step where
the adversary is allowed to submit certain polynomial evaluations on the results of zero-testing.

3 They are thwarted only by the usage of dual-input branching programs which are external to the security model
considered. In fact, they note that parts of their attack take place externally to the WGEM and thus suggest that the
model is incomplete.
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Clearly the scheme that we present here is as vulnerable as GGH13 in settings where attacks are
possible. Tangentially, it may be worthwhile investigating the usage of our variant in security models
incorporating characteristics of obfuscators that can be instantiated (without known cryptanalysis) by
the GGH13 MMAP (such as [GMM+16]). These obfuscators are built so that finding a representative
of the ideal 〈g〉 is difficult. However, it is shown in CGH17 [CGH17] that attacks are still possible
when only considering single-input branching programs. In particular, the obfuscator of [GMM+16]
is proven secure in the weakened graded encoding model (as a dual-input scheme) but the CGH17
attack breaks the single-input version. It would be interesting to see if analogous attacks could be
found against the scheme described in this work (where usage of the ideal is no longer possible) when
instantiating this obfuscator.

Layout. Section 2 details the notation that we will use and a recap of rings, multilinear jigsaw puzzles,
branching programs and definitions on algebraic dependence. In Section 3 we provide a brief overview
of the GGH13 GES and the algebraic dependence attacks mentioned previously. In Section 4 we
describe the changes we can make to GGH13 to remove the dependency on the ideal 〈g〉. In Section 5
we provide an analysis of the security of this variant when applied in differing IO security settings. In
Section 6 we provide a final discussion of our results and possible future avenues for research.

2 Background and preliminaries

2.1 Notation

We may denote sets of the form {1, . . . , n} by [n]. For matrices M , we refer to the entry in row i and
column j as M [i, j]. For ring elements x we also use the square-bracket notation [x]S to represent an
encoding of x with respect to some index set S. For an algorithm A, we use the notation w ← A(x, y, z)
to denote that A outputs w on inputs x, y, z. For a set X we use the notation x←$X to indicate that
x is sampled from X using the uniform distribution. For elements y ∈ Rq for some polynomial ring
Rq, when referring to the ‘magnitude’ of y we will mean ‖y‖∞. For some distribution Y , we write
poly(Y n ) to denote sampling a degree n polynomial with coefficients sampled from Y

2.2 Rings

We will be working over rings R := Z[x]/〈φ(x)〉 and Rq := R/qR for some degree n = n(λ) integer
polynomial φ(x) ∈ Z[x] and a prime integer q = q(λ) ∈ Z — notably Rq is isomorphic to the ring
Zq[x]/〈φ(x)〉. We perform addition in these rings component-wise in the coefficients of the polynomial
elements and multiplication is performed via polynomial multiplication modulo φ(x) and, if applicable,
q. An element in R (respectively Rq) can be viewed as a degree (n−1) polynomial over Z (respectively
Zq). We can represent such an element using the vector of its n coefficients (where these will be in the
range {− bq/2c , . . . , bq/2c} for elements in Rq). We work with the polynomial φ(x) = xN + 1 with N
a power of two. In particular, Z[x]/〈φ(x)〉 is isomorphic to the ring of integers of the 2N -th cyclotomic
field.

Canonical embeddings. Let ζm denote a primitive m-th root of unity. The m-th cyclotomic number
field K = Q(ζm) is the field extension of Q obtained by adjoining ζm. Let n be the degree of K over Q,
then there are n embeddings σi of K → C. These n embeddings correspond precisely to evaluation in
each of the n distinct roots αi of φ(x). In our case, ψ(x) has 2 · s2 = n complex conjugate roots. Order
the roots such that αk = αs2+k for k = 1, . . . , s2. The canonical embedding σ : K → Cn is defined as

a 7→ (σ1(a), . . . , σss(a), σ1(a), . . . , σs2(a)) .
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The canonical embedding maps into a space H ⊂ Cn given by

H = {(x1, . . . , xn) ∈ Cn : xj = xs2+j ,∀1 ≤ j ≤ s2}

which is isomorphic to Rn and we can represent the coordinates of σ(a) by a real vector [CIV16]

(ã1, . . . , ãn) ∝ (< (σ1(a)) , . . . ,< (σs2(a)) ,= (σ1(a)) , . . . ,= (σs2(a))) .

This naturally induces a geometry on K with `2-norm ‖ · ‖2 and `∞-norm ‖ · ‖∞:

‖a‖2 = ‖σ(a)‖2 =

(
n∑
i=1

|ãi|2
)1/2

and

‖a‖∞ = ‖σ(a)‖∞ = max
i
|ãi|.

Bounded distributions. When sampling our encodings we are required to define a B-bounded
distribution, where all elements sampled from this distribution have an l∞ norm that is bounded by
B. In this section we will formally define such a distribution.

Definition 1. (B-bounded element) An element p ∈ R is called B-bounded if ‖p‖∞ ≤ B.

Definition 2. (B-bounded distribution) A distribution ensemble {χλ}λ∈N, supported over R, is called
B-bounded (for B = B(λ)) if for all p in the support of χλ, we have ‖p‖∞ < B. In other words, a
B-bounded distribution over R outputs a B-bounded polynomial.

Lemma 1. ([LTV12]) Let n ∈ N, let φ(x) = xn + 1 and let R = Z[x]/〈φ(x)〉. For any s, t ∈ R,

‖s · t‖ ≤
√
n · ‖s‖ · ‖t‖ and ‖s · t‖∞ ≤ n · ‖s‖∞ · ‖t‖∞

Corollary 1. ([LTV12]) Take n, φ(x), R as before. Let s1, . . . , sk←$χ where χ is a B-bounded distri-
bution over the ring R. Then

s :=
k∏
i=1

si

is (nk−1Bk)-bounded.

Gaussian sampling. For any real r > 0 the Gaussian function on Rn centred at c with parameter
r is defined as:

∀x ∈ Rn : ρr,c(x) := e−π||x−c||
2/r2

Definition 3. For any n ∈ N and for any c ∈ Rn and real r > 0, the Discrete Gaussian distribution
over Zn with standard deviation r and centred at c is defined as:

∀x ∈ Z : DZn,r,c :=
ρr,c(x)

ρr,c(Zn)

where ρr,c(Zn) :=
∑

x∈Zn
ρr,c(x) is a normalisation factor.
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The work of [MR04] showed that the discrete Gaussian distribution over Zn with standard deviation r
outputs elements that are (r

√
n)-bounded with high probability (≥ 1− 1/2−n+1). We can then define

the truncated Gaussian distribution that is (r
√
n)-bounded and is statistically close to the discrete

Gaussian.

The truncated Gaussian with standard deviation r and centred at c will be denoted by D̄Zn,r,c and can
be defined by sampling polynomials according to the discrete Gaussian (DZn,r,c) and repeating any
samples that are not (r

√
n)-bounded. We note that this distribution is statistically close to DZn,r,c as

shown in [LTV12]. For the case where c = 0 we will simply write D̄Zn,r.

Our GES (Section 4) relies on distinguishing between products of κ− 1 and κ elements. For this, we
sample real vectors (ã1, . . . , ãn) with each coordinate sampled from a Gaussian distribution conditioned
on a minimum size through rejection sampling. Mapping these real vectors to elements in K produces
the desired distribution in K. We then discretise, i.e. randomised round each coordinate to an integer
to obtain elements in Z[x]/〈φ(x)〉 as usual.

Thus, we may infer the magnitude of elements that are sampled from certain distributions and latterly
what the magnitude of such an element is expected to be after multiplying any number of these
elements is. We can use this information to make statements on the size of encodings that are made
up of elements sampled from such B-bounded distributions.

2.3 Multilinear jigsaw puzzles

In the introduction we referred to IO candidates instantiated from graded encoding schemes. In fact,
we instantiate IO from multilinear jigsaw puzzles (MJPs) — a restricted variant of a GES where lower-
level encodings of zero are not permitted and only certain types of multilinear form can be computed.
From now on we will use the following MJP formalisation when referring to the functionality required
for constructing IO rather than the wider GES framework.

Definition 4 (MJP Scheme). A multilinear jigsaw puzzle consists of two algorithms (JGen, JVer)
that generate the puzzle and verify a solution to the puzzle, respectively. We explain the algorithms in
detail.

Puzzle generation: Algorithm JGen comprises the triple of sub-algorithms (JInstGen, JEnc, JGenPuzz)
described as such:

– JInstGen(1λ, 1κ) : On input the security parameter λ and multilinearity κ, this algorithm outputs
a set of private parameters sk needed to encode ring elements, and a set of public parameters
pp = (prms, evk, ztk). The last two components of the public tuple are necessary to perform
algebraic operations over the encodings, and for zero-testing, respectively. The system-wide
parameters prms include a prime q defining the working ring, a set universe U , and a partition
{S1, . . . ,Sκ} of U .

– JEnc(prms, sk,S, a) : On input sk, a set S ⊂ U and a ∈ Zq, this algorithm outputs an encoding
v relative to the set S.

– JGenPuzz(1λ, 1κ, l, A) : Takes as input the security and multilinearity parameters, l ∈ N and a
set A = (A1, . . . , Al), where Ai is a set of values {aj}j∈[mi] that will be encoded with respect to in-

dex set Si. First it runs JInstGen(1λ, 1κ) to receive system parameters (sk, pp = (prms, evk, ztk)).
It then runs JEnc on inputs (prms, sk) and each element (Si, aj) ∈ Ai to receive encodings
(Si, vj) ∈ Ci.

Let puzzle = (C1, . . . , Cl) and let X = ((S1, v1), . . . , (Sl, vl)), then we define (X, puzzle) as the
output of JGen where X is kept secret and puzzle is the public output.
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Puzzle verification: Algorithm JVer takes as input the public parameters pp = (prms, evk, ztk), the
public output puzzle of JGen and some multilinear form F (the solution to the puzzle). It outputs
either acceptance or rejection. More formally, following [MSZ16a], we split the verification into
three sub-algorithms JVer = (JCompute, JZTParam, JTest). This helps in capturing the weakened
grading encoding security model [MSZ16a, GMM+16].

– JCompute(prms, evk, puzzle, F ) : On input the encodings in puzzle and some valid multilinear
form F , this outputs the encoding (S, v) = F (puzzle) for S ⊆ U . We will sometimes abuse
notation and simply write the output of the algorithm as F (puzzle).

– JZTParam(prms, ztk, (S, v)) : On input encoding (S, v) it first checks if S = U and if not
aborts. If true, it outputs the ring element δ. In an honest execution we have that (S, v) ←
JCompute(puzzle, F ).

– JTest(prms, δ) : On input ring element δ it returns 1 or 0. In an honest execution we have that
δ ← JZTParam(prms, ztk, (U , v)).

In the above definition, by valid multilinear form, we mean some sort of computation that respects
the computation laws of a graded encoding scheme and outputs a top-level encoding [GGH+13b].
For instance, for any encodings (S1, v1), (S2, v2) we have an addition operation that is defined when
S = S1 = S2 and outputs the encoding (S, v1 + v2). We also have multiplication that is defined when
S1 ∩ S2 = ∅ and results in an encoding (S, v1 · v2) for S = S1 ∪ S2. The output of these operations is
said to be a top-level encoding when S = U .

Definition 5 (MJP Correctness). A jigsaw verifier JVer is correct with respect to (pp, (X, puzzle), F )
if either F (X) = (U , 0) and JVer(puzzle, F ) = 1 or F (X) 6= (U , 0) and JVer(puzzle, F ) = 0. Otherwise
it is incorrect on F .

We specifically require that JVer is correct on all but negligibly many forms (see [GGH+13b] for an
explanation of the requirement).

Security. Characterising the security that should be offered by a MJP is one of the difficulties
confronted by constructions of IO. In short, constructions of IO are proven secure in a generic model
where encodings are treated as random handles and all operations that can be performed are interacted
with via oracle calls. Yet, as discussed above, current MJP constructions do not justify the use of such
a model, i.e. they are broken by attacks which fall our side of this model. See [MSZ16a, GMM+16] for
more details.

2.4 Branching programs

Let L = L(λ), ν = ν(λ) and d = d(λ) be parameters dependent on the security parameter λ. Let
inp : [L] 7→ [ν]d be some ‘input’ function. Let {M(b1,...,bd),l} be a set of matrices individually sampled
from Z5×5

q for b1, . . . , bd ∈ {0, 1} and l ∈ [L]. Let M0 ∈ Z5×1
q , ML+1 ∈ Z1×5

q be two vectors, these are
known as ‘bookends’ and are used for guaranteeing a single element output. Define

M := (L, ν, d, inp, {Mxinp(l),l}l∈[L],M0,ML+1) (1)

to be a matrix branching program (MBP) of length L, input width ν and arity d. We can evaluateM
on inputs x ∈ 2ν where xs = x[s] and we denote such an evaluation byM(x).4 The input function inp
chooses the bits in the input x that are examined at each layer l of the branching program. Clearly
|inp(i)| = d where inp(i)[y] is equal to the yth component of inp(i). In total, we have that the branching

4 We use 5× 5 matrices as these are sufficient for Barrington’s theorem [Bar89].
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program contains 2dL + 2 matrices. Let xinp(l) = (xinp(l)[1], . . . , xinp(l)[d]), we evaluate the branching
program on an input x by computing

M(x) := M0 ·

(
L∏
l=1

Mxinp(l),l

)
·ML+1. (2)

Using Barrington’s theorem we can associate a circuit C with a branching program MC . We have
that the branching program (without bookend vectors) evaluates to the identity matrix on an input x
if and only if C(x) = 0. Since this theorem is commonly used in the construction of IO candidates this
formulation of correctness applies to our situation. It is common to structure a branching program
MC such that M(x) = 0 when C(x) = 0. To ensure this, we can construct a dummy branching
program that contains only identity matrices with the same bookend vectors as in the functional
branching program. We then compute the dummy branch on the same input as the functional branch
and subtract the dummy output from the functional output. All current obfuscators only consider
branching programs that take either single [GGH+13b] or dual [BGK+14] inputs i.e. cases where
d = 1 or d = 2.

Definition 6. (Functional equivalence) Let X be the set of valid inputs for two branching programs
M0,M1 of length L, input length ν and arity d. We say that M0,M1 are functionally equivalent (or
M0 ≡M1) if, for any input x ∈ X then:

M0(x) = 0 if and only if M1(x) = 0.

As above, we can alter the branching program computation to ensure that only a single value is output
rather than matrices.

Remark 1. Note that we can pad the length of the branching program to any required length by
simply appending the required number of identity matrices to the end of the branching program.
These matrices clearly do not alter the result of the program evaluation.

2.5 IO from branching programs

The majority of current IO candidates make use of branching programs when constructing an obfus-
cated version of a circuit C(·). This generalised approach is developed from the randomised branch-
ing program model used by [MSZ16a] — using Barrington’s theorem to convert a fan-in 2 circuit,
C, of depth D into a branching program M of the form above with length L = O(4D). The con-
struction we detail here is heavily generalised but follows the BGK-style obfuscation candidates
of [AGIS14, BGK+14, BMSZ15, MSW14, PST14]. Obfuscators such as [GGH+13b, GMM+16] use
more complicated randomisation procedures.

To obfuscate the program, we first apply Kilian’s randomisation technique [Kil88] by randomly sam-
pling invertible matrices R0, . . . ,RL+1, sampling 2L random non-zero scalars εb,l←$Zq and then
constructing randomised matrices

M̃b,l = εb,l · R−1
l−1Mb,lRl

along with bookend vectors

M̃0 = ε0 ·M0R0, and M̃L+1 = εL+1 · R−1
L+1ML+1.

Notice that the following holds:

M̃0 ·

(
L∏
l=1

M̃xinp(l),l

)
· M̃L+1 = ε̃ ·M0 ·

(
L∏
l=1

Mxinp(l),l

)
·ML+1
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for the multiplicative bundling scalar ε̃ = ε0εL+1
∏L
i=1 εxinp(i),i. This means that, if we replace the

matrices in the branching program with the randomised matrices then we still compute the same
function. These randomisations procedures help prevent partial evaluation and input mixing attacks
on obfuscated programs. Similarly to the work of [BGK+14] we could make use of a straddling set
structure when encoding elements to prevent further algebraic attacks. This is tangential to the security
model that we consider and so we do not describe this procedure here.

Finally the entries of each matrix M̃b,l are encoded using an MJP scheme with respect to a source
index set Sb,l. This allows the security of the construction to be analysed in the generic graded
encoding model (to be consistent with previous work), essentially limiting an adversary to computing
multilinear operations and zero-testing on top-level encodings. We denote the encoded matrices by
M̂b,l, the bookend vectors by M̂0, M̂L+1 and the obfuscated branching program by M̂. The index sets

are define such that the output of M̂ is an encoding with respect to a top-level set U .

Evaluation. When evaluating the branching program on an input x the bookend vectors and a
dummy program execution ensure that a single element is propagated from the computation. Using
the randomised branching program

M̂ := (L, ν, d, inp, {M̂xinp(l),l}l∈[L], M̂0, M̂L+1)

we learn a top-level encoded element where the encoded value is 0 if and only if the circuit that was
obfuscated also evaluates to 0 on x.5 That is, M̂C(x) = [0]U iff C(x) = 0 and, since [0]U is a top-level
encoding, we can use the zero-test procedure to learn the output of the obfuscated circuit.

2.6 Algebraic dependence

Here, we list definitions and key results taken from the work of [Kay09] that we use in the security anal-
ysis of our MJP scheme. In short, we articulate the formalisation of expressing algebraic dependencies
for a set of polynomials sampled from a particular field.

Definition 7. Let f = (f1, . . . , fk) be a vector of k polynomials of degree ≤ d, where each fi ∈
F[y1, . . . , yn] is an n-variate polynomial over F. A non-zero polynomial A(t1, . . . , tk) ∈ F[t1, . . . , tk] is
said to be an annihilating polynomial for f if A(f1, . . . , fk) = 0. The polynomials f1, . . . , fk are said
to be algebraically dependent if such an annihilating polynomial exists.

Definition 8. Let f = (f1, . . . , fk) be a vector of k polynomials as above where f ′ represents some
subset of algebraically independent polynomials of maximal size k (i.e. for any fk+1 ∈ F[y1, . . . , yn]
then the set f ′ ∪ fk+1 is algebraically dependent). Then the algebraic rank of the set of polynomials f
is k.

Theorem 1 (Theorem 2 [Kay09]). Let f1, . . . , fk ∈ F[x1, . . . , xn] be a set of k polynomials in n
variables over the field F. Then this set of polynomials has algebraic rank k if and only if the Jacobian
matrix, Jf(x), has rank k.

Corollary 2 ([Kay09, BS83]). There exists a randomized polynomial time algorithm that on input
a set of k arithmetic circuits over a field F, determines if the polynomials computed by these arithmetic
circuits are algebraically dependent or not.

5 The use of the bundling scalars ensure that any input x such that C(x) = 1 satisfies M̂C(x) 6= [0]U
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Remark 2. The algorithm mentioned by Corollary 2 essentially requires submitting random values in
place of the variables in the Jacobian matrix Jf(x). By the Schwarz-Zippel lemma, the rank of the
symbolic matrix is likely to be the same as the rank of the matrix evaluated on random inputs with
high probability. As such we can calculate the algebraic rank for a given system of polynomials.

3 GGH13 and annihilation attacks

3.1 GGH13 overview

The space for GGH13 encodings is Rq = R/qR where q is some big integer and R = Z[x]/(xm + 1) for
m ∈ N. The plaintext ring is defined by Rg = R/gR where g is a small element in the ring. A GGH13
encoding takes the form v = (α + rg)/z mod q where z is some uniformly random value — z and g
are secret — α is the encoded plaintext value and r is some small random value, all these values are
sampled from some error distribution, χ, over Rq.

The denominators z enforce the levels of the GES, where we can sample one global z for the symmetric
case and z1, . . . , zκ in the asymmetric case, we will consider the asymmetric case unless otherwise
stated. Where an encoding v has a denominator zi we will say that v is encoded at level Si where
there are κ such index sets. Additions and multiplications are carried out by simply adding and
multiplying encodings directly. Clearly, additions of encodings indexed at the same level results in
another encoding at that level. Multiplying two encodings, indexed by z1 and z2 respectively, results
in an encoding at level S1 ∪ S2.

Finally, there is a public zero-test parameter

pzt =

h ·
κ∏
i=1

zi

g

for some ‘smallish’ h ∈ Rq.6 We can learn whether an encoding (U , v) (e.g. top-level with denominator
z1 · · · · · zκ) encodes zero or not by computing pzt · v and seeing if the result is small.

The functionality described can be adapted to construct a correct MJP scheme [GGH+13b].

3.2 Annihilation attacks on GGH13

Let M̂ be a randomised branching program that has entries encoded as GGH13 elements and each
pair of matrices M̂b,l and bookends M̂0, M̂L+1 are encoded with respect to the levels l ∈ {0, . . . , L+1}.
Let x ∈ X be some valid input for M̂ and let µx ← M̂(x) be the output. Finally denote δx = pzt ·µx =
JZTParam(µx) as the zero-tested output.

A top-level GGH13 encoding will have the following form:

δx = α̃x · g−1 + γ1,x + γ2,x · g + . . .+ γκ,x · gκ−1 (3)

after zero-testing has occurred. The target of the annihilation attacks is the polynomial γ1,x(α, r) which
is linear in the unknown sampled elements rj from each encoding vj . Using a change of variables in the
branching program it is possible to assume that the adversary has knowledge of the values αj that are
encoded in each of the matrices [MSZ16a] (see Section 5.3 for more details). By choosing enough inputs
x such that αx = 0, the adversary is able to guarantee that there exists an annihilating polynomial Q

6 The exact magnitude is not important for the attack in [MSZ16a] as long as h� q.
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for the set of γ1,x polynomials. In fact, the work of [MSZ16a] explicitly gives a description of Q for a
given single-input branching program M.

Consequently, the result ρx ← Q({δx}x) results in some output where the γ1,x polynomials are elim-
inated. In particular, this means that ρx ∈ 〈g〉. By computing enough outputs, an adversary can
heuristically construct a basis of 〈g〉. The attack concludes by specifying a functionally equivalentM′
where the set of polynomials γ′1,x are not annihilated by Q. The work of [MSZ16a] show that it is
possible to constructM,M′ such that a PPT adversary with obfuscated access to either of the circuits
can first construct a basis of 〈g〉7 and then secondly distinguish between the circuits. Distinguishing is

possible since ρ′x ← M̂′(x) is not in 〈g〉 and so they are able to distinguish using the basis computed
in the first step.

4 GGH13 without ideals

The main component of this note is our analysis of the security of IO candidates when instantiated
with a variant of GGH13 where ideals cannot be efficiently found. In the following, we give an overview
of our scheme, in Appendix A, we give a formal MJP realisation.

4.1 Overview of encodings

Let R = Z[x]/〈φ(x)〉 be a ring and Rq = R/qR be the quotient ring for a large prime q, with an
accompanying error distribution χ = D̄Zn,σ for parameter σ. The ring Rq will define the space of
encodings and all operations take place there.

Let α ∈ Rq be some non-zero polynomial with small coefficients. Sample a polynomial r←$ poly(χ)
with small coefficients and sample zi uniformly from Rq for 1 ≤ i ≤ κ. Finally, sample βi such that
κ+1
√
q < ‖βi‖∞ < κ

√
q. We refer the reader to Section 2.2 for more details on how to sample the βi.

A level 1 encoding of α with respect to some set Si takes the form:

[v]q =
α+ r/βi

zi
mod q (4)

where the values zi, βi enforce the leveled structure that we require from the specification of an MJP
scheme. It is easy to see that β−1

i corresponds to using a different gi in GGH13. We reiterate that
βi has to be sampled in a different way (e.g. no longer as small elements) to ensure correctness for
zero-testing.

Remark 3. It is possible to sample higher-level encodings by encoding with respect to
∏
i∈S zi and∏

i∈S βi for some index set S. We do not require this functionality for a MJP scheme.

4.2 Operations

Let U refer to the top-level index where zero-testing can take place.

Addition of encodings. Let v1, v2 be encodings with respect to the same index set S ⊆ U . Then we
can compute additions of these encodings by simply computing v = v1 + v2, the result is an encoding
of the form

[v]q =
α1 + α2 + (r1 + r2)/βS

zS
mod q

7 It is possible to find inputs for both circuits that allow the adversary to construct a basis of 〈g〉.
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Multiplication of encodings. Let v1, v2 be encodings with respective index sets Si and Sj such that
Si ∪ Sj ⊆ U . A multiplication of these encodings is calculated by multiplying the encodings directly,
i.e. v = v1 · v2 which creates an encoding of the form

[v]q =
α1 · α2 + r̃/(βi · βj)

zi · zj
mod q (5)

where r̃ = α1 · r2 · βj + α2 · r1 · βi + (r1 · r2).

As with GGH13, operations can only take place while the noise stays smaller than a set upper bound (in
this case κ

√
q). We choose parameters such that κ multiplications can be computed without overflowing

this boundary.

Zero-testing. To enable zero-testing on encodings vU that are indexed at the top-level we follow
procedures set in previous GE schemes and publish a zero-testing parameter pzt. We consider top-
level encodings that are constructed via a sequence of multiplications of encodings indexed with each
of the sets Si and thus they take the form:

[vU ]q =
α̃+ r̃/βU

zU

where βU =
∏κ
i=1 βi, zU =

∏κ
i=1 zi and α̃ is a polynomial of underlying α values. Finally, r̃ is a

polynomial taking the form r̂ + β(1) + β(2) + . . . + β(κ−1) where we stratify the polynomial into
the components β(h), containing all monomials of degree h in the βi elements, and r̂ representing a
polynomial in the rj values from each of the underlying encodings vj . Notice that the polynomial
structure of r̂ exactly mirrors the polynomial that has been calculated over the encodings as a whole.
The zero-test parameter is defined as

pzt =
κ∏
i=1

βi · zi

and an encoding vU is zero-tested by first computing δ = pzt · vU mod q and then we state that vU
encodes the value ‘0’ if δ is ‘small’ and encodes a non-zero value if δ is ‘big’.

Notice that

δ1 =
κ∏
i=1

βi · α̃+ r̂ + β(1) + β(2) + . . .+ β(κ−1) (6)

for non-zero encodings (α̃ 6= 0) and so for an encoding of zero (α̃ 6= 0) we have that

δ0 = r̂ + β(1) + β(2) + . . .+ β(κ−1). (7)

The difference between Equations (6) and (7) is the loss of a factor of
∏κ
i=1 βi, in Equation (7) we

have monomials in the βi of maximum degree κ− 1.

Observe that the value of the encoding is now stored in the MSB of the final output — in GGH13 the
value is stored in the LSB. Therefore, zero-testing requires more involved distinguishing in our case
than in GGH13. We discuss this in detail below.

Correctness. Correctness of zero-testing follows providing that

qκ−2/κ < ‖δ0‖∞ < q and ‖δ1‖∞ > q (before modular reduction).

For δ0, β(1) +β(2) + . . .+β(κ−1) is a sum of monomials dominated by the term β(κ−1). In this particular
term, we have a sum of monomials of degree κ− 1 over variables βi, sampled such that ‖βi‖∞ < κ

√
q.

The coefficients of these monomials are made up of polynomials in the α, r elements from underlying
encodings and are thus small, but may be enough to push the infinity norm of β(κ−1) > q(κ−1)/κ).
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Providing that ‖α, r‖∞ � βi (for all i), we have that qκ−2/κ < ‖βκ−1‖∞ < q. As a result, by
appropriate choice of q, κ and since all remaining terms are comparatively small, we have that

qκ−2/κ < ‖β(1) + β(2) + . . .+ β(κ−1)‖∞ < q.

Secondly, since δ1 contains a product of all βi values then qκ−1/κ ≤ ‖δ1‖∞. Now, the coefficient of the
product

∏κ
i=1 βi will, with overwhelming probability, force ‖δ1‖∞ > q. Therefore, modular reduction

(mod q) will occur after zero-testing on non-zero encoded values.

We could set out tighter bounds for correctness but we are more concerned with the analysis of this
scheme in the IO setting. As a consequence we merely state that it is possible to choose parameters such
that distinguishing non-zero and zero encodings is possible, given how we sample each βi. Moreover,
due to the modular reduction that occurs for any δ1, we assume that all algebraic structure is lost
when zero-testing non-zero encodings.

5 Security analysis in IO setting

In this Section we demonstrate flaws in the encoding scheme from Section 4 via an annihilation attack
in two simplified security models. These simplified security models aim to capture characteristics of
BGK-style obfuscators and our attacks do not depend on finding representations of any ideals.

5.1 Simplified security model

In the attacks that we propose we prefer to talk explicitly in a game-based representation of the IO
game. In particular, the scope of the weakened graded encoding model is unnecessarily wide since our
attacks only occur during the post-zero-testing query phase. As a result we propose two interactive
distinguishing security games. In the first, IND-M, the adversary chooses functionally equivalent
(Definition 6) branching programs to be encoded and then has oracle access for querying inputs on
the branching program and receiving zero-tested outputs. In the second, IND-OBF, the branching
programs are also randomised using the techniques (Kilian randomisation and multiplicative bundling
scalars) discussed in Section 2.5 before encoding takes place — nothing else is changed. In the weakened
graded encoding model, the adversary is able to interact with random handles that represent encodings
after operations have taken place.

Let

AdvIND-M
A (λ) =

∣∣∣Pr
[
1← A(λ,M̂0)

]
− Pr

[
1← A(λ,M̂1)

]∣∣∣
be the advantage of the adversary in IND-M. Then the security game is satisfied if AdvIND-M

A (λ) =
negl(λ). We give a formal description of the game in Figure 1.

Game IND-MA(λ):

1. (sk, prms, evk, ztk)← JInstGen(1λ, 1κ)
2. (st,M0,M1)← A0(l, prms, evk)
3. b← {0, 1}
4. M̂b ← JEnc(sk, prms, {Si}i∈[κ],Mb)

5. b′ ← AOzt
1 (st)

6. output (b′ = b)

Oracle Ozt(x):

1. if init, q ← 0; else, q ← q + 1
2. if q > Q, δ ← ⊥
3. else:

4. (U , µx)← M̂b(x)
5. δx ← JZTParam(prms, ztk, (U , µx))
6. return δx

Fig. 1. Left: The IND-M game. An adversary A = (A0,A1) is legitimate if A0 outputs two branching pro-
grams (M0,M1) of the same size that compute functionally equivalent circuits. We abuse notation and write
JEnc(sk, prms, {Si}i∈[κ],Mb) to denote the encoding of the ith level of matrices in Mb with respect to the index set

Si. Right: Oracle for computing inputs on the encoded branching program M̂b and outputting zero-tested results.
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Let
AdvIND-OBF

A (λ) =
∣∣∣Pr
[
1← A(λ,M̂0)

]
− Pr

[
1← A(λ,M̂1)

]∣∣∣
be the advantage of the adversary in IND-OBF, the security game is satisfied if AdvIND-OBF

A (λ) =
negl(λ). We give a formal description of the game in Figure 2; we use iO to denote the oracle that the
challenger uses for performing the BGK-style obfuscation of a branching program.

Game IND-OBFA(λ):

1. (sk, prms, evk, ztk)← JInstGen(1λ, 1κ)
2. (st,M0,M1)← A0(l, prms, evk)
3. b← {0, 1}
4. M̂b ← iO(sk, prms, {Si}i∈[κ],Mb)

5. b′ ← AOzt
1 (st)

6. output (b′ = b)

Oracle Ozt(x):

1. if init, q ← 0; else, q ← q + 1
2. if q > Q, δ ← ⊥
3. else:

4. (U , µx)← M̂b(x)
5. δx ← JZTParam(prms, ztk, (U , µx))
6. return δx

Fig. 2. Left: The IND-OBF game. Same as above, except that the oracle iO takes a branching program as input and
outputs an obfuscation of the branching program, as defined in Section 2.5. The ith level of matrices is still encoded with
respect to Si. Right: Oracle for computing inputs on the encoded branching program M̂b and outputting zero-tested
results.

An interesting question is whether we can instantiate this game-based model using any IO candidate
and achieve meaningful security guarantees. This would be particularly useful for comparison with the
weakened graded encoding security model. For example, instantiating IND-OBF with the obfuscator
from [GMM+16] provides the adversary with the exact access that an adversary can expect with
respect to the MJP scheme that is used. We regard this as interesting future work, see Section 6.

5.2 Analysis of (in)security in IND-M game

Let M̂b be the encoded branching program that A1 receives in the IND-M security game. Then let
X = {0, 1}L be the set of valid inputs to M̂b and let κ = L + 2 be the total degree of multilinearity

(due to encoding of bookends as well). Let µx = M̂b(x) be the output of M̂b on some input x ∈ {0, 1}L
and let δx = Ozt(µx). Assuming that µx is honestly computed then δx should be meaningful.

Here we show that if µx is generated honestly and that if JTest(δx) = 1 then it is possible to distinguish
which branching program has been encoded. Our analysis uses an annihilation attack that is very
similar in spirit to the original given in [MSZ16a]. Let M̂xinp(l),l be a matrix at level l in M̂b. Let

α
xinp(l)
i,j,l = Mxinp(l),l[i][j] in the original branching program Mb. Recall that the corresponding entry

M̂xinp(l),l[i][j] after encoding has taken place takes the form:

v
xinp(l)
i,j,l = (α

xinp(l)
i,j,l + r

xinp(l)
i,j,l /βl)/zl.

In the attack we treat the variables r
xinp(l)
i,j,l as formal variables and show that, for enough inputs x, we

can compute a polynomial Q that annihilates these variables. Let rx denote the set of all variables
r
xinp(l)
i,j,l that are used in computing M̂b(x).

Firstly notice that the form of δx is the following:

δx = r̂x + β(1) + β(2) + . . .+ β(κ−1)

recalling that r̂x is a polynomial dependent only on rj values from encodings and β(`) is the sum of
all monomials in the terms {βi}i∈[κ] of degree `. In this analysis we focus on the term β(κ−1), which

has coefficients in the α
xinp(l)
i,j,l , r

xinp(l)
i,j,l terms. The adversary A knows the values α

xinp(l)
i,j,l as they are the

entries from one of the original branching programs. The values βi are the same in both branching
programs so we can view β(κ−1) as a linear polynomial in the set of variables r(x).
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Now, consider two bit strings x, x′ where there is only a single bit difference between the two at position
t 6= 1. Let xl = xinp(l) = x′inp(l) and consider the monomials in the matrix entries r

xinp(1)
i,j,1 . Notice that

the coefficients will only change in the values α
xinp(t)
i,j,t — since the βl variables are fixed at level l. Let

c
xinp(l)
i,j,l , c′

xinp(l)
i,j,l denote the coefficients of r

xinp(l)
i,j,l for some l, after computing δx ← JZTParam(M̂b(x))

and δx′ ← JZTParam(M̂b(x
′)), respectively. Then, as long as JTest(δx) = JTest(δx′) = 1, notice that

— for any given i, j, l — if we compute

c′
xinp(l)
i,j,l δx − c

xinp(l)
i,j,l δx′ = δ̃.

then we remove the monomial in the variable r
xinp(l)
i,j,l . To see this, note that by multiplying through

the coefficient of r
xinp(l)
i,j,l with the coefficient from the opposing output gives equal monomials in both

expressions. Subtracting the two scaled outputs removes this monomial entirely, all other monomials
are scaled by the coefficient that is multiplied through.

The power of this attack is that it only requires four inputs to remove all monomials that are linear in
some r

xinp(l)
i,j,l for any program length L. That is, we iterate over the possible four choices for the first two

input bits and fix the remaining L − 2 input bits. Recall, that we are only interested in annihilating
the monomials that are linear in the variables r

xinp(l)
i,j,l . Moreover, the annihilation is performed on

the polynomial evaluations that arise after computing the branching program on these four different
inputs. Let x ∈ {00, 01, 10, 11} describe the four varying inputs and notice that, for any r

xinp(l′)
i,j,l′ for

l′ /∈ {1, 2}, then the coefficient of the monomial in δx changes only in the values of α
xinp(lx)
i,j,lx

for lx ∈ {1, 2}
— which are known the adversary. Moreover, for the monomials in entries r

xinp(lx)
i,j,lx

, precisely two of
the polynomial evaluations contain monomials with differing coefficients. Therefore, we have at least
two polynomials containing each variable r

xinp(l)
i,j,l ; thus the problem essentially becomes solving a set of

linear simultaneous equations of rank less than four. By performing operations over these polynomial
evaluations to reduce the rank of the system from four to three then we create a polynomial where
all monomials r

xinp(l)
i,j,l are annihilated. There are 25(L + 2) + 10 variables that need to be annihilated

which is linear in the length of the branching program — the attack needs to be applied this many
times but this is clearly efficient.8

Thus, once an equation is solved a distinguishing attack in the IND-M game can be launched. The
final result is a term δ that is noticeably smaller than all previous outputs δx since the only monomials
that are left have degree ≤ κ− 2 in the variables βi. The βi variables are the largest components of δx
and so the magnitude noticeably decreases. Notice, that the attack only works for the choice of one
branching program, i.e. the attack works in the case where M̂0 is encoded rather than M̂1 (without
loss of generality). Therefore, if the attack fails (i.e. the magnitude of δ is no smaller) then A outputs
b′ = 1; if it does work they output b′ = 0. The attack works with probability 1 and so we have no
security when analysing our MJP scheme in the IND-M game.

5.3 Analysis of (in)security in IND-OBF game

Recall that the IND-OBF game adds extra randomisation details to the branching program that are
commonplace in most IO constructions. Importantly, it mimics the structure of BGK-style obfuscated
branching programs. In this setting, instantiating an obfuscator using GGH13 is shown to be insecure
based on the attacks of [CGH17, MSZ16a, ADGM16] and as such these attacks also work in our
simplified model. We show that even when instantiating the IND-OBF model with our MJP scheme
without ideals and a BGK-style IO candidate, the attack from Section 5.2 can be adapted successfully.

Concretely, the adversary in IND-OBF receives the matrices M̂0, M̂xinp(l),l, M̂L+1 that are, respec-
tively, encodings of the following matrices:

8 After each iteration the output is also scaled by the coefficients used previously so these need to be taken account for
in further operations.

14



– ε0M0 · R0;
– εxinp(l),lR

−1
l−1 ·Mxinp(l),l · Rl;

– εL+1R−1
L ·ML+1.

Recall,R0, . . . ,RL are randomly sampled invertible matrices used to implement Kilian’s randomisation
technique and ε0, {εxinp(l),l}l∈[L], εL+1 are random multiplicative bundling scalars taken from Rq. There
are other techniques that are used for protecting constructions of indistinguishability obfuscation
(such as encoding with respect to a straddling sets structure), but for simplicity we only consider
these randomisation measures.

Indeed it appears that the randomisation matrices render the encoded values obscure to the adversary.
However we can write each encoded matrix at level l in the form:

M̂xinp(l),l = εxinp(l),lR
−1
l−1 ·Mxinp(l),l · Rl + Exinp(l),l/βl

where Exinp(l),l is a matrix containing the entries r
xinp(l)
i,j,l .9 However, a change of variables transformation

allows us to rewrite the encodings as

M̂xinp(l),l = εxinp(l),lR
−1
l−1 · (Mxinp(l),l + Exinp(l),l/βl) · Rl

which lets us assume that the adversary still has knowledge of the encoded values. This technique
was first used by Miles et al. [MSZ16a] in justifying their annihilation attack scenario. Thus, while
Kilian randomisation procedures are still regarded as an important facet of IO candidates, it would
appear that they do very little to prevent known attacks.10 Using this technique, we see that the only
difference between the IND-OBF game and the IND-M game is the presence of the multiplicative
bundling scalars. We will show in the following how we can adapt the annihilating attack against the
IND-M game to handle the presence of these bundling scalars.

Annihilating attack in the IND-OBF game. We assume in this section that the obfuscated
branching program is single input, that is d = 1. Let x ∈ {0, 1}ν be some input, we define x̄ to be the
input where all bits of x are flipped. Let εx = ε0εL+1

∏L
i=1 εxinp(i),i. Because the branching program is

single input, we have that for all possible input x ∈ {0, 1}ν , εx·εx̄ = ε∗, where ε∗ = (ε0εL+1)2
∏L
l=1 ε0,lε1,l

is independent of the input x. Now, let us consider an input x on which the branching program evaluates
to zero and look at the value δx = Ozt(x) obtained after evaluating the obfuscated branching program
en input x. By definition, we have that

δx =
L+1∏
l=0

βl · M̂0 ·

(
L∏
l=1

M̂xinp(l),l

)
· M̂L+1

= εx ·
L+1∏
l=0

(βlMxinp(l),l + Exinp(l),l),

where for simplification we included the bookend vectors in the product (meaning that Mxinp(l),l = Ml

and Exinp(l),l = El when l = 0 or l = N + 1). By developing the product above, and using the fact that
the branching program evaluates to zero on input x, we can rewrite δx in the following way.

δx = εx

L+1∑
j=0

(
∏
l 6=j

βl) ·
∏
l<j

Mxinp(l),l · Exinp(j),j ·
∏
j>l

Mxinp(l),l + β(L−1) + · · ·+ β(1) + rx

 ,

where, as previously, β(h) contains all monomials of degree h in the βl. There is no component
β(L+1) in this equation because the branching program evaluates to zero on input x, meaning that

9 We ignore the usage of each zl in the encodings for now as these are removed after zero-testing.
10 It may be wise to no longer think of these random invertible matrices as offering any security when analysing IO

candidates.
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∏L+1
l=0 Mxinp(l),l = 0. We detailed only the component β(L) in the formula above, because this is the

largest one, and the one we will try to annihilate in the following.

Recall that we know the matrices Mxinp(l),l but we do not know εx, nor the βl and the Exinp(l),l. To

annihilate the β(L) component of δx, we would like to make it linear in a polynomial number of
unknowns. First, let β∗ denote the product of all the βl and E′xinp(l),l = β∗/βl · Exinp(l),l. Then, β(L)

is linear in the δx · E′xinp(l),l. However, even if we have a polynomial number of matrices E′xinp(l),l (we
have 2(L+ 1) such matrices), there is an exponential number of possible scalars εx, which prevents us
from applying the annihilation attack directly. But as noticed above, we know that εxεx̄ = ε∗ for any
input x. So instead of looking at δx, we will try to annihilate the largest component of δx · δx̄. Denote
by r′bi,j,l the (i, j)’s coefficient of matrix E′bi,j,l, where b ∈ {0, 1}. Because we took the product δx · δx̄,

the largest component is now quadratic in the r′bi,j,l. However, by linearising the equations, we can
still see the largest component as a linear combination of unknowns, where we squared the number of
unknowns (but this remains polynomial). More precisely, we have

δx · δx̄ = ε∗ · `x({r′bi,j,l · r′
b′

i′,j′,l′}) + smaller terms,

where `x is a known linear function, depending on the input x and the known matrices Mxinp(l),l. This
means that we can express the largest component of each δx · δx̄ as a (known) linear combination of
(50L + 10)2 unknowns. If we have more linear functions `x than unknowns, we can then efficiently
find an annihilating polynomial for the `x. This will simply be a linear relation between the `x, which
can be obtained by computing the left-kernel of the matrix whose lines contain the coefficients of the
linear forms `x.

To conclude, in the case where the branching programs are single input, we are able to compute an
annihilating polynomial in the IND-OBF game in polynomial time. This seems to show that there
is a structural fault in the GGH13 map, even when the ideal 〈g〉 is removed.

6 Discussion of findings

Finally, we summarise and address the key points arising from our analysis and give points that may
warrant further attention.

Structural faults in GGH13. Our main focus is to highlight that the GGH13 GES bears structural
faults that are vulnerable even when a natural variant where the ideals are removed is constructed. All
previous attacks exploit the presence of the generator g in each encoding to learn a basis of the ideal
〈g〉. We show that removing the capability to learn this ideal does not prevent attacks that are able
to distinguish between encoded branching programs in a simplified model. In particular, in simplified
models that mirror the characteristics of ‘BGK-style’ obfuscators, we are still able to launch attacks
that use variants of the annihilation attacks of [MSZ16a] to distinguish obfuscated circuits.

In the attacks shown here, we use the fact that zero-testing reveals encodings that can be manipulated
to reveal differences in size; rather than gaining access to 〈g〉.

CGH attacks. The attacks of Chen, Gentry and Halevi (CGH17) [CGH17] use a variant of an
annihilation attack, along with knowledge of the ratios of input mixing scalars to launch powerful
attacks on various IO candidates (including recent immunisations). These attacks can be prevented
using input authentication methods [FRS16], however these prevention methods lie outside scope of
the weakened graded encoding model.

It is not completely clear whether a variant of the CGH attack can be leveraged on an IO candidate
using our MJP scheme. This is because it explicitly launches a distinguishing attack based on the ideal
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〈g〉. It would be valuable to investigate whether a variant of their attack can be used to break our
MJP scheme as well. Such a result would add weight to the fact that structural faults in ‘GGH-like’
encodings are to be blamed rather than the presence of g explicitly.

Investigating this question is motivated by the fact that single-input and dual-input branching pro-
grams are not explicitly considered in the weakened grading encoding model. This implies that variants
of obfuscators such as [GMM+16] are insecure in the weakened graded encoding model when using
single-input branching programs (the actual construction only considers the dual-input case). Adapt-
ing the CGH attack to the scheme in this work would further reinforce the connection between our
scheme and the GGH13 graded encoding scheme. Furthermore, it may also help to illuminate how
the branching program structure of obfuscators is implicitly encoded in the security models that are
currently used.
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A MJP from our encoding scheme

Using the encodings that we describe in Section 4.1 we can now construct an MJP scheme. Note
that we refer to jigsaw generation and verification as both algorithms and as specific roles within a
computation interchangeably.

A.1 Setup

Instance generation. (JInstGen): On input the security parameter 1λ, and perceived multilinearity
κ the algorithm does the following:

– Samples the prime integer q
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– Samples κ uniform polynomials zi from the ring Rq
– Samples κ polynomials βi fulfilling the requirements set out in Section 4
– Outputs (sk, pp) = ((βi, zi), ({Si}i∈[κ], q))

Encoding. (JEnc): This algorithm takes as input some value α, an index set Si and a pair (βi, zi) = sk
sampled from JInstGen and:

– Samples a small element r uniformly from the error distribution χ
– Computes v = α+r/βi

zi
as an encoding of the value α

Jigsaw generation. (JGen): Takes as input an index set Si, the pair (βi, zi) for i ∈ [κ] and associated
encoded values (α1, . . . , αmi) for each of these pairs, where mi is the number of values to be encoded
with respect to Si. Then this algorithm performs the following:

– Inputs each tuple (Si, αj) for j ∈ [mi] to the encode algorithm JEnc and receives back the κ sets
Ci where Ci consists of all pairs (Si, vj) for 1 ≤ j ≤ mi.

– Generates the zero-testing parameter pzt by computing

pzt =
κ∏
i=1

βi · zi

.
– Creates

puzzle = (q, {C1, . . . , Cκ}, pzt) (8)

as the public output. Let α(i) be the set of values {α1, . . . , αmi} that are encoded with respect to
Si — then the private output is defined as

X = (α(1), . . . ,α(κ)).

Note that the values r, β and z are all kept secret in order to preserve the secrecy of the encoded
values. Public access to each βi and zi is granted in the form of the zero-test parameter pzt, though it
should be impossible to decompose this into the individual factors.

A.2 Jigsaw verification

As before, we note that the zero-test procedure is split into three separate algorithms to accurately
model the security setting that we consider. These three algorithms are defined as the following:

Computation. (JCompute): Takes as input the encodings v
(i)
j with respect to each index set Si and

a multilinear form, F , and outputs

v∗ = F (v
(1)
1 , . . . , v(1)

m1
, . . . , v

(κ)
1 , . . . , v(κ)

mκ)

where v∗ is a top-level encoding as shown in Equation (5).

Zero-testing. (JZTParam): Takes as input an encoding v∗ resulting from the JCompute algorithm
and pzt from puzzle and output δ = pzt · v∗
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Zero-test output. (JTest): Takes δ as an output from the JZTParam algorithm and checks the
magnitude of the element. If it has magnitude greater than

∏κ
i=1 βi then output 1 (encoded value is

zero). Otherwise output 0 (encoded value is non-zero).

Finally the overarching JVer algorithm defined previously simply runs these three algorithms in se-
quence and outputs the result of JTest.

A.3 Correctness of construction

The homomorphic properties of our encodings as shown in the previous section enable us to evaluate
the multilinear forms that are input to the JCompute algorithm. Correctness is lost post-zero-testing

if wrap-around modulo q occurs for a top-level encoding, or if an encoding of zero exceeds q
κ−1
κ . Since

we specifically sample the βi elements from Rq such that we satisfy these requirements and since each
of the sampled elements are small.
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