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Abstract. This paper develops an asynchronous cryptographic protocol
for outsourcing arbitrary stateful computation among multiple clients to
an untrusted server, while guaranteeing integrity of the data. The clients
communicate only with the server and merely store a short authenticator
to ensure that the server does not cheat.
Our contribution is two-fold. First, we extend the recent hash&prove
scheme of Fiore et al. (CCS 2016) to stateful computations that sup-
port arbitrary updates by the untrusted server, in a way that can be
verified by the clients. We use this scheme to generically instantiate au-
thenticated data types. Second, we describe a protocol for multi-client
verifiable computation based on an authenticated data type, and prove
that it achieves a computational version of fork linearizability. This is
the strongest guarantee that can be achieved in the setting where clients
do not communicate directly; it ensures correctness and consistency of
outputs seen by the clients individually.

1 Introduction

Cloud services are nowadays widely used for outsourcing data and com-
putation because of their competitive pricing and immediate availability.
They also allow for online collaboration by having multiple clients operate
on the same data; such online services exist for, e.g., shared file storage,
standard office applications, or software solutions for specific domains.
For authenticity, confidentiality, and integrity of the data, however, the
clients have to fully trust the cloud providers, which can access and mod-
ify the raw data without the clients’ consent or notice.

Cryptographic schemes and protocols have been developed for vari-
ous specific tasks and security goals that arise in the context of cloud
services. A (necessarily partial) list of examples includes storage auditing
for outsourcing large files [3, 32], verifiable computation for outsourcing
computational tasks [23, 24, 47, 50], private information retrieval (PIR)
or oblivious RAM for accessing remote data without leaking access pat-
terns [26, 17], and many more.



The scenario we are concerned with in this paper involves multiple
clients that mutually trust each other and collaborate through an un-
trusted server. A practical example is a group of co-workers using a shared
calendar or editing a text document hosted on a cloud server. The pro-
tocol emulates multi-client access to an abstract data type F . Given an
operation o and a current state s, the protocol computes (s ′, r)← F (s, o)
to generate an updated state s ′ and an output r . The role of a client Cv

is to invoke the operation o and obtain the response r ; the purpose of the
server is to store the state of F and to perform the computation. As an
example, let F be defined for a set of elements where o can be adding or
deleting an element to the set. The state of the functionality will consist
of the entire set. We assume the availability of a public-key infrastructure,
where each client registers its public key of a signature scheme. Clients
communicate only with the server; no direct communication between the
clients occurs. Our protocol guarantees the integrity of responses and en-
sures fork linearizability, in the scenario where the server is untrusted and
may be acting maliciously.

Related work. The described problem has received considerable attention
from the viewpoint of distributed systems, starting with protocols for se-
curing untrusted storage [38]. Without communication among clients, the
server may always perform a forking attack and omit the effects of oper-
ations by some clients in the communication with other clients. Clients
cannot detect this attack unless they exchange information about the
protocol progress or rely on synchronized clocks; the best achievable con-
sistency guarantee has been called fork linearizability by Mazières and
Shasha [38] and has been investigated before [14, 12, 35] and applied to
actual systems [33, 14, 51, 13, 10]. Early works [33, 14] focused on simple
read/write accesses to a storage service. More recent protocols such as
BST [51] and COP [13] allow for emulating arbitrary data types and
for exploiting the commutativity of certain operations under concurrent
access. However, they require that the entire state be stored and the op-
erations be computed on the client. ACOP [13] and VICOS [10] describe
at a high level how to outsource both the state and the computation in a
generic way, but neither work comes with an appropriate cryptographic
security model nor are their protocols proven secure.

The purpose of an authenticated data type (ADT; often also referred
to as authenticated data structure) is to allow a client to outsource data,
and the computation on it, to a server, while guaranteeing the integrity
of the data. In a nutshell, while the server stores the data, the client holds
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a small authenticator (sometimes called digest) that relates to it. Opera-
tions on the data are performed by the server, and for each operation the
server computes a proof that, together with the authenticator, allows the
client to check that the server performed the operation correctly. ADTs
originated as a generalization of Merkle trees [39]; an excellent survey
of early work is given by Tamassia [48]. Many instantiations of ADTs
for specific data types have been described in the literature. There exist
schemes for such diverse types as sets [46, 15], dictionaries [42, 2, 28], range
trees [36], graphs [29], skip lists [27, 28], B-trees [41], or hash tables [45].
Recent work has targeted seamlessly integrating ADTs for general search
problems into programming languages [40].

Non-interactive verifiable computation has been introduced as a con-
cept to outsource computational tasks to untrusted workers [23], where
it is crucial that the verification of the correctness is more efficient than
solving the computational tasks. Verifiable computation schemes that can
achieve this for arbitrary functionalities have been suggested [23, 24, 47,
18] and are closely related to SNARKs (e.g., [8]). These works have the
disadvantage, however, that the client verifying the proof needs to pro-
cess the complete input to the computation as well. This can be avoided
by having the client first hash its input and then outsource it storing
only the hash locally. The subsequent verifiable computation protocol
must then ensure not only the correctness of the computation but also
that the input used matches the pre-image of the stored hash (which in-
creases the concrete overhead), an approach that has been adopted in
several works [11, 49, 18, 20]. In this work, we build on the latest in this
line of works, the hash&prove scheme of Fiore et al. [20], by a mecha-
nism that allows for stateful computation in which an untrusted party
can update the state in a verifiable manner, and that can handle mul-
tiple clients. An alternative approach for verifiable computation focuses
on specific computation tasks (restricted in generality, but often more
efficient), such as polynomial evaluation [9, 5], database queries [52, 43],
or matrix multiplication [21]. Recent work of Etemad and Küpçü [19]
introduces a hierarchical authenticated data type and uses it in secure
database outsourcing.

All above works target a setting where a single client interacts with
the server, i.e., they do not support multiple clients collaborating on out-
sourced data, as is the case here. The only existing approaches that cap-
ture multi-client verifiable computation are by Choi et al. [16] and Gordon
et al. [30]; however, they only accommodate “one-off” stateless computa-
tions. More concretely, all clients send their inputs to the server once, the
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latter evaluates a function on the joint data and returns the output. In
this work, we are interested in a scenario where the data is permanently
outsourced to the server and updated upon request by the clients. An-
other recent related work that targets multi-client authenticated access to
computation results on data provides multi-key homomorphic authentica-
tors [22], which can support circuits of (bounded) polynomial depth. Our
work differs in that it allows stateful computation on data that is per-
manently outsourced to the server and updated through computations
initiated by the clients. López-Alt et al. [34] address a complementary
goal: they achieve privacy, but do not target consistency in terms of lin-
earizability of a stateful multi-client computation. Also, their protocol
requires a round of direct communication between the clients, which we
seek to avoid.

Contributions. Our first contribution is a new and general definition of a
two-party ADT, where the server manages the state of the computation,
performs updates and queries; the client invokes operations and receives
results from the server. This significantly deviates from standard three-
party ADTs (e.g. [48, 46]) that differentiate between a data owner, the
untrusted server, and client(s). The owner needs to store the entire data to
perform updates and publish the new authenticator in a trusted manner,
while the client(s) may only issue read-only queries to the server. Our
definition allows the untrusted server to perform updates such that the
resulting authenticator can be verified for its correctness, eliminating the
need to have a trusted party store the entire data. The definition also
generalizes existing two-party ADTs [44, 25], as we discuss in Section 3.

We then provide a general-purpose instantiation of an ADT, based on
verifiable computation from the work of Fiore et al. [20]. Our instantia-
tion captures arbitrary stateful deterministic computation, and the client
stores only a short authenticator which consists of two elements in a bi-
linear group. The subsequent parts of the paper are independent of the
technical details discussed here, so this Section 4 can be skipped by read-
ers more interested in the Byzantine emulation protocol.

We also devise computational security definitions that model the dis-
tributed-systems concepts of linearizability and fork linearizability [38]
via cryptographic games. This allows us to prove the security of our pro-
tocol in a computational model by reducing from the security of digital
signatures and ADTs—all previous work on fork linearizability used ide-
alizations of the cryptographic schemes.

4



Finally, we describe a “lock-step” protocol to satisfy the computa-
tional fork linearizability notion, adapted from SUNDR [38] and Cachin
et al. [14]. The protocol guarantees fork-linearizable multi-client access
to a data type. The protocol is based on our definition of ADTs; if in-
stantiated with our ADT construction, it is an asynchronous protocol for
outsourcing any stateful (deterministic) computation with shared access
in a multi-client setting.

2 Preliminaries

We use the standard notation for the sets of natural numbers N, inte-
gers Z, and integers Zp modulo a number p ∈ N. We let ε denote the
empty string. If Z is a string then |Z| denotes its length, and ◦ is an
operation to concatenate two strings. We consider lists of items, where [ ]
denotes the empty list, L[i] means accessing the i-th element of the list L,
and L← L◦x means storing a new element x in L by appending it to the
end of the list. If X is a finite set, we let x←$ X denote picking an ele-
ment of X uniformly at random and assigning it to x. Algorithms may be
randomized unless otherwise indicated. Running time is worst case. If A
is an algorithm, we let y ← A(x1, . . . ; r) denote running A with uniform
random coins r on inputs x1, . . . and assigning the output to y. We use
y←$A(x1, . . .) as shorthand for y ← A(x1, . . . ; r). For an algorithm that
returns pairs of values, (y, ) ← A(x) means that the second parameter
of the output is ignored; this generalizes to arbitrary-length tuples. The
security parameter of cryptographic schemes is denoted by λ.

We formalize cryptographic security properties via games, following
in particular the syntax of Bellare and Rogaway [7]. By Pr[G] we denote
the probability that the execution of game G returns True. We target
concrete-security definitions, specifying the security of a primitive or pro-
tocol directly in terms of the adversary advantage of winning a game.
Asymptotic security follows immediately from our statements. In games,
integer variables, set, list and string variables, and boolean variables are
assumed initialized, respectively, to 0, ∅, [] and ε, and False.

System model. The security definition for our protocol is based on well-
established notions from the distributed-systems literature. In order to
make cryptographic security statements and not resort to modeling all
cryptography as ideal, we provide a computational definition that cap-
tures the same intuition.

Recall that our goal is to enable multiple clients C1, . . . , Cu , with
u ∈ N, to evaluate an abstract data type F : (s, o) 7→ (s ′, r), where
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s, s ′ ∈ S describe the global state of F , o ∈ O is an input of a client, and
r ∈ A is the corresponding output or response. The clients can provide
inputs to F in an arbitrary order. Each execution defines a history σ,
which is a sequence of input events (Cv , o) and output events (Cv , r) (for
simplicity, we assume O ∩ A = ∅). An operation directly corresponds to
an input/output event pair and vice versa, and an operation is complete
in a history σ if σ contains an output event matching the input event.

In a sequential history, the output event of each operation directly
follows the corresponding input event. Moreover, an operation o precedes
an operation o′ in a history σ if the output event of o occurs before the
input event of o′ in σ. Another history σ′ preserves the (real-time) order
of σ if all operations of σ′ occur in σ as well and their precedence relation
in σ is also satisfied in σ′.

The goal of a protocol is to emulate F . The clients only observe their
own input and output events. The security of a protocol is defined in
terms of how close the histories it produces are to histories that would
have been produced through invocations of an ideal shared F .

Linearizability. A history σ is called fork-linearizable with respect to a type
F [38, 14] if and only if, for each client Cv , there exists a subsequence σv
of σ consisting only of complete operations and a sequential permutation
πv (σv ) of σv such that:

– π(σ) preserves the (real-time) order of σ; and
– the operations of π(σ) satisfy the sequential specification of F .

Satisfying the sequential specification of F means that if F starts in a
specified initial state s0, and all operations are performed sequentially as
determined by π(σ) = o1, o2, . . . , then with (sj , rj ) ← F (sj−1, oj ), the
output event corresponding to oj contains output rj .

Linearizability is a strong guarantee as it specifies that the history σ
could have been observed by interacting with the ideal F , by only (pos-
sibly) exchanging the order of operations which were active concurrently.
Unfortunately, as described in the introduction, linearizability cannot be
achieved in the setting we are interested in.

Fork linearizability. A history σ is called fork-linearizable with respect to
a type F if and only if, for each client Cv , there exists a subsequence σv
of σ consisting only of complete operations and a sequential permutation
πv (σv ) of σv such that:

– All complete operations in σ occurring at client Cv are contained in
σv , and
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– πv (σv ) preserves the real-time order of σv , and
– the operations of πv (σv ) satisfy the sequential specification of F , and
– for every o ∈ πv (σv ) ∩ πv ′(σv ′), the sequence of events that precede

o in πv (σv ) is the same as the sequence of events that precede o in
πv ′(σv ′).

Fork linearizability is weaker than linearizability in that it requires con-
sistency with F only with respect to permutations of sub-sequences of the
history. This models the weaker guarantee that is achieved relative to a
dishonest server that partitions the set of clients and creates independent
forks of the computation in each partition. Intuitively, fork linearizability
guarantees that the computation is still consistent within each partition
individually, but does not guarantee that each client observes the oper-
ations of all other clients. Once two clients have been forked, however,
they will remain forked forever—it is impossible for the server to make
an operation of one client occurring after the fork visible to a client in the
other fork. Fork linearizability is the strongest security guarantee that can
be achieved in the setting where the clients cannot communicate among
each other and the server may be dishonest [38].

Abortable services. When operations of F cannot be served immediately,
a protocol may decide to either block or abort. Aborting and giving the
client a chance to retry the operation at his own rate often has advantages
compared to blocking, which might delay an application in unexpected
ways. As in previous work that permitted aborts [1, 35, 13, 10], we allow
operations to abort and augment F to an abortable type F ′ accordingly. F ′

is defined over the same set of states S and operations O as F , but returns
a tuple defined over S and A∪{busy}. F ′ may return the same output as
F , but F ′ may also return busy and leave the state unchanged, denoting
that a client is not able to execute F . Hence, F ′ is a non-deterministic
relation and satisfies

F ′(s, o) = {(s,busy), F (s, o)} . (1)

Since F ′ is not deterministic, a sequence of operations no longer uniquely
determines the resulting state and response value. Abortable types may be
seen as obstruction-free objects [1, 31] and vice versa; such objects guar-
antee that every client operation completes assuming the client eventually
runs in isolation.

Digital signatures. A digital signature scheme DS specifies the following.
A probabilistic key-generation algorithm DS.keygen that takes as input
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Game Geuf
DS (A)

(ssk , spk)←$ DS.keygen(λ)

(m,ϕ)←$Asign(spk)

Return DS.verify(spk ,m, ϕ) and m /∈M

sign(m)

M←M∪ {m}
ϕ←$ DS.sign(ssk ,m)

Return ϕ

Fig. 1. The existential unforgeability security game for signatures.

the security parameter and produces a pair (ssk , spk)←$ DS.keygen(λ)
of (private) signature key ssk and (public) verification key spk . Second, a
(possibly probabilistic) signature algorithm DS.sign that takes as input
a secret key ssk and a message m and outputs ϕ←$ DS.sign(ssk ,m),
a signature. Third, a (deterministic) verification algorithm DS.verify
that takes as input public key spk , message m, and signature ϕ, and
produces a Boolean b ← DS.verify(spk ,m, ϕ). Correctness means that
with probability 1, for (ssk , spk)←$ DS.keygen and all messages m,

DS.verify(spk ,m,DS.sign(ssk ,m)) = True.

The security definition we use in this paper is existential unforge-
ability, i.e., it should be infeasible for an adversary to generate a valid
signature on a message where the signature was not produced by the le-
gitimate signer. Existential unforgeability is defined via the game specified
in Figure 1. Formally, the EUF-advantage of an adversary A is defined
as Adveuf

DS (A) := Pr
[
Geuf

DS (A)
]
.

Offline-online verifiable computation. For a relation R ⊆ U ×W , we are
interested in proving statements of the type ∃w ∈W : R(u,w) for a given
u ∈ U . We consider a setting where U splits into U = X×V . For example,
u may consist of the input x and output y of a function f with domain
X, i.e., y = f(x). The witness w ∈ W can often speed up verification
by providing a non-deterministic hint—verification may be more efficient
that computation.

A verifiable computation scheme VC specifies the following. A key-
generation algorithm VC.keygen that takes as input security parameter
λ and relation R ⊂ U ×W and produces (ek , vk)←$VC.keygen(λ,R), a
pair of evaluation key ek and verification key vk . An algorithm VC.prove
that takes as input evaluation key ek , u ∈ U , and witness w ∈ W such
that (u,w) ∈ R, and returns a proof ξ←$VC.prove(ek , u, w). As a con-
crete example, in the case of a circuit-based SNARK [47, 18] the witness
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Game Gvc
VC,R (A)

(ek , vk)←$ VC.keygen(λ,R)

(u, ξ)←$A(ek , vk , R)

Return VC.verify(vk , u, ξ)

and ¬∃w : (u,w) ∈ R

Game Gext
HP,X (A, E)

pp←$ HP.setup(λ)

aux ←$ X (pp)

(h;xe)←$ (A; E)(pp, aux )

Return HP.check(pp, x)

and HP.hash(pp, xe) 6= h

Fig. 2. Left: The soundness game for verifiable computation schemes.
Right: the hash-extractability game.

Game Ghps
HP,R (A)

pp←$ HP.setup(λ)

(ek , vk)←$ HP.keygen(pp, R)

(x, v, π)←$A(pp, ek , vk)

hx ← HP.hash(pp, x)

Return HP.verify(vk , hx, v, π)

and ¬∃w : ((x, v), w) ∈ R

Game Ghphs
HP,R (A; E)

pp←$ HP.setup(λ)

(ek , vk)←$ HP.keygen(pp, R)

(h, v, π;xe)←$ (A; E)(pp, ek , vk)

Return HP.verify(vk , h, v, π)

and HP.check(pp, h)

and ¬∃w : ((xe, v), w) ∈ R

Fig. 3. Soundness and hash-soundness games for hash&prove schemes.

w consists of the assignments of the internal wires of the circuit. An al-
gorithm VC.verify that takes as input the verification key vk , input u,
and proof ξ, and returns a Boolean True/False← VC.verify(vk , u, ξ)
that signifies whether ξ is valid.

The correctness error of VC is the probability that the verification
of an honestly computed proof for a correct statement returns False.
The soundness advantage of an adversary is defined via game Gvc

VC,R in
Figure 2, in which a malicious prover must produce a proof for a false
statement. Both quantities must be small for a scheme to be useful.

The verifiable computation schemes we use in this work have a special
property referred to as offline-online verification, and which is defined
when the set U can be written as U = X × V . In particular, for those
schemes there exist algorithms VC.offline and VC.online such that

VC.verify(vk , (x, v), ξ) = VC.online(vk ,VC.offline(vk , x), v, ξ) .

Hash&prove schemes. We again consider the relation R ⊆ U × W as
above. A hash&prove scheme HP then allows to prove statements of
the type ∃w ∈ W : R(u,w) for a given u ∈ U ; one crucial property
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of hash&prove schemes is that one can produce a short proof of the state-
ment (using the witness w), such that the verification does not require
the element u ∈ U but only a short representation of it.

In more detail, a multi-relation hash&prove scheme as defined by Fiore
et al. [20] consists of five algorithms:

– HP.setup takes as input security parameter λ and produces public
parameters pp←$ HP.setup(λ).

– HP.hash takes as input public parameters pp and a value x ∈ X and
produces a hash hx ← HP.hash(pp, x).

– HP.keygen takes as input public parameters pp and a relation R and
outputs a pair of keys (ekR, vkR)←$HP.keygen(pp, R) for evaluation
and verification.

– HP.prove takes as input evaluation key ekR, values (x, v) ∈ X × V
and witness w ∈ W such that ((x, v), w) ∈ R, and produces a proof
π←$ HP.prove(ekR, (x, v), w).

– HP.verify takes as input key vkR, hash hx, value v, and proof π and
outputs a Boolean True/False ← HP.verify(vkR, hx, v, π), denot-
ing whether it accepts the proof.

An extractable hash&prove scheme has an additional (deterministic)
algorithm HP.check that takes as input pp and a hash h and outputs
True/False ← HP.check(pp, h), a Boolean that signifies whether the
hash is well-formed (i.e., there is a pre-image). For defining the hash-
extraction property, we consider an extractor E for adversary A, and in
the game Gext

HP,X in Figure 2 we mean by (h;xe)←$ (A; E)(pp) that both
algorithms A and E are run on the same input and random tape, and
that h is the output of A and xe is the output of E . For adversary A
and extractor E = E(A), the hash-extraction advantage of A; E , relative
to benign distribution X (from which auxiliary input aux is drawn), is
defined as Advext

HP,X (A, E) := Pr[Gext
HP,X (A, E)].

Correctness of HP is defined in the natural way; namely by requiring
that the evaluation of the above algorithms honestly leads to HP.verify
outputting True. We define soundness advantage and the hash-soundness
advantage of an adversary A as

Advhps
HP,R (A) := Pr[Ghps

R,HP(A)] ; Advhphs
HP,R (A; E) := Pr[Ghphs

R,HP(A; E)] .

Both games are described in Figure 3; in contrast to the original defini-
tions [20], we describe non-adaptive versions for a single relation, since
this is simpler and sufficient for our setting.
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At a high level, both soundness games formalize as a goal for an
adversary to produce a proof for a false statement that will be accepted
by HP.verify. Adversary A is given public parameters pp, evaluation
key ek , and verification key vk . In the soundness game, A has to produce
a proof for a statement (x, v) that is wrong according to the fixed relation
R, but the proof is accepted by HP.verify when hx ← HP.hash(pp, x)
is computed honestly.

The purpose of hash soundness is to capture the scenario where HP
can support arguments on untrusted, opaque hashes that are provided
by the adversary. For this, the HP.hash algorithm must be extractable.
The hash-soundness game operates almost as the soundness game, but
instead of x, the adversary provides a hash h. The adversary wins if the
hash h cannot be opened consistently (by the extractor E) to satisfy the
relation; for further explanation, we point the readers to [20, Appendix
A.1], but we stress that the extraction is needed in our context.

Finally, we define the collision advantage of adversary A as

Advcr
HP (A) := Pr

[
pp←$ HP.setup; (x, y)←$A(pp);
HP.hash(pp, x) ?= HP.hash(pp, y)

]
Hash&prove for multi-exponentiation. We recall the hash&prove scheme
for multi-exponentiation introduced as XPE in [20], but keep the details
light since we do not use properties other than those already used there.
The scheme, which we call MXP here, uses asymmetric bilinear prime-
order groups Gλ = (e,G1,G2,GT , p, g1, g2), with an admissible bilinear
map e : G1 × G2 → GT , generators g1 ∈ G1 and g2 ∈ G2, and group
order p.

The main aspect we need to know about MXP is that, it works for
inputs of the form x = (x1, . . . , xn) ∈ Znp and admissible relations of MXP
are described by a vector (G1, . . . , Gn) ∈ Gn

1 . The proved relation is the
following:

∏n
i=1G

xi
i = cx for a given cx. MXP uses a hash of the input

x = (x1, . . . , xn) ∈ Znp to prove correctness across different admissible
relations. The hash function is described by a vector (H1, . . . ,Hn) ∈ Gn

1 .
For an input x = (x1, . . . , xn) ∈ Znp , the hash is computed as hx =∏n
i=1H

xi
i . In a nutshell, this will be used for proving that hx and cx

encode the same vector x, with respect to a different vector.
Fiore et al. [20] prove MXP adaptively hash-sound under the Strong

External DDH and the Bilinear n-Knowledge of Exponent assumptions.
They then combine MXP with schemes for online-offline verifiable compu-
tation that use an encoding of the form

∏n
i=1G

xi
i = cx as its intermediate

representation, to obtain a hash&prove scheme that works for arbitrary
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(stateless) computations. We describe their construction in more detail in
Section 4, before explaining our scheme that follows the same idea, but
extends to stateful computations.

3 Authenticated data types

Authenticated data types, which originated as an abstraction and general-
ization of Merkle trees [39], associate with a (potentially large) state of the
data type a short authenticator (or digest) that is useful for verification of
the integrity of operations on the state. In more detail, an abstract data
type is described by a state space S with a function F : S×O → S×A as
before. F takes as input a state s ∈ S of the data type and an operation
o ∈ O and returns a new state s ′ and the response r ∈ A. The data type
also specifies the initial state s0 ∈ S.

Here, we present a definition for what is known in the literature as
a “two-party” authenticated data type (ADT) [44]. The interaction is be-
tween a client, i.e., a party that owns F and wants to outsource it, and an
untrusted server that undertakes storing the state of this outsourced data
type and responding to subsequent operations issued. The client, having
access only to a succinct authenticator and the secret key of the scheme,
wishes to be able to efficiently test that requested operations have been
performed honestly by the server (see [44] for a more detailed compari-
son of variants of ADT modes of operation). An authenticated data type
ADT for F consists of the following algorithms:

(sk , ad , a)←$ ADT.init(λ): This algorithm sets up the secret key and
the public key for the ADT scheme, for security parameter λ. It also
outputs an initial amended state ad and a succinct authenticator a.
We implicitly assume from now on that the public key pk is part of
the secret key sk as well as the server state ad . We also assume that
the actual initial state s0 and authenticator a are part of ad .

π←$ ADT.exec(ad , o): This algorithm takes an operation o, applies it
on the current version of ad , and provides a correctness proof π, from
which a response r can be extracted.

(True/False, r , a ′, t)←$ ADT.verify(sk , a, o, π): The algorithm takes
the current authenticator a, an operation o, and a proof π, verifies the
proof with respect to the authenticator and the operation, outputting
local output r , the updated authenticator a ′, and an additional au-
thentication token t.
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ad ′←$ ADT.refresh(ad , o, t): This algorithm updates the amended state
from ad to ad ′, using operation o and authentication token t provided
by the client.

An ADT has to satisfy two conditions, correctness and soundness.
Correctness formalizes that if the ADT is used faithfully, then the outputs
received by the client are according to the abstract data type F .

Definition 1 (Correctness). Let s0 be the initial state of data type F
and o1, . . . , om be a sequence of operations. The ADT scheme ADT is
correct if in the following computation, the assertions are always satisfied.

(sk , ad , a)←$ ADT.init(λ) ; s ← s0
For j = 1, . . . ,m do
π←$ ADT.exec(ad , oj )
(b, r , a ′, t)← ADT.verify(sk , a, oj , π)
(s ′, r ′)← F (s, oj )
assert b and r = r ′

ad ′←$ ADT.refresh(ad , oj , t)
(ad , a, s)← (ad ′, a ′, s ′)

The second requirement for the ADT, soundness, states that a dishon-
est server cannot cheat. The game Gsound

ADT described in Figure 4 formalizes
that it must be infeasible for the adversary (a misbehaving server) to pro-
duce a proof that makes a client accept a wrong response of an operation.
The variable forged tracks whether the adversary has been successful. The
list L[ ] is used to store valid pairs of state and authenticator of the ADT,
and is consequently initialized with (s0, a) of a newly initialized ADT in
position 0. The adversary A is initialized with (ad , a) and can repeatedly
query the verify oracle in the game by specifying an operation o, the
index pos ∈ N of a state on which o shall be executed, and a proof π. The
challenger obtains state s and authenticator a of the pos-th state from
the list L[ ]. The challenger (a) checks whether ADT.verify accepts the
proof π, and (b) computes the new state s ′ and the output r ′ using the
correct F and state s, and sets forged if the proof verified but the output
r generated by ADT.verify does not match the “ideal” output r ′.

This formulation of the game ensures that the outputs provided to the
clients are always correct according to F and the sequence of operations
performed, but also allows the adversary to “fork” and compute different
operations based on the same state.4 This is necessary for proving the

4 A definition that only allows the adversary to compute a single sequence of opera-
tions is not generically equivalent for schemes where sk is non-trivial.
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Game Gsound
ADT (A)

forged ← False

(sk , ad , a)←$ ADT.init(λ)

L[0]← (s0, a)

Averify(ad , a)

Return forged

verify(o, pos, π)

If pos > |L| then return ⊥
(s, a)← L[pos]

(b, r , a ′, t)←$ ADT.verify(sk , a, o, π)

If b then

(s ′, r ′)← F (s, o)

If r ′ 6= r then forged ← True

L← L ◦ (s ′, a ′)

Return (True, a ′, t, r)

Else return (False,⊥,⊥,⊥)

Fig. 4. The security game formalizing soundness of an ADT.

security of the protocol we describe in Section 6. Unlike for the output r ,
the game does not formalize an explicit correctness condition for ad ′ to
properly represent the state s ′ of F as updated by o′; this is only modeled
through the outputs generated during subsequent operations. Indeed, in
the two-party model, the internal state of the server cannot be observed,
and only the correctness of the responses provided to clients matters.

Definition 2 (Soundness). Let F be an abstract data type and ADT
an ADT for F . Let A be an adversary. The soundness advantage of A
against ADT is defined as Advsound

ADT (A) := Pr
[
Gsound

ADT

]
.

To exclude trivial schemes in which the server always sends the com-
plete state to the clients, we explicitly require that the authenticator of
the clients must be succinct. More concretely, we require that the size of
the authenticator is independent of the size of the state.

Definition 3 (Succinctness). Let F be an abstract data type and ADT
an ADT with security parameter λ for F . Then ADT is succinct if the
bit-length of the authenticator a is always in O(λ).

Very few existing works seek to define a two-party authenticated data
structure [44, 25, 19], since most of the literature focuses on a three-party
model where the third party is a trusted data manager that permanently
stores the data and is the sole entity capable of issuing updates.

The definition of [44] differs from ours as it only supports a limited
class of functionalities. It requires the update issuer to appropriately mod-
ify ad himself and provide the new version to the server and, as such, this
definition can only work for structures where the part of the ad that is
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modified after an update is “small” (e.g., for a binary hash tree, only a
logarithmic number of nodes are modified). The definition of [25] supports
general functionalities however, unlike ours, it cannot naturally support
randomized ADT schemes as it requires the client to be able to check the
validity of the new authenticator a ′ after an update; in case a scheme is
randomized, it is not clear whether this check can be performed. In our
soundness game from Figure 4, the adversary can only win by providing
a bad local output r (which, by default, is empty in the case of updates)
and not with a bad authenticator, which makes it possible to handle ran-
domized constructions. We note that our construction from Section 4 does
not exploit this, as it is deterministic. The definition of [19] is very similar
to ours. It does not cover an explicit ADT.refresh functionality, which,
however, is anyway trivial in our construction in Section 4.

4 A general-purpose instantiation of ADT

This section contains one main technical contribution of this work, namely
a general-purpose instantiation of the definition of ADT described in Sec-
tion 3. Our scheme builds on the work of Fiore et al. [20], which defined
hash&prove schemes in which a server proves the correctness of a compu-
tation (relative to a state) to a client that only knows a hash value of the
state. The main aspect missing from [20] is the capability for an untrusted
server to update the state and provide the client with a new hash value
that authenticates the new state. The hash of an updated state can be
computed incrementally given the hash of the previous state, as described
in [20, Section 4.4].

Before we start describing our scheme, we recall some details of the
hash&prove scheme of Fiore et al. [20]. Their scheme allows to verifiably
compute a function f : Z → V on an untrusted server, where the ver-
ification by the client does not require z ∈ Z but only a hash hz of it.
In accordance with the verifiable computation schemes for proving cor-
rectness of the computation, they set U = Z × V and consider a relation
Rf ⊆ U ×W such that for a pair (z, v) ∈ U there is a witness w ∈ W
with ((z, v), w) ∈ Rf if and only if f(z) = v. In other words, proving
∃w : ((z, v), w) ∈ Rf implies that f(z) = v. The format of the witness w
depends on the specific verifiable-computation scheme in use, e.g., it may
be the assignments to the wires of the circuit computing f(z).

Fiore et al. proceed via an offline-online verifiable computation scheme
VC and a hash-extractable hash&prove scheme for multi-exponentiations
MXP. Recall that MXP uses a hash function that is described by a vector
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pp = (H1, . . . ,Hn) ∈ Gn
1 and computed as hz ← MXP.hash(pp, z) =∏n

i=1H
zi
i for z = (z1, . . . , zn) ∈ Znp . The hash hz, which is known to the

client, is computed via MXP.hash(pp, ·). The offline-online property of
the scheme VC states that

VC.verify(vk , (z, v), ξ) = VC.online(vk ,VC.offline(vk , z), v, ξ) .

Fiore et al. further assume that VC uses an intermediate representation
of the form VC.offline(vk , z) = cz =

∏n
i=1G

zi
i , where the group ele-

ments G1, . . . , Gn are included in the verification key vk . This means, in
a nutshell, that MXP can be used to prove, for a given z, that cz and hz
encode the same z.

In the complete scheme, the server computes ξ←$VC.prove(ek , z, w),
using the scheme-dependent witness w referred to above, and the evalua-
tion key ek for the function f . It also computes cz = VC.offline(vk , z)
and sends ξ and cz to the client. The server then proves to the client via
MXP that cz contains the same value z as the hash hz known to the
client. The client concludes by verifying the proof via VC.online with
input cz.

Building the new hash&prove scheme. Our goal is to model stateful com-
putations of the type F (s, o) = (s′, r), using the syntax of the hash&prove
scheme. Recall that the syntax of [20] does not handle stateful compu-
tations with state updates explicitly. On a high-level, our approach can
be seen as computing a stateful F verifiably by first computing (s′, )←
F (s, o) without verification (where means that the second component of
the output is ignored) and then verifiably computing F̃ ((s, s′), o) 7→ (d , r)

defined via (s̄, r) ← F (s, o); d ← s̄
?
= s′. In this approach, the client has

to check the proof of the verifiable computation and that d = True.
Putting the output state s′ into the input of the verifiable computation
of F̃ has the advantage that we already know how to handle hashes there:
via a hash&proof scheme similar to the one of [20]. In the following, we
describe our scheme more technically. It can be seen as a variant of [20]
with two hashed inputs x and y.

In [20], the output of VC.offline(vk , z) is a single value cz that is
then related to the hash hz known to the client via MXP. As we have two
individual hashes hx and hy for the components x and y, respectively, we
modify the construction of [20]. For z ∈ X × Y with X = Y = Znp , we
modify VC.offline(vk , z) to compute

cx ←
n∏
i=1

Gxii ; cy ←
n∏
i=1

Gyin+i

16



SHP.setup(λ)

pp←$ MXP.setup(λ)
Return pp

SHP.hash(pp, (x, y))

hx ←MXP.hash(pp, x) ; hy ←MXP.hash(pp, y)
Return (hx, hy)

SHP.keygen(pp, R)

(ek , vk)←$ VC.keygen(λ,R)
Let G1, . . . , G2n be the “offline” elements in vk , see discussion in text.
(ek i, vk i)←$ MXP.keygen(pp, (G1, . . . , Gn))
(ek o, vk o)←$ MXP.keygen(pp, (Gn+1, . . . , G2n))
Return (ekR, vkR) = ((ek , vk , ek i, ek o), (vk , vk i, vk o))

SHP.prove(ekR, (x, y), v, w)

(cx, cy)← VC.offline(vk , (x, y))
ξ←$ VC.prove(ek , ((x, y), v), w)
πx←$ MXP.prove(ek i, x, cx) ; πy←$ MXP.prove(ek o, y, cy)
Return πR = (cx, cy, ξ, πx, πy)

SHP.check(pp, (hx, hy))

Return MXP.check(pp, hx) ∧MXP.check(pp, hy)

SHP.verify(vkR, (hx, hy), v, πR)

Return VC.online(vk , (cx, cy), v, ξ) ∧ SHP.check(pp, (hx, hy))
∧MXP.verify(vk i, hx, cx, πx) ∧MXP.verify(vk o, hy, cy, πy)

Fig. 5. The hash&prove scheme SHP for updates by untrusted servers.

for elements G1, . . . , G2n that are specified in vk , and prove consistency
of cx with hx and of cy with hy, again using MXP. (Note that this is
cz = cxcy.) As argued by [20], many existing VC/SNARK constructions
can be written in this way.

Summarizing the above, the main modifications over [20] are (i) that
we transform a stateful F into a stateless F̃ , (ii) that VC.online obtains
two elements cx and cy from VC.offline, and (iii) that the output bit d
has to be checked. Our stateful hash&prove system SHP for F̃ is specified
formally in Figure 5.

Hash soundness. We show in Theorem 1 that SHP is hash sound, anal-
ogously to Corollary 4.1 of [20]. Hash soundness can intuitively be un-
derstood as that, for some given public parameter pp and relation R, it
is infeasible for an adversary to output and a hash h and v along with
a proof π such that HP.verify succeeds, but h was not produced by
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function HP.hash(pp, ·) on some input x, or there does not exist witness
w such that ((x, v), w) ∈ R.

Hash extraction enables us to use an HP scheme to verify arguments
that include opaque hashes h provided by the adversary by first extracting
their content then applying soundness. While we state and prove the fol-
lowing theorem for the non-adaptive case, we conjecture that an adaptive
version can be done along the lines of [20].

Theorem 1. Let SHP the scheme from Section 4 and A be an adversary
for hash soundness. Then there is an extractor EA and adversaries B, C1,
and C2, explicitly described in the proof, such that, with extractors E1 and
E2, guaranteed for C1 and C2 by the hash-extraction property of MXP,

Advhphs
SHP,R (A; EA) ≤ Advvc

VC,R (B)+Advext
MXP,X (C1, E1)+Advext

MXP,X (C2, E2) ,

with X instantiated as SHP.keygen(·, R).

Proof. This proof will proceed as follows. First, we will show that sound-
ness and hash extractability of SHP imply hash soundness. (This part
of the proof is analogous to Theorem A.1 in [20] and we repeat it for
completeness.) Then, we will show that our SHP scheme satisfies hash
soundness by proving its satisfies these two properties.

We prove the first part as follows. Let A be an adversary against hash
soundness of SHP. Then, we build from it an adversary C′ in the hash
extraction game and an adversary B′ in the soundness game. In particular,
for each adversary A, let C′ be the adversary that receives pp and aux
for SHP as input and runs A internally, emulating the interaction during
the hash soundness game. More concretely, C′ parses its auxiliary input as
(ek , vk)← aux . It then runs A(pp, ek , vk), but only outputs the hash h =
(hx, hy) from the output of A. Let E ′ be the extractor associated with C′
from the hash extraction property. Then, let the extractor EA associated
with A be exactly the same as E ′, except that the input is formatted
differently. While EA’s input is formatted as (pp, ek , vk), the input to
the extractor E ′ is (pp, aux = (ek , vk)). Finally, let B′ be an adversary
that receives as input (pp, ek , vk) and runs A on input (pp, ek , vk) to
obtain (h, v, ξ). Then, B′ runs EA on input (pp, ek , vk) and with the same
randomness tape asA to obtain x with h = SHP.hash(pp, x) and outputs
(x, v, ξ).

We can now define the following sequence of games.

Game 0: is the hash soundness game with A and EA.
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Game 1: is the same as Game 0, except that Game 1 aborts if

SHP.check(pp, h) = 1 ∧ h 6= SHP.hash(pp, x) .

Game 2: is the same as Game 1, except that Game 2 aborts if

SHP.verify(vk , h, v, ξ) ∧ ¬((x, v), w) ∈ R .

Intuitively, assuming Game 1 does not abort, it is indistinguishable
from Game 0 and assuming Game 2 does not abort, it is indistinguish-
able from Game 1. More concretely, if A, with extractor EA, wins the
hash soundness game, this implies that A outputs (h, v, ξ) and EA out-
puts x with SHP.verify(vk , h, v, ξ) = 1, SHP.check(pp, h) = 1, and
¬((x, v), w) ∈ R. Then, either (a) Game 1 did not abort, i.e, E ′ successfully
extracted x such that SHP.hash(pp, x) = h ∧SHP.check(pp, h) = 1. In
that case B′ can win the soundness game by outputting (x, v, ξ). Or (b)
Game 1 aborted in which case C′ with extractor E ′ can win the hash ex-
tractability game by outputting h. By a simple union bound, this shows
Advhphs

SHP,R (A; EA) ≤ Advhps
SHP,R (B′) + Advext

SHP,X (C′, E ′). This concludes
the first part of the proof.

Now, to show that our SHP scheme satisfies hash soundness, we show
that it satisfies both hash extractability and soundness. In particular, we
have to show that if VC is sound and MXP is hash-extractable, then SHP
satisfies both hash extractability and soundness. To prove this claim, let
us assume that C′ is an adversary that breaks the hash extractibility of
SHP and B′ breaks the soundness of the SHP. Using C′ and B′, we can
either build an adversary C that breaks the security of the MXP scheme
or we can build an adversary B that breaks the soundness of the VC as
follows.

– From C′, we build two algorithms C1 and C2 that obtain (pp, aux )
and run C′ on the same input. From the output h = (hx, hy) of C′,
algorithms C1 and C2 output hx and hy, respectively. By the hash
extractibility of MXP, we have extractors E1 = E1(C1) and E2 =
E2(C2), from which we then build an extractor E ′ for C′ that runs
both E1 and E2 on its inputs, obtains x and y, and succeeds if both
E1 and E2 are successful.

– From B′, we build B by generating pp←$ MXP.setup(λ), and using
(ek , vk) obtained in the game to run B′ on input (pp, ek , vk), which has
the correct distribution. A winning output (x, v, ξ) of B′ is a winning
output for B.
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Therefore, we have

Advhphs
SHP,R (A; EA)

≤ Advvc
VC,R (B) + Advext

MXP,X (C1, E1) + Advext
MXP,X (C2, E2) .

ut

Building a general-purpose ADT using our HP. The scheme SHP con-
structed above lends itself well to building a general-purpose ADT. Note
that verifiable computation schemes explicitly construct the witness w
required for the correctness proof; in fact, the computation of F can also
be used to produce a witness w for the correctness according to F̃ , which
is immediate for VC schemes that actually model F as a circuit [24, 47].

The general-purpose ADT GA, which is more formally described in
Figure 6 and proved below, works as follows. Algorithm GA.init gen-
erates public parameters pp and a key pair (ek , vk) for SHP, and then
computes the authenticator (a, )← SHP.hash(pp, (s0, ε)) for the initial
state s0 of F .5 Algorithm GA.exec computes the new state s ′ via F
and authenticator (a ′, ) ← SHP.hash(pp, (s ′, ε)), and generates a cor-
rectness proof ξ for the computation of F̃ via SHP.prove. We note that
we explicitly write out the empty string ε, and ignore the second output
component, in algorithm (a, )← SHP.hash(pp, (s0, ε)) to be consistent
with the hash&prove scheme syntax. We can safely ignore this argument
at the implementation level.

Algorithm GA.verify checks the proof ξ via SHP.verify and also
checks the bit d output by F̃ to ensure that the authenticator a ′ is correct.
Algorithm GA.refresh simply updates the server state—recomputing s ′

and a ′ can be spared by caching the values from GA.exec.
Instantiating GA with the schemes of [20] leads to a succinct ADT.

Theorem 2 (ADT Soundness). Let GA be the scheme as described
above and A be an adversary in the Gsound

GA game. Then there is an ad-
versary B, described explicitly in the proof, such that with the extractor
EB guaranteed for B,

Advsound
GA (A) ≤ Advhphs

SHP,RF̃
(B, EB) + Advcr

SHP (C) . (2)

If A makes q verify calls, then B makes q verify calls in its game.
5 The function SHP.hash produces pairs of hashes from pairs of states. As in GA we

only need to hash one state, we ignore the second component. We could—and would
in an implementation—alternatively re-define SHP.hash to only process one state
at a time, but this would contradict the formal definition of a hash&prove scheme.
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GA.initF (λ)

pp←$ SHP.setup(λ)

(ek , vk)←$ SHP.keygen(pp, RF̃ )

(a, )← SHP.hash(pp, (s0, ε))

Return (vk , (s0, a, ek , vk), a)

GA.execF (ad , o)

(s, a, ek , vk)← ad

(s ′, r)← F (s, o) . Get witness w

ξ←$ SHP.prove(ek , (s, s ′), (o, r), w)

(a ′, )← SHP.hash(pp, (s ′, ε))

Return π = (ξ, a ′, r)

GA.verify(sk , a, o, π)

(ξ, a ′, r ′)← π ; (d , r)← r ′

b← d ∧SHP.verify(sk , (a, a ′), (o, r ′), ξ)

Return (b, r , a ′, ε)

GA.refreshF (ad , o, t)

(s, a, ek , vk)← ad

(s ′, r)← F (s, o)

(a ′, )← SHP.hash(pp, (s ′, ε))

Return (s ′, a ′, ek , vk)

Fig. 6. The general-purpose ADT scheme GA that can be instantiated
for any data type F . Algorithm GA.refresh does not use the value t;
this value only appears because it is included in the general definition of
ADT and could be useful in other schemes.

Proof. Let A be an adversary in the Gsound
GA game. We show that, given

A, we can either build an adversary B that breaks the hash soundness of
the SHP or and adversary C that breaks the collision resistance of the
hash function. The proof proceeds as follows:

We describe the adversary B := B(A) that plays game Ghphs
SHP,RF̃

and

simulates to A the game Gsound
GA . Adversary B initially obtains the param-

eters pp of SHP and keys (ek , vk). It computes a ← SHP.hash(pp, s0)
and calls A with input ((s0, a, ek , vk), a). Adversary B internally keeps
variables i and L[ ] analogously to Gsound

GA .

For (valid) oracle calls verify(o, i, π), with π = (ξ, a ′, (d , r)) with
d = True, issued by A, adversary B obtains (s, a)← L[i] and computes
and returns SHP.verify(vk , (a, a ′), (d , r), ξ). Adversary B also computes
(s ′, r ′) ← F (s, o) and stores (s ′, a ′) in L[ ]. If r 6= r ′ but SHP.verify
returned True, then B outputs ((a, a ′), (o, r), ξ) as a solution to the game

Ghphs
SHP,RF̃

.

Adversary B emulates the game to A perfectly, and whenever A wins
the emulated game, there are three possibilities.

1. Let the corresponding state as looked up from L[.] be s and EB extracts
a state s′ = s. In this case B wins the hash-soundness game.

2. If s′ 6= s and SHP.hash(pp, s) 6= SHP.hash(pp, s′), then also, B wins
the hash-soundness game.
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3. If s′ 6= s and SHP.hash(pp, s) = SHP.hash(pp, s′), then, an adver-
sary C that runs both B and EB breaks collision resistance of the hash
function.

Thus, whenever A wins the emulated game Gsound
GA , either B wins the

hash-soundness game or C wins the collision resistance game. Therefore,
we have

Advsound
GA (A) ≤ Advhphs

SHP,RF̃
(B, EB) + Advcr

SHP (C) . (3)

ut

5 Computational fork-linearizable Byzantine emulation

The application we target in this paper is verifiable multiple-client com-
putation of an ADT F with an untrusted server for coordinating the joint
computation. As the clients may not be online simultaneously, we do not
assume any direct communication among the clients. The goal of the pro-
tocol is to emulate an abstract data type F : (s, o) 7→ (s ′, r). As the server
may be malicious, this setting is referred to as Byzantine emulation in
the literature [14].

A Byzantine emulation protocol BEP specifies the following: A setup
algorithm BEP.setup takes as parameter the number u ∈ N of clients
and outputs, for each client v ∈ N, key information clkv , server key in-
formation svk , and public key information pks. (The variable pks models
information that is considered public, such as the clients’ public keys.)
A client algorithm BEP.invoke takes as input an operation o ∈ {0, 1}∗,
secret information clk ∈ {0, 1}∗, public keys pks ∈ {0, 1}∗ and state S ∈
{0, 1}∗, and outputs a message m ∈ {0, 1}∗ and a new state S′ ∈ {0, 1}∗. A
client algorithm BEP.receive takes as input a message m ∈ {0, 1}∗, and
clk , pks, and S as above, and outputs a value r ∈ {0, 1}∗∪{abort,busy},
a message m′ ∈ {0, 1}∗ ∪ {⊥}, and a new state S′ ∈ {0, 1}∗. The return
value abort means that the operation has been aborted because of an
error or inconsistency of the system, whereas busy means that the server
is busy executing a different operation and the client shall repeat the invo-
cation later. A server algorithm BEP.process takes as input a message
m ∈ {0, 1}∗, purported sender v ∈ N, secret information svk ∈ {0, 1}∗,
public keys pks ∈ {0, 1}∗and state Ss ∈ {0, 1}∗, and outputs a message
m′ ∈ {0, 1}∗, intended receiver v ′ ∈ N, and updated state S′s ∈ {0, 1}

∗.
We then define the (parametrized) security game Gemu

BEP,u,P described
in Figure 7, which is roughly inspired by the key-establishment game of
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Game Gemu
BEP,u,P (A)

(clk1, . . . , clku , svk , pks)

←$ BEP.setup(u)

Ainvoke,receive,process,corrupt(pks)

Return ¬P(σ)

invoke(v , o)

(m,Sv )←$BEP.invoke(o, clkv , pks, Sv )

σ ← σ ◦ (Cv , o)

Return m

receive(v ,m)

(r ,m′, Sv )←$BEP.receive(m, clkv , pks, Sv )

σ ← σ ◦ (Cv , r)

Return (r ,m′)

corrupt

Return Ss

process(v ,m)

(m′, v ′, Ss)

←$ BEP.process(m, v , svk , pks, Ss)

Return (v ′,m′)

Fig. 7. The emulation game parametrized by a predicate P.

Bellare and Rogaway [6]. Initially, the game calls BEP.setup to gener-
ate the necessary keys; the setup phase modeled here allows the clients to
generate and distribute keys among them. This allows for modeling, for
instance, a public-key infrastructure, or just a MAC key that is shared
among all clients. (Note that we consider all clients as honest.) The ad-
versary A, which models the network as well as the malicious server, is
executed with input pks—the public keys of the scheme—and has ac-
cess to four oracles. Oracle invoke(v , o) models the invocation of oper-
ation o at client Cv , updates the state Sv , and appends the input event
(Cv , o) to the history σ. The oracle returns a message m directed at the
server. Oracle receive(v ,m) delivers the message m to Cv , updates the
state Sv , and outputs a response r and a message m′. If r 6= ⊥, the
most recently invoked operation of Cv completes and the output event
(Cv , r) is appended to σ. If m′ 6= ⊥, then m′ is a further message di-
rected at the server. Oracle corrupt returns the server state Ss, and
oracle process(v ,m) corresponds to delivering message m to the server
as being sent by Cv . This updates the server state Ss, and may return a
message m′ to be given to Cv . The game returns the result of predicate
P on the history σ, which is initially empty and extended through calls
of the types invoke(v , o) and receive(v ,m).

We define two classes of adversaries: full and benign, that we use in
the security definition.

Full adversaries: A full adversary Afull invokes the oracles in any arbi-
trary order. The only restriction is the following: for each v ∈ [1, u], after
Afull has invoked an operation of Cv (with invoke(v , ·)), then Afull
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must not invoke another operation of Cv until after the operation com-
pletes (when receive(v , ·) returns r 6= ⊥). This condition means that a
single client does not run concurrent operations and is often called well-
formedness.
Benign adversaries: A benign adversary Aben is restricted like Afull.
Additionally, it makes no query to the corrupt oracle and obeys the
following conditions:

– For each output m obtained from invoke(v , ·) or ( ,m) obtained from
receive(v , ·), such that m 6= ⊥, query the oracle process exactly
once on (v ,m). (Every protocol message is delivered to the server.)

– For each output (v ,m) of process, query the oracle receive exactly
once on (v ,m). (Every server message to the client is delivered.)

– Never provide any inputs to those two types of oracles beyond those
described above. (The inputs to invoke are not further restricted
compared to the case of Afull.)

– Client operations are executed sequentially, that is, after each opera-
tion o is invoked, Aben only uses oracles receive and process until
receive outputs some r 6= ⊥; it may only afterwards submit a next
operation with invoke.

The definition of security consists of two conditions, which are made
formal in Definition 4. The first condition models the security of the
protocol against malicious servers, and uses the concept of fork lineariz-
ability as defined in Section 2. In more detail, we use a predicate forkF ′ on
histories that determines whether the history σ is fork linearizable with
respect to the abortable type F ′, and the advantage of a full adversary
Afull is defined as the probability of producing a history that is not fork-
linearizable. The second condition formalizes linearizability with respect
to benign adversaries Aben and is defined with respect to a predicate
linF ′ ∧ liveF ′ that formalizes both linearizability and liveness.

Definition 4. Let BEP be a protocol and F an abstract data type. The
FLBE-advantages of Afull w.r.t. BEP and F is defined as follows. Let
forkF ′ denote the predicate on histories that formalizes fork linearizability
with respect to F ′. Then

Advfl
BEP,u (Afull) := Pr

[
Gemu

BEP,u,forkF ′ (Afull) = 1
]
. (4)

The linearizability advantage of Aben is defined as follows, using the pred-
icate linF that formalizes linearizability with respect to F , and liveF that
formalizes that no operations abort:

Advlin
BEP,u (Aben) := Pr

[
Gemu

BEP,u,linF∧liveF (Aben) = 1
]
. (5)
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The predicates forkF ′ and linF are easily made formal following the de-
scriptions in Section 2. The predicate liveF simply formalizes that for
every operation o ∈ σ there is a corresponding output event.

6 A lock-step protocol for emulating shared data types

We describe a lock-step protocol that uses an ADT to give multiple clients
access to a data type F , and achieves fork linearizability through the use
of vector clocks [37, 38, 14] in a setting where the server may be mali-
cious. By lock-step we mean that while the server processes the request of
one client, all other clients will be blocked. We prove the security of the
scheme based on the unforgeability of the underlying signature scheme
and the soundness of the underlying ADT. We remark that the VICOS
protocol [10], which is also based on ADTs, achieves better efficiency
by exploiting commutative properties of operations to prevent blocking.
That protocol has, however, not (yet) been formally proven; providing a
similar proof for that protocol is planned as future work.

The lock-step protocol LS, which is specified in detail in Figure 8, has
a setup phase in which the keys of the ADT and one signature key pair
per client are generated and distributed. Each client has access to the
verification keys of all other clients; this is in practice achieved by means
of a PKI. The processing then works as follows. A client Cv initiates
an operation o by calling LS.invoke, which generates a submit message
with o for the server. When this message is delivered to the server, then it
generates a reply message for the client. The client performs local com-
putation, generates a commit message for the server, finally completes
the operation by returning the output r .

Authenticated data types ensure the validity of each individual operation
invoked by a client. After the client submits the operation o, the server
executes o via ADT.exec and returns the proof π together with the pre-
vious authenticator to the client in reply. The client then verifies the
server’s computation against the previous authenticator, computes the
output and the new authenticator via ADT.verify, and sends them to
the server in commit. Finally, the new authenticator and the authenti-
cation token of the ADT are sent to the server, which computes the new
state via ADT.refresh.

Digital signatures are used in the protocol to authenticate the information
that synchronizes the protocol state among the clients. After computing a
new authenticator a ′ via ADT.verify, a client signs a ′ and sends it back
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LS.setup(u, λ)

(sk , ad , a)←$ ADT.init(λ)
For v = 1 to u do (sskv , spkv )←$ DS.keygen(λ)
Return ((ssk1, sk , 1), . . . , (ssku , sk , u), ad , (spk1, . . . , spku , a))

LS.invoke(ov , clkv , pks, T )

If s = ε then T ← (0, . . . , 0) . Obtain number of users from pks
Return (〈submit, ov 〉 , T )

LS.receive(m, (sskv , sk , v), (spk1, . . . , spku , a0), T )

If m = 〈busy〉 then return (busy,⊥, T )
〈reply, V, `, a, ϕ′, ξ〉 ← m (or abort if not possible)
(b, r, a ′, t)← ADT.verify(sk , a, ov , ξ)
b← b ∧ ((V = (0, . . . , 0) ∧ a = a0) ∨DS.verify(spk `, ϕ

′,commit ◦ a ◦ V ))
If ¬ ((T ≤ V ) ∧ (T [v ] = V [v ]) ∧ b) then return (abort,⊥, T )
T ← V + 1v

ϕ← DS.sign(sskv ,commit ◦ a ′ ◦ T )
Return (r, 〈commit, T, a ′, ϕ, t〉 , T )

LS.process(m, v , ad0, pks, s)

If s = ε then s← (ad , a, 0, ε, (0, . . . , 0), 0) . Initialize server state
(ad , a, `, ω, V, i)← s
If i = 0 and m = 〈submit, o〉 then . Expect a submit message
π ← ADT.exec(ad , o)
Return (v , 〈reply, V, `, a, ω, π〉 , (ad , a, `, ω, V, v))

Else if i = v and m = 〈commit, T, a ′, ϕ, t〉 then . Expected commit
ad ′ ← ADT.refresh(ad , a, o, t)
Return (0,⊥, (ad ′, a ′, i, ϕ, T, 0))

Else return (v , 〈busy〉 , s)

Fig. 8. The lock-step protocol LS.

to the server in commit. When the next client initiates an operation o,
the reply message from the server contains the authenticator a ′ together
with the signature. Checking the validity of this signature ensures that
all operations are performed on a valid (though possibly outdated) state.

Vector clocks represent the causal dependencies among events occurring
in different parts of a network [4]. For clients C1, . . . , Cu , a logical clock
is described by a vector V ∈ Nu , where the v -th component V [v ] con-
tains the logical time of Cv . In our protocol, clients increase their local
logical with each operation they perform; the vector clock therefore en-
sures a partial order on the operations. Each client then ensures that all
operations it observes are totally ordered by updating its vector clock ac-
cordingly, and signing and communicating it together with the updated
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authenticator. Together with the above mechanism, this ensures that the
only attack that is feasible for a server is partitioning the client set and
forking the execution, leading to a disjoint but internally consistent exe-
cution for each branch.

We prove in the next theorem and that the protocol achieves fork
linearizability if the signature scheme and the ADT satisfy the security
notions described in the previous sections.

Theorem 3. The protocol described above emulates the abortable type F ′

on a Byzantine server with fork linearizability. Furthermore, if the server
is correct, then all histories of the protocol are linearizable w.r.t. F .

More formally, let A be an adversary in the game Gemu
LS,u,forkF ′ . There

exist adversaries B and C, described explicitly in the proof, such that

Advfl
LS,u (A) ≤ u ·Adveuf

DS (B) + Advsound
ADT (C) . (6)

On a high level, the proof proceeds as follows. We first perform game
hops in which we idealize the guarantees of the signature scheme DS
and the ADT scheme ADT used by protocol LS. We then show that
the history σ produced in the game with idealized cryptography is fork-
linearizable. We start by idealizing the guarantees of the signature scheme.

Lemma 1. For u users and every adversary A there exists an adversary
B, explicitly described in the proof, such that

Advfl
LS,u (A) ≤ Pr[G1] + uAdveuf

DS (B) . (7)

If A makes q calls to receive, then B makes at most q calls to sign.

The game G1 referenced in Lemma 1 is specified in Figure 9 and is
almost the same as Gemu

LS,u,forkF ′ , but it performs an idealized check on the
signature scheme, that is, clients only accept signatures that have been
produced by other honest clients.

Proof. In comparison with game Gemu
LS,u,forkF ′ (A), game G0 described in

Figure 9 is modified in two ways. First, whenever a client signature is
created on a message commit ◦ a ′ ◦ Y , this event message also recorded
in the set S together with the identifier ` of the client that signed the
message. Second, the game is modified where the signatures are checked.
If a signature verifies but no corresponding entry exists in the set S, the
flag bad is set. This does not change the adversary’s advantage in winning
the game.
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Game G0 G1

(clk1, . . . , clku , svk , pks)←$ LS.setup(u)
T1, . . . , Tu , Ss, σ ← ε
Ainvoke,receive,process,corrupt(pks)
Return ¬forkF ′

invoke(v , ov )

(m,T ′)←$ LS.invoke(ov , clkv , pks, Tv )
σ ← σ ◦ (Cv , ov )
Return m

receive(v ,m)
If m = 〈busy〉 then return (busy,⊥)
Parse m as 〈reply, V, `, a, ϕ′, ξ〉
(b, r , a ′, t)← ADT.verify(sk , a, ov , ξ)
b← b ∧ ((V = (0, . . . , 0) ∧ a = a0) ∨DS.verify(spk `, ϕ

′,commit ◦ a ◦ V ))
If DS.verify(spk `, ϕ

′,commit ◦ a ◦ V ) ∧ (`,commit ◦ a ◦ V ) /∈ S then

bad← True ; b← False
If ¬ ((Tv ≤ V ) ∧ (Tv [v ] = V [v ]) ∧ b) then return (abort,⊥)
Tv ← V + 1v

ϕ← DS.sign(sskv ,commit ◦ a ′ ◦ T ) ; S ← S ∪ {(v ,commit ◦ a ′ ◦ T )}
σ ← σ ◦ (Cv , r)
Return (r , 〈commit, T, a ′, ϕ, t〉)

corrupt
Return Ss

process(v ,m)

(m′, v ′, Ss)←$ LS.process(m, v , svk , pks, Ss)
Return (v ′,m′)

Fig. 9. Idealization of the authenticity guarantee provided by the signa-
ture scheme.

We then define the next game G1; the only difference between G0 and
G1 is after bad← True, where G1 is defined to not accept forged signa-
tures even if they verify. By the Fundamental Lemma of Game Playing [7],
the difference in advantage between those two games can be bounded by
the advantage of the adversary in provoking bad to be set. Then we con-
struct adversary B for the existential unforgeability game of the signature
scheme as follows. Adversary B initially chooses v ∈ {1, . . . , u} uniformly
at random, and then emulates game G0, using the signature verification
key from the game Geuf

DS for user v and simulated key pairs for all other
users. Queries to oracle receive of client v are performed using the sign
oracle in game Geuf

DS. For the flag bad to be set, adversary A has to pro-
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duce a signature ϕ′ such that DS.verify(spk `,commit ◦ a ◦ V, ϕ′) but
(`,commit ◦ a ◦ V ) /∈ S, i.e., the message commit ◦ a ◦ V has not been
signed through a call to receive, and therefore has not been queried to
sign. Consequently, ϕ′ can be used by B to win the signature game.

Since the emulation of game G0 is perfect, if A forges such that bad
is set, then the probability that the forgery was for user v is 1/u. Using
the fundamental lemma then concludes the proof. ut

The next step is to idealize the guarantee provided by the ADT. We
prove the game hop by reduction from the soundness of the ADT.

Lemma 2. For each adversary A there exists an adversary C, explicitly
described in the proof, such that

Pr[G2] ≤ Pr[G3] + Advsound
ADT (C) . (8)

If A makes q calls to its receive oracle, then C makes at most q calls to
its verify oracle.

Proof. Game G2, formally described in Figure 10, differs from G1 as
follows. In oracle receive, the (ideal) state of the computation is tracked
using map L[ ], which maps a version vector V to an ideal state of F
associated to that version, and by ideally computing the functionality
F whenever the verification in ADT.verify succeeds. Using this ideal
representation, the game checks whether the output r given to the client
is correct, analogously to Gsound

ADT , and sets bad to True the client accepts
although the output is wrong (i.e., ADT has been broken).

Game G3 differs from G2 in that the client will not accept in the
above described case; we simply set b to False, which leads to the client
rejecting the output. As this modifies the behavior of the game only after
bad is set, we can use the Fundamental Lemma to bound the difference
in adversary advantage by the probability of provoking bad to be set.

We now describe an adversary C that plays game Gsound
ADT , emulates

game G2 to A, and wins Gsound
ADT in case A provokes bad to be set. This

adversary C obtains (ad , a) from Gsound
ADT and emulates G2 to A. For an

oracle query receive(v ,m) with m = 〈reply, V, `, a, ϕ′, ξ〉, instead of
calling ADT.verify(sk , a, ov , ξ), C queries (ov , j, ξ) to its verify oracle,
where j is the number of the verify-query that corresponds to version
V (which is the query in which the digest a was generated by the ideal
guarantee of the signature scheme).

Adversary C emulates G2 perfectly, and that setting the flag bad in
G2 corresponds to winning the game Gsound

ADT . ut
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Game G2 G3

(clk1, . . . , clku , svk , pks)←$ LS.setup(u)
T1, . . . , Tu , Ss, σ ← ε ; L← [ ]
Ainvoke,receive,process,corrupt(pks)
Return ¬forkF ′(σ)

invoke(v , ov )

(m,T ′)←$ LS.invoke(ov , clkv , pks, Tv )
σ ← σ ◦ (Cv , ov )
Return m

receive(v ,m)
If m = 〈busy〉 then return (busy,⊥)
Parse m as 〈reply, V, `, a, ϕ′, ξ〉
(b, r , a ′, t)← ADT.verify(sk , a, ov , ξ)

b← b ∧
(

(V = (0, . . . , 0) ∧ a = a0)

∨
(
DS.verify(spk `, ϕ

′,commit ◦ a ◦ V ) ∧ (`,commit ◦ a ◦ V ) ∈ S
))

If b then s ← L[V ] ; (s ′, r̃)← F (s, ov ) ; L[V + 1v ]← s ′

If b and r̃ 6= r then bad← True ; b← False
If ¬ ((Tv ≤ V ) ∧ (Tv [v ] = V [v ]) ∧ b) then return (abort,⊥)
Ti ← V + 1v

ϕ← DS.sign(sskv ,commit ◦ a ′ ◦ T ) ; S ← S ∪ {(v ,commit ◦ a ′ ◦ T )}
σ ← σ ◦ (Cv , r)
Return (r , 〈commit, T, a ′, ϕ, t〉)

corrupt
Return Ss

process(v ,m)

(m′, v ′, Ss)←$ LS.process(m, v , svk , pks, Ss)
Return (v ′,m′)

Fig. 10. Idealization of the authenticity guarantee provided by the ADT.

The previous lemmas allow us to now work in game G3, where the
cryptographic schemes are idealized, meaning that all messages accepted
by the signature verification have actually been signed before, and all
outputs accepted by the ADT verification are correct. Our goal is to now
prove that the history σ that is generated in G3 is indeed fork linearizable.
As in previous work [14], we assume that all initiated operations in σ have
completed. To show fork linearizability, we define subsequences σv of σ
as follows.

1. All operations o ∈ σ executed at client Cv are also contained in σv ,
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2. for each o ∈ σv , include also all o ′ ∈ σ with associated version number
less than or equal to that of o.

Then, we obtain πv (σv ) by sorting all the operations in σv according to:

1. by the ascending order of their associated version vectors,
2. by their real-time order,
3. by the real-time order of their completion event.

Before moving to the proof of Theorem 3, we prove another lemma which
states that πv preserves the real-time order of the history σv .

We also introduce further conventions and notation. First, we assume
that each operation o ∈ σ is unique; this simplifies the notation and is easy
to achieve by including the client identifier and local timestamp as part
of o. For an operation o ∈ σ, we then write ver (o) to denote the version
vector that the client assigns to operation o in the commit message. The
following lemma shows that πv preserves the real-time order, and is an
extension of the corresponding argument in [14].

Lemma 3. The permutation πv preserves the real-time order of the his-
tory σv . This means that for two operations o, o′ ∈ σv , if o ≺σv o ′, then
also o ≺πv (σv ) o ′.

Proof. The proof starts by showing several helper statements. First, by
the fact that client Cv ′ is honest, we show that there is at most one opera-
tion o ∈ σv in which a certain increase in position v ′ of the version vector
occurs. More formally, for each j ∈ N, there is at most one operation
o ∈ σv invoked by client Cv ′ with ver (o) [v ′] = j.

Claim. Let v ′, j ∈ N and Cv ′ be a client. In history σv of some Cv , there
is at most one operation o ∈ σ of client Cv ′ with ver (o) [v ′] = j.

Proof. This is since client Cv ′ increases the version vector at position v ′

during each invocation, and the version vector it starts from is greater
than or equal to the one computed in the previous invocation. ut

We then show that each operation has a “parent” whose version vector
differs only in one position.

Claim. Let o ∈ σv be a (complete) operation performed by some client
Cv ′ . If |ver (o)| > 1, then there is exactly one (complete) operation o′ =
parσ (o) ∈ σ that immediately precedes it in the sense that the signature
ϕ′ received by the client as part of the reply-message was generated by
some client Cv ′′ during the receive query related to operation o′. Then
o′ ∈ σv and ver (o′) < ver (o), with the two vectors differing exactly by 1
in the v ′-th component and o 6≺σv o ′.
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Proof. First, since o ∈ σv completes and |ver (o)| > 1, the verification of
signature ϕ′ in LS.receive has succeeded. As the client that generated
signature ϕ′ generates signatures only for the purpose of committing op-
erations, there is a tuple (`,commit ◦ x ◦ V ) ∈ S that was inserted into
S when some operation o ′ ∈ σ was processed.6 The statement about the
versions follows via the definition of the protocol (in particular the line
T ← V +1v ′). The construction of σv then also implies that o ′ ∈ σv . As o
uses the signature ϕ′ generated during o′, we obviously have o 6≺σv o′. ut

The same argument can be applied iteratively, to build a sequence
of “ancestors” of the operation o, by including grandparents and great-
grandparents and so on. We omit the obvious proof.

Claim. Define anc (o, σ) := (o1, . . . , om) with om := o, oj = parσ (oj+1),
and |ver (o1)| = 1. This is a sequence of operations in σv such that the
version numbers of each oj and oj+1 differ only in one position, and by
1. Furthermore, oj 6≺σv oj ′ for all j ≥ j ′.

Finally, we leverage the above statement to conclude that if there are
operations o, o′ such that the version vector of o′ is smaller than that of
o, then o ′ must indeed appear in the ancestry of o.

Claim. Let o, o ′ ∈ σ with ver (o) ≥ ver (o ′). Then o′ ∈ anc (o, σ).

Proof. We know that ver (o) ≥ ver (o′). Let Cv be the client that in-
voked o′, then by the second claim, this implies that ver (parσ (o′)) [v ] <
ver (o′) [v ] ≤ ver (o) [v ]. The third claim then guarantees that in anc (o, σ)
there is an operation ô where the same increase in version number of
client Cv occurs, and the first claim implies that ô = o′. Therefore,
o′ ∈ anc (o, σ). ut

Now we go on to show that πv (σv ) indeed preserves the real-time
order of σv . Since o ≺σv o′, the first two rules of the description of πv (σv )
ensure that o precedes o ′ in πv (σv ) unless ver (o) > ver (o′). Assume
that ver (o) > ver (o ′). Then, by the final claim above, we know that
o′ ∈ anc (o, σ) and by the third claim this also means o 6≺σv o′. This
contradicts the precondition, therefore ver (o) 6> ver (o′) and therefore
o ≺πv (σv ) o′. This proves the lemma. ut

We now proceed to the proof of Theorem 3.

6 o′ is uniquely determined since the party’s component in the time stamp V increases
during each receive, so there can only be one operation with this value V .
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Proof (of Theorem 3). We first use Lemmas 1 and 2 to observe

Advfl
LS,u (A) ≤ Pr[G3] + Advsound

ADT (C) + uAdveuf
DS (B) ,

and then we prove that Pr[G3] = 0. In particular, we prove fork lineariz-
ability of the by showing all required conditions for the constructed σv
and πv (σv ). First, all complete operations o ∈ σ occurring at client Cv

are contained in σv and πv (σv ) by construction. Second, πv (σv ) preserves
the real-time order of σv by Lemma 3. The third condition is that the
operations of πv (σv ) satisfy the sequential specification of F .

Claim. The operations of πv (σv ) satisfy the sequential specification of F .

Proof. Let o ∈ πv (σv ). Every o′ ∈ anc (o, σ) is also o ′ ∈ πv (σv )—this
follows from the third claim in the proof of Lemma 3. Let o be the last
operation in πv (σv ) executed by Cv , then for every o′ ∈ πv (σv ) it is
ver (o′) ≤ ver (o) by construction of πv (σv ) and—by the final claim of
Lemma 3—also o′ ∈ anc (o, σ). Then πv (σv ) and anc (o, σ) contain the
same operations, and by construction they also have the same order.

We then continue to show the statement by induction for all elements
in πv (σv ). If πv (σv ) is empty then we are done, otherwise there is a
first operation o1 ∈ πv (σv ). In particular, the associated version vector
contains only a single entry that is non-zero (and in particular it is 1),
because otherwise—by the second claim of Lemma 3—there would exist
another operation o′ ∈ πv (σv ) with a smaller non-zero version vector.
In particular, the client invoking o1 checks that a = a0 and verifies that
the server has computed F (s0, o1) = (s1, r1) correctly. Therefore, the first
operation is computed according to the specification of F .

For any subsequent operation o ∈ πv (σv ), let o ′ = parσ (o) ∈ πv (σv ).
By the construction of πv (σv ) it holds that o′ ≺πv (σv ) o, and by the
fact that πv (σv ) = anc (o, σ) it also holds that there is no õ ∈ σv with
o′ ≺πv (σv ) õ ≺πv (σv ) o. Let Cv ′ be the client that executes o. The fact that
operations with the same version vectors ≤ ver (o) are unique in σ—by
the final claim in Lemma 3—means that the signature ϕ′ verified during
o was generated in o′, and that o is evaluated on the state sj−1 computed
by F during o ′. This means that Cv ′ verifies that (sj , rj ) = F (sj−1, o) is
computed correctly by the server. This concludes the proof that πv (σv )
satisfies the sequential specification of F . ut

To complete the proof, we have to show that for every o ∈ πv (σv ) ∩
πv ′(σv ′), the sequence of events that precede o in πv (σv ) is the same as
the sequence of events that precede o in πv ′(σv ′). This, however, holds by
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a similar argument as in the beginning of the proof of the above claim.
Indeed, for any operation o ∈ πv (σv ) ∩ πv ′(σv ′), it holds that πv (σv )|o =
anc (o, σ) = πv ′(σv ′)|o , which concludes the proof of fork linearizability.

What remains to be shown is the statement that the history is indeed
linearizable if the server is correct, meaning for benign adversaries Aben.
We show this via a permutation π(σ) of σ by sorting the events as follows:

1. by the ascending order of their associated version vectors,

2. by their real-time order,

3. by the real-time order of their completion event.

As Aben delivers all messages faithfully, correctness of DS and ADT is
sufficient to work with a history σ in which we assume the cryptographic
schemes to be perfect (as in G3 before).

The permutation π(σ) preserves the real-time order of σ; this follows
by exactly the same arguments as in Lemma 3. Permutation π(σ) satis-
fies the sequential specification of F ; this follows as the above claim by
observing that, with an honest server, the history never “forks” and π(σ)
is strictly ordered by the version vectors of the operations. ut

7 Conclusion

Our work combines and extends three different lines of work. The first one
is work on SNARKs and verifiable computation, where we build on the
scheme of Fiore et al. [20] and extend it by a mechanism that allows for
stateful computation in which an untrusted party can update the state in
a verifiable manner in a multi-client setting. The second one is the work
on authenticated data types, where many schemes have been proposed
for different scenarios and for various specific data types. We develop
a scheme for the so-called two-party setting which is generic in that it
works for all data types where the operations can be efficiently computed,
and adds only little overhead over the methods of [20]. Third, we extend
the work on Byzantine-emulation protocols from the distributed-systems
literature by providing a model for computational security that allows us
to prove the protocol with the actual cryptography (instead of resorting
to a model with idealized cryptography such as, e.g., [14, 13]). We describe
a protocol based on ADTs (similarly to [10]) in which the computation is
performed by an untrusted server and the clients are only required to store
a short authenticator, but can still verify the correctness of the server’s
operations. We prove that our protocol achieves fork linearizability.
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