Putting Wings on SPHINCS

Stefan Kolbl
stek@dtu.dk

DTU Compute, Technical University of Denmark, Denmark

Abstract. SPHINCS is a recently proposed stateless hash-based signa-
ture scheme and promising candidate for a post-quantum secure digital
signature scheme. In this work we provide a comparison of the perfor-
mance when instantiating SPHINCS with different cryptographic hash
functions on both recent Intel and AMD platforms found in personal
computers and the ARMv8-A platform which is prevalent in mobile
phones.

In particular, we provide a broad comparison of the performance of
cryptographic hash functions utilizing the cryptographic extensions and
vector instruction set extensions available on modern microprocessors.
This comes with several new implementations optimized towards the
specific use case of hash-based signature schemes.

Further, we instantiate SPHINCS with these primitives and provide
benchmarks for the costs of generating keys, signing messages and veri-
fying signatures with SPHINCS on Intel Haswell, Intel Skylake, AMD
Ryzen, ARM Cortex A57 and Cortex AT72.

Keywords: hash-based signature schemes, implementation, post-quantum
cryptography, SPHINCS, ARM

1 Introduction

Digital signature schemes are one of the fundamental cryptographic algorithms
and are typically used to provide authenticity, integrity and non-repudiation
for a message. They have found several applications in information security, e.g.
certification of public keys, code signing or as an electronic signature. One of
the major threats to the currently widely used digital signature schemes like
DSA/ECDSA is that they are not secure if an attacker can build a large enough
quantum computer. The security of these schemes relies on difficult number
theoretic problems, which can be solved in polynomial time on a quantum
computer [33].

There are various solutions for post-quantum secure digital signature schemes,
namely lattice-based, multivariate-quadratic, code-based and hash-based signa-
tures. One of the main advantage of hash-based signature schemes is that the
security reduces to properties of the underlying cryptographic hash function. As
every digital signature scheme requires a one-way function [32] these can be seen
as the minimal assumptions necessary to construct a secure signature scheme. All
the other previously mentioned signature schemes require further assumptions

by relying on the difficulty of hard problems for which the asymptotic difficulty
might not always hold for the concrete instances used in a cryptographic systems
and they require carefully choosing the parameters.

Hash-based digital signature schemes are therefore a very attractive choice.
However most schemes, like XMSS [9] and LMS [14], are stateful, this means that
one has to update the secret key with every signature. This may sound quite
innocent, however it can be a severe difficulty in practice. For instance when
sharing a private key on different computers one has to synchronize all of them
or security can be void. For some applications this might be acceptable, however
in general we desire to have a stateless signature scheme.

Goldreich proposed the first stateless hash-based signature scheme [18], how-
ever the parameters required for this construction to provide a sufficient security
level and reasonable number of signatures per key pair resulting in a fairly large
signature above 1 MB. SPHINCS [5] improves upon this construction in several
aspects and first demonstrates that stateless schemes can be practical and provide
a reasonable signature size (41 KB) while computing hundreds of signatures per
second on a modern CPU.

The performance of SPHINCS directly relates to the underlying cryptographic
hash function and therefore the performance of this function is critical, which
will be the main focus of this work. The requirements for this function also differ
from the classic use cases for cryptographic hash functions, as we do not require
collision resistance and the inputs for most calls are rather short, typically 256
or 512 bits.

Contributions. The main goal of this work is to provide a comparison of
performance when instantiating SPHINCS with different hash functions on
modern high-end processors found in personal computers and mobile phones.
In order to achieve this we provide several implementations, for modern Intel,
AMD and ARM CPUs, optimized towards the requirements of SPHINCS. This
includes implementations of SHA 256, KECCAK, SIMPIRA, HARAKA and CHACHA
optimized for hashing short inputs in parallel utilizing vector instructions and
cryptographic extensions available on these microprocessors.

We further instantiate SPHINCS with these implementations and provide
a broad comparison of the costs of generating key pairs, signing messages and
verifying signature on Intel Haswell, Intel Skylake, AMD Ryzen, ARM Cortex A57
and A72. These are also the first optimized implementations for the ARMv8-A
platform for SPHINCS and improve the understanding of the costs of state-
less hash-based signature schemes. This performance results also indicate that
SPHINCS is practical on the architecture used in a growing number of mobile
phones.

Software. The implementations are put in the public domain and are available
under https://github.com/kste/sphincs.

https://github.com/kste/sphincs

Related Work. So far there is only a limited amount of benchmarks for
SPHINCS available. The original paper proposing SPHINCS [5] provides a
reference implementation and an optimized implementation which utilizes the
AVX2 vector extensions for speeding up the underlying CHACHA permutation.
In [29] the authors propose a dedicated short-input hash function HARAKA,
which utilizes the AES instruction set to speed-up hash-based signature schemes
and also provide some benchmarks for SPHINCS on the recent Intel platforms.
The AES-based permutation design Simpira has recently also been proposed to
instantiate SPHINCS [21] and its performance on Intel Skylake was evaluated. The
first implementation on low-end platforms was provided in [25]. Here the authors
demonstrate that SPHINCS can also be implemented on a 32-bit microcontroller
based on the ARM Cortex M3 with very limited RAM available.

2 The SPHINCS Signature Scheme

In this section we give an overview of the SPHINCS digital signature scheme.
Throughout the paper we will use the same parameters as suggested in [5], which
will give a signature size of 41KB, public-key size of 1056 bytes and a private-key
size of 1088 bytes. These parameters target a security level of 128 bits against an
adversary who has access to a large enough computer and allow up 2°° signatures
for a key pair. For more details we refer the reader to [5].

First, we will give a brief description of the main components used in SPHINCS
and provide some insights on how much impact the performance of the underlying
primitives has on the performance of SPHINCS. In particular, we are interested
in two functions

F:{0,1}*% — {0,1}*%¢
H:{0,1}°? — {0,1}?%°.

which, as we will see later, are responsible for most of the computations in
SPHINCS.

(1)

2.1 Hash Trees

At various points in the construction, SPHINCS uses a hash tree (also known
as Merkle tree). A hash tree is a full binary tree of height h. We denote the
ith node at level j of this tree as IV, ;, hence the root corresponds to Ng .
Each node, which is not a leaf, gets labeled with the hash of its child nodes
N;; = H(Ng; j—1||N2it1,j—1). Note that in order to drop the requirement for a
collision resistant hash function [13], the inputs to H are further masked in all
hash trees used in SPHINCS.

An important term related with hash trees is the authentication path. The
authentication path Auth; serves as a proof that the node N; ; is part of the
hash tree with root Np j. It contains the minimal number of nodes which are
required to recompute the root of a hash tree given N; ;. This newly computed
root can then be compared with the previously commited one to verifiy that IV; ;
is indeed part of the original tree.

2.2 One-time Signature: WOTS™T

As a one-time signature SPHINCS uses WOTS™ [24], which has a parameter w
allowing a trade-off between signature size and number of computations. Further,
we derive the following parameters

zl[" W,ZQLWMJH,IAHQ.)

log w log w
In the case of SPHINCS w = 16, thus [= 67. Additionally, we use F to
construct the chaining function

() =F(() Q) (3)

where (; is a round specific bitmask and ¢°(z) = z.

Key Generation. The keys are derived from an initial secret key S which is ex-
panded with a pseudo-random generator to obtain a secret key sk = (skq, . .., sker)
for WOTS™. The public key pk is then computed by applying the chaining func-
tion on each part of the secret key

(pky,- .., pkgr) = (cwfl(skl), ce cwfl(skm)). (4)

In order to reduce the size of this public key we build a hash tree on top of it to
obtain pk. As [is usually not a power of two the L-tree [13] construction is used.
This structure is similar to a binary tree, however if there is an odd number of
nodes on a level the rightmost node is lifted up one level (see Figure 1). The root
of the resulting tree is then used as the public key pk.

Signing. A message m is signed by first computing the base w representation
of the message M = (Mi,... M,). The next step is to compute a checksum
Zi;l(w — 1 — M;) and also its base w representation C = (Cy,...,C,). We
concatenate these values and obtain B = (By,...,B;) = M||C. The signature
for M is then given by

o=(01,...,01) = (B (sky), ..., P (sk))). (5)

Verification. The process of verifying a signature o of a message m with the
public key pk is done in a similar way. First, we have to recompute B and then
compute

(pKy,...,pk}) = (¢ Br(oy),...,cv 7 Bi(a))) (6)
Note that the correct bitmasks have to be used in each step of the chaining
function to get the correct results. The final step is to recompute the root of the
L-tree and check if pk’ = pk.

2.3 Few-time Signature: HORST

The second important component of SPHINCS is a few-time signature scheme.
SPHINCS uses HORST, which is a variant of HORS [31] with an additional tree
structure. HORST has two parameters ¢ and %k, which are ¢t = 2'6 and k = 32 in
the case of SPHINCS.

S - PRG — PRG — PRG —| PRG | - » PRG

Fig. 1. WOTS™ key generation using an L-tree for computing the public key.

Key Generation. In order to generate the secret key we expand a secret S to
obtain sk = (sky,...,sk;), similar to the WOTS™ key generation. The elements
of this list are used to generate the leaves of a binary tree by computing F(sk;).
We then compute a hash tree on top of these leaves and the public key is the
root node.

Signing. For signing, the message m is split into k pieces of length logt giving
us M = (M, ..., My). Next, we interpret each M; as an integer and compute
the signature as o = (01,...,0k, 0k+1). Each block o; = (skay,, Authyy,) for all
i < k. This corresponds to the M;th element in the secret key and Auth,;, are
the elements required for computing the authentication path up to level 10 (see
Figure 2). Finally, o541 contains all nodes at level 10 of the tree.

Verification. The verification process is very similar. First, the received parts
of the secret key are hashed using F. Together with the authentication paths
this allows us to recompute the nodes at level 10 for each sk;. These can then
be verified with the values given in ox1. Finally, the nodes in o1 are used to
recompute the root of the tree which has to be equal to pk.

2.4 Putting everything together

SPHINCS uses a nested tree structure consisting of 12 layers of trees of height 5
(see Figure 3). Each tree is a binary tree where the leaves are the public key of a
WOTS™ key pair. The top layer consists of a single tree and each key pair in the
leaves is used to sign the root of another tree. Hence, on the second layer we will

Level 16 @

Level 10 /©< /g% /‘<>\/ \/g%

~ bR

Skl Sk_) Sk3 Sk4 Sk5 Skﬁ Sk,— Skg

Fig. 2. Signing process in the HORST few-time signature scheme. In this case sko and
sky are chosen by m and all the blue nodes are part of the authentication path and
therefore part of the signature.

have 32 trees. This process is repeated until we reach the bottom layer. On the
bottom layer we use the final WOTS™ keys to sign a HORST public key, which
is then used to sign the message.

Key Generation. For generating the keys in SPHINCS we choose two random
256-bit values S, S’. The first value is used during the key generation and the
second one for signing. Furthermore, we need to generate all the bitmasks @ for
WOTS™, HORST and the binary hash trees. For the public key pk we only need
to compute the root of the tree at the top and therefore have to generate the 32
WOTS™" key pairs. The secret key is then (S,S’, Q) and the public key (pk, Q).

Signing. The first step is to select a HORST key to sign the message. We use
a pseudorandom function (which involves §’) to compute the index idx of the
HORST key pair which we then use to sign a randomized digest R derived
from m giving us the signature ocgorsr. Note that the HORST key pair is fully
determined by this idx and the secret key S.

The next step is to generate the WOTS™ key pair which signs the HORST
public key used when computing o yorsr. This again depends entirely on S and
the position in the tree and gives us the WOTS™ signature 0w,1- The public key
for this WOTS™ signature is part of another tree and needs to be authenticated
again. We therefore compute the authentication path Auth,, ; for pk, ;.

This procedure of signing the root with a WOTS™ key pair and computing the
authentication path is repeated until we reach the top layer. The full signature

Level 1

7N o

Level 2
I OTSsign
o 82x \ Q
|
: N
|
|
* ()
v
Level 12 OTS...
i sign

HORST

'

Message

Fig. 3. Virtual tree structure used in SPHINCS.

then consists of
o = (idx, R,0gORST, Ow,1, Authy 1, ..., 0y 12, Authy 12). (7)

Verification. The verification process consists of recomputing the randomized
digest for the message and first verifying o yorsr. If this is successful we continue
with the verification of o,,; and all further signature o, ; until we reach the root
of our tree. If all verifications succeed and the root of the top tree equals pk the
signature is accepted.

3 How to instantiate SPHINCS?

The performance of SPHINCS strongly correlates with the performance of two
functions F and H which have the following security requirements

— Preimage Resistance: For a given output y it should be computationally
infeasible to find an input z’ such that y = f(2').

— Second-Preimage Resistance: For a given = and y = H(z) it should be
computationally infeasible to find z’ # z such that f(z') = y.

— Undetectability: It should be computationally infeasible for an adversary
to predict the output.

For F we require preimage resistance, second-preimage resistance and unde-
tectability, while H has to be second-preimage resistant. The best generic attacks
against an ideal function with an output size of n bits require 2™ calls to the
function respectively 27/2 on a quantum computer using Grover’s algorithm. In
the case of SPHINCS an attacker with access to a quantum computer should not
be able to succeed in violating any of these properties with less than 2'2® calls to
the underlying function.

Contrary to a generic cryptographic hash function these requirements are very
different. For instance we do not require those functions to be collision resistant,
which in general is a much stronger requirement. Various cryptographic hash
functions in the past have been broken in this setting like MD4 [35], MD5 [37]
or SHA-1 [36] and while one can construct collisions in practice for all these
functions, finding a preimage is still very costly, even for MD4 [30,22]. The second
difference is that these functions have a fixed input size. Most hash functions
only reach their best performance for longer messages and several attacks are
also only applicable for long messages.

Before, we discuss the different choices we first take a closer look at how many
calls to these functions are required for key generation, signing and verification
(also see Table 1). For generating the key in SPHINCS we need to do 32 WOTS™
key generations (and the corresponding L-tree) and construct the hash tree. In
total this amounts to 32 (67-15) = 32160 computations of F and (32-66) +31 =
2143 computations of H.

Table 1. Costs in term of F and H for the operations in SPHINCS.

Operation Calls to F Calls to H
Key Generation 32160 2143
Signing 451456 93406
Verification < 12092 1235

For signing we need to compute one HORST signature and 12 trees which
include the costs for one WOTS™ key generation each. Note that the WOTS™
signature can already be extracted while generating the WOTS™ key pairs. This
means that one signature requires at least 65536 + (12 - 32160) = 451456 calls to
F and 65535 + 12 - 2144 4 2143 = 93406 calls to H.

For verification we need one HORST verification and 12 WOTS™ verifications
(including the L-tree) which corresponds to at most 12 - (67 - 15) + 32 = 12092
calls to F and (12 - (66 + 5)) + 383 = 1235 calls to H.

3.1 ChaCha

CHACHA is a family of stream ciphers [4]. In the original SPHINCS design
both F and H are constructed from the 512-bit permutation mcyacua. If Tonacua

represents 12 rounds of the CHACHA permutation then

F(Ml) = TrunC(TrCHACHA(MIHC))
H(M;[|Mz) = Trunc(mcnacua (Tenacua (M1]|C) & (M2||0256))

where My, Ms are 256-bit messages and C' is a 256-bit constant. Trunc is a
function which truncates the output to 256 bits.

The best attack on the CHACHA stream cipher can recover a secret key for
7 rounds [2], however no concrete analysis exists in the construction used here.
The building block used for the SHA-3 candidate BLAKE [3] shares a lot of
similarities with the permutation used for CHACHA and it is likely that similar
attack strategies can be applied. The best (second)-preimage attacks on BLAKE
only cover 2.75 rounds and a (pseudo) preimage attack on 6.75 rounds of the
compression function exists [16].

3.2 SHA256

SHA256 is one of the most widely used cryptographic hash functions. It was
published in 2001 and designed by the NSA. The compression function processes
blocks of 512-bit using the Davies-Meyer construction and can be directly used to
build both F and H!. We denote these functions as SHA256-F and SHA256-H.
The best preimage attacks on SHA256 reach 45 out of 64 rounds [28] and are
only slightly faster than bruteforce. In [1], the costs of finding a preimage using
Grover’s quantum algorithm [19] for SHA-256 have been estimated at around
2166 basic operations.

3.3 Keccak

KECCAK is a family of cryptographic hash functions based on the Sponge con-
struction and has been standardized as SHA-3 (FIPS PUB 202). It offers a range
of permutations of size b = 25 - 2! for I = 0,...,6. For an output size of 256-bit
the SHA-3 standard specifies to use KECCAK[b = 1600, ¢ = 512]. This would
allow us to instantiate F and H with a single call to the permutation, as we can
process up to 1088 bits. However, this seems quite an inefficient use and it might
be beneficial to use a smaller permutation. Recently, two versions of KECCAK
with a reduced number of rounds have been proposed [8]. KANGAROOTWELVE
for 128-bit security and MARSUPILAMIFOURTEEN for 256-bit security.

The capacity ¢ in a sponge directly relates to the security level and in the
classical setting a Sponge requires ¢ = 512, to have 256-bit second-preimage
resistance. However, it is not clear whether we need a capacity of 512 bits if we
only require 2'?® security against a quantum adversary.

! To separate the domains of the two functions one could use a different IV or round
constants.

In order to evaluate the potential of using KEccak in SPHINCS we choose
both a smaller permutation and reduce the number of rounds

KEcCAK-F(M) = Trunc(KECccAK[b = 800, rounds = 12, ¢ = 256](M)) ®)
Keccak-H(M) = Trunc(KECCAK[b = 800, rounds = 12, ¢ = 256](M)).

The best preimage attacks on KECCAK with an output size of 256-bit can
cover 4 rounds of KECCAK [23], apart from a slight improvement over brute force
with huge memory for 8 rounds [10]. The costs of applying Grover’s quantum
algorithm to find a preimage for SHA3-256 have also been estimated at around
2166 in [1]. Overall, taking into account the restricted setting a reduced-round
version of KECCAK seems reasonable for this use case.

3.4 Haraka

HARAKA is a short-input hash function, specifically designed for the use in hash-
based signature schemes [29]. The construction uses an efficient 256-bit (resp.
512-bit) permutation based on the AES with a simple mode (see Figure 4) to
build the two functions F and H.

The best preimage attacks by the authors can find a preimage for 3.5 respec-
tively 4 out of 5 rounds. For an earlier version of HARAKA-H there also exists
an attack exploiting weak round constants which can find a preimage in 292
evaluations [26], however this attack is not applicable to the current version.

m ——»65—» H(m)

Fig. 4. Using a permutation 7 to construct a short-input hash function.

3.5 Simpira

SIMPIRA is a family of cryptographic permutations [20] that supports an input
size of b-128. The design is based on generalized Feistel networks and uses the
AES round function for updating the branches. The variants with b = 2 and
b =4 can be used in the same mode as HARAKA to construct

SIMPIRA-F (M) = SIMPIRA[b = 2](M) & M

SIMPIRA-H(M) = Trunc(SIMPIRA[b = 4](M) & M). ©

The security claim for SIMPIRA is that no distinguisher with costs < 2128
exists, but so far no concrete preimage attacks have been published.

4 Efficient Implementations for F and H

The target platforms for our implementations are on one hand the recent x86
CPUs by Intel (Haswell and Skylake), AMD (Ryzen) and on the other hand
the ARMv8-A architecture, which has a large share in the mobile phone market.
In order to understand how to efficiently implement our primitives on these
platforms we give a quick overview of the most important features we utilize.

4.1 Instruction Pipeline

Modern CPUs have an instruction pipeline, which allows some form of parallelism
on a single CPU core. This is realized by splitting up an instruction into different
stages which can be executed in the same cycle. In order to assess the performance
of an instructions we use two notions, the latency and the inverse throughput.
Latency corresponds to the number of clock cycles we have to wait until we get
the result of an instruction, while the inverse throughput is the number of clock
cycles we have to wait until we can issue the same instruction again.

Utilizing the pipeline is an important performance consideration and can
especially be useful for instructions with a high latency and low inverse throughput.
This has previously been studied in various AES-based designs [27,20,29] to
increase the performance of cryptographic operations. In the case of SPHINCS it
is particularly easy to keep the pipeline filled up, as one has multiple independent
inputs available for most operations. For instance, the WOTS™ chains can be
computed in parallel and most levels of a hash tree allow a high degree of
parallelism.

4.2 Vector Instructions

Another important feature of modern microprocessors are vector units which
provide parallelism through single instruction, multiple data (SIMD) instructions.
These instructions allow to apply the same operation to multiple values stored
in a vector register and can significantly increase the throughput. For many
cryptographic primitives the fastest implementations utilize SIMD instructions.
While we often have to pack the data in a specific format, these costs are
compensated by processing multiple messages/blocks in parallel. Especially in
the case of hash-based signature where multiple independent inputs are almost
constantly available it allows us to fully utilize this feature for a very efficient
implementation.

On the current Intel and AMD platforms? the vector extensions is called
AVX2, which features 16 registers of 256-bit. This will be further extended to
AVX-5123, allowing to operate on 512-bit vectors which will likely speed-up all
vector implementations through the higher degree of parallelism.

2 AVX2 is available since Intel Haswell, for older platforms the predecessor AVX can
be used which supports 128-bit vectors.
3 AVX-512 can already be found in Xeon Phi (Knights Landing) and Skylake-X

processors.

The ARMv8-A architecture offers the NEON instruction set, which allows to
operate on 128-bit vectors. Future ARM platforms [34] will come with a scalable
vector extension (SVE), supporting vectors up to a size of 2048 bits and hence
allowing 16 times the parallelism compared to the current ARM processors.

4.3 Crypto Extensions

An increasing number of platforms provide instructions carrying out cryptographic
operations, which provide a significant speed-up for the supported primitives
while also providing a constant running time and protection against cache-timing
attacks. All recent Intel platforms provide instructions for the round function of
the AES and a similar extensions is available on ARMv8-A. Additionally, the
ARM crypto extensions support SHA-1 and SHA256. On the newest AMD
platform Ryzen these instructions are also available and support for them is
also planned for the next generation of Intel processors. An overview of these
instructions and their performance characteristics is given in Table 3.

4.4 ChaCha-F and -H

The CHACHA permutation is very fast in software and benefits strongly from
the SIMD features on modern CPUs, which is also one of the main motivations
why the SPHINCS designers use it for instantiating SPHINCS. As the design
is based on 32-bit words, AVX2 can be utilized to process up to 8 blocks in
parallel. Similar, using ARM NEON we can process 4 blocks in parallel. On
Intel platforms we use the original AVX2 implementation of CHACHA provided
with SPHINCS in [6]. For ARM we use the implementation by Romain Dolbeau
available in Supercop [6], as it is the fastest available using on the ARM Cortex
A57, to construct ChaCha-F and ChaCha-H.

4.5 SHAZ256-F and -H

SHAZ256 is also based around operations on 32-bit words and therefore benefits
in the same way as CHACHA from the use of SIMD instructions. For Intel Haswell
and Skylake we implemented SHA256 using AVX2 processing 8 blocks in parallel.

We use eight registers, where each one contains one 32-bit word of the state
S; for all eight blocks (see Figure 5). We assume that the incoming message
blocks lie consecutively in memory and load them into 16 256-bit vectors. In
order to have an efficient implementation of the message expansion we have to
transpose the content of these vectors. This adds an overhead of 32 pack/unpack
and 16 permute instructions. Note that this is not required for the state words,
as we can simply the transposed initial value.

By using this data representation the round function and message expansion
can be implemented very efficiently and we only require. In order to get the
correct output representation we have to again transpose the state which adds
another 16 pack/unpack and 8 permute instructions.

LAl el el rlle]m] w[afa[a]afa]aa]a]

»IIf*é<.L1/vtr1:|B,’|Bf|B}|Bf|Bf‘|Bf|B:’|Bf|

| ew[E@lelolalalelalal
El*%¢K'r3:|D‘]|D?|D?|Df|Df|Df|DZ|Df|
@*EE v [[e [& [[| 68 | 6 | 58 |
O R R

S s s s w[G]elalalalala]la]
7:|H}|H3|H3|H3|H5|H5|H]|H§|

T

Fig. 5. Mapping of the SHA 256 state for the eight blocks to the registers. Az corresponds
to the word A as input to round ¢ for block j.

For AMD Ryzen and NEON we use the SHA256 crypto extensions as they
result in better performance. As the latency of these instructions is fairly high
on both platforms we always interleave four calls in parallel.

4.6 Keccak-F and -H

KANGAROOTWELVE already utilizes SIMD instructions and we base our con-
struction of KECCAK-F and KECCAK-H on the available implementation [7] of
KEccak[b = 1600, r = 12] processing 4 blocks in parallel. The same strategy can
be used to implement KECCAK[b = 800, = 12] processing 8 blocks in parallel.
Compared to SHA-3 as defined in FIPS PUB 202 we can gain a factor of 4 in
speed as we can process double the number of blocks with half the number of
rounds when using KECCAK[b = 800, = 12].

For ARM we can use a similar approach, however only 2 (for KECCAK[b =
1600, » = 12]) resp. 4 blocks can be processed in parallel. For hashing a single in-
put we use the ARMv8 implementation provided in the Keccak Code package [7]
and for multiple inputs we implemented a version of KECCAK[b = 800, r = 12]
processing four blocks in parallel using a strategy similar to the x86 implementa-
tion.

4.7 Haraka

For x86 we use the latest version of HARAKA available online* and the only
difference between the platforms is to find the optimal number of parallel calls.
Depending on the platform it is better to interleave four or eight calls to HARAKA-
F resp. HARAKA-H, which is related to the latency of the aesenc instruction
(see Table 3). We therefore use eight calls in parallel on Haswell and four on
Skylake/Ryzen.

4 See https://github.com/kste/haraka

https://github.com/kste/haraka

One of the main difference between the AES instructions on Intel and ARM
is that on ARM one round of AES is split up in two instructions aese and
aesmc. It is very important that these two instructions are adjacent, as this
allows to significantly reduce the latency®. Another difference is that on Intel
the key is added at the end of the round, as in the HARAKA specification. The
aese instruction on ARM adds the key at the beginning and one AES round is
therefore defined as

aesenc = AddKey o MixColumns o ShiftRows o SubBytes
aesmc o aese = MixColumns o ShiftRows o SubBytes o AddKey.

(10)
For an efficient implementation we can use a different set of round constants to
take this into account. HARAKA-256 uses the round constants RCy; and RCo;11
in the 7th AES layer. In the ARM implementation we use an all zero constant
for the first call and RCy, RCy for the second layer. For the third AES layer
we compute RCS||RC} = mix,ag(RCy, RC3) (see Figure 6). Apart from that
the implementation can be done in the same way as on Intel. For the mixing
operation used in HARAKA we can use instead of pack/unpack the equivalent
instruction on ARM zipl and zip2.

0 RCy RC% RC,

aesmc aese aesmc| zipl/2 aese aesmc aese aesmc

So —»Ql}{ AES ~P{ AES D~ AES |-D~{ AEs |

aesmc aese aesmc aese aesmc aese aesmc

51 —»QT}{ AES]—»6]?»[AES —»EF»[AES]—»GT}{ AES |

0 RC, RC}, RCs

Fig. 6. Implementation of HARAKA-256 on ARM using the AES specific instructions.
The order of mix and the addition of round constants are exchanged to facilitate the
free XOR from the key addition of aese.

4.8 Simpira

SIMPIRA is another design which utilizes the AES round function in a Feistel
network and therefore can be implemented with the AES instructions available
on both Intel and ARM. The key addition is used to add a constant and to
realize the XOR in the Feistel. On Intel we use the implementation provided by
the SIMPIRA designers® while for ARM we provide a new implementation.

5 see ARM Cortex A57 Software Optimization Guide, Page 35
5 See http://mouha.be/simpira/

http://mouha.be/simpira/

Similar to the case of HARAKA it is important to have aese and aesmc aligned.
Also the different order of the key addition needs to be taken into account, which
requires an additional XOR per round for b = 2 respectively two XORs for
b = 4 to realize the Feistel networks used in SIMPIRA. In the x86 implementation
these XORs are for free as the key addition happens at the end of aesenc which
can used to XOR with the other branches. Overall this adds a slight overhead
compared on the ARM platforms, but still allows a very efficient implementation.

5 Performance Results

We base our implementation of SPHINCS on the source code provided by the
SPHINCS authors, which is also available in [6], and instantiate F and H with
the previously discussed primitives to measure the number of cycles required to
perform key generation, signing and verification.

The platforms we use for benchmarking include an Intel Haswell (i7-4770S
with 3.1 GHz), an Intel Skylake (i7-6700 with 3.4 GHz), an AMD Ryzen (1700
with 3.7 GHz), ARM Cortex A57 (Samsung Galaxy S6 with 2.1 GHz) and an
ARM Cortex A72 (Samsung Chromebook Plus with 2.0 GHz). All benchmarks
are done on a single core and any frequency scaling technologies like Turbo Boost
are deactivated. For measuring the cycle count we use the available performance
counter on Intel/AMD and the wall-clock time on ARM. For compiling we use
gce version 6.3.0 with the flags -03 -mavx2 -march=native -mtune=native
-fomit-frame-pointer on Intel/AMD and for ARM we crosscompile with -03
-mcpu=A57+crypto —-fomit-frame-pointer.

20 - 10
18 3 =
ChaCha 3 = —
o 16 Haraka I
§14 Keccak [
M
SHA256 [
g 12 Simpira I

Haswell Skylake Ryzen Cortex-A57 Cortex-A72

Fig. 7. Performance of F on different platforms for processing multiple inputs in parallel.
All numbers given are in cycles per byte.

As a first step we measured the performance of F and H for all our primitives
on all platforms (see Figure 7 and Figure 8). We only highlight here the perfor-

12

=
] S
1 3 [=2]
© O ' Chacna === o 7 %0
g Haraka EEEEE T ~ o []
m 8 Keccak [
3 SHA256 [
& 6 Simpira
2 0
2 I}
3 >
Salo 28 o 3 g N
— =N —] ™ N
g Eat R B EE
- ~ - — —
2 '
0
Haswell Skylake Ryzen Cortex-A57 Cortex-A72

Fig. 8. Performance of H on different platforms for processing multiple inputs in
parallel. All numbers given are in cycles per byte.

mance for processing multiple inputs in parallel, as in SPHINCS only a minority
of the operations can not be parallelized. For single inputs the performance drops
especially for the otherwise vectorized implementations of CHACHA, KECCAK
and SHA256 (on Intel). In general the gap between the implementations utilizing
crypto specific instructions and the vectorized implementations is much smaller
on Intel than on ARM. Especially, KECCAK suffers from the smaller vector size
and the higher latency and worse throughput of the vector instructions on ARM
(see Table 3).

The performance numbers of these functions reflect directly in the costs for
carrying out key generation, signing and verification in SPHINCS. In Table 2, we
give an overview of the exact number of cycles required for each operation for the
different instantiations of SPHINCS. Unsurprisingly, signing is the most costly
operation and allows the biggest gains for highly optimized designs like HARAKA
and SIMPIRA. As we can see in Table 1, signing requires to call F five times more
often than H and therefore the performance for F is of greater importance.

On ARMvS8-A the gap between the performance of the primitives with-
out hardware support (CHACHA and KECCAK) and those with is much wider.
SPHINCS-HARAKA is around eight times faster for signing than SPHINCS-
KEcCcAK on the ARM Cortex A57, while the biggest gap on Skylake is only a
factor of five. This again comes with no surprise, as the underlying functions
exhibit a similar difference in performance on this platform. The performance of
SPHINCS on mobile devices with the ARM Cortex A57 is very practical and
on the Samsung Galaxy S6 used here which has four cores we can compute over
hundred signatures per second for the SPHINCS instantiations which utilize
hardware support.

TODO: Add some comments on optimality? Level of parallelism is still same
as in original SPHINCS, but this will only slightly improve. Assembly, better
instruction scheduling could improve some of the implementations

400,000,000

ChaCha ——
» 350,000,000 Haraka —e—
55 Keccak
£ 300,000,000 SHA256
qu Simpira
&= 250,000,000
-
g 200,000,000
£ 150,000,000
>
© 100,000,000
50,000,000
0

Haswell Skylake Ryzen Cortex-A57 Cortex-AT73

Fig. 9. Number of cycles for signing one message.

5.1 Comparison with other Signature Schemes

To put the performance of SPHINCS into context with other recently proposed
post-quantum digital signature schemes we provide a short overview with some
of the candidates submitted to the NIST post-quantum competition. For most
schemes there is only a limited amount of benchmarks available and those
implementations are usually only optimized for x86. We therefore restrict this
comparison to the platforms where optimized implementations exist.

Dilithium is a lattice-based signature scheme based on module lattices [15]. The
set of parameters for which the authors claim 128-bit post-quantum security leads
to a signature size of 2.7kB. The authors also provide an optimized implementation
utilizing AVX2 which on Haswell takes 251.590 cycles for key generation, signing
112.716.000 and verification 58.680.000.

Another candidate for lattice-based signature schemes is Falcon [17], which
is based on the short integer solution problem over NTRU lattices. Choosing
parameters which provide a similar security level as SPHINCS leads to a signature
size of 1.2kB. The authors also provide benchmarks on Skylake: Key generation
takes 64.812.000, signing 1.074.219 and verification 186.472 cycles.

MQDSS [12] is a signature scheme based on the problem of solving multivariate
quadratic equations. For the 128-bit post-quantum security level the signature
size is comparable to SPHINCS at 41kB. An optimized AVX2 implementation
exists and on Haswell the scheme achieves a performance of 1.826.612 cycles for
key generation, 8.510.616 for signing and 5.752.612 for verification.

Recently a new digital signature scheme, based on non-interactive zero-
knowledge proofs, named Picnic has been proposed [11]. The security also is
based on the security of symmetric-key primitives similar to SPHINCS”. For
the proposed parameters and instantiation Picnic has a signature size of 195kB,

" The main difference is that SPHINCS has a security proof in the standard model
and Picnic in QROM.

Table 2. Benchmarks of SPHINCS on different platforms. All results are the median
value of 100 measurements.

Architecture Primitive KeyGen Sign Verify

CHACHA 3.295.808 52.249.518 1.495.416
HARAKA 2.027.136 33.640.796 592.036
Intel Haswell KECCAK 7.564.068 122.517.136 2.366.644
SHA256 9.676.984 157.270.152 3.804.288
SIMPIRA 2.108.364 33.210.104 595.524

CHACHA 2.839.018 43.495.454 1.291.980
HARAKA 1.340.338 20.782.894 415.586
Intel Skylake KEccak 6.589.798 108.629.952 2.152.066
SHA256 8.724.516 142.063.840 2.812.466
SIMPIRA 1.808.830 28.408.658 520.832

CuaCHA 3.648.660 63.427.980 1.587.120
HARAKA 965.430 15.545.370 258.660
AMD Ryzen KEccak 11.354.460 189.986.970 3.739.140
SHA256 3.267.180 53.332.380 1.090.650
SIMPIRA 1.261.590 20.439.600 335.790

CHACHA 10.361.344 193.512.960 3.488.256
HARAKA 2.246.656 47.100.928 717.824
ARM Cortex A57 KEccak 22.006.272 376.908.288 7.358.464
SHA256 5.292.032 92.088.832 1.679.872
SIMPIRA 3.362.304 63.489.536 1.108.992

CHACHA 10.940.928 199.582.208 3.666.944
HARAKA 2.320.384 45.261.312 737.280
ARM Cortex A72 KEccak 22.963.712 392.445.952 7.640.064
SHA256 5.359.616 92.767.744 1.717.760
SIMPIRA 3.412.480 62.707.712 1.131.520

however contrary to SPHINCS the size of the signature is also influenced by
the choice of the symmetric-key primitive. The authors provide benchmarks on
Haswell using LowMC: Key generation takes 36.000, signing 112.716.000 and
verification 58.680.000 cycles.

6 Conclusion

We presented a detailed discussion of how to instantiate SPHINCS, what the
requirements are and how the performance relates to the underlying cryptographic
hash function. Further, we provide an overview of promising candidates for
instantiating SPHINCS and discuss their security and performance characteristics.

We provided benchmarks on Intel Haswell, Intel Skylake and ARM Cortex A57
for these primitives based on implementations optimized towards the requirements
for hash-based signature schemes. Further, we provided a comparison of SPHINCS
instantiated with those primitives.

Overall we can see that on current platforms the performance for primitives
utilizing the crypto extensions is favorable compared to others and also the
difference between Intel and ARMv8-A is smaller. However, all primitives relying
on vectorized implementations get a significant slow down on ARMv8-A. Future
platforms, with support for larger vectors, are in the pipeline and will very likely
give a significant performance boost to hash-based signature schemes and will
make those primitives more competitive.

Acknowledgments We would like to thank Christoffer Brendum for providing
a first version of the ARM implementation of Haraka and Jacob Appelbaum for
running the benchmarks on the Cortex AT72.

This work was supported by the Commission of the European Communities
through the Horizon 2020 program under project number 645622 (PQCRYPTO).

References

1. Amy, M., Matteo, O.D., Gheorghiu, V., Mosca, M., Parent, A., Schanck, J.: Estimat-
ing the cost of generic quantum pre-image attacks on sha-2 and sha-3. Cryptology
ePrint Archive, Report 2016/992 (2016), http://eprint.iacr.org/2016/992 9,
10

2. Aumasson, J., Fischer, S., Khazaei, S., Meier, W., Rechberger, C.: New features
of latin dances: Analysis of salsa, chacha, and rumba. In: Nyberg, K. (ed.) Fast
Software Encryption, 15th International Workshop, FSE 2008. Lecture Notes in
Computer Science, vol. 5086, pp. 470-488. Springer (2008) 9

3. Aumasson, J., Meier, W., Phan, R.C., Henzen, L.: The Hash Function BLAKE.
Information Security and Cryptography, Springer (2014) 9

4. Bernstein, D.J.: Chacha, a variant of salsa20. http://cr.yp.to/papers.html#
chacha (2008) 8

5. Bernstein, D.J., Hopwood, D., Hiilsing, A., Lange, T., Niederhagen, R., Pa-
pachristodoulou, L., Schneider, M., Schwabe, P., Wilcox-O’Hearn, Z.: SPHINCS:
practical stateless hash-based signatures. In: Oswald, E., Fischlin, M. (eds.) Ad-
vances in Cryptology - EUROCRYPT 2015. Lecture Notes in Computer Science,
vol. 9056, pp. 368-397. Springer (2015) 2, 3

6. Bernstein, D.J., Lange, T.: ebacs: Ecrypt benchmarking of cryptographic systems.
https://bench.cr.yp.to, accessed 11.05.2017 12, 15

7. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V., Keer, R.V.: Keccak code
package. https://github.com/gvanas/KeccakCodePackage, accessed 02.05.2017
13

8. Bertoni, G., Daemen, J., Peeters, M., Assche, G.V., Keer, R.V.: Kangarootwelve:
fast hashing based on keccak-p. Cryptology ePrint Archive, Report 2016/770 (2016),
http://eprint.iacr.org/2016/770 9

9. Buchmann, J.A.; Dahmen, E., Hiilsing, A.: XMSS - A practical forward secure
signature scheme based on minimal security assumptions. In: Yang, B. (ed.) Post-
Quantum Cryptography - 4th International Workshop, PQCrypto 2011. Lecture
Notes in Computer Science, vol. 7071, pp. 117-129. Springer (2011) 2

10. Chang, D., Kumar, A., Morawiecki, P., Sanadhya, S.K.: 1st and 2nd preimage
attacks on 7, 8 and 9 rounds of keccak-224,256,384,512. SHA-3 workshop (August
2014 10

http://eprint.iacr.org/2016/992
http://cr.yp.to/papers.html#chacha
http://cr.yp.to/papers.html#chacha
https://bench.cr.yp.to
https://github.com/gvanas/KeccakCodePackage
http://eprint.iacr.org/2016/770

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Chase, M., Derler, D., Goldfeder, S., Orlandi, C., Ramacher, S., Rechberger, C.,
Slamanig, D., Zaverucha, G.: Post-quantum zero-knowledge and signatures from
symmetric-key primitives. In: Thuraisingham, B.M., Evans, D., Malkin, T., Xu,
D. (eds.) Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security, CCS 2017, Dallas, TX, USA, October 30 - November
03, 2017. pp. 1825-1842. ACM (2017), http://doi.acm.org/10.1145/3133956.
3133997 17

Chen, M., Hiilsing, A., Rijneveld, J., Samardjiska, S., Schwabe, P.: From 5-pass MQ
-based identification to M@ -based signatures. In: Cheon, J.H., Takagi, T. (eds.)
Advances in Cryptology - ASTACRYPT 2016 - 22nd International Conference on the
Theory and Application of Cryptology and Information Security, Hanoi, Vietnam,
December 4-8, 2016, Proceedings, Part II. Lecture Notes in Computer Science, vol.
10032, pp. 135-165 (2016), https://doi.org/10.1007/978-3-662-53890-6_5 17
Dahmen, E., Okeya, K., Takagi, T., Vuillaume, C.: Digital signatures out of
second-preimage resistant hash functions. In: Buchmann, J.A., Ding, J. (eds.)
Post-Quantum Cryptography, Second International Workshop, PQCrypto 2008.
Lecture Notes in Computer Science, vol. 5299, pp. 109-123. Springer (2008) 3, 4
David McGrew and, Michael Curcio and, S.F.: Hash-based signatures. https:
//datatracker.ietf.org/doc/draft-mcgrew-hash-sigs/, accessed 22.05.2017 2
Ducas, L., Lepoint, T., Lyubashevsky, V., Schwabe, P., Seiler, G., Stehlé, D.:
CRYSTALS - dilithium: Digital signatures from module lattices. IACR Cryptology
ePrint Archive 2017, 633 (2017), http://eprint.iacr.org/2017/633 17

Espitau, T., Fouque, P., Karpman, P.: Higher-order differential meet-in-the-middle
preimage attacks on SHA-1 and BLAKE. In: Gennaro, R., Robshaw, M. (eds.)
Advances in Cryptology - CRYPTO 2015. Lecture Notes in Computer Science, vol.
9215, pp. 683-701. Springer (2015) 9

Fouque, P.A., Hoffstein, J., Kirchner, P., Lyubashevsky, V., Pornin, T., Prest, T.,
Ricosset, T., Seiler, G., Whyte, W., Zhang, Z.: Falcon: Fast-fourier, lattice-based,
compact signatures over ntru. Submission to NIST Post-Quantum Competition
(2017) 17

Goldreich, O.: The Foundations of Cryptography - Volume 2, Basic Applications.
Cambridge University Press (2004) 2

Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proceed-
ings of the Twenty-Eighth Annual ACM Symposium on the Theory of Computing.
pp- 212-219 (1996) 9

Gueron, S., Mouha, N.: Simpira v2: A family of efficient permutations using the
AES round function. In: Cheon, J.H., Takagi, T. (eds.) Advances in Cryptology
- ASTACRYPT 2016. Lecture Notes in Computer Science, vol. 10031, pp. 95-125
(2016) 10, 11

Gueron, S., Mouha, N.: Sphincs-simpira: Fast stateless hash-based signatures
with post-quantum security. Cryptology ePrint Archive, Report 2017/645 (2017),
http://eprint.iacr.org/2017/645 3

Guo, J., Ling, S., Rechberger, C., Wang, H.: Advanced meet-in-the-middle preimage
attacks: First results on full tiger, and improved results on MD4 and SHA-2. In: Abe,
M. (ed.) Advances in Cryptology - ASTACRYPT 2010. Lecture Notes in Computer
Science, vol. 6477, pp. 56-75. Springer (2010) 8

Guo, J., Liu, M., Song, L.: Linear structures: Applications to cryptanalysis of
round-reduced keccak. In: Cheon, J.H., Takagi, T. (eds.) Advances in Cryptology -
ASTACRYPT 2016. Lecture Notes in Computer Science, vol. 10031, pp. 249-274
(2016) 10

http://doi.acm.org/10.1145/3133956.3133997
http://doi.acm.org/10.1145/3133956.3133997
https://doi.org/10.1007/978-3-662-53890-6_5
https://datatracker.ietf.org/doc/draft-mcgrew-hash-sigs/
https://datatracker.ietf.org/doc/draft-mcgrew-hash-sigs/
http://eprint.iacr.org/2017/633
http://eprint.iacr.org/2017/645

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

Hilsing, A.: W-OTS+ - shorter signatures for hash-based signature schemes.
In: Youssef, A., Nitaj, A., Hassanien, A.E. (eds.) Progress in Cryptology -
AFRICACRYPT 2013. Lecture Notes in Computer Science, vol. 7918, pp. 173-188.
Springer (2013) 4

Hiilsing, A., Rijneveld, J., Schwabe, P.: Armed SPHINCS - computing a 41 KB
signature in 16 KB of RAM. In: Cheng, C., Chung, K., Persiano, G., Yang, B. (eds.)
Public-Key Cryptography - PKC 2016. Lecture Notes in Computer Science, vol.
9614, pp. 446-470. Springer (2016) 3

Jean, J.: Cryptanalysis of haraka. IACR Trans. Symmetric Cryptol. 2016(1), 1-12
(2016) 10

Jean, J., Nikolic, I.: Efficient design strategies based on the AES round function.
In: Peyrin, T. (ed.) Fast Software Encryption - 23rd International Conference, FSE
2016. Lecture Notes in Computer Science, vol. 9783, pp. 334-353. Springer (2016)
11

Khovratovich, D., Rechberger, C., Savelieva, A.: Bicliques for preimages: Attacks
on skein-512 and the SHA-2 family. In: Canteaut, A. (ed.) Fast Software Encryption
- 19th International Workshop, FSE 2012. Lecture Notes in Computer Science, vol.
7549, pp. 244-263. Springer (2012) 9

Kolbl, S., Lauridsen, M.M., Mendel, F., Rechberger, C.: Haraka v2 - efficient short-
input hashing for post-quantum applications. IJACR Trans. Symmetric Cryptol.
2016(2), 1-29 (2016) 3, 10, 11

Leurent, G.: MD4 is not one-way. In: Nyberg, K. (ed.) Fast Software Encryption,
FSE 2008. vol. 5086, pp. 412-428. Springer (2008) 8

Reyzin, L., Reyzin, N.: Better than biba: Short one-time signatures with fast signing
and verifying. In: Batten, L.M., Seberry, J. (eds.) Information Security and Privacy,
7th Australian Conference, ACISP. Lecture Notes in Computer Science, vol. 2384,
pp. 144-153. Springer (2002) 4

Rompel, J.: One-way functions are necessary and sufficient for secure signatures.
In: Ortiz, H. (ed.) Proceedings of the 22nd Annual ACM Symposium on Theory of
Computing. pp. 387-394. ACM (1990) 1

Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. STAM J. Comput. 26(5), 1484-1509 (1997) 1

Stephens, N., Biles, S., Boettcher, M., Eapen, J., Eyole, M., Gabrielli, G., Horsnell,
M., Magklis, G., Martinez, A., Premillieu, N., et al.: The arm scalable vector
extension. IEEE Micro 37(2), 26-39 (2017) 12

Wang, X., Lai, X., Feng, D., Chen, H., Yu, X.: Cryptanalysis of the hash functions
MD4 and RIPEMD. In: Advances in Cryptology - EUROCRYPT 2005. pp. 1-18
(2005) 8

Wang, X., Yin, Y.L., Yu, H.: Finding collisions in the full SHA-1. In: Advances in
Cryptology - CRYPTO 2005. pp. 17-36 (2005) 8

Wang, X., Yu, H.: How to break MD5 and other hash functions. In: Advances in
Cryptology - EUROCRYPT 2005. pp. 19-35 (2005) 8

A Instructions

In Table 3 we give an overview of the performance characteristics®® of the
instructions on the different platforms. Note that on the ARM Cortex A57/A73
a pair of aese and aesmc will have a latency of 3 and inverse throughput of 1.

Table 3. Comparison of the latency L and inverse throughput T of several instructions

used in the implementations.

Instruction Platform L T Description

Haswell 1 0.33 .
vpxor, vpand, Skylake 1 0.33 XOR/AND/OR of 256-bit
vpor Ryzen 1 0.5 vectors.
veor. vand. vorr Cortex A57 3 2 XOR/AND/OR of 128-bit

’ ’ Cortex AT2 3 2 vectors.

Haswell 1 1 . . .
vpslld Skylake 1 1 S:(ff) ;)Sf words in 256-bit
Ryzen 1 2 v ’
vshl Cortex A57 3 1 Shift of words in 128-bit
Cortex AT2 3 1 vector.
unpckhd Haswell 1 1
punpckl dq’ Skylake 1 1 Interleave upper/lower
punp 1 Ryzen 1 0.5 halves of two 128-bit
PR Cortex A57 3 2 vectors.
p, 2ip Cortex AT2 3 2
Haswell [SubBytes, ShiftRows,
aesenc Skylake 4 ! MixColumns, AddKe
Ryzen 4 0.5 ’ 4
aese. aesme Cortex A57 3 1 AddKey, SubBytes,

’ Cortex AT2 3 1 ShiftRows / MixColumns.
SHA256RNDS2 Ryzen 4 2 Two rounds of SHA256.
SHA256MSG1 Ryzen 2 0.5 Helper for message
SHA256MSG2 Ryzen 3 2 expansion.
sha256h Cortex A57/A72 6 1
sha256h2 Cortex A57/A72 6 1 SHA256 state update.
sha256su0 Cortex A57T/A72 3 1 .
sha256sul Cortex ABT/AT2 6 1 SHA256 message expansion.

8 For Intel/AMD see: https://software.intel.com/sites/landingpage/
IntrinsicsGuide and http://agner.org/optimize/instruction_tables.pdf.

9 For ARM sece: http://infocenter.arm.com/help/topic/com.arm.doc.uan0015b/
Cortex_A57_Software_Optimization_Guide_external.pdf.

https://software.intel.com/sites/landingpage/IntrinsicsGuide
https://software.intel.com/sites/landingpage/IntrinsicsGuide
http://agner.org/optimize/instruction_tables.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.uan0015b/Cortex_A57_Software_Optimization_Guide_external.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.uan0015b/Cortex_A57_Software_Optimization_Guide_external.pdf

	Putting Wings on SPHINCS

